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TRISTRAM DE PIRO

Lemma 0.1. Let potentials (V,A) be given in the base frame S, satis-
fying the relations for a fixed charge and current (ρ, J);

5 � A+ 1
c2
∂V
∂t

= 0

�2(V ) = − ρ
ε0

�2(A) = −µ0J

then in any transformed frame S ′ with velocity vector v or rotation

g ∈ SO(3), if (V ′, A
′
, ρ′, J

′
) are the transformed quantities, then we

have the invariance;

5′ � A′ + 1
c2
∂V ′

∂t′
= 0

�2′(V ′) = − ρ′

ε0

�2′(A
′
) = −µ0J

′

If we let (E,B) be the electromagnetic fields defined by;

E = −5 (V )− ∂A
∂t

B = 5× A

then we have the further invariance;

E
′
= −5′ (V ′)− ∂A

′

∂t′

B
′
= 5′ × A′

for the transformed quantities (V ′, A
′
, E
′
, B
′
). In particular, it fol-

lows, that if (ρ, J, E,B) satisfy Maxwell’s equations in the base frame
1
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S, then (ρ′, J
′
, E
′
, B
′
) satisfy Maxwell’s equations in the frame S ′.

Proof. For the first claim, we have the following transformation rules
to the frame S ′, where v = ve1, see [2];

5′ = (γv(
∂
∂x

+ v
c2

∂
∂t

), ∂
∂y
, ∂
∂z

)

∂
∂t′

= γv(
∂
∂t

+ v ∂
∂x

)

and the transformation rules for (V,A), see [2];

V ′ = γvV − γvva1

A
′
= (γva1 − γvvV

c2
, a2, a3)

where A = (a1, a2, a3). We then compute, using the identity;

γ2
v(1− v2

c2
) = 1

that;

5′ � A′ + 1
c2
∂V ′

∂t′
= γv(

∂
∂x

+ v
c2

∂
∂t

)(γva1 − γvvV
c2

) + ∂a2
∂y

+ ∂a3
∂z

+γv
c2

( ∂
∂t

+ v ∂
∂x

)(γvV − γvva1)

= γ2
v
∂a1
∂x
− γ2vv

c2
∂V
∂x

+ γ2vv
c2

∂a1
∂t
− γ2vv

2

c4
∂V
∂t

+ ∂a2
∂y

+ ∂a3
∂z

+γ2v
c2
∂V
∂t
− γ2vv

c2
∂a1
∂t

+ γ2vv
c2

∂V
∂x
− γ2vv

2

c2
∂a1
∂x

= ∂a1
∂x

+ ∂a2
∂y

+ ∂a3
∂z

+ 1
c2
∂V
∂t

= 5 � A+ 1
c2
∂V
∂t

= 0

For the second and third claims, we have, using the invariance of �2,
the facts that �2(V ) = − ρ

ε0
and �2(A) = −µ0J in the base frame S,

and the transformation rule for ρ, that;

�2′(V ′) = �2′(γvV − γvva1)
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= γv�2(V )− γvv�2(a1)

= −γvρ
ε0
− γvv(−µ0j1)

= −1
ε
(γv(ρ− vj1

c2
))

= − ρ′

ε0

and, using the transformation rules for J ;

�2′(A
′
) = �2(γva1 − γvvV

c2
, a2, a3)

= (γv�2(a1)− γvv
c2
�2(V ),�2(a2),�2(a3))

= (γv(−µ0j1)− γvv
c2

(−ρ
ε0

),−µ0j2,−µ0j3)

= −µ0(γv(j1 − vρ), j2, j3)

= −µ0(γv(J || − ρv) + J⊥)

= −µ0(J
′
)

The further invariance is checked in [7], while the claim about Maxwell’s
equations is verified in [6]. For an arbitrary boost v, choose g ∈ SO(3),
with g−1(ve1) = v, then by Lemma 1.5 of [7], we have that;

Bv = RgBve1Rg−1 .

It is sufficient to check that the relations;

5 � A+ 1
c2
∂V
∂t

= 0

�2(V ) = − ρ
ε0

�2(A) = −µ0J

are preserved by a rotation g. This can be achieved using Lemma
1.3 of [7];

5′ � Ag + 1
c2
∂V g

∂t′
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= (5 � A)g + 1
c2

(∂V
∂t

)g

= 0

and;

�2′(V g) = 5′ � (5′(V g))− 1
c2
∂2V g

∂t′2

= 5′ � ((5(V ))g)− 1
c2

(∂
2V
∂t2

)g

= (5 � (5(V )))g − 1
c2

(∂
2V
∂t2

)g

= �2(V )g

= −ρg

ε0

and;

�2′(A
g
) = −µ0J

g

is similar.

The further invariance for rotations is checked in [7] as well, and the
claim about Maxwell’s equations now follows for an arbitrary boost
with velocity vector v or a rotation g ∈ SO(3) by [6] again.

�

Lemma 0.2. We can define a frame S∞,1 by taking the limit as v →∞,
λ∞, of the standard Lorentz transformation with velocity vector ve1, us-

ing the choice of square root,
√

1
−1

c2
= −ic;

t∞ = ix
c

, x∞ = ict, y∞ = y, z∞ = z

With the same convention, we can take the limit of the transforma-
tion rules for;

(ρ, J, E,B, V,A,5, ∂
∂t

)

to the frame Sve1, as v →∞, to obtain;



SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 9 5

ρ∞ =
icJ ||
c2

= ij1
c

J∞ = icρe1 + J⊥ = (icρ, j2, j3)

E∞ = E|| − ic(e1 ×B) = (e1, icb3,−icb2)

B∞ = B|| +
ic
c2

(e1 × E) = (b1,− i
c
e3,

i
c
e2)

V∞ = icA|| = ica1

A∞ = ic
c2
V + A⊥ = ( iV

c
, a2, a3)

5∞ = (− ic
c2

∂
∂t
, ∂
∂y
, ∂
∂z

) = (− i
c
∂
∂t
, ∂
∂y
, ∂
∂z

)

∂
∂t∞ = −ic ∂

∂x

With the above transformation rules, the invariances in Lemma 0.1
are preserved, in particular Maxwell’s equations hold in S∞,1 for the
transformed quantities (ρ∞, J∞, E∞, B∞).

If the quantities and their derivatives in the base frame are real an-
alytic, then the transformed quantities are analytic in an open region
V containing λ∞(R4), and we can interpret the transformed deriva-
tives as genuine derivatives on C4 at the transformed points λ∞(R4).
Maxwell’s equations then hold on the open region V .

The relations;

5 � (E ×B) = 0

and;

(E, J) = 0

transform to;

∂
∂t∞

(E∞ ×B∞)1 = − 1
ε0

( ∂
∂y∞

(p∞,12) + ∂
∂z∞

(p∞,13))

and;
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f∞,1 = 0

in S∞,1, where p∞,12 and p∞,13 are components of the stress tensor,

and f∞ is force density.

Similarly, we can define a frame S∞,θ, where |θ| = 1, by taking the
limit as v → ∞, λ∞,θ, of the standard Lorentz transformation with

velocity vector vθ, using the choice of square root,
√

1
−1

c2
= −ic.

With the same convention, we can take the limit of the transforma-
tion rules for;

(ρ, J, E,B, V,A,5, ∂
∂t

)

to the frame S∞,θ. With the above transformation rules, the invari-
ances in Lemma 0.1 are again preserved, in particular Maxwell’s equa-
tions hold in S∞,θ for the transformed quantities (ρ∞,θ, J∞,θ, E∞,θ, B∞,θ).
The claim on analytic functions holds as before.

Proof. The standard Lorentz transformation to the frame Sve1 is given
by, see [8];

t′ = γv(t− vx
c2

), x′ = γv(x− vt), y′ = y, z′ = z

The transformation rules to the frame Sv are given by, see [2];

ρ′ = γv(ρ−
vJ ||
c2

)

J
′
= γv(J || − ρv) + J⊥

E
′
= E|| + γv(E⊥ + v ×B)

B
′
= B|| + γv(B⊥ − v×E

c2
)

V ′ = γv(V − vA||)

A
′
= γv(A|| − v

c2
V ) + A⊥

5′ = γv(5|| + v
c2

∂
∂t

) +5⊥
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∂
∂t

′
= γv(

∂
∂t

+ v| 5|| |)

Taking v = ve1, v →∞ and using the fact that, with the convention,
limv→∞γv = 0, limv→∞vγv = −ic, we obtain the first result.

We have that, either directly by the above transformation rules, or
using the fact that the limit is distributive in the proof of Lemma 0.1;

5∞ � A∞ + 1
c2
∂V∞
∂t∞

= (− i
c
∂
∂t
, ∂
∂y
, ∂
∂z

) � ( iV
c
, a2, a3) + 1

c2
(−ic ∂

∂x
)(ica1)

= 1
c2
∂V
∂t

+ ∂a2
∂y

+ ∂a3
∂z

+ ∂a1
∂x

= 5 � A+ 1
c2
∂V
∂t

= 0

and;

�2
∞(V∞) = (− i

c
∂
∂t
, ∂
∂y
, ∂
∂z

)�(− i
c
∂
∂t

(ica1), ic∂a1
∂y
, ic∂a1

∂z
)− 1

c2
(−ic ∂

∂x
)2(ica1)

= ic(∂
2a1
∂x2

+ ∂2a1
∂y2

+ ∂2a1
∂z2

)− ic
c2
∂2a1
∂t2

= ic�2(a1)

= ic(−µ0j1)

= − ij1
cε0

= −ρ∞
ε0

and;

�2
∞ = (− i

c
∂
∂t
, ∂
∂y
, ∂
∂z

) � (− i
c
∂
∂t
, ∂
∂y
, ∂
∂z

)− 1
c2

∂2

∂t2∞

= − 1
c2

∂2

∂t2
+ ∂2

∂y2
+ ∂2

∂z2
− 1

c2
(−ic ∂

∂x
)2

= ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
− 1

c2
∂2

∂t2
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= �2

so that;

�2
∞(A∞)

= (�2
∞( iV

c
),�2

∞(a2),�2
∞(a3))

= (�2( iV
c

),�2(a2),�2(a3))

= (− i
c
ρ
ε0
,−µ0j2,−µ0j3)

= −µ0( i
c
c2ρ, j2, j3)

= −µ0(icρ, j2, j3)

= −µ0J∞

The further invariance can be proved by a similar method, extend-
ing the result of [7], the details are left to the reader. The claim about
Maxwell’s equations then follows from [6] again. If the quantities in the
base frame are analytic, then we have, for example, that in the frame
S∞,1;

ρ∞(x′, t′) = ij1(λ−1
∞ (x′,t′))
c

at a transformed point (x′, t′) ∈ λ∞(R4). As j1 is real analytic, it
extends to a complex analytic function in an open region U containing
λ−1
∞ (x′, t′), corresponding to an open region λ∞(U) containing (x′, t′).

Then, as λ−1
∞ is linear and, therefore, analytic, and the composition of

analytic functions is analytic, ρ∞ is analytic on λ∞(U). A similar re-
sult holds for the other transformed quantities by complex linearity of
the transformation rules. The claim about the transformed derivatives
being genuine derivatives then follows from the transformation rules,
the chain rule and the linearity of the derivatives of complex analytic
functions. The fact that Maxwell’s equations hold on V , then follows
from the fact that the transformed quantities and their derivatives are
analytic and the identity theorem.

By inverting the transformation rules, we have that;
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E = E∞,|| + ic(e1 ×B∞) = (e∞,1,−icb∞,3, icb∞,2)

B = B∞,|| − ic
c2

(e1 × E∞) = (b∞,1,
i
c
e∞,3,− i

c
e∞,2)

5 = ( ic
c2

∂
∂t∞

, ∂
∂y∞

, ∂
∂z∞

) = ( i
c

∂
∂t∞

, ∂
∂y∞

, ∂
∂z∞

)

so that;

5�(E×B) = ( i
c

∂
∂t∞

, ∂
∂y∞

, ∂
∂z∞

)�((e∞,1,−icb∞,3, icb∞,2)×(b∞,1,
i
c
e∞,3,− i

c
e∞,2))

= ( i
c

∂
∂t∞

, ∂
∂y∞

, ∂
∂z∞

)�(−e∞,2b∞,3+e∞,3b∞,2, icb∞,1b∞,2+ i
c
e∞,1e∞,2,

i
c
e∞,1e∞,3

+icb∞,1b∞,3)

= i
c

∂
∂t∞

(−e∞,2b∞,3+e∞,3b∞,2)+ ∂
∂y∞

(icb∞,1b∞,2+ i
c
e∞,1e∞,2)+ ∂

∂z∞
( i
c
e∞,1e∞,3

+icb∞,1b∞,3)

= − i
c

∂
∂t∞

(E∞×B∞)1 + i
c

∂
∂y∞

(e∞,1e∞,2 + c2b∞,1b∞,2) + i
c

∂
∂z∞

(e∞,1e∞,2

+c2b∞,1b∞,2)

so that 5 � (E ×B) = 0 iff;

= − ∂
∂t∞

(E∞ ×B∞)1 + ∂
∂y∞

(e∞,1e∞,2 + c2b∞,1b∞,2) + ∂
∂z∞

(e∞,1e∞,2

+c2b∞,1b∞,2) = 0

iff

∂
∂t∞

(E∞ ×B∞)1 = − 1
ε0

( ∂
∂y∞

(p∞,12) + ∂
∂z∞

(p∞,13))

By inverting the transformation rules again, we have that;

J = −icρ∞e1 + J∞,⊥ = (−icρ∞, j∞,2, j∞,3)

so that;

E � J = (e∞,1,−icb∞,3, icb∞,2) � (−icρ∞, j∞,2, j∞,3)
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= −icρ∞e∞,1 − icj∞,2b∞,3 − icj∞,3b∞,2

= −ic((ρ∞E∞ + J∞ ×B∞)1)

so that E � J = 0 iff;

(ρ∞E∞ + J∞ ×B∞)1 = 0

iff

f∞,1 = 0

For an arbitrary angle θ, |θ| = 1, choose g ∈ SO(3), with g−1(ve1) =
vθ, then by Lemma 1.5 of [7], we have that;

Bvθ = RgBve1Rg−1 .

Taking the limit as v →∞, we have that;

B∞,θ = Rgλ∞Rg−1 .

We have already checked that the relations;

5 � A+ 1
c2
∂V
∂t

= 0

�2(V ) = − ρ
ε0

�2(A) = −µ0J

are preserved by a rotation g. So it is sufficient to verify that the
relations;

5∞ � A∞ + 1
c2
∂V∞
∂t∞

= 0

�2(V∞) = −ρ∞
ε0

�2(A∞) = −µ0J∞

are preserved by a rotation g as well. The proof is similar to the
above, bearing in mind that we are dealing with complex coordinates.
.......
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The further invariance for rotations is checked in [7] as well, and the
claim about Maxwell’s equations now follows for an arbitrary boost
with velocity vector v or a rotation g ∈ SO(3) by [6] again.

.......
�

Definition 0.3. Let (ρ, J) be given in the base frame S. We call S a
good frame in the direction e1 if for all v ∈ (−c, c), there exist electric
and magnetic fields {Eve1 , Bve1} in the frame Sve1 such that;

(i). (ρve1 , Jve1 , Eve1 , Bve1) satisfy Maxwell’s equations in the frame
Sve1

(ii). (Eve1 , Jve1) = 0

(iii). The transfers of the fields {Eve1 , Bve1} back to the base frame
S form an analytic family in R4 × (−c, c), with the property that that
for any compact subset D of R4, with open interior, there exists εD > 0
such that the transfers are analytic on D◦ × (−c− εD, c+ εD).

We call S an excellent frame in the direction e1, if the same condi-
tions are satisfied, with (ii) modified to;

(ii)′. 5ve1(Eve1 ×Bve1) = 0

Lemma 0.4. If S is a good frame, then any frame S ′ connected to
S by a velocity we1 is good and, moreover, if D is compact with open
interior in S, with corresponding DS′ in S ′, we can choose εDS′ to be
uniform in S ′, with the requirement that 0 < εDS′ < min(−c− θ(−c−
εD, w), θ(c+εD, w)−c, c2|w|−c), where θ is as in the proof. For a compact

subset D with open interior in S, There exists ε′D > 0 such that in the
frame S(−c+ε′D)e1, there exist {E−∞, B−∞} in the frame S−∞,1 relative
to S(−c+ε′D)e1 as the base frame, such that;

(E−∞, J−∞) = 0

on the corresponding set D−∞ in S−∞,1, and, therefore on some open
D−∞ ⊂ V−∞ ⊂ C4 in S−∞,1.
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There exist {E∞, B∞} in the frame S∞,1 relative to S ′′′(−c+ε′D)e1
, as

the base frame, which is S(−c+ε′D)e1, rotated by 180 degrees, such that;

(E∞, J∞) = 0

on the corresponding set D∞ in S∞,1, and, therefore on some open
D∞ ⊂ V∞ ⊂ C4 in S∞,1.

Proof. Let S ′ be connected to S by velocity we1, w ∈ (−c, c), and let
S ′′ be connected to S ′ by velocity ve1, v ∈ (−c, c). By Lemma 1.9 of
[7], we have the boost relation;

Bve1Bwe1 = Bve1∗we1

where;

ve1 ∗ we1 = ve1+we1
1+

ve1�we1
c2

= v+w
1+ vw

c2
e1

Fixing w and letting v vary, we have that α = v+w
1+ vw

c2
defines an

increasing invertible analytic function from (−c, c) onto (−c, c), with
inverse v = α−w

1−αw
c2

= θ(α,w). By the fact that S is a good frame, we

can find {Eαe1 , Bαe1}, such that (i), (ii) are satisfied and the transfers
from Sαe1 back to S satisfy (iii). We transfer Eαe1 and Bαe1 from S
back to S ′ by the transfer rules;

E
′
= Eαe1,|| + γw(Eαe1,⊥ + w ×Bαe1)

B
′
= Bαe1,|| + γw(Bαe1,⊥ −

w×Eαe1
c2

)

Then, by the facts that for fixed w, the transformation rules are lin-
ear, and composition of analytic functions is analytic;

E
′
ve1

= E v+w
1+ vw

c2
e1,|| + γw(E v+w

1+ vw
c2
e1,⊥ + w ×B v+w

1+ vw
c2
e1

)

B
′
ve1

= B v+w
1+ vw

c2
e1,|| + γw(B v+w

1+ vw
c2
e1,⊥ −

w×E v+w
1+ vw

c2
e1

c2
)

is a family of fields in S ′, indexed by v, satisfying the first part of (iii),
whose corresponding fields in the varying frame S ′′, indexed by v, sat-
isfy (i), (ii). It remains to prove the last part of (iii). LetD′ be compact
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in S ′, with open interior, then as the Lorentz transformation connecting
S ′ to S is linear, therefore continuous, and invertible, the correspond-
ing D in S is compact with open interior. As S is good, we can extend
the analytic family {Eαe1 , Bαe1} in S to D◦ × (−c− εD, c+ εD), so we

can extend the analytic family {E ′ve1 , B
′
ve1
} to D′◦× (−c− εD′ , c+ εD′),

provided 0 < εD′ < min(−c− θ(−c− εD, w), θ(c + εD, w)− c, c2|w| − c),
so that we avoid the pole of the analytic function v+w

1+ vw
c2

, and we remain

within the bound for the base frame S after interpolation.

Fixing some compact set D with open interior in the base frame S,
ε > 0, let S ′ travel with velocity (−c + ε)e1 relative to the base frame
S, so that S travels with velocity (c− ε)e1 relative to S ′. Let S ′′ travel

with velocity (− c2

(c−ε) + δ)e1, 0 < δ < c2

c−ε− c, relative to S. As is shown

in [7], by the velocity addition formula, S ′′ travels with velocity;

α(δ, ε)) =
[(c−ε)+(− c2

(c−ε)+δ)]

1+
((c−ε)(− c2

(c−ε)+δ))

c2

e1

=
c2[(c−ε)− c2

(c−ε)−δ]
δ(c−ε) e1

relative to S ′, and as δ → 0, α(δ, ε)→ −∞ and S ′′ converges to the
limit frame S−∞,1 relative to S ′, (∗).

Choose ε > 0 so that;

−εD < − c2

c−ε + c < 0

iff

−εD < − εc
c−ε < 0

iff

0 < εc
c−ε < εD

iff

0 < ε < cεD
c+εD
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then the interval (− c2

c−ε ,−c) ⊂ (−c− εD,−c). By the hypotheses on

S, we can find a family {Eve1 , Bve1} indexed by (−c − εD,−c), in the
frames S ′′, travelling with velocity ve1, relative to S, v ∈ (−c−εD,−c),
such that the transfers, with the extension of the transformation rules,
back to the frame S form an analytic family.

We can transfer Eve1 and Bve1 from S back to S ′ by the transfer rules;

E
′
= Eve1,|| + γ−c+ε(Eve1,⊥ + (−c+ ε)e1 ×Bve1)

B
′
= Bve1,|| + γ−c+ε(Bve1,⊥ −

(−c+ε)e1×Eve1
c2

)

Then, by the facts that for the fixed −c+ ε, the transformation rules
are linear, and composition of analytic functions is analytic;

E
′
αe1

= Eθ(α,c−ε)e1,|| + γ−c+ε(Eθ(α,c−ε)e1,⊥ + (−c+ ε)e1 ×Bθ(α,c−ε)e1)

B
′
αe1

= Bθ(α,c−ε)e1,|| + γ−c+ε(Bθ(α,c−ε)e1,⊥ −
(−c+ε)e1×Eθ(α,c−ε)e1

c2
)

is a family of fields in S ′, indexed by α(ε, δ).

The statement of Maxwell’s equations in the frames S ′′, together
with the requirement that (Eve1 , Jve1) = 0 in the frames S ′′ transfer to
analytic statements in the frame S, and hold by analytic continuation,
noting that the singularity created by γv, when v = c, is isolated, and
the statements are identically zero for v ∈ (−c, c). In particular by
(∗) we obtain (E−∞, J−∞) = 0 in S−∞,1, and noting that the property
is invariant by a rotation, and using the conjugation formula B∞ =
RgB−∞R

−1
g for a 180 degree rotation g, we obtain the final result.

�

Lemma 0.5. Letting S be the base frame, moving with velocity (−c+
ε)e1, relative to the original base frame, obtained in the Lemma 0.4,
fixing a compact set with open interior, we can find {E,B} in S such
that, for the associated force density f ;

f = 0

With the assumption that {ρ, J} are analytic, we can either find

{E ′, B′} such that;
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(E
′
, B
′
) = 0, (∗)

on D in the original base frame or ρ = 0, J = 0 on D, in the original
base frame.

We have either the trivial case, that ρ = 0, J = 0 in the original base
frame S, or we obtain that f = 0 for fields {E,B} with (E,B) = 0,
and (E, J) = 0, in S.

Proof. Following the method of [7], fixing a compact subset with open
interior in the original base frame, we let S be the base frame S ′′′(−c+ε′D)e1

,

obtained in the Lemma 0.4, with the relative frame S∞,1 such that
(E∞, J∞) = 0. Fix a velocity u relative to S, with |u| < c. By the
velocity composition formula, to find w with;

BwBu = RhBse1

where h ∈ SO(3), we must have that w = se1 ∗ (−u), where;

a ∗ b = a+b

1+a�b
c2

+ γa(a×(a×b))
c2(γa+1)(1+a�b

c2
)

so that;

w = se1−u
1− se1�u

c2

− γs(se1×(se1×u))

c2(γs+1)(1− se1�u
c2

)

and if u1 6= 0;

w∞ = lims→∞w = lims→∞[ se1−u
1− su1

c2
− γs(se1(su1)−us2)

c2(γs+1)(1− su1
c2

)
]

= e1
−u1
c2
− lims→∞

γss2(u1e1−u)

c2(γs+1)(1− su1
c2

)

= lims→∞
−s2(u1e1−u)

c2(1− su1
c2

)

= lims→∞
s2(0,u2,u3)

c2(1− su1
c2

)

= lims→∞
s(0,u2,u3)
c2

s
−u1

= lims→∞
s(0,u2,u3)
−u1

= lims→∞ − s(0, u2, u3)
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We have ignored the e1
−u1
c2

term, as by the definition of the boost ma-

trix, see [7], substituting a finite term is equivalent to substituting a
zero vector, in the computation as s → ∞. This is an easy computa-
tion left to the reader.

Then, working in a triangle;

Bu = B−w(s)Rh(s)Bse1

= lims→∞(B−w(s)Rh(s)Bse1)

= lims→∞(Bs(0,u2,u3))Rh∞lims→∞(Bse1)

By the conjugation result;

Bs(0,u2,u3) = RgBs(u22+u23)
1
2 e1
R−1
g

where g ∈ SO(3) is independent of s, with the property that g((u2
2 +

u2
3)

1
2 e1) = (0, u2, u3), so that;

Bu = Rglims→∞(B
s(u22+u23)

1
2 e1

)R−1
g Rh∞lims→∞(Bse1)

= Rgλ∞R
−1
g Rh∞λ∞

By Lemma 0.4, we have a field E∞ in S∞,1 such that (E∞, J∞) = 0.
This property is invariant by rotations so it holds in the frame S ′ con-
nected to S∞,1 by the rotation R−1

g Rh∞ . Then by Lemma 0.2, the

relation (E
′
∞, J

′
∞) transforms to the relation (f)∞,1 = 0 in the frame

S ′′ connected to S ′ by a further infinite boost back λ∞. Choosing
u = (δ, δ, 0), with g(e1) = e2, u = (δ, 0, δ), with g(e1) = e3, and noting
that for a rotation Rg;

(R−1
g (ρ′∞E

′
∞ + J

′
∞ ×B

′
∞, e1)

= (ρ′∞E
′
∞ + J

′
∞ ×B

′
∞, Rg(e1))

= (f
′
∞,1, Rg(e1))

for quantities (ρ′∞, J
′
∞, E

′
∞, B

′
∞, f

′
∞,1) in the frame S ′′′ connected to

S ′′ by the rotation Rg, we obtain;
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(f
′
∞,1)2 = 0 in S ′′′1 connected to S by B(δ,δ,0)

(f
′
∞,1)3 = 0 in S ′′′2 connected to S by B(δ,0,δ)

so that, letting δ → 0, by continuity, there exist {E,B} in S with;

(f)2 = (f)3 = 0

Remembering, that S is connected to the frame S∞,1, by the infinite
boost λ∞, and using the fact that we have (E∞, J∞) = 0, by Lemma
0.2 again, we obtain the transformed relation in S;

(f)1 = 0

Combining the results, we then have {E,B} in S, with f = 0, (AA).
Observing that the statement f = 0 is rotation invariant, we have that
f = 0 in the frame S ′, connected to the original base frame S by the
velocity vector (−c + εD)e1. By continuity, we can obtain the same
result, that there exist {Ev, Bv} in Sv, connected to S ′ by a velocity
v with |v| < δ, for sufficiently small δ, such that the associated force
density f v = 0. We then have that, by the transformation rules and
the definition of force density;

(f v, Bv) = ρv(Ev, Bv)

= γv(ρ− (v,J)
c2

)(Ev, Bv) (in S ′)

= 0 (∗∗)

for all v ∈ B(0, δ). If the statement (∗) in the lemma fails to hold,
then by (∗∗), the invariance of (Ev, Bv), the assumption of analytic,
and the analytic nature of the transformation rules, we immediately
obtain that ρ = 0 on D′ in S ′ and;

γv(ρ− (v,J)
c2

) = −γv (v,J)
c2

= 0

for all v ∈ B(0, δ), so that J = 0 as well, on D′ in S ′. We can then
transfer these results back to D in the original base frame.
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Assume that, working in the unrotated frame S(−c+ε′D)e1 , we have

fields {E,B} with (E,B) = 0, and for which the associated force den-
sity f = 0. Letting S∞,1 be connected by an infinite boost in the di-
rection e1, then as (E,B) is an invariant, we have that (E∞, B∞) = 0,
and by Lemma 0.2, (E∞, J∞) = 0. Moreover, it as easy exercise, left
to the reader, that (f∞)2 = (f∞)3 = 0. We can apply similar con-
siderations to the frames {S∞,2, S∞,3} connected by infinite boosts in
the directions e2 and e3. As is done in [7], we can obtain a complete
characterisation of cases. Using the fact that the data is analytic, we
have that;

E∞ × (J∞ ×B∞) = J∞(E∞, B∞)−B∞(E∞, J∞)

= 0

in the three frames {S∞,1, S∞,2, S∞,3}.

Case 1. E∞ = 0 in all three frames {S∞,1, S∞,2, S∞,3}

Then as Maxwell’s equations are satisfied in S∞,i, 1 ≤ i ≤ 3;

ρ∞ = ε0(5 � E∞) = 0

so that transforming back to S(−c+ε′D)e1 ,
ij1
c

= 0, j1 = 0 and similarly

j2 = j3 = 0, so that J = 0. As f = 0 in S(−c+ε′D)e1 , we either obtain

ρ = 0 or E = 0 in S(−c+ε′D)e1 , in which case by Maxwell’s equations
again ρ = 0 again and, we can transfer to the original base frame, to
obtain the trivial case that ρ = 0 and J = 0.

Case 2. J∞ ×B∞ = 0 in some frame {S∞,1, S∞,2, S∞,3}

If this occurs in S∞,1, (the same argument applies with the corre-

sponding symmetry in the other two cases, then as (f∞)2 = (f∞)3 = 0,
we must have that ρ∞e2,∞ = ρ∞e3,∞ = 0. Then either ρ∞ = 0, in
which case consider Case 1, or e2,∞ = e3,∞ = 0, so that as (E∞, B∞) =
(E∞, J∞) = 0, we must have that e1,∞j1,∞ = e1,∞b1,∞ = 0, so that
either e1,∞ = 0, E∞ = 0, then consider case 1 again, or, j1,∞ = b1,∞ =
0, so that transforming back to S(−c+ε′D)e1 , we have that B = 0 in

S(−c+ε′D)e1 . However, we also have that f = 0 in S(−c+ε′D)e1 , so that

ρE = 0 and either ρ = 0 or E = 0 in S(−c+ε′D)e1 , and then ρ = 0 in
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S(−c+ε′D)e1 by the first of Maxwell’s equations.

By considering the first two cases simultaneously, we either obtain
Case 3 considered below in some frame {S∞,1, S∞,2, S∞,3}, or we obtain
the trivial case, or we obtain B = 0 in the frame S(−c+ε′D)e1 together
with ρ = 0. We can then repeat the argument for frames connected
to S(−c+ε′D)e1 by velocity vectors in a neighborhood B(0, γ) for some
γ > 0, to obtain, using continuty, either the trivial case again, the
existence of fields Bw = 0, with ρw = 0, w ∈ B(0, γ), in which case, by
the transformation rules for ρ, in the neighborhood B(0, γ), we obtain
J = 0 and we reduce to the trivial case again.

(generic) Case 3. E∞ = λ(J∞×B∞) in some frame {S∞,1, S∞,2, S∞,3}
connected to a frame S ′, in a neighborhood B(0, γ) of S(−c+ε′D)e1 .

Assume this happens in S∞,1 and S(−c+ε′D)e1 , otherwise use the corre-

sponding symmetry. Then, as (f∞)2 = f∞)3 = 0, equating coefficients,
we must have that λ = − 1

ρ∞
and then (f∞)1 = 0 and f∞ = 0. Now

use the argument above in this Lemma;

Bu = Rgλ∞R
−1
g Rh∞λ∞

together with the results that f∞ = 0 is rotation invariant, and
transforms by λ∞, to a relation (E, J) = 0, which is also rotation in-
variant, to obtain a field E in S(−c+ε′D)e1 , with the property that the

transfers Eu to the frame Su connected to S(−c+ε′D)e1 , by the velocity

vector u, u1 6= 0 satisfy (Eu, Ju) = 0. By results of [7] we obtain that
the transfers (f)u = 0, so that in the original base frame S, we obtain
f = 0, for {E,B}, with (E, J) = 0 and (E,B) = 0.

�

We can repeat the above argument for good frames in the context of
excellent frames, and obtain;

Lemma 0.6. Letting S be the base frame, moving with velocity (−c+
ε)e1, relative to the original base frame, obtained in the Lemma 0.4, fix-
ing a compact set with open interior, we can find {E,B} in S such that,
for the associated components of the energy stress tensor {p12, p13, p23};

∂
∂t

(E ×B)1 = − 1
ε0

( ∂
∂y

(p12) + ∂
∂z

(p13))
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∂
∂t

(E ×B)2 = − 1
ε0

( ∂
∂x

(p12) + ∂
∂z

(p23))

∂
∂t

(E ×B)3 = − 1
ε0

( ∂
∂x

(p13) + ∂
∂y

(p23))

In particular, we can boost these relations back to any frame at in-
finity, relative to S, such that;

5∞(E∞ ×B∞) = 0

for the associated fields {E∞, B∞}.

We then must obtain that E ×B = 0 in S.

For the original base frame, we either obtain ρ = 0, J = 0, or we
obtain the relations;

�2(ρ) = 0

5(ρ) + 1
c2
∂J
∂t

= 0

5× J = 0

�2(J) = 0

together with {E,B} such that �2(E) = 0, �2(B) = 0.

If we assume that (ρ, J) have compact supports, then we can find
{E,B} such that 5× E = 0, �2(E) = 0 and B = 0.

Proof. Follow the steps in the above proof of lemma 0.5, up to (AA)
replacing f = 0 with the corresponding relations;

∂
∂t

(E ×B)1 = − 1
ε0

( ∂
∂y

(p12) + ∂
∂z

(p13))

∂
∂t

(E ×B)2 = − 1
ε0

( ∂
∂x

(p12) + ∂
∂z

(p23))

∂
∂t

(E ×B)3 = − 1
ε0

( ∂
∂x

(p13) + ∂
∂y

(p23)) (BB)

noting that these three relations together become rotation invariant.
The following claim follows immediately from Lemma 0.2. We can then
use the proof in [7], which contained an error in the missing rotation
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Rf when we write;

Bu = RfBue1R
−1
f

where f ∈ SO(3) has the property that f(ue1) = u.

As above, we have that;

Bu = Rgλ∞R
−1
g Rh∞λ∞

which becomes;

RfBue1R
−1
f = Rgλ∞R

−1
g Rh∞λ∞

so that;

Id = B−ue1R
−1
f Rgλ∞R

−1
g Rh∞λ∞Rf

We then obtain the relation 5 � (E∞ × B∞) = 0 uniformly in the
frames connected to S by λ∞Rf from the relations (BB). This im-
plies the equations in S which we considered in [7]. We claim there in
Lemma 1.23 that they imply E×B = 0 in S. By the proof in [7], if B is
not identically zero on the corresponding compact set D, then E = λB
and ρ = 0. By continuity, we can obtain the same result in frames S ′

connected to S by a velocity vector w, with |w| < δ. Then we can
easily adapt the proof of Lemma 1.33 in [7] to obtain that either ρ = 0,
J = 0 in S, which we can then transfer to the original base frame, it
is not necessary for δ = c, or there exist {Ew, Bw}, with Bw = 0. By
a result of [6], Lemma 2.7, we obtain the relations

�2(ρ) = 0

5(ρ) + 1
c2
∂J
∂t

= 0

5× J = 0

�2(J) = 0 (CC)

in S. As is shown in Lemma 2.5 of [6], we obtain the above relations
in the original base frame, together with {E,B} such that �2(E) = 0,
�2(B) = 0. Patching the data over compact sets D with open interior



22 TRISTRAM DE PIRO

in the original base frame, and noting that the relations (CC) are
trivially satisfied by ρ = 0, J = 0, we obtain a global solution (ρ, J)
satisfying (CC). If we assume that (ρ, J) have compact supports and
are non-trivial, then by the methods of [6], we can find {E,B} such
that 5× E = 0, �2(E) = 0 and B = 0.

�

Lemma 0.7. We can approximate smooth functions locally satisfying
Maxwell’s equations and relevant derivatives by analytic functions.

Proof. On compact sets D with open interior, we can use the Stone-
Weierstrass approximation theorem, to approximate the data and rel-
evant derivatives on D × (−c, c) by polynomials. We can then use
continuity to obtain an approximation D × (−c − ε, c + ε), choosing
ε sufficiently small. The final results with the assumption of analytic
then hold if the data is assumed to be smooth, by making the approx-
imations arbitrarily close. More details can be found in [7]. �

Definition 0.8. We call an electromagnetic systems (ρ, J) with com-
pact supports satisfying the continuity equation viable if for every in-

ertial frame S ′, and for all {E ′, B′} such that (ρ′, J
′
, E
′
, B
′
), satisfies

Maxwell’s equations in S ′;

limr→∞
∫
B(0,r)

5 � (E
′ ×B′)dV

exists uniformly and is independent of time t.

We call a viable electromagnetic system (ρ, J) satisfying the continu-
ity equation strongly classically non radiating if for every inertial frame

S ′, and for all {E ′, B′} such that (ρ′, J
′
, E
′
, B
′
), satisfies Maxwell’s

equations in S ′;

limr→∞
∫
B(0,r)

5 � (E
′ ×B′)dV = 0

We call a viable electromagnetic system (ρ, J) satisfying the conti-
nuity equation stable if the support of (ρ, J) is stationary, that is there
exists B(0, R) for which Suppt(ρ, J) ⊂ B(0, R), for all times t.

Lemma 0.9. A stable viable electromagnetic system, satisfying the
Lorentz force law, is strongly classically non-radiating.

Proof. Suppose for contradiction that;
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limr→∞
∫
B(0,r)

5 � (E
′ ×B′)dV = p

in some inertial frame S ′, with p > 0, and (ρ′, J
′
) is supported on

B(0, R′) at time t′. Then we can choose R′′ sufficiently large, so that;

(i). B(0, R′) ⊂ B(0, R′′)

(ii).
∫
B(0,R′′)

5 � (E
′ ×B′)dV = p− ε > 0, uniformly in t.

By the Lorentz force law, see Lemma 0.15 below, and Newton’s sec-
ond law of motion, we have that, as in [1];

dumech = f � dl

= f � vdt

= ma � vdt

= mdv
dt
� vdt

= m d
dt
v�v
2
dt

= d(mv
2

2
)

so that umech is defined as local kinetic energy and umech ≥ 0. This
idea can be made more precise by considering trajectories, see [5].

By Poynting’s theorem, we have that;

d
dt

∫
B(0,R′′)

(umech + uem)dV

= −
∫
B(0,R′′)

5 � (E
′ ×B′)dV

= −(p− ε)

< 0

so that
∫
B(0,R′′)

(umech+uem)dV is strictly decreasing, and as
∫
B(0,R′′)

(umech+

uem)dV is finite at time t′, for some t′′ > t′, we have that;



24 TRISTRAM DE PIRO∫
B(0,R′′)

(umech + uem)dV = 0

at time t > t′′ so that, as umech and uem are positive, umech|B(0,R′′) =

uem|B(0,R′′) = 0 at time t > t′′. This implies that E ′|B(0,R′′) = B′|B(0,R′′) =

0, at time t > t′′, so that by Maxwell’s equations, ρ′|B(0,R′′) = 0 and

J ′|B(0,R′′) = 0 at time t > t′′ as well. It follows that the support of

{ρ′, J ′} must be disjoint from B(0, R′′) at time t > t′′, contradicting
the fact that the system is stable.

Case p < 0, time reversal argument.

...............
�

Definition 0.10. We call an electromagnetic systems (ρ, J) with com-
pact supports satisfying the continuity equation classically non-radiating

if for every inertial frame S ′, there exist {E ′, B′} such that (ρ′, J
′
, E
′
, B
′
),

satisfies Maxwell’s equations in S ′ and;

limr→∞
∫
B(0,r)

5 � (E
′ ×B′)dV = 0

locally uniformly in t.

We call an electromagnetic systems (ρ, J) with compact supports sat-
isfying the continuity equation strongly non-radiating if for every in-

ertial frame S ′, there exist {E ′, B′} such that (ρ′, J
′
, E
′
, B
′
), satisfies

Maxwell’s equations in S ′ and;

(i). (E
′
, J
′
) = 0

or

(ii). 5 � (E
′ ×B′) = 0

Lemma 0.11. Every electromagnetic systems (ρ, J) with compact sup-
ports satisfying the continuity equation, is classically non-radiating.

Proof. Let S ′ be an inertial frame, then by the transformation rules,

(ρ′.J
′
) has compact supports. By the argument in [6], we can construct

{E ′, B′} such that (ρ′.J
′
, E
′
, B
′
) satisfies Maxwell’s equations in S ′ and

B
′

has compact support. If the support of J
′

varies continuously with

t then the support of B
′
varies continuously with t, and then it is clear,
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by the divergence theorem, that;

limr→∞
∫
B(0,r)

5 � (E
′ ×B′)dV

= limr→∞
∫
B(0,r)

(E
′ ×B′) � dS

= 0

locally uniformly in t.
�

Lemma 0.12. The strongly non-radiating electromagnetic systems are
either of the form f = 0 for some {E,B} with (E, J) = 0 and (E,B) =
0 in the base frame S or we obtain the relations;

�2(ρ) = 0

5(ρ) + 1
c2
∂J
∂t

= 0

5× J = 0

�2(J) = 0

and we can find {E,B} such that 5×E = 0, �2(E) = 0 and B = 0,
in the base frame S.

Proof. Using Lemmas 0.5 and 0.6.
�

Definition 0.13. We define the electromotive force around a moving
closed loop C to be;

ε =
∫
C
g � dl

where g is the force per unit charge and ρg = f , for the charge den-
sity and force density respectively.

Faraday’s strong law of induction says that for any moving loop C(t);

ε = − d
dt

∫
S(t)

B(x, t) � dS

where S(t) is any set of closed surfaces bounded by the loops C(t).
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Note that this is well defined as for any two closed surfaces {S1(t), S2(t)},
bounded by a loop C(t) in the family;∫

S1(t)
B(x, t) � dS −

∫
S2(t)

B(x, t) � dS

=
∫
S1(t)∪S2(t)

B(x, t) � ndS

=
∫
V (t)

(5 �B)(x, t)dV

= 0

by the divergence theorem, Maxwell’s equations, for the volume V (t)
enclosed by the two surfaces {S1(t), S2(t)}.

We define the flux Φ(t) through a loop C(t) as;

Φ(t) =
∫
S(t)

B(x, t) � dS

so Faraday’s strong law takes the form;

ε = −dΦ
dt

Definition 0.14. We call an electromagnetic system normal if the ve-
locity field u defined by J = ρu, where {ρ, J} are the charge and current,
fails to satisfy the symmetry;

u3xu1yu2z = u2xu3yu1z

where u = (u1, u2, u3).

Lemma 0.15. For a normal electromagnetic system satisfying Maxwell’s
equations, the Lorentz force law is a consequence of Faraday’s strong
law of induction and the transformation of fields and forces according
to special relativity.

Proof. Let a loop C(t) move along with the velocity field u(x, t), de-
fined by the current J(x, t), we have that the change of flux dΦ is given
by;

dΦ =
∫
S(t+dt)

B(t+ dt) � dS −
∫
S(t)

B(t) � dS
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where;∫
S(t+dt)

B(t+ dt) � dS +
∫
R
B(t+ dt) � dS −

∫
S(t)

B(t+ dt) � dS = 0 (∗)

by the divergence theorem, and R is the ribbon attaching the sur-
faces S(t) and S(t+ dt).

It follows that, from (∗);

dΦ = [
∫
S(t+dt)

B(t+ dt) � dS +
∫
R
B(t+ dt) � dS −

∫
S(t)

B(t+ dt) � dS]

−
∫
S(t)

B(t) � dS −
∫
R
B(t+ dt) � dS +

∫
S(t)

B(t+ dt) � dS

=
∫
S(t)

B(t+ dt) � dS −
∫
S(t)

B(t) � dS −
∫
R
B(t+ dt) � dS

= dt
∫
S(t)

∂B
∂t

� dS −
∫
R
B(t+ dt) � dS

We have that, for the ribbon;

dS = (dl × udt) = (dl × u)dt

so that, using the rule for scalar triple products;∫
R
B(t+ dt) � dS =

∫
R
B(t+ dt) � (dl × u)dt

=
∫
R

(u×B(t+ dt)) � dldt

and then, using Stoke’s theorem and Maxwell’s equations;

dΦ
dt

=
∫
S(t)

∂B
∂t

� dS −
∫
S(t)

(u×B(t)) � dl

= −
∫
S(t)

(5× E) � dS −
∫
S(t)

(u×B(t)) � dl

= −(
∫
C(t)

[E + u×B] � dl)

so that by Faraday’s strong law and the definition of electromotive
force, using the fact that the loop’s initial position is arbitrary;

g = E + u×B +5(h)

where h is an undetermined scalar.
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Let S ′ be an inertial frame moving relative to the base frame S at a
velocity of ve1. Then, in S ′, the Lorentz force is given by;

g′ = E
′
+ u′ ×B′ +5′(h′)

By the transformation rules for {E ′, B′, u′};

g′ = E|| + γv(E⊥ + ve1 ×B)

+( u1−v
1−u1v

c2
, u2
γv(1−u1v

c2
)
, u3
γv(1−u1v

c2
)
)× (B|| + γv(B⊥ − ve1

c2
× E))

+5′ (h′)

= (e1, γve2 − γvvb3, γve3 + γvvb2)

+( u1−v
1−u1v

c2
, u2
γv(1−u1v

c2
)
, u3
γv(1−u1v

c2
)
)× (b1, γvb2 + γvve3

c2
, γvb3 − γvve2

c2
)

+5′ (h′)

= (e1 + u2
1−u1v

c2
(b3 − ve2

c2
)− u3

1−u1v
c2

(b2 + ve3
c2

),

γve2 − γvvb3 + 1
γv(1−u1v

c2
)
(u3b1)− (u1−v)

1−u1v
c2

(γvb3 − γvve2
c2

),

γve3 + γvvb2 − 1
γv(1−u1v

c2
)
(u2b1) + (u1−v)

1−u1v
c2

(γvb2 + γvve3
c2

))

+5′ (h′). (A)

By the transformation rules for forces, see [2], we have that;

g′ = g|| +
− γvv

c2
(g⊥�u⊥)e1+g⊥

γv(1−u1v
c2

)

We have that;

g|| = E|| + (u×B)|| + (5(h))||

= (e1 + u2b3 − u3b2, 0, 0) + (5(h))||

g⊥ = E⊥ + (u×B)⊥ + (5(h))⊥

= (0, e2 + u3b1 − u1b3, e3 + u1b2 − u2b1) + (5(h))⊥
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g⊥ � u⊥ = u2(e2 + u3b1 − u1b3) + u3(e3 + u1b2 − u2b1) + (5(h))⊥ � u⊥

so that;

g′ = (e1 + u2b3 − u3b2 − v
c2(1−u1v

c2
)
[u2(e2 + u3b1 − u1b3) + u3(e3 + u1b2

−u2b1)], 1
γv(1−u1v

c2
)
(e2 + u3b1 − u3b3), 1

γv(1−u1v
c2

)
(e2 + u3b1 − u3b3))

+5 (h)|| +
− γvv

c2
(5(h)⊥�u⊥)e1+5(h)⊥

γv(1−u1v
c2

)
(B)

Equating (A) and (B), by a straightforward calculation, left to the
reader, we obtain that;

5′(h′) = 5(h)|| +
− γvv

c2
(5(h)⊥�u⊥)e1+5(h)⊥

γv(1−u1v
c2

)

Taking the limit as v →∞, letting s = 5(h), we obtain that;

5∞(h∞) = s|| +
i
c
(s⊥�u⊥)e1+s⊥

iu1
c

= (s1 + s2u2+s3u3
u1

,− s2ic
u1
,− s3ic

u1
) (D)

We have the transformation rule;

5′ = γv(5|| + v
c2

∂
∂t

) +5⊥

so that, the operator 5∞ transforms in the limit for v →∞ as;

5∞ = − i
c
∂
∂t
e1 +5⊥

= (− i
c
∂
∂t
, ∂
∂y
, ∂
∂z

)

Taking the curl of (D), we obtain;

(− i
c
∂
∂t
, ∂
∂y
, ∂
∂z

)× (s1 + s2u2+s3u3
u1

,− s2ic
u1
,− s3ic

u1
) = 0

so that;

∂
∂y

( s3
u1

) = ∂
∂z

( s2
u1

)

∂
∂t

( s3
u1

) = − ∂
∂z

(s � u
u1

)
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∂
∂t

( s2
u1

) = − ∂
∂y

(s � u
u1

)

Boosting in the directions e2 and e3, we obtain, by symmetry the
equations;

∂
∂y

( s3
u1

) = ∂
∂z

( s2
u1

), ∂
∂x

( s3
u2

) = ∂
∂z

( s1
u2

), ∂
∂y

( s1
u3

) = ∂
∂x

( s2
u3

)

∂
∂t

( s3
u1

) = − ∂
∂z

(s � u
u1

), ∂
∂t

( s2
u1

) = − ∂
∂y

(s � u
u1

)

∂
∂t

( s3
u2

) = − ∂
∂z

(s � u
u2

), ∂
∂t

( s1
u2

) = − ∂
∂x

(s � u
u2

)

∂
∂t

( s1
u3

) = − ∂
∂x

(s � u
u3

), ∂
∂t

( s2
u3

) = − ∂
∂y

(s � u
u3

)

and, by the fact that s = 5(h), we have that the following three
equations;

∂
∂y

(s3) = ∂
∂z

(s2), ∂
∂x

(s3) = ∂
∂z

(s1), ∂
∂x

(s2) = ∂
∂y

(s1)

Combining the first and last three sets of equations, we obtain;

s1
s2

= u3x
u3y

, s1
s3

= u2x
u2z

, s2
s3

= u1y
u1z

which implies the symmetry;

u3x
u3y

u1y
u1z

= u2x
u2z

or;

u3xu1yu2z = u2xu3yu1z

�

Remarks 0.16. It is probably possible to prove this result without the
assumption of normality. Either one can manipulate the additional
equations in the proof, or one can use a direct transformation of the
5′ operator, to the base frame S, from the frame Sve1.

Lemma 0.17. We cannot have in a classically non radiating system,
satisfying the Lorentz force law, that the condition of strongly non ra-
diating fails, unless it contradicts the laws of thermodynamics. Hence
classically non-radiating systems which conform to the laws of ther-
modynamics and the Lorentz force law are strongly non radiating and
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classifiable. In particular, any normal electromagnetic system obeying
Maxwell’s equation, the strong form of Faraday’s law of induction and
the laws of thermodynamics are strongly non-radiating and classifiable.

Proof. For the first claim, let a classically non radiating system be
given. We consider the strong no radiation condition, that in all in-
ertial frames S, there exist {E,B} such that either (E, J) = 0 or
5 � (E ×B) = 0.

If this condition fails, we can find an inertial frame S ′, such that for
the fields {E,B} in the definition of classically non radiating, there
exist {(x1, t1), (x, t2)} such that;

(E, J)(x1, t1) 6= 0

5 � (E ×B)(x2, t2) 6= 0

Case 1. There exists (x, t) such that (E, J)(x, t) 6= 0 and 5 � (E ×
B)(x, t) 6= 0

By a time reversal argument, we can assume that5�(E×B)(x2, t) >
0.

Case 1a. (E, J)(x1, t) < 0

By continuity, we can choose disjoint volumes V1 and V2, containing
x1 and x2, such that;∫

V1
(E, J)(x, t)dx < 0∫

V2
5 � (E ×B)(x, t) > 0

Connecting the....
Case 2. There does not exist (x, t) such that (E, J)(x, t) 6= 0 and

5 � (E ×B)(x, t) 6= 0 (AA)

By a time reversal argument, we can assume that5�(E×B)(x2, t2) >
0.

Case 2a. (E, J)(x1, t) < 0

By continuity, we can choose disjoint volumes V1 and V2, containing
x1 and x2, such that;
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V1

(E, J)(x, t1)dx < 0∫
V2
5 � (E ×B)(x, t2) > 0

By the condition (AA), we can assume that;∫
V2

(E, J)(x, t1)dx = 0∫
V1
5 � (E ×B)(x, t2) = 0

so that, connecting the 2 volumes by a thin strip, we can assume
that, we have a volume V3, containing {x1, x2}, for which;∫

V3
(E, J)(x, t1)dx < 0∫

V3
5 � (E ×B)(x, t2) > 0

It follows that, in a small time interval T1 about t1, the total kinetic
energy of the charge in V3 decreases. Choose a large ball D3 containing
V3, so that, using the definition of classically non radiating, there exists
a time interval T2 about t2, with;∫

D3
5 � (E ×B)(x, t) = 0

for t ∈ T2, so no energy leaks from the boundary. It follows that elec-
tromagnetic energy is transferred from V3 to the complement D3 \ V3,
and, by the movement of electrons, transferred to kinetic energy of
electrons in D3 \ V3, by collisions. If the average velocity of the target
is greater than the source, this contradicts a principle of thermody-
namics, that heat cannot be transferred from the cooler to the hotter
body. If the average velocity of the target is less than the source, we
can use a time reversal argument.

.......
The second claim follows from Lemmas 0.15 and 0.11.

�

We change the topic slightly, by giving a quantised example of a se-
ries for an electromagnetic system confined to a sphere.
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Lemma 0.18. Let the charge and current (ρ, J) be given, in polar co-
ordinates (r, θ, φ) by;

ρ(r, θ, φ, t) = sin(kr)
r

eikct

J(r, θ, φ) = ic
k

(krcos(kr)−sin(kr)
r2

)eikctr̂

Then {ρ, J} satisfy the relations;

�2(ρ) = 0

5(ρ) + 1
c2
∂J
∂t

= 0

∂ρ
∂t

+5 � J = 0

�2(J) = 0

and with the choice of k0 such that tan(k0r0) = kr0

J |S(r0) = 0

Proof. For the first claim, using the Laplacian in spherical coordinates;

52(ρ) = 1
r2

∂
∂r

(r2 ∂ρ
∂r

)

= 1
r2

∂
∂r

(r2(kcos(kr)
r
− sin(kr)

r2
)eikct)

= 1
r2

∂
∂r

((krcos(kr)− sin(kr))eikct)

= 1
r2

(kcos(kr)− k2rsin(kr)− kcos(kr))eikct

= −k2sin(kr)
r

eikct

= −k2ρ

= 1
c2
∂2ρ
∂2t

so that �2(ρ) = 0. For the second claim, we have that;

5(ρ) = ∂ρ
∂r
r̂
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= (kcos(kr)
r
− sin(kr)

r2
)eikctr̂

= krcos(kr)−sin(kr)
r2

eikctr̂

= − 1
c2
∂J
∂t

so that 5(ρ) + 1
c2
∂J
∂t

= 0

For the third claim, we have that;

5 � J = 1
r2

∂
∂r

(r2Ar)

= 1
r2

∂
∂r

( ic
k

(krcos(kr)− sin(kr))eikct)

= ic
kr2

(kcos(kr)− k2rsin(kr)− kcos(kr))eikct

= ic
kr2

(−k2rsin(kr))eikct

= −ick sin(kr)
r

eikct

= −∂ρ
∂t

where J = Arr̂, so that 5 � J + ∂ρ
∂t

= 0

For the fourth claim, we have that;

5× J = 0

as J = Arr̂ and, ∂Ar
∂θ

= ∂Ar
∂φ

= 0.

It follows that, using the second and third claims;

52(J) = 5(5 � J)−5× (5× J)

= 5(−∂ρ
∂t

)

= − ∂
∂t

(5(ρ))

= − ∂
∂t

(− 1
c2
∂J
∂t

)



SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 935

= 1
c2
∂2J
∂2t

so that �2(J) = 0.

The final claim is clear.

�

Lemma 0.19. Let E = i
ε0kc

J and B = 0, then (ρ, J, E,B) satisfy

Maxwell’s equations, with �2(E) = 0 and 5× E = 0.

Proof. For the first claim, we have that;

5 � E = i
ε0kc
5 �J

= − i
ε0kc

∂ρ
∂t

= − i
ε0kc

ikcρ

= ρ
ε0

and, as in the previous lemma;

5× E = i
ε0kc
5×J

= 0

= −∂B
∂t

and;

5 �B = 0

and;

5×B

= 0

= µ0J + 1
c2
∂E
∂t

as ε0µ0 = 1
c2

, where �2(E) = 0 follows as above.
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�

Lemma 0.20. Taking the real parts {Re(ρ), Re(J), Re(E), Re(B)} of
the quantities found above, we have that all of the above relations are
satisfied. The property of the Balmer series is satisfied.

Proof. The first claim is clear, as the relations have real coefficients.
We have that, with k0 chosen so that Re(J)|S(r0) = 0, in particular
j1(k0r0) = 0;

Re(E) = Re( i
ε0k0c

J)

= Re( i
ε0k0c

ic
k0

(k0rcos(k0r)−sin(k0r)
r2

)eik0ctr̂)

= Re(− 1
ε0k20

(k0rcos(k0r)−sin(k0r)
r2

)eik0ctr̂)

= − 1
ε0k20

(k0rcos(k0r)−sin(k0r)
r2

)cos(k0ct)r̂

so that;

Uk0(t) = 1
2

∫
B(r0)

ε0|Re(E)|2 + 1
µ0
|Re(B)|2dV

= ε0
2

∫
B(r0)
|Re(E)|2dV

= ε0cos2(k0ct)
2

1
ε20k

4
0

∫
B(r0)

( (k0rcos(k0r)−sin(k0r))2

r4
)dV

= 4π ε0cos
2(k0ct)
2

1
ε20k

4
0

∫ r0
0

( (k0rcos(k0r)−sin(k0r))2

r2
)dr

= 4π ε0cos
2(k0ct)
2

1
ε20k

4
0

∫ r0
0

[ d
dr

( sin(k0r)
r

)]2r2dr

= 4π ε0cos
2(k0ct)
2

k20
ε20k

4
0

∫ r0
0

[ d
dr

(j0(k0r))]
2r2dr

= 4π ε0cos
2(k0ct)
2

k20
ε20k

4
0

∫ r0
0

[ d
dr

(( π
2k0r

)
1
2J 1

2
(k0r))]

2r2dr

= π
2
4π ε0cos

2(k0ct)
2

k20
ε20k

5
0

∫ r0
0

[ d
dr

(
J 1
2

(k0r)

r
1
2

)]2r2dr

= π
2
4π ε0cos

2(k0ct)
2

k20
ε20k

5
0

∫ r0
0

[−k
3
2
0

J 3
2

(k0r)

k
1
2
0 r

1
2

]2r2dr

= π
2
4π ε0cos

2(k0ct)
2

k40
ε20k

5
0

∫ r0
0

[J 3
2
(k0r)]

2rdr
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= π2

ε0k0
cos2(k0ct)

∫ r0
0

[(2k0r
π

)
1
2 j1(k0r)]

2rdr

= 2k0
π

π2

ε0k0
cos2(k0ct)

∫ r0
0

[j1(k0r)]
2r2dr

=
πr20
4k0
J2

5
2

(k0r0)2k0
π

π2

ε0k0
cos2(k0ct)

=
π2r20
2ε0k0

J2
5
2

(k0r0)cos2(k0ct)

where we have used the definition of the Bessel functions {j0, j1},
Lemma 3.4 from [6] to do the integration and the fact from Wikipedia
(Bessel Functions), that;

(1
r
d
dr

)(
J 1
2

(r)

r
1
2

) = −
J 3
2

(r)

r
3
2

to do the differentiation in the above calculation.

Using the fact, see [6] on the Balmer series, that for large values of k0;

J 5
2
(k0r0) = (P2( 1

k0r0
)sin(k0r0)−Q1( 1

k0r0
)cos(k0r0))( 2

πk0r0
)
1
2

where P2 is a polynomial of degree 2, with even degree terms, Q1

is a polynomial of degree 1, with odd degree terms, cos(k0r0) ' 0,
sin(k0r0) ' (−1)n0 , k0 ' π

r0
(n0 + 1

2
), we obtain that;

J 5
2
(k0r0) ' (P2,0 +O( 1

k20r
2
0
))( 2

πk0r0
)
1
2

so that;

Uk0(t) =
π2r20
2ε0k0

2
πk0r0

cos2(k0ct)(P
2
2,0 +O( 1

k20r
2
0
))

= πr0
ε0k20

cos2(k0ct)(P
2
2,0 +O( 1

k20r
2
0
))

and integrating over a cycle;

< Uk0 >= 1
2

πr0P 2
2,0

ε0k20
+O( 1

k40
)

so that we obtain the property of the Balmer series for large {k0, k1}

< Uk0 > − < Uk1 >'
πr0P 2

2,0

2ε0
( 1
k20
− 1

k21
)

�
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Lemma 0.21. With the above electromagnetic configuration, and k0

chosen so that J |S(r0) = 0, we have that;

Q =
∫
B(r0)

ρdx = 0

Proof. We calculate, using integration by parts;∫
B(r0)

ρdx

=
∫
B(r0)

sin(k0r)
r

eik0ctdr

= 4πeik0ct
∫ r0

0
rsin(k0r)dr

= 4πeik0ct([− rcos(k0r)
k0

]r00 +
∫ r0

0
cos(k0r)

k0
dr

= 4πeik0ct(− r0cos(k0r0)
k0

+ sin(k0r0)

k20
)

= 4πeik0ct(−k0r0cos(k0r0)+sin(k0r0)

k20
)

= 0

as k0 is chosen so that J |S(r0) = 0, and j1(k0r0) = 0.

�

The calculation shows that the configuration, confined to the sphere
S(r0), is not ionised. In order to model charge accumulating inside a
hollow shell using an electron beam, we need the following lemma.

Lemma 0.22. We can obtain the conclusions of Lemma 0.18, by adding
a constant C to ρ and keeping J the same. We can obtain the conclu-
sions of Lemma 0.19 by setting;

E = i
ε0kc

J + C
3ε0
x = i

ε0kc
J + Cr

3ε0
r̂

and B = 0.

Proof. The first claim is a simple calculation, the relations all involve
a derivative of ρ.
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For the second claim, we have that;

5 � ( C
3ε0
x) = 3 C

3ε0
= C

ε0

and;

5× ( C
3ε0
x) = 0

and;

∂( C
3ε0

x)

∂t
= 0

so the result follows by linearity.

�

Lemma 0.23. Taking the real parts {Re(ρ), Re(J), Re(E), Re(B)} of
the quantities found in Lemma 0.22, we have that all of the above rela-
tions are satisfied. The property of the Balmer series is satisfied again.

Proof. The first claim is again clear, as the relations have real coef-
ficients. We have that, with k0 chosen so that Re(J)|S(r0) = 0, in
particular j1(k0r0) = 0;

Re(E) = [− 1
ε0k20

(k0rcos(k0r)−sin(k0r)
r2

)cos(k0ct) + C
3ε0
r]r̂

so that;

Uk0(t) = ε0
2

∫
B(r0)
|Re(E)|2dV

= ε0
2

∫
B(r0)
|[− 1

ε0k20
(k0rcos(k0r)−sin(k0r)

r2
)cos(k0ct) + Cr

3ε0
]r̂|2dV

= ε0cos2(k0ct)
2

1
ε20k

4
0

∫
B(r0)

( (k0rcos(k0r)−sin(k0r))2

r4
)dV

−ε0
∫
B(r0)

( Cr
3ε20k

2
0
(k0rcos(k0r)−sin(k0r)

r2
)cos(k0ct))dV

+ ε0
2

∫
B(r0)

C2r2

9ε20
dV

and integrating over a cycle, using the previous result;

< Uk0 >= 1
2

πr0P 2
2,0

ε0k20
+O( 1

k40
) + ε0

2

∫
B(r0)

C2r2

9ε20
dV
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= 1
2

πr0P 2
2,0

ε0k20
+O( 1

k40
) + C2ε0

18ε20

∫
B(r0)

r2dV

=
πr0P 2

2,0

2ε0k20
+O( 1

k40
) + 2C2πε0

9ε20

∫ r0
0
r4dr

=
πr0P 2

2,0

2ε0k20
+O( 1

k40
) +

2C2r50πε0
45ε20

We have that;

Q =
∫
B(r0)

(ρ+ C)dV

=
∫
B(r0)

CdV

=
4πCr30

3

so that;

C = 3Q
4πr30

< Uk0 >=
πr0P 2

2,0

2ε0k20
+O( 1

k40
) + 2( 3Q

4πr30
)2 r

5
0πε0
45ε20

=
πr0P 2

2,0

2ε0k20
+O( 1

k40
) + 18Q2

16π2r60

r50πε0
45ε20

=
πr0P 2

2,0

2ε0k20
+ Q2

40πr0ε0
+O( 1

k40
)

and we obtain the property of the Balmer series again, for large
{k0, k1};

< Uk0 > − < Uk1 >'
πr0P 2

2,0

2ε0
( 1
k20
− 1

k21
)

�

We can use this calculation to find the energy required in an electron
beam to achieve a standing wave defined by the first fundamental k0.

Lemma 0.24. With a pulse duration of T = 0.016s, a steady beam
current of 6.25 × 10−4A, a varying voltage of 0 to 104V , a spherical
radius of 0.01m, we can achieve the first fundamental k0 = 4.49

r0
. As-

suming the power supply is 60Hz, 120V, we can achieve T and V by
attaching the anode and cathode of the gun to the mains with a rectifier
and a transformer with a turns ration of 83 in series.
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Proof. Assuming the current in the electron gun is constant, we have
that;∫ t

0
V (t)Idt =

πr0P 2
2,0

2ε0k20
cos2(k0ct) + Q2

40πr0ε0
+ εcos(k0ct) (∗)

where ε is a constant we haven’t determined. For the first fundamen-
tal k0 = 4.49

r0
, see [4], we choose r0 = 0.01, ε0 ' 9× 10−12. To compute

P2,0, use the fact that;

j2(x) = ( 3
x2
− 1) sin(x)

x
− 3

x2
cos(x)

J 5
2
(x) = (2x

π
)
1
2 j2(x)

= ( 2
πx

)
1
2 (( 3

x2
− 1) sin(x)

x
− 3

x2
cos(x))

= ( 2
πx

)
1
2 [( 3

x2
− 1)sin(x)− 3

x
cos(x)]

so that P2(x) = 3x2 − 1, P2,0 = −1. Then, from (∗), differentiating
with respect to t and using the FTC;

V (t)I ' −πr0k0c
2ε0k20

sin(2k0ct) + 2QI
40πr0ε0

− εk0csin(k0ct) (∗∗)

Integrating over a cycle of time 2π
2k0c

, and assuming that V (t) is ap-
proximately constant during this period, we obtain;

V (t)I = QI
20πr0ε0

so that V (t) = Q(t)
20πr0ε0

' Q(t)1011

For Vmax = 104V and pulse duration T = 0.016s, if I is the steady
beam current, then Q(t) = It, Vmax = 1011I × 0.016, so that;

I = Vmax
1011×0.016

= 104

1011×0.016

' 6.25× 10−4A
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For the last claim, note that the frequency f = 1
T

= 1
0.016

' 60,
which we can achieve with a rectifier attached to the mains power
supply, while for a voltage with Vmax = 104, we require a transformer
with turns ratio 104

120
' 83.3, attached to the mains in series with a

rectifier.
�

Remarks 0.25. It is not practical to vary the accelerating voltage in
an electron gun, this motivates the following calculation.

Lemma 0.26. Determination of ε and Power Input

ε =
−4πCr20sin(k0r0)

3ε0k20

and, using Matlab;

At a radius of 0.01m, the corresponding frequency is 21.4 GHz, with
a beam current pulse width of 0.05s and the current varying from 0 to
1mA.

Proof. We have that;

ε = − Cε0
3ε20k

2
0

∫
B(r0)

k0rcos(k0r)−sin(k0r)
r

dV

= − 4πC
3ε0k20

∫ r0
0

(k0rcos(k0r)− sin(k0r))rdr

= − 4πC
3ε0k20

[[k0r
2sin(k0r)
k0

]r00 −
∫ r0

0
2k0rsin(k0r)

k0
dr + [ rcos(k0r)

k0
]r00 −

∫ r0
0

cos(k0r)
k0

]

= − 4πC
3ε0k20

[r2
0sin(k0r0)− 2([−rcos(k0r)

k0
]r00 +

∫ r0
0

cos(k0r)
k0

dr) + r0cos(k0r0)
k0

− sin(k0r0)

k20
]

= −4πC
3ε0k20

(r2
0sin(k0r0) + 2r0cos(k0r0)

k0
− 2sin(k0r0)

k20
+ r0cos(k0r0)

k0
− sin(k0r0)

k20
)

= −4πC
3ε0k20

(r2
0sin(k0r0) + 3(k0r0cos(k0r0)−sin(k0r0)

k20
))

=
−4πCr20sin(k0r0)

3ε0k20

as j1(k0r0) = 0

It follows that;
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0
V (t)I(t)dt =

πr0P 2
2,0

2ε0k20
cos2(k0ct)+

Q2

40πr0ε0
−4πCr20sin(k0r0)

3ε0k20
cos(k0ct) (CC)

so that, differentiating;

V (t)I(t) = −πr0k0c
2ε0k20

sin(2k0ct) + 2QI
40πr0ε0

− 3I
4πr30

4πr20sin(k0r0)

3ε0k20
cos(k0ct)

+3Qk0c
4πr30

4πr20sin(k0r0)

3ε0k20
sin(k0ct)

= − πr0c
2ε0k0

sin(2k0ct) + QI
20πr0ε0

− Isin(k0r0)cos(k0ct)

r0ε0k20
+ Qc

k0r0ε0
sin(k0ct)

and keeping I fixed;

V (t) = − πr0c
2ε0k0I

sin(2k0ct) + Q
20πr0ε0

− sin(k0r0)cos(k0ct)

r0ε0k20
+ Qc

k0r0ε0I
sin(k0ct)

= − πr0c
2ε0k0I

sin(2k0ct) + It
20πr0ε0

− sin(k0r0)cos(k0ct)

r0ε0k20
+ tc

k0r0ε0
sin(k0ct)

= − πr0c
2ε0k0I

sin(2k0ct)− sin(k0r0)cos(k0ct)

r0ε0k20
+ ( I

20πr0ε0
+ c

k0r0ε0
sin(k0ct))t

while keeping V fixed;

I(t)[V − Q
20πr0ε0

+ sin(k0r0)cos(k0ct)

r0ε0k20
] = − πr0c

2ε0k0
sin(2k0ct)+ Qc

k0r0ε0
sin(k0ct)

so that;

dQ
dt

= λ(t)+Q(t)µ(t)
V+hQ(t)+ν(t)

(BB)

where;

λ(t) = − πr0c
2ε0k0

sin(2k0ct)

µ(t) = c
k0r0ε0

sin(k0ct)

h = − 1
20πr0ε0

ν(t) = sin(k0r0)cos(k0ct)

r0ε0k20

A simple Matlab program can solve (BB), the code for which is
provided at [3]. At a radius of 0.01m, the corresponding frequency is
21.4 Ghz, with a beam current pulse width of 0.05s and the current
varying from 0 to 1mA, see [3]. It is important to pass the pulse
signal through a half wave rectifier (diode); with no current and charge
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supplied, the charge should drain naturally from the sphere in order to
physically solve (BB). �

Remarks 0.27. A frequency of 21.43 is just outside the range of com-
mercially available radio transverters and receivers, which maximise at
20GHz, although the signal might still be detectable with a lower gain.
Alternatively one can attempt to build an RF circuit, see [4]. The
pulse width of the corresponding beam current in the transmitter, con-
sisting of an electron beam fired into a hollow sphere of radius 0.01m,
is achievable with an electron gun attached to a signal generator.
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