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Abstract.
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Proof. Let In =
∫ π

2
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2
cosn(y)dy, then for n ≥ 2, we have that, using

integration by parts;
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∫ π

2

−π
2
cosn(y)dy

= [cosn−1(y)sin(y)]
π
2

−π
2

+
∫
−π

2

π
2 (n− 1)cosn−2(y)sin2(y)dy

=
∫
−π

2

π
2 (n− 1)cosn−2(y)(1− cos2(y))dy

= (n− 1)In−2 − (n− 1)In

so that, rearranging;
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and, using the fact I0 = π, I1 = 2, we have that, for n even;

In = n!
2n[(n

2
)!]2
π
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Lemma 0.2. Let n ∈ N , ε > 0, and let γn,ε be defined by;

γn,ε(x) = 1
ε
cosn(πx

2ε
), for x ∈ [−ε, ε]

γn,ε(x) = 0, otherwise

Then γn,ε has the following properties;

(i). γn,ε ∈ Cn−1(R).

(ii). γn,ε ≥ 0.

(iii).
∫
R γn,ε(x)dx = n!

2n−1[(n
2
)!]2

, n even∫
R γn,ε(x)dx =

[n−1
2

!]22n+1

πn!
, n odd

(iv) γn,ε is supported on [−ε, ε].

Proof. (ii) is clear as cos(y) ≥ 0 for y ∈ [−π
2
, π
2
], (iv) is clear by the

definition of γn,ε. To prove (i), it is sufficient to show that;

cosn(πx
2ε

)(m)(ε) = cosn(πx
2ε

)(m)(−ε) = 0

for 0 ≤ m ≤ n − 1. We can prove this by induction on n, as for
n = 1, we have that;

cos(πx
2ε

)(ε) = cos(π
2
) = cos(πx

2ε
)(−ε) = cos(−π

2
) = 0

and, if the inductive hypothesis holds for n ∈ N , then, for 1 ≤ m ≤
n;

cosn+1(πx
2ε

)(m)(ε)

= −[π(n+1)
2ε

cosn(πx
2ε

)sin(πx
2ε

)](m−1)(ε)

= −π(n+1)
2ε

[
∑m−1

k=0 C
m−1
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2ε
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)(k)](ε)

= 0

and similarly;
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cosn+1(πx
2ε

)(m)(−ε) = 0

while, clearly;

cosn+1(πx
2ε

)(ε) = cosn+1(πx
2ε

)(−ε) = 0

To prove (iii), we have that, for n ∈ N ;∫
R γn,ε(x)dx

= 1
ε

∫ ε
−ε cos

n(πx
2ε

)

= 1
ε

∫ π
2

−π
2
cosn(y)2ε

π
dy, (y = πx

2ε
)

= 2
π

∫ π
2

−π
2
cosn(y)dy

so that, using Lemma 0.1, for n even;∫
R γn,ε(x)dx = 2

π
n!
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2
)!]2
π

= n!
2n−1[(n

2
)!]2

and, for n odd;∫
R γn,ε(x)dx = 2

π
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2
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Lemma 0.3. Let δn,ε(x) be defined by;

δn(x) =
2n−1[n

2
!]2

n!
γn,ε, for n even

and by;

δn(x) = πn!
[(n−1

2
)!]22n+1γn,ε, for n odd

Then the properties (i), (ii), (iv) of Lemma 0.2 hold, with (iii) changed
to;
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(iii)′.
∫
R γn,ε(x)dx = 1, n ∈ N

and, for n ∈ N ;

limε→0δn,ε = δ

in the sense of distributions, where δ is the Dirac delta function on
R.

Proof. The first claim is clear as we have just normalised γn,ε. For the
remaining claim, let f ∈ C∞c (R), and write;

f = f+ + f−

where;

f+(x) = f(x), if f(x) ≥ 0

f+(x) = 0 otherwise

f−(x) = f(x), if f(x) ≤ 0

f−(x) = 0 otherwise

Then, using properties (ii), (iii)′, (iv) of δn,ε and continuity of f ;

min[−ε,ε]f
++min[−ε,ε]f

− ≤ δn,ε(f) =
∫ ε
−ε δn,ε(x)f+(x)dx+

∫ ε
−ε δn,ε(x)f−(x)dx

≤ max[−ε,ε]f
+ +max[−ε,ε]f

−

with;

limε→0min[−ε,ε]f
+ +min[−ε,ε]f

− = limε→0max[−ε,ε]f
+ +max[−ε,ε]f

−

= f(0)

so that limε→0δn,ε(f) = f(0) = δ(f), as required.
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Lemma 0.4. We define the time derivative δ′t of the delta function δ
to be;

d
dt
δ(x− vt)

where v is the velocity, so that;

δ′t = −vδ′

in the sense of distributions. Similarly, we define the time derivative
δ′n,ε,t of the approximations by;

d
dt
δn,ε(x− vt)

so that, by the chain rule;

δ′n,ε,t(x) = −vδ′n,ε(x)

Then;

limε→0δ
′
n,ε,t = δ′t

in the sense of distributions.

Proof. For the claim, let f ∈ C∞c (R), then, using integration by parts,
(iv) of Lemma 0.3;

δ′n,ε,t(f) = −v
∫ ε
−ε δ

′
n,ε(x)f(x)dx

= −v([δ′n,ε(x)f(x)]ε−ε −
∫ ε
−ε δn,ε(x)f ′(x)dx)

= v
∫ ε
−ε δn,ε(x)f ′(x)dx

so that, using the main result of Lemma 0.3;

limε→0δ
′
n,ε,t(f)

= vlimε→0

∫ ε
−ε δn,ε(x)f ′(x)dx

= vf ′(0)
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= −vδ′(f)

= δ′t(f)

as required.
�
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