
SOME NOTES ON THE MORDELL LANG
CONJECTURE AND JOUANOLOU’S THEOREM

TRISTRAM DE PIRO

The following statement can be found in [1];

Theorem 0.1. Mordell Lang Conjecture

Let K be an algebraically closed field of characteristic zero, let A
be an abelian variety defined over K, X a subvariety of A defined
over K and Γ a finitely generated subgroup of A(K), then there ex-
ist {γ1, . . . , γm} ⊂ Γ, abelian subvarieties {B1, . . . , Bm} of A such that
γi +Bi ⊆ X, for 1 ≤ i ≤ m and;

X(K) ∩ Γ =
⋃m
i=1 γi + (Bi(K) ∩ Γ)

This will follow from the relative version;

Definition 0.2. We define a homomorphism f : A → B between
abelian varieties to be connected if Ker(f) is an abelian subvariety
of A. Let X ⊆ A be an irreducible subvariety, then we define;

StabX = {a ∈ A : a+X = X}

Lemma 0.3. The inverse image f−1(C), for C an abelian subvariety
of B, f : A→ B connected, is an abelian variety.

Proof. As Ker(f) ⊆ A is connected, the fibres of f are equidimensional
and connected. If f−1(C) is not irreducible, we can find components
{W1,W2} such that C = W1 ∪W2, with pr(W1) = pr(W2). We must
have that for generic a ∈ f(A), that W1(a) = W2(a), as Ker(f) is
irreducible. The condition on f(A), that W1(a′) = W2(a′) for a′inf(A)
is closed and holds for generic a. Hence, as f(A) is irreducible, it holds
everywhere on f(A) and W1 = W2.

�
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Theorem 0.4. Relative Mordell Lang Conjecture

Let k ⊂ K be algebraically closed fields of characteristic zero. Let
A be an abelian variety defined over K and let X be an irreducible
subvariety of A defined over K. Let Γ be a finitely generated subgroup
of A(K), and suppose that X ∩ Γ is Zariski dense in X. Then there
exists γ ∈ Γ, an abelian subvariety B of A containing γ+X, an abelian
variety A′ defined over k, a subvariety X ′ of A′ defined over k, and a
connected homomorphism f from B to A′, such that γ+X = f−1(X ′),
f(B ∩ Γ) ⊂ A′(k).

Lemma 0.5. Theorem 0.1 follows from Theorem 0.4 and the result in
[3].

Proof. The proof of Theorem 0.1 follows from the fact that Theorem
0.1 is known when {X,A} are defined over K having zero transcen-
dence degree over Q, (∗), because K can be replaced by a number field
K0 ⊂ K, which defines {A,X} and such that Γ is a finitely generated
subgroup of A(K0); the finitely many generators can be chosen over K0.
This result is due to Faltings, see [3]. Then, if {X,A} are defined over
K an arbitrary algebraically closed field of characteristic zero, Γ is a
finitely generated subgroup of A, let Z = X ∩ Γ and Z = W1∪ . . .∪Ws

be its decomposition into irreducibles. Each Wi is defined over K as
K is algebraically closed. We have that;

Z = Z ∩ Γ

=
⋃s
i=1(Wi ∩ Γ)

=
⋃s
i=1Wi ∩ Γ

in particularly, Wi ∩ Γ = Wi. We can then apply Theorem 0.4,
to each Wi, with k having transcendence degree 0 over Q, to find
{γ1, . . . , γs} ⊂ Γ, {B1, . . . , Bs} abelian subvarieties of A, with γi +
Wi ⊆ Bi and {A1, . . . , As} abelian varieties over k, homomorphisms
{f1, . . . , fs}, fi : Bi → Ai, and Xi ⊂ Ai subvarieties over k, such that
γi + Wi = f−1

i (Xi), 1 ≤ i ≤ s, fi(Bi ∩ Γ) ⊂ Ai(k). We have that the
groups fi(Bi ∩ Γ) ⊂ Ai are finitely generated, so we can apply Falt-
ing’s result, to obtain that there exist {γi,1, . . . , γi,m(i)} ⊂ fi(Bi ∩ Γ),
abelian subvarieties {Ci,1, . . . , Ci,m(i)} of Ai, 1 ≤ i ≤ s, such that
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γi,j + Ci,j ⊆ Xi, for 1 ≤ i ≤ s, 1 ≤ j ≤ m(i) and;

Xi(K) ∩ fi(Bi ∩ Γ) =
⋃m(i)
j=1 γi,j + (Ci,j(K) ∩ fi(Bi ∩ Γ))

Applying f−1
i , using the fact Di,j = f−1

i (Ci,j) are abelian subvarieties
of Bi, as fi is connected, we obtain that;

f−1
i (Xi(K) ∩ fi(Bi ∩ Γ))

= γi + (Wi(K) ∩ Γ)

= f−1
i (

⋃m(i)
j=1 γi,j + (Ci,j(K) ∩ fi(Bi ∩ Γ)))

=
⋃m(i)
j=1 δi,j + (Di,j(K) ∩ Γ)

where fi(δi,j) = γi,j. Then;

Wi(K) ∩ Γ =
⋃m(i)
j=1 (δi,j − γi) + (Di,j(K) ∩ Γ)

and;

X(K) ∩ Γ

= Z(K) ∩ Γ

=
⋃s
i=1Wi(K) ∩ Γ

=
⋃s
i=1

⋃m(i)
j=1 (δi,j − γi) + (Di,j(K) ∩ Γ)

Re indexing, we obtain the result.
�

We now claim that we can strengthen the hypotheses and weaken
the conclusion of Theorem 0.4 to;

Theorem 0.6. Let k ⊂ K be algebraically closed fields of characteris-
tic zero. Let A be an abelian variety defined over K and let X be an
irreducible subvariety of A defined over K, such that StabX is finite.
Let Γ be a finitely generated subgroup of A(K), and suppose that X ∩Γ
is Zariski dense in X. Then there exists γ ∈ Γ, an abelian subvariety
B of A containing γ +X, an abelian variety A′ defined over k, a sub-
variety X ′ of A′ defined over k, and a bijective homomorphism f from
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B to A′, such that γ +X = f−1(X ′), f(B ∩ Γ) ⊂ A′(k).

Lemma 0.7. If Theorem 0.6 is true, then so is Theorem 0.4.

Proof. This is essentially proved in [1]. Assume that Theorem 0.6 holds.
Let {X,A,Γ} be given as in the hypotheses of Theorem 0.4. Then
StabX is an algebraic subgroup of A defined over K. Let S be its
connected component, then S is irreducible and so defines an abelian
subvariety of A. Let A1 = A

S
be the quotient abelian variety, with

canonical projection π : A → A1. Then {π1(X), A1} are defined over
K and Stabπ1(X) is finite, as S has finite index in StabX . We have that,
by continuity of π1, that;

π1(X ∩ Γ)

= π1(X)

= π1(X ∩ Γ)

= π1(X) ∩ π(Γ)

so that π1(X) ∩ π(Γ) is Zariski dense in π1(X). Clearly, π1(Γ) ⊂
A1(K) is finitely generated. It follows that we can obtain the hypothe-
ses of Theorem 0.6, so that there exists γ ∈ Γ, an abelian subvariety
B1 of A1 containing π1(γ) + π1(X), an abelian variety A′ defined over
k, a subvariety X ′ of A′ defined over k, and a bijective homomorphism
f from B1 to A′, such that π1(γ) + π1(X) = f−1(X ′), f(B1 ∩ π1(Γ)) ⊂
A′(k). Then, letting B = π−1

1 (B1), so that B is an abelian subvariety as
π1 is connected, which contains γ+X, π1◦f : B → A′ is connected as π1

is connected and f is a bijective homomorphism, γ+X = (π1◦f)−1(X ′).
Clearly π1 ◦ f(B ∩ Γ) ⊂ A′(k), so the conclusion of Theorem 0.4 is ob-
tained.

�

In order to prove Theorem 0.6, we follow the exposition in [1]. We
add a derivation to K and enlarge K to a bigger algebraically closed
field which we also denote by K, which is differentially closed. We
replace the group Γ by a definable group H which contains it and has
finite Morley rank. We arrange that k is the field of constant of K,
see the article by [11]. The definable group H cannot be one-based, as
X∩H is a definable subset of H, and by a result in [8], X∩H would be
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a finite union of cosets of subgroups of H, and, therefore, X = X ∩H
would be a finite union of cosets of abelian subvarieties of A, contra-
dicting the assumption that StabX is finite? StabX ⊃ H1 ⊂ H and H1

is infinite?

We can find B a strongly minimal δ-definable set such that H ⊂
acl(B). If B is locally modular, then by [7] or [12], B is one based. It
follows that H is one based, as if {S, T} are algebraically closed sets in
Heq, then, we can find subsets {S1, T1} ⊂ B, such that acleq(S1) = S,
acleq(T1) = T , with

S1 |̂ T1

S ∩ T

as for s1 ⊂ S1 finite, Cb(s1/T1) ∈ acleq(s1)∩ acleq(T1), and using the
finite character of forking independence. By forking symmetry, and the
fact that algebraic types have U -rank 0;

S |̂ T
S ∩ T

This contradiction implies that B is non locally modular, (E). We
claim that B is non-orthogonal to the constants, (D). If not, choose c
in B generic over the definition b of B, and consider tp(cb/k0), where
k0 = acl(b) ∩ k.

We use the representation given in [9]. Replacing cb with an inter-
definable tuple if necessary, there exists a smooth irreducible variety V
and an affine subbundle W of T (V ) such that;

{xy ∈ V : (xy, x′y′) ∈ W}

is δ-irreducible, defined by f(x, y) = 0, with generic point cb over k0,
in the sense that any differential polynomial g(x, y), over k0, vanishing
at cb vanishes on f(x, y) = 0. We have that f(x, b) ∩ B is cofinite
in B, as c was generic in the sense of Morley rank. Replacing B by
B′ = f(x, b) ∩ B, then B′ is strongly minimal and still H ⊂ acl(B′).
We claim that if e ∈ B′, then tp(eb/k0) is a specialisation of tp(cb/k0).
For suppose that g ∈ k0{x, y} is a differential polynomial which has the
property that g(cb) = 0, then g vanishes on f(x, y = 0, and it follows
that g(eb) = 0, as f(eb) = 0.
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As above, replacing cb with an interdefinable tuple of length (N+1)s,
for some N , s = length(cb), we assume that t.deg(cbn/cbn−1) = d,

forall n ≥ 1, where where cbn = (cb, cb
′
, . . . , cb

(n)
). Then, if tp(eb/k0) is

a proper specialisation, replacing cb with the corresponding interdefin-
able tuple of the same length, we cannot have that t.deg(ebn/ebn−1) ≤
d − 1, for any n ≥ 1, as this is strictly monotone decreasing, and we
would have that U(cb/k0) − U(eb/k0) = ω, which, by additivity of
U -rank, implies that U(c/bk0) = U(e/bk0) + ω, contradicting strong
minimality. It follows that, for a proper specialisation;

t.deg(k0(ebn)) = t.deg(k0(cbn))− r

where 1 ≤ r ≤ (N + 1)s.

Moreover, we claim that tp(eb/k0) is a proper specialisation iff e ∈
acl(k0(b)), (∗). We have that there exists N such that for all n > N ;

t.deg(k0(cbn)/k0(cbn−1)) = d

where cbn = (cb, cb
′
, . . . , cb

(n)
), and tp(eb/k0) is a proper specialisa-

tion iff;

t.deg(k0(ebn)) = t.deg(k0(cbn))− r

where 1 ≤ r ≤ (N + 1)s, (B), s = length(cb). In particular, this
occurs iff tp(eb/k0) 6= tp(cb/k0), in which case by strong minimality,
e ∈ acl(k0(b)) (C)

We claim that for any proper specialisation tp(eb
′
/k0) of tp(cb/k0)

co-degree r, with 1 < r ≤ (N + 1)s, there exists a specialisation;

tp(e′b
′′
/k0) of tp(cb/k0)

of co-degree r − 1, such that;

tp(eb
′
/k0) is a specialisation of tp(e′b

′′
/k0)

of co-degree 1. (A)
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This follows, as by the representation above, we can find an irre-
ducible subvariety V 0

r ⊂ V of algebraic codimension r in V , such that;

{xy ∈ V 0
r : (xy, x′y′) ∈ W}

is δ-irreducible, defined by f 0
r (x, y) = 0, with generic point eb over

k0. Let V 0
r−1 be an irreducible subvariety of codimension r− 1, satisfy-

ing the corresponding tangency condition;
...... Tangency condition for codimension 1 on f , choose fi ∈ k0(V )
defined over k0, such that {f 1, . . . , fd} forms a basis for W∑dim(V )

i=1
∂f
∂xi
f ri = hrf , for some hr ∈ k0(V ), 1 ≤ r ≤ d (UU)

where f ∈ k0[[x1, . . . , xd]] ∩meb in local coordinates {x1, . . . xd}.

Solve for an etale cover of V . Use uniform bound in etale cohomology
of covers of original V , in terms of degree of the cover, and bound in
number of specialisations in terms of dimension of cohomology groups.
Extend the number of specialisations by taking the images of f under
the Galois action.

Given solution in etale cover can push forward to obtain a solution
in V ?

Need to code the vector bundle generated by W as the kernel of a
collection of forms {w1, . . . , wp}, w = w1 ∧ . . . ∧wp, whose coordinates
are rational over k0(c, therefore the corresponding minors can be rep-

resented by {fi} ∈ k0(V ), 1 ≤ i ≤ C
dim(V )
p , so in the Tate algebra. The

condition of dependency df on {w1, . . . , wp} is defined by the vanishing
of the minors of the matrix (df, w1, . . . , wp}. Each condition defines an
operator condition Ti on the Tate algebra, rational over k0(V ).

Rewrite the differential equation (UU) as;∑dim(V )
i=1

∂log(f)
∂xi

f ri = hr, for some hr ∈ k0(V ), 1 ≤ r ≤ d (UUU)

and define hr in terms of the given f r and log(f). Clear then that
we can find local analytic solutions to (UU)?? Rational approximation
to the logarithm, solve UU to obtain approximate algebraic solutions?
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Generic case, codim 2, can choose differential specialisation e to lie
on intersection f ∩ g in the Tete algebra, such that Rad(f, g) = I(e),
and df , dg are tangent, with nonzero differentials at e. Suppose that;∑dim(V )

i=1
∂f
∂xi
f ri = hrf+srg, for some hr, sr ∈ k0(V ), 1 ≤ r ≤ d (UU)′′′

f
g

and g
f

define a regular functions at e, using fact that f is tangent

to g at e. Divide by f org;∑dim(V )
i=1

∂log(f)
∂xi

f ri = hr + sr g
f∑dim(V )

i=1
∂log(g)
∂xi

f ri = hr f
g

+ sr

In both cases, right hand side is regular at e, forces f r(e) = 0, for
some subset of the f r corresponding to one ∂f

∂xi
, use to construct non-

trivial solution in codimension 1, on an etale cover.

Exclude case in codim 2;

[
∑dim(V )

i=1
∂f
∂xi
f ri ]sr = hrf + srg

sr ∈ Z>1.

Generic case, codim 2, can choose differential specialisation e to lie
on intersection f ∩ g in the Tete algebra, such that (f, g) = I(e), and
df , dg are transverse, with nonzero differentials at e; use fact that e has
codimension 2 and jet spaces argument, to exclude case where higher
differentials are all tangent. As we can complete f, g to a set of uni-
formisers {u1, . . . , un} at e f and g generate a subalgebra k0[[f, g]]alg

of the full algebra K[[u1, . . . , un]]alg. We can construct;

f1 = (αf + βg) + (γf + δg)2 + (εf + ξg)3

f2 = (αf + βg) + (γf + δg)2

where {α, β, γ, δ, ε, ξ} ⊂ k0, so that f1(e) = f2(e = 0, and f1
f2

is

regular at e, have that Rad(f1, f2) = I(e) again.
Then;

[
∑dim(V )

i=1
∂f1
∂xi
f ri ]sr = hrf1 + srf2



SOME NOTES ON THE MORDELL LANG CONJECTURE AND JOUANOLOU’S THEOREM9

sr ∈ Z>1.

again. As we must have that [
∑dim(V )

i=1
∂f1
∂xi
f ri ](e) = 0, (V V ) as

ee′ ∈ W by differential specialisation, df1(e)(e′) = 0, as f1(e) = 0,
so ee′ ∈ Ker(df1) ∩W , and if one of the conditions in (V V ) fails, we
would have that Ker(df1) ∩ W ( W , contradicting the requirement
that (ee′) ∈ We is generic, otherwise U -rank drops, see above.

Let Li denote the derivations of k0[[f, g]]alg defined by;∑dim(V )
i=1

∂g
∂xi
f ri

for 1 ≤ r ≤ C
dim(V )
p+1 , the components of df ∧ ω. Let g denote the Lie

algebra generated by the Li, 1 ≤ i ≤ r. Then, letting mf,g denote the
maximal ideal of k0[[f, g]]alg, we have by assumption that each Li maps
mf,g to itself, and as the Li are derivations, we have that if h ∈ m2

f,g,
h =

∑
j = 1wsjtj, {sj, tj} ⊂ mf,g, then;

Li(h) = Li(
∑

j = 1wsjtj)

=
∑w

j=1 Li(sj)tj + Li(tj)sj ∈ m2
f,g

Similarly, each Li maps mr
f,g to mr

f,g, for r ≥ 1. Consider the rep-
resentation φ2 of the derived algebra [g, g] on the 2 dimensional vector
space V2 =

mf,g
m2
f,g

over k0. Then, we have that φ2(}) ⊂ sl2(k0) and using

the fact that {f, g} are transverse, so generate V2 over k0, we can as-
sume that;

L(f) = λf + µg mod m2
f,g

L(g) = νf − λg mod m2
f,g

where L ∈ [g, g]. Then considering the representation of [g, g] on

V3 =
m2
f,g

m3
f,g

, we have by the derivation property that;

L(f 2) = 2f(λf + µg) = 2λf 2 + 2µfg mod m3
f,g

L(g2) = 2g(νf − λg) = −2λg2 + 2νfg mod m3
f,g
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L(fg) = f(νf−λg)+g(λf+µg) = νf 2−λfg+λfg+µg2 = νf 2+µg2

mod m3
f,g (RR)

Now consider the representation φ1,3 of [g, g] on
mf,g
m3
f,g

, then the image

φ1,3([g, g]) must be a subalgebra of sl5(k0).... However, using the fact
that [M23,M32] = M22 −M33 and (RR), with M22 = 0, we obtain a
contradiction unless λ = 0 or µ = 0, so the image φ1,3([g, g]) must
be solvable, with an upper triangular representation. Assume that
ν 6= 0, then using the fact that M13 = [M12,M23], and (RR) again,
with M13 = 0, we must have that µ = 0 as well...(no). It follows that
we can assume that;

L(f) = λf mod m2
f,g

L(g) = −λg mod m2
f,g

Exclude the case of a remainder......(no)
...... Need case of infinite co degree specialisations, generated by pairs
(fi, gi). Consider the divisor group Σ generated by the {fi}, we can
define a map for an unobstructed subgroup Σ′ ≤ Σ;

Ψ : Σ→ H0(U,Ω1
X)

H0(X,Ω1
X)

Ψ((fα)) = dfα
fα
− νfα +H0(X,Ω1

X)

where νfα is a regular one form on Uα. Ψ is injective, see [9].

and;

Φ : Σ→ H0(X,Ωp+1
X ⊗L)

(w∧H0(X,Ω1
X))

fi 7→ (dfi∧w
fi
− νi ∧ w)twist +H0(X,Ω1

X)

As Σ′ has arbitrarily large rank and the rank of H0(X,Ωp+1
X ⊗ L) is

finite, we can find, for fi ∈ Ker(Φ), θfi , such that;

(dfi∧w
fi
− νi ∧ w)twist = w ∧ θfi (∗)

(dfi ∧ w − fiνi ∧ w) = w ∧ θfi (∗)
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(dfi − fiνi − θfi) ∧ w = 0 (∗)

(dfi − fiνi − θfi) ∈ H0(X,Ωp+1
X ⊗ L)

...............

............ so that;

(dfi∧w
fi
− νi ∧ w − θfi ∧ w)twist = 0 (∗∗)

(dfi∧w
fi
− νi ∧ w − θfi ∧ w) = 0

w ∧Ψ(w) = 0

where Ψ(fi) = (dfi
fi
− νi − θfi) and fi is a codegree 1 specialisation.

Follow argument in [?].

....................
Need case of infinite co degree specialisations, generated by pairs

(fi, gi). Consider the divisor group Σ generated by the fi, we can de-
fine a map;

ChooseN large with {f1, . . . fN} linearly independent in< f1, . . . fN >⊂
Div ⊗ k0. Let Σ′ be the group generated.

We have the unobstructed map Ψ : Σ→ H0(U,Ω1)
H0(X,Ω1)

defined by;

Ψ((fα)) = dfα
fα
− νfα

Define a map;

Φ : Σ′ → H0(X,Ωp+1
X ⊗L)

w∧H0(X,Ω1
X)

fm1
1,α . . . f

mN
N,α 7→ f

δ(m1)
1,α . . . f

δ(mn)
N,α (

df
m1
1,α ...f

mN
N,α ∧w

f
m1
1,α ...f

mN
N,α

− νfm1
1,α ...f

mN
N,α
∧ w)

where δ(m) = 0 if m = 0 and δ(m) = 1 if m ≥ 1. Generically,

(
df
m1
1,α ...f

mN
N,α ∧w

fi,α
− νfi,α) will be a rational section of the sheaf Ωp+1

X ⊗ L,

Let M be the sheaf defined by the transition functions;

f
δ(m1)
1,α ...f

δ(mn)
N,α

f
δ(m1)
1,beta ...f

δ(mn)
N,β
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and we obtain a global section of the sheaf Ωp+1
X ⊗ L⊗M , (AB).

To see (AB), consider the simplest case;

(w∧df1,α
f1,α

− w ∧ ν1,α + w∧df2,α
f2,α

− w ∧ ν2,α)twist

We claim this belongs to H0(X,Ωp+1
X ⊗ L⊗M), for the line bundle

M defined by the transition functions f1,αf2,α. We have that (w∧ ν1,α)
and (w ∧ ν2,α) are regular on Uα, and;

w∧df1,α
f1,α

− w ∧ ν1,α + w∧df2,α
f2,α

− w ∧ ν2,α

= 1
f1,αf2,α

[f2,α(f1,αw1 + g1,αw2)− f1,αf2,α(w ∧ ν1,α)

+f1,α(f2,αw3 + g2,αw4)− f1,αf2,α(w ∧ ν2,α)]

Assume for contradiction that;

f1,αf2,α|[f2,α(f1,αw1+g1,αw2)−f1,αf2,α(w∧ν1,α)+f1,α(f2,αw3+g2,αw4)

−f1,αf2,α(w ∧ ν2,α)]

Then;

f1,αf2,α|[f2,αg1,αw2 + f1,αg2,αw4

f1,α|f2,αg1,αw2

f2,α|f1,αg2,αw4

Assuming that g1,α and g2,α are irreducible, see note below, and
working in local coordinates for {w2, w4}, we obtain that f1,α ∼ f2,α,
contradicting the presentation below.

.................... Consider the case of a codegree 2 specialisation on X,
defined by irreducible divisors {D,F}, with the divisor D defined in
local coordinates by fα. Consider the short exact sequence;

0→ L(−D)→ OX → OD → 0
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We have that L(D)⊗Ωp+1
X is locally free as L(D) is invertible and X

is nonsingular. It follows that, tensoring with L(D)⊗ Ωp+1
X , we obtain

a short exact sequence;

0→ L(−D)⊗ L(D)⊗ Ωp+1
X → OX ⊗ L(D)⊗ Ωp+1

X → OD ⊗ L(D)⊗
Ωp+1
X → 0

0→ Ωp+1
X → L(D)⊗ Ωp+1

X → OD ⊗OX L(D)⊗ Ωp+1
X → 0 (BV )

By the above calculation (AB), we have that in local coordinates;

fα(w ∧ dfα
fα
− w ∧ να)

is a global section σ of L(D)⊗ Ωp+1
X and we compute its restriction

i−1σ in OD ⊗OX L(D)⊗ Ωp+1
X . We have that;

i−1(fα(w ∧ dfα
fα
− w ∧ να))

= i−1(w ∧ dfα − fα(w ∧ να))

= i−1(w ∧ dfα), as fα vanishes on fα = 0

= i∗w (as dfα vanishes on the tangent vectors of fα)

The residue doesn’t have to be zero. The global section functor is
left exact, so we obtain from (BV );

0→ Γ(X,Ωp+1
X )→ Γ(X,L(D)⊗Ωp+1

X )→ Γ(X,OD⊗OXL(D)⊗Ωp+1
X )

No.

.............................................................

Take a system of local coordinates {x1, . . . xn} on X. As Ω1(X) is
locally free because X is non-singular, we can find an open set U such
that the differentials {dx1, . . . dxn} remain independent on U . With-
out loss of generality, we can assume that infinitely many co-degree 2
specialisations lie on U . Otherwise, we find infinitely many codegree
specialisations on Z = X \ U and we can use induction.....
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Using the fact that the derivation df ∧ w(ξ1, . . . , ξp+1) has an eigen-
vector if the representation is semisimple, we can patch the forms;

(dfα
fα
− να) ∧ w ∧ dxp+2 ∧ . . . ∧ dxn

to give a global section of the canonical sheaf Ωn
X , possibly with a

twist.

Then use cohomological arguments to show that we can find a mero-
morphic integral dg ∧ w ∧ dxp+2 ∧ . . . ∧ dxn = 0. Repeating for the
finitely many permutations dxσ(p+2) ∧ . . .∧ dxσ(n), we can find a mero-
morphic integral;

dg ∧ w ∧ dxσ(1) ∧ . . . ∧ dxσ(p+1) = 0

for all permutations σ, to give that;

dg ∧ w = 0

.... Case of the remainder, consider the representation df∧w(ξ1, . . . , ξp+1)
on k0[f, g] and then

mf,g
mNf,g

for large N . Again we can find an eigenvector

r, to obtain that;

dr ∧ w ∧ dxp+2 ∧ . . . ∧ dxn = (λr + θ)dx1 ∧ . . . ∧ dxn

where θ ∈ mN+1
f,g . Choose a uniformiser s such that r, s are uniformis-

ers for mf,g, so that mN+1
f,g = mN+1

s,r , and the intersection product;

(s = 0, r = 0) ≥ (K, r = 0) (HU)

where K is the canonical class.

Then;

dr
r
∧ w ∧ dxp+2 ∧ . . . ∧ dxn = sN+1

r
w1 + w2 ∈ h0(Ωn

X ⊗ L)

(L defined by r = 0)

where w1 and w2 are regular local sections of the canonical sheaf.
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Restricting to the divisor r = 0, we obtain that;

deg(K|r=0) = (K, r = 0) = (N + 1)(s = 0, r = 0)

which contradicts (HU)...no
..........

(dfα
fα
− να) ∧ w ∧ dxp+2 ∧ . . . ∧ dxn

gives a rational section of the canonical sheaf Ωn
X

By the representation, this equals;

gα
fα
ω + ω1

where ω1 is regular and ω is a rational section of Ωn
X . Twisting by

f = 0, we obtain a rational section σ of Ωn
X ⊗ L, locally of the form;

gαω + fαω1 (UO)

Restricting to f = 0, defining the divisor L, and taking the degree,
we obtain that;

(K + L,L) = (K + (g = 0), L)

(L,L) = (g = 0, L)

If (L,L) ≤ 0, we obtain a contradiction, as g = 0 intersects L prop-
erly. If (L,L) > 0, we can use the adjunction formula;

σ|L = ωL

where ωL is a section of the canonical sheaf Ωn−1
L on L. By the local

representation (UO), we have that;

gαω|L ∈ h0(Ωn−1
L )

so that;

gα ∈ h0(Ωn−1
L ⊗ (ω|nX)|−1

L )

Using the short exact sequence of sheaves on L;
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0→ J
J2 → ΩX ⊗OL → ΩL → 0

and taking exterior powers;

Ωn
X |L ∼= Ωn−1

L ⊗ ( J
J2 )

see [4], p182

( J
J2 ) ∼= Ωn

X |L ⊗ (Ωn−1
L )

−1

Hom( J
J2 , OL) = ( J

J2 )−1 ∼= Ωn−1
L ⊗ (ω|nX)|−1

L

so that, twisting the sheaf of differentials if necessary, the gα patch
to form a global section of the normal bundle HomOL( J

J2 , OL). By a
result in [4], L admits an infinitesimal deformation in X over the ring of
dual numbers. As g = 0 passes through the generic point e, we can use
Schlessinger’s criteria to generate a global deformation over P 1, fixing
e. In this case, we can assume that the differential specialisation e is
defined as the intersection of two linearly equivalent divisors {L,L′}.
We can then remove the twist in L, as locally, we obtain that;

(dfα
fα
− να) ∧ w ∧ dxp+2 ∧ . . . ∧ dxn

= gα
fα
ω + ω1

= hω + ω1

is a rational section of Ωn
X , where h is a rational function with

(h) = (f = 0) − (g = 0), and we obtain a global section, indepen-
dently of the divisors f = 0, twisting the sheaf Ωn

X .

.................... For infinite co-degree 2 specialisations, have to remove
singular points pi for the defining divisors {fi, gi} and the cases when
{fi, gi} are tangent. If pi is singular for one divisor gi, this can be
achieved by a simple change of variables, replacing fi with λfi + µgi
and noting that d(λfi + µgi) = µd(gi) 6= 0. If pi is singular for both fi
and gi, we can blow up the variety X along the subvariety Vi for which
pi is the generic point, to obtain an interdefinable specialisation p′i and
a smooth variety X ′, and note that by birationality;
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dim(H0(X ′,Ωp+1 × L)) = dim(H0(X,Ωp+1 ⊗ L))

We only need to do this a finite number of times by the effective
version of Jouanalou’s theorem. If pi is nonsingular for both fi and gi
but fi and gi are tangent, we can reduce to the case where fi and gi are
transverse, by considering higher tangent spaces T i(X) and checking
that;

dim(H0(T i(X),Ωp+1 ⊗ L)) = dim(H0(X,Ωp+1 ⊗ L))

We can assume that the co-degree 2 specialisations pi are defined by
(fi, gi) so that the fi are distinct. Otherwise we obtain an infinite num-
ber of co-degree 2 specialisations on a single divisor fi. Then we can
reverse the roles of gi and fi, and if the gi are not distinct, obtain an
infinite number of codegree 2 specialisations on the intersection fi∩ gi,
contradicting algebraicity. To remove the obstruction in the divisor
group Σ, we can assume that the generators {fi, gi} are irreducible and
intersect transversely at pi, so that I(pi) =< fi, gi >. Then, by an effec-
tive calculation on the obstruction, we can find a subgroup Σ1 ≤ Σ of
arbitrary rank N , which is unobstructed for the map Ψ. Let {b1, . . . , bN
be a basis, and assume that {fi : 1 ≤ i ≤ r} appear as components
of the basis. Then N ≤ r, as < b1, . . . , bN >⊂< f1, . . . , fr >. We can
then define the twist using the product of these irreducible components.

In order to prove that that the map Φ above is well defined, we still
need to show that that the representation of the derived algebra above
[g, g] is reasonably well behaved, as for example we could have that
fα|gα + g2

α, even though the reduced intersection fα and gα is trans-
verse at p, as gα may contain a component such that 1 + gα vanishes
on fα = 0. (Can assume that gα is irreducible?)

..................... (need the fact that V 0
r does).... We claim that;

f(x, y) = 0 ∪ {¬Vr(x, y)} ∪ V 0
r−1(x, y) (∗ ∗ ∗)

is consistent. If not, then by compactness, we can find a variety Wr

of codimension r, such that;

f(x, y) = 0 ∪ ¬Wr(x, y)→ ¬V 0
r−1
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But Wr defines a Zariski closed subset of V 0
r−1, so by the geometric

axioms for DCF , we can find a tuple e′b
′

satisfying f(x, y) = 0, with

V 0
r−1(e′b

′
) and ¬Wr(e

′, b
′
). Let e′′b

′′
realise the type (∗ ∗ ∗). Then by

construction, we have that tp(cb) specialises to tp(e′′b
′′
) specialises to

tp(eb). In particularly, considering differential polynomials r(y) over

k0, we have that r(y) vanishes on b iff r(y) vanishes on b
′′
, so that

tp(b/k0) = tp(b
′′
/k0). Using ℵ0-homogeneity of K, we can replace

(e′′b
′′
) with a tuple (e′b) in the realisation of (∗ ∗ ∗). It follows that

(A) holds.

The following result is due to Hrushovski, [5], which relies on Joua-
nalou’s Theorem, see [6];

If k0 is an algebraically closed field of constants, and p(x) = tp(d/k0),
then either;

(a). There is c ∈ C \ k0 with c ∈ acl(k0(d)) (non-orthogonality) or

(b). p(x) has only finitely many co-degree 1 specialisations. (G)

Assume that (a) does not hold for tp(cb/k0). We have (a) does not
hold for the proper specialisations, tp(eb/k0), as, otherwise, we would
have that;

c 6 ↓ eb
k0

but by the definition of k0;

c |̂ b
k0

so that, by transitivity;

c 6 ↓ e
k0(b)

which is a contradiction, as by (C), e ∈ acl(k0(b)).

As, by (A), we can factor any proper specialisation into a chain of
codegree 1 specialisations, and use the bound in (B), it follows, by (G)
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applied repeatedly, that tp(cb/k0) has only finitely many proper spe-
cialisations of the form tp(eb/k0), where e ∈ B′. It follows by (C), that
acl(k0(b)) ∩B′ is finite and B′ is ω-categorical. By a result due to Zil-
ber, see [10], this implies that B′ is locally modular, which contradicts
(E). Hence, the claim (D) is shown.

.....
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