
REAL PLANE ALGEBRAIC CURVES

TRISTRAM DE PIRO

Definition 0.1. We work in the structure (R,+, �, 0, 1, <), consisting
of the reals considered as a real closed ordered field, with the associated
language LRCF . Then, it is well known that;

Th((R,+, �, 0, 1, <))

has quantifier elimination and is O-minimal, in the sense that every
definable subset U of R in the language LRCF is a finite union of points
and intervals, possibly infinite. We let;

(R∗,+, �, 0, 1, <) =
∏

D(R,+, �, 0, 1, <)

be the real closed field defined as the ultraproduct of (R,+, �, 0, 1, <),
with respect to a non-principal ultrafilter D on N . By Los’s Theorem,
we have that;

(R,+, �, 0, 1, <) ≺ (R∗,+, �, 0, 1, <)

via the diagonal embedding;

r 7→ (r)n

We define an infinitesimal ε ∈ R∗ by the requirement that 0 < |ε| <
r, for all r ∈ R>0. By Los’s Theorem again, and considering the se-
quence ( 1

n
)n∈N

R∗ contains infinitesimals. We define a finite number r′ ∈ R∗ by
the requirement that −r1 < r′ < r2, for some {r1, r2} ⊂ R. For every
finite number r′, it is easy to show that there exists a unique r ∈ R,
with r′−r an infinitesimal. We say that r′ ' r. We define the standard
part mapping st : R∗ ∪ {+∞,−∞} by;

st(r′) = r, where r′ ' r, if r′ is finite
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st(r′) =∞ if r′ is infinite and r′ > 0

st(r′) = −∞ if r′ is infinite and r′ < 0

By an indefinite polynomial, f ∈ R[x, y], we mean a polynomial with
the property that there exist {a, b} ⊂ R2 with f(a) < 0 < f(b). For
f ∈ R[x, y], by V (f), we mean the solution set in R2 of f . By an alge-
braic set in Rn, we mean a set definable by a finite set of polynomials
{f1, . . . , fs} ⊂ R[x1, . . . , xn]. By an irreducible algebraic set, we mean
an algebraic set V with the property that if V = V1 ∪ V2, V1 and V2 al-
gebraic, then V = V1 or V = V2. The following facts can be found in [2];

(i). If f is of odd degree, then f is indefinite.

(ii). For f irreducible, f is indefinite iff V (f) is infinite.

(iii). If f is irreducible and indefinite, then V (f) is irreducible.

By a real plane algebraic curve we mean V (f), for some f ∈ R[x, y]
irreducible and indefinite. By a singular point on V (f) for f indefinite,
we mean a point p such that f(p) = 0, ∂f

∂x
(p) = 0, ∂f

∂y
(p) = 0. If this

condition is not satisfied with f(p) = 0, we say that p is a nonsingular
point.

We define;

P 2(R) = {[a : b : c] : (a, b, c) ∈ R3 \ (0, 0, 0)/ ∼}

where (a, b, c) ∼ (d, e, f) if there exists λ ∈ R6=0 such that λ(a, b, c) =
(d, e, f). Similarly, we define P 2(R∗).

We define a simple algebraic set V ⊂ P 2(R) by the requirement
that V is the solution set in P 2(R) of a homogeneous polynomial
f ∈ R[X, Y, Z]. For g ∈ R[x, y], we define the homogenisation of g
by Zmg(X

Z
, Y
Z

), where m = deg(g). We can consider R2 as a subset
of P 2(R) via the map (a, b) 7→ [a : b : 1]. Similarly, we have maps
(a, b) 7→ [a : 1 : b] and (a, b) 7→ [1 : a : b], which identifies R2 with the
open sets U1, U2, U3 of P 2(R) defined by X 6= 0, Y 6= 0, Z 6= 0 respec-
tively. By the definition of P 2(R), we have that U1∪U2∪U3 = P 2(R).
If f ∈ R[x, y] is irreducible and indefinite, then we define V (fh), the
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projective closure of the real plane algebraic curve V (f), to be the so-
lution set in P 2(R) of the homogenisation fh of f . We have that, for
(a, b) ∈ R2;

f(a, b) = 0 iff fh([a : b : 1])

so that, via the identification, V (fh) ∩ U1 = V (f). We let l∞ =
(P 2(R) \ R2) be the line at infinity defined by Z = 0.

Lemma 0.2. If f ∈ R[x, y] is irreducible and indefinite, then fh is
irreducible and indefinite in the sense of homogeneous polynomials and
V (fh) is irreducible in the sense of algebraic sets defined by homoge-
neous polynomials. V (fh) ∩ l∞ is finite.

Proof. We have that, if f is irreducible and indefinite, then fh is ir-
reducible and indefinite, in the sense of homogeneous polynomials.
The second claim can be found in [2]. For the first claim, if f is
irreducible and fh is reducible, then fh = uhvh, where uh and vh

are homogeneous polynomials not equal to constants. Letting u and
v be the dehomogenisations defined by u(x, y) = uh([x : y : 1]),
v(x, y) = vh([x : y : 1]), we then have that f = uv, so that u or
v are constant. This can only happen if uh or vh is a function of Z
only, in which case V (f) contains the line at infinity l∞, defined by
Z = 0. Then, as uh and vh are not constants Zk|fh(X, Y, Z), for
some k ≥ 1. Clearly this cannot happen as by the definition above of
the homogenisation, fh contains summands of the form X iY j, where
i+ j = d, d = deg(f). It follows that V (fh) is irreducible in the sense
of algebraic sets defined by homogeneous polynomials. This is a simple
adaptation of the corresponding fact above for f ∈ R[x, y]. In partic-
ular, using Bezout’s theorem and the fact that l∞ is irreducible as an
algebraic set, V (fh) ∩ l∞ is finite.

�

Lemma 0.3. There exists a standard part mapping st′ : P 2(R∗) →
P 2(R) with the property that if V is a simple algebraic set and V (a′)
for some a′ ∈ P 2(R∗), then V (st′(a′)).

Proof. For a representative (a′, b′, c′) of d′ ∈ P 2(R∗), assuming that
0 ≤ |a′| < |b′| < |c′|, with |c′| > 0, we have that 0 < |a′

c′
| < | b′

c′
| < 1, so

that a′

c′
and b′

c′
are finite. We define st′(a′, b′, c′) = [st(a

′

c′
) : st( b

′

c′
) : 1],
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where st is the map defined above. We have to check this is well de-
fined. Let λ ∈ R∗6=0 have the property that a′′ = λa′, b′′ = λb′, c′′ = λc′,
then still 0 ≤ |a′′| < |b′′| < |c′′|, and;

st′(a′′, b′′, c′′) = [st(a
′′

c′′
) : st( b

′′

c′′
) : 1] = [st(a

′

c′
) : st( b

′

c′
) : 1] = st′(a′, b′, c′)

We repeat the same construction, for the six cases, when {|a′|, |b′|, |c′|}
are distinct, ordering the tuples in ascending modulus, and dividing by
the highest term. We are left with the remaining cases when either 2
of the terms in {|a′|, |b′|, |c′|} coincide or all three coincide and are not
equal to 0. In the first of these cases, we divide by either of the high-
est modulus terms, and take the standard part as above. Without loss
of generality, assuming that 0 ≤ |a′| < |b′| = |c′|, we need to check that;

[st(a
′

c′
) : st( b

′

c′
) : 1] = [st(a

′

b′
) : 1 : st( c

′

b′
)]

This is obviously true if b′ = c′, and if b′ = −c′, then;

[st(a
′

c′
), st( b

′

c′
) : 1]

= [st(a
′

c′
) : −1 : 1]

= [−st(a′
b′

) : −1 : 1]

= [st(a
′

b′
) : 1 : −1]

= [st(a
′

b′
) : 1 : st( c

′

b′
)]

as required. In the second case, we divide by any of the three non-
zero terms, and again take the standard part as above. The details of
checking this is well defined are left to the reader.

Let f(X, Y, Z) =
∑

i+j+k=d aijkX
iY jZk be a homogeneous polyno-

mial of degree d in R[X, Y, Z], and let [a′ : b′ : c′] ∈ R∗3 such that
f([a′ : b′ : c′]). Without loss of generality, we may suppose that
0 ≤ |a′| < |b′| < |c′|, in particularly c′ 6= 0. WE have that;∑

i+j+k=d aijka
′ib′jc′k = 0

iff
∑

i+j+k=d aijka
′ib′jc′k−d = 0
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so that, as k − d = −i− j;∑
i+j≤d aij(

a′

c′
)i( b

′

c′
)j = 0

As a′

c′
and b′

c′
are finite, we can take the standard part, and use the

fact that st : R∗fin → R is a homomorphism, to obtain that;

st(
∑

i+j≤d aij(
a′

c′
)i( b

′

c′
)j)

=
∑

i+j≤d aij(st(
a′

c′
))i(st( b

′

c′
))j = 0, (∗)

By the definition of st′ above, we have that st′([a′ : b′ : c′]) = [st(a
′

c′
) :

st( b
′

c′
) : 1], and clearly, using (∗);

f([st(a
′

c′
) : st( b

′

c′
) : 1]) =

∑
i+j≤d aij(st(

a′

c′
))i(st( b

′

c′
))j = 0

so that f(st′([a′ : b′ : c′])) = 0 as required.

�

Remarks 0.4. We call c′ ∈ U3∩P 2(R∗ finite in U1, if it corresponds to
a finite element (a′, b′) ∈ R2∗ via the map (a, b) 7→ [a : b : 1]. Similarly,
we call an element finite in U1 or U2. We have that st′|Ui,fin = st,
via this identification, for 1 ≤ i ≤ 3, as, taking i = 3, without loss of
generality, st′([a′ : b′ : 1]) = [st(a′) : st(b′) : 1], as is easily checked.
Note that if c ∈ Ui ∩P 2(R), then st′−1(c) ⊂ Ui,fin. If this were not the
case, then either we could find c′ /∈ Ui with st′(c′) = c, in which case
c′ ∈ Xi = 0, so that, by the above, st′(c′) ∈ Xi = 0 and c ∈ Xi = 0
which is not the case, or we could find c′ ∈ Ui infinite with st(c′) = c.
Then, taking i = 3, c′ is of the form [a′ : b′ : 1], with a′ or b′ infinite in
R∗2, so that if |a| < |b|;

st′([a′ : b′ : 1]) = [st(a
′

b′
) : 1 : st(1

b
)]

= [st(a
′

b′
) : 1 : 0]

as 1
b

is infinitesimal. So that c ∈ Z = 0, which is again a contra-
diction. Every c′ ∈ P 2(R∗) is finite in Ui for some 1 ≤ i ≤ 3. This
follows from the fact that we can without loss of generality suppose c′ =
[d′ : e′ : f ′], with |f ′| ≥ max(|d′|, |e′|) > 0, so that c′ = [ d

′

f ′
, e
′

f ′
: 1] ∈ U3,

corresponding to the finite tuple ( d
′

f ′
, e
′

f ′
).
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It follows that we can switch to the affine open sets Ui, when count-
ing points in an infinitesimal neighborhood of c ∈ Ui.

We call a point [1 : b : 0] ∈ l∞ ∩ V (fh) nonsingular if it satisfies
the definition of non singularity for V (fh(1, y, z) on U1 in coordinates
(y, z), and a point [b : 1 : 0] nonsingular if it satisfies the definition of
non singularity for V (fh(x, 1, z) on U2 in coordinates (x, z′). This is
a good definition, for [a : b : 0], with a 6= 0, b 6= 0, fh(1, b

a
, 0) = 0 iff

fh(a
b
, 1, 0) = 0 and as y = Y

X
, z = Z

X
, x = X

Y
, z′ = Z

Y
, with the change

in coordinates given by x = 1
y
, z′ = z

y
, y 6= 0, by the chain rule;

∂fh,U1

∂y
= −∂fh,U2

∂x
1
y2
− ∂fh,U2

∂z′
z
y2

∂fh,U1

∂z
= ∂fh,U2

∂z′
1
y

so that;

∂fh,U1

∂y
|(1, b

a
,0) = ∂fh,U1

∂z (1, b
a
,0)

= 0

iff

∂fh,U2

∂x
|(a

b
,1,0) = ∂fh,U1

∂z′ (a
b
,1,0)

= 0

It follows from Lemma 0.5, applied to the open sets U1 and U2,
and the dehomgenisations fh(1, y, z), fh(x, 1, z′), that there can only
be finitely many singular points lying on the line l∞.

Lemma 0.5. If f is irreducible and indefinite, there can only be finitely
many singular points on V (f).

Proof. Suppose that ∂f
∂x

vanishes on V (f), then V (f) ⊂ V (∂f
∂x

), and by

the real study’s lemma, see [2], f |∂f
∂x

. As ∂f
∂x

has lower degree, this is

impossible unless ∂f
∂x

= 0, in which case f = q(y) for some q ∈ R[y].
As f is irreducible and indefinite, q is of the form y − r = 0, for some
r ∈ R. Then it is easy to see that ∂f

∂y
= 1, on V (f), so that every point

is nonsingular. We may therefore assume that ∂f
∂x

does not vanish on

V (f) and by the same reasoning that ∂f
∂y

does not vanish on V (f).

We can assume that V (f) consists of the real points of a complex ir-
reducible curve C. This follows, as if f is reducible over C, we can
consider V (f) ⊂ VC(f) ∩ VC(f), so that VC(f) and VC(f) must share
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a common component defined over R, as V (f) is infinite. This would
contradict the fact that f is irreducible. As we can assume that ∂f

∂x
is

not a constant, we have that V (f) and V (∂f
∂x

) are the real points of two
1-dimensional, algebraic curves C and D, without a common compo-
nent. By Bezout’s theorem, the number of complex intersections and
therefore real intersections is bounded by deg(C)deg(D). It follows
that V (f)∩V (∂f

∂x
) is finite and therefore V (f)∩V (∂f

∂x
)∩V (∂f

∂y
) is finite,

as required.

�

Definition 0.6. For f irreducible and indefinite, with f(a, b) = 0, for
some (a, b) ∈ R2 and (a, b) a nonsingular point, we define the tangent
line l to be the line defined by the equation;

(x− a)∂f
∂x
|(a,b) + (y − b)∂f

∂y
|(a,b) = 0 (∗)

We identify P 2(R) with the parameter space for lines l of the form
aX + bY + cZ = 0, and assume that f does not define a line. We
consider the algebraic set F ⊂ P 2(R∗)× P 2(R∗) defined by;

F (d, e) iff e ∈ ld ∩ C

where C = V (fh). By Bezout’s theorem, F has the property that
for d ∈ P 2(R), the fibre F (d) is finite, possibly empty, with cardinality
bounded by deg(f). This property is inherited by R∗, as R ≺ R∗ and
the property can be formulated in the language LRCF ;

∀(y1, y2, y3)y1 6=0∨y2 6=0[∃(x11, x21, . . . x1n, x2n)
∧n
i=1(f(x1i, x2i) = 0∧y1x1i+

y2x2i+y3 = 0)∨∃(x11, x21, . . . x1n−1, x2n−1)∃a∃ba6=0∨b6=0

∧n−1
i=1 (f(x1i, x2i) =

0∧fh(a, b, 0)∧y1a+y2b = 0)]∧∃(a1, b1, . . . an, bn)ai 6=0∨bi 6=0

∧n
i=1 f

h(ai, bi, 0)....

We define;

Mult(F ; (d, e)) = Max{CardF (d′) ∩ Ve : d′ ∈ Vd}

where Vd = st′−1(d), Ve = st′−1(e).

For a nonsingular point [a : b : 0] of V (fh) on the line l∞, we say
that a line l passing through [a, b : 0] is algebraically tangent to V (fh)
at [a : b : 0] if it satisfies the above definition in either of the affine open
sets U1 or U2. Again, similar to the above, this is a good definition. If
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l is given in coordinates (x, z′), by α+ βx+ γz′ = 0, then l is given in
coordinates (y, z) by α + β( 1

y
) + γ( z

y
) = 0, y 6= 0 iff β + αy + γz = 0.

The algebraic definition of tangency in (x, z′) is given by;

γ ∂f
h,U2

∂x
+ β ∂f

h,U2

∂z′
= 0 (∗)

and then;

γ ∂f
h,U1

∂y
+ α∂f

h,U1

∂z

= γ(−∂fh,U2

∂x
1
y2
− ∂fh,U2

∂z′
z
y2

) + α(∂f
h,U2

∂z′
1
y
)

For a point [a : b : 0] = [1 : b
a

: 0], we have that 1
y2
|( b

a
,0) = a2

b2
,

1
y
|( b

a
,0) = a

b
, z
y2
|( b

a
,0) = 0, so that;

γ ∂f
h,U1

∂y
+ α∂f

h,U1

∂z

= γ(−∂fh,U2

∂x
a2

b2
) + α(∂f

h,U2

∂z′
a
b
)

= −γa2

b2
∂fh,U2

∂x
+ αa

b
∂fh,U2

∂z′

We have that in coordinates (y, z), as [a : b : 0] = [1 : b
a

: 0] lies on

the line defined by β + αy + γz = 0, that β + α( b
a
) = 0, so that;

b
a

= −β
α

a
b

= −α
β

(−γa2

b2
, αa
b

)

∼ (−γa
b
, α)

= (γα
β
, α)

∼ (γ, β)

so that;

−γa2

b2
∂fh,U2

∂x
+ αa

b
∂fh,U2

∂z′
= 0
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iff

γ ∂f
h,U2

∂x
+ β ∂f

h,U2

∂z′
= 0

which is the case, by (∗).

If l 6= l∞, we call l an asymptote.

Lemma 0.7. For a nonsingular point p = (a : b : c) with fh(a, b, c) =
0, f irreducible and indefinite, not a line, l is algebraically tangent to
V (f) at (a : b : c) iff Mult(F ; d, [a; b : 1]) ≥ 2, where d is the projective
coordinate defining l and F is the cover above.

Proof. By the above remark, we can work in an affine set Ui, with coor-
dinates (x, y), the point p having coordinates (0, 0) and f(x, y) = 0. By
the fact that p is nonsingular, we can without loss of generality, and us-
ing a linear transformation, assume that ∂f

∂y
6= 0. Applying the implicit

function theorem and using continuity, we can find g analytic defined
on an open neighbourhood B(0, r) of 0 in R such that, for x ∈ B(0, r),
f(x, g(x)) = 0 and V (f) ∩ (B(0, r) × B(0, s)) = graph(g|B(0,r)), for
sufficiently small r ∈ R>0, r < s, s ∈ R>0. If Mult(F ; d, [a; b : 1]) ≥ 2,
we can vary the line l through (0, 0) to lε and find 2 points intersection
{(x′1, y′1), (x′2, y′2)} between lε and C. such that {x′1, y′1, x′2, y′2} ⊂ V0.
As {x′1, y′1, x′2, y′2} are infinitesimals, (x′1, y

′
1) and (x′2, y

′
2) must lie in the

open neighborhood (B(0, r)×B(0, s)). It follows, that without loss of
generality x′1 < x′2, y

′
1 = g(x′1), y

′
2 = g(x′2), and the equation of the line

through (x′1, y
′
1) and (x′2, y

′
2) is given by;

y−y′1
x−x′1

=
y′2−y′1
x′2−x′1

=
g(x′2)−g(x′1)
x′2−x′1

(∗)

By the transfer of the mean value theorem to R∗, and working in
the model complete theory TRCF,an, with restricted analytic functions,
we have that;

g(x′2)−g(x′1)
x′2−x′1

= g′(x′3)

where x′3 ∈ (x′1, x
′
2), so that x′3 ∈ V0 is an infinitesimal. As g′ is con-

tinuous st(g′(x′3)) = g′(0), so that the equation of l is given by applying
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st to (∗) and we obtain that l is given by;

y
x

= g′(0)

As f(x, g(x)) = 0, by the chain rule, we have that ∂f
∂x
|(0,0)+∂f

∂y
|(0,0)g′(0) =

0, so that;

y
x

= g′(0) = −
∂f
∂x
|(0,0)

∂f
∂y
|(0,0)

and;

x∂f
∂x
|(0,0) + y ∂f

∂y
|(0,0) = 0

defines the line l, so that l is algebraically tangent. For the converse
claim, using the implicit function g again, we have that y = g′(0)x is
algebraically tangent to V (f). Choose a′ ∈ V0, with a′ 6= 0, this is
possible as R∗ contains infinitesimal elements. By S-continuity of g,
we have that g(a′) ∈ V0. The points (0, 0) and (a′, g(a′)) are distinct
and lie on the curve defined by V (g). Let l′ be the line defined by

y = g(a′)
a′
x. Then (0, 0) and (a′, g(a′)) lie on the intersection l′ ∩ V (g).

We have that l′ is an infinitesimal variation of l as g(a′)
a′
∈ Vg′(0) due to

the fact that;

g′(0) = limh→0
g(h)
h

as required.

�

Definition 0.8. Given (a′b′) ∈ R∗2, we define;

dim(a′b′/R) = t.deg(R(a′, b′)/R)

and call (a′, b′) generic over R if dim(a′, b′/R) = 2.

Given c′ ∈ P 2(R∗), let c′ be finite with respect to one of the open
sets Ui, 1 ≤ i ≤ 3, so that it corresponds to some (a′, b′) ∈ (a′b′) ∈
R∗2. Then we define dim(c′/R) = dim(a′, b′/R), and call c′ generic if
dim(c′/R) = 2
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This is a good definition, as suppose that c′ is finite with respect to
the open sets U2 and U3, then;

c′ = [a′ : b′ : 1] = [e′ : 1 : f ′]

with {a′, b′, e′, f ′} finite. By the definition of P 2(R∗), we have that
a′ = e′

f ′
, b′ = 1

f ′
and;

tdeg(a′b′/R) = tdeg( e
′

f ′
, 1
f ′

)

The tuples (e′, f ′) and ( e
′

f ′
, 1
f ′

are interdefinable in the sense that

R(e′, f ′) = R( e
′

f ′
, 1
f ′

), so that;

tdeg(R( e
′

f ′
, 1
f ′

)/mathcalR) = tdeg(R(e′, f ′)/R)

and, therefore;

dim(a′, b′/R) = dim(e′, f ′/R)

Given an irreducible indefinite f ∈ R[x, y], we say that c′ ∈ V (fh)
is generic over R if dim(c′/R) = 1.

Definition 0.9. Given f irreducible and indefinite, we call a point
(a, b) ∈ V (f) isolated, if there exists an open ball B(0, ε), ε ∈ R>0,
such that V (f) ∩ B(0, ε) = (a, b). Similarly, we say that a point a ∈
V (fh)∩ l∞ is isolated if in some affine open Ui, 1 ≤ i ≤ 3, a is isolated
with respected to the dehomogenised variety V (fhi ), 1 ≤ i ≤ 3.

Lemma 0.10. The above definition is good. There exist finitely many
isolated points on V (fh), and they all belong to Sing(V (fh)).

Proof. The first claim is easily checked by continuity, and the coor-
dinate change given in Remark 0.4. If a is nonsingular, it cannot be
isolated due to the implicit function theorem and the fact the implicit
function g is continuous. As we have seen, Sing(V (fh)) is finite, so
there are finitely many isolated points.

�

Lemma 0.11. Given an irreducible indefinite f ∈ R[x, y], if c ∈
V (fh) ∩ P 2(R) is not isolated, then we can find c′ ∈ V (fh) ∩ Vc with
c′ generic over R. In particular c′ /∈ Sing(V (fh)).
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Proof. The final claim follows from the first, we have that Sing(V (fh))
is a finite set algebraic set defined over R by homogeneous polynomi-
als.. This follows from Lemma 0.5, applied to V (fh)∩U3 and Remark
0.4, for 1 ≤ i ≤ 3, to cover the case of V (fh) ∩ l∞. The same con-
siderations apply when we work over C. If c′ ∈ Sing(V (fh), we can
work in affine coordinates, to find (a′b′) generic over R, witnessing a
finite algebraic in C2 set defined over R. By classical results, it follows
that {a, b} ⊂ C as C is algebraically closed. However, without loss of
generality, a is transcendental over R, contradicting the fact that C
is algebraic over R. For the first claim, we can work in affine coordi-
nates (x, y), with an irreducible indefinite g ∈ R[x, y] and suppose that
c = (0, 0). If g defines a line l in R2, the result is obvious. We can
choose a′ ∈ V0, with a′ transcendental. This follows as R∗ ∩ C = R,
otherwise, we can find r1, r2 ⊂ R, r2 6= 0, with b = r1 + ir2 ∈ R∗, so
b−r1
r2

= i ∈ R∗, contradicting the fact that R∗ |= ¬∃z(z2 + 1 = 0), so

it is sufficient to choose a′ ∈ R∗ \ R. Then if the line is defined by
y = mx, m ∈ R, dim(a′,ma′/R) = 1 and (a′,ma′) lies on l. If the
line is defined by x = 0, then (0, a′) with a′ ∈ V0 generic works. We
can therefore suppose that V (g) ∩ (B(0, r) × B(0, r)), some r ∈ R>0

defines a finite cover of pr(V (g) ∩ (B(0, r) × B(0, r))), where B(0, r)
defines a closed ball. We can assume that V (g)∩ (B(0, r)×B(0, r)) is
infinite, otherwise c would be isolated. Moreover, as the cover is finite,
we can assume that pr−1(0) ∩ V (g) ∩ (B(0, r) × B(0, r)) = 0, (∗). By
O-minimality, we can suppose that pr(g ∩ (B(0, r)×B(0, r))) consists
of a finite union of points and intervals including 0. We can assume
the projection is infinite, otherwise we would obtain an infinite fibre. It
follows that, without loss of generality, we can suppose that there exists
an open interval I ⊂ pr(g∩(B(0, r)×B(0, r))) such that 0 ∈ cl(B(0, r)),
in the real topology. By the cell decomposition, we can assume that
there exists a continuous semialgebraic function h defined on I1, with
(a, h(a)) ∈ V (g) for a ∈ I. Choose a′ ∈ V0 generic, with a′ ∈ I, then
(a′, h(a′)) ∈ V (g). We have that dim(a′, h(a′)) = 1. By specialisation,
we have that (st(a′), st(h(a′))) ∈ V (g)∩(B(0, r)×B(0, r)), as B(0, r) is
closed, so that (0, st(h(a′))) ∈ V (g)∩ (B(0, r)×B(0, r)). By (∗), it fol-
lows that st(h(a′)) = 0. Therefore, we have found (a′, b′) ∈ V (g)∩V(0,0)
with (a′, b′) generic, as required.

�

Lemma 0.12. Let f be irreducible and indefinite, deg(f) = d, V (fh)

not a line, fh defined by a ∈ P
d(d+3)

2 (R). If p is a nonsingular point of
V (fh), we have that a line l is algebraically tangent to V (fh) at p iff
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there exists a variation fh,a
′

of fh in the space of homogeneous poly-
nomials of degree d, such that Card((V (fh,a

′
)) ∩ l ∩ Vp) ≥ 2. If p is a

singular point of V (fh), we have that for any line l passing through p
there exists a variation fh,a

′
of fh in the space of homogeneous polyno-

mials of degree d, such that Card((V (fh,a
′
)) ∩ l ∩ Vp) ≥ 2.

Proof. We can work in affine coordinates with p = (0, 0), and a repre-
sentation g of fh with deg(g) = d. Suppose p is nonsingular and let
y = h′(0)x be algebraically tangent to V (g) at (0, 0), with h(x) an im-
plicit representation of g. Then, as g is not a line, p(x) = g(x, h′(0)x)
is not identically zero, and deg(p) ≤ deg(g) = d. We have that;

p(0) = g(0, h′(0)0) = g(0, 0) = 0

p′(0) = ∂g
∂x
|(0,0) + ∂g

∂y
|(0,0)h′(0)

Moreover;

g(x, h(x)) = 0, so that ∂g
∂x
|(0,0) + ∂g

∂y
|(0,0)h′(0) = 0

and x2|p(x). We can therefore write p(x) in the form;

p(x) = xnr(x), with n ≥ 2, r(0) 6= 0.

Consider the variation of g, given by g(x, y)+εxn−1, then V (g+εxn−1)
intersects the line l when;

g(x, h′(0)x) + εxn−1 = 0

iff xnr(x) + εxn−1 = 0

iff xn−1(xr(x) + ε) = 0

iff x = 0 or xr(x) = −ε

We have that;

(xr(x))(0) = 0.r(0) = 0

(xr(x))′(0) = r(0) + 0.r′(0) = r(0) 6= 0.
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so by the inverse function theorem, we can find δ ∈ V0, δ 6= 0, with
δr(δ) = −ε. It follows that V (g + εxn−1) intersects the line l in two
distinct points (0, 0) and (δ, g′(0)δ), as required. If p is singular, we
can repeat the calculation for any line l, given by y = mx, using the
fact that for p(x) = g(x,mx);

p(0) = g(0, 0) = 0

p′(0) = ∂g
∂x
|(0,0) + ∂g

∂y
|(0,0)m = 0

If p is nonsingular and l is not algebraically tangent, then if l is de-
fined by y = mx, we have that, letting p(x) = g(x,mx);

p(0) = g(0, 0) = 0

p′(0) = ∂g
∂x
|(0,0) + ∂g

∂y
|(0,0)m 6= 0

so we can write p(x) = xr(x), with r(0) 6= 0. It follows that for a
variation gε(x, y), with ε ∈ V0, the solutions to V (gε) ∩ l are given by;

gε(x,mx) = 0

pδ(x) = 0

xr(x) =
∑d

i=0 δjx
i

where δi ∈ V0, for 0 ≤ i ≤ d. We can rewrite this equation as;

x(r(x)−
∑d

i=1 δix
i−1) = δ0 (∗)

and observe that (r(x) −
∑d

i=1 δix
i−1)|0 = r(0) − δ1 6= 0, as r(0) ∈

R6=0. We have that;

[x(r(x)−
∑d

i=1 δix
i−1)]′|0 = (r(x)−

∑d
i=1 δix

i−1)|0+x(r(x)−
∑d

i=1 δix
i−1)′|0

= r(0)− δ1 + 0

= r(0)− δ1 6= 0

By the inverse function theorem, (∗) has a unique solution x0 ∈ V0.
More specifically, we can find (ε, δ, θ) ∈ R3

>0, such that the statement;
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∀y1 . . . ∀yd(
∧d
i=1 |yi| < ε→ ∀w(|w| < δ)∃!z(|z| < θ)

(z(r(z)−
∑d

i=1 yiz
i−1) = w)) (∗∗)

in LRCF , defined over R, is true in R by the inverse function theo-
rem. The existence of θ follows from the fact that we can extend the
domain of the inverse function to the interval (−θ, θ), provided that
(xs(x))′(y) 6= 0, for y ∈ (−θ, θ). This follows by continuity and the
intermediate value theorem;

|(xs(x))′(y)− (xs(x))′(0)| ≤ |y|max|v|≤θ|(xs(x))′′(v)|

the fact that (xs(x))′(0) is bounded away from zero, |(xs(v))′′| is
uniformly bounded on the interval (−θ, θ), for the given variation;

xs(x) = x(r(x)−
∑d

i=1 yix
i−1)

For the existence, we can guarantee solutions in the interval (−θ, θ),
provided we choose δ ∈ R>0 last with;

|δ| < |θ|max|v|≤θ|(xs(x))′(v))|

for the variation s.

The statement transfers toR∗, and the hypotheses are automatically
satisfied for infinitesimals, to find a solution |z| < θ. This solution
must lie in V0, as applying the standard part mapping we have that
st(z)r(st(z)) = 0, so that st(z) = 0 or r(st(z)) = 0. By specialisation
again, we have that |st(z)| ≤ θ, and we can choose θ small enough so
that r|[−θ,θ] 6= 0, by continuity and the fact that r(0) 6= 0. It follows
that st(z) = 0 as required.

�

Remarks 0.13. If s = ordxg(x,mx), for the representation g of f in
affine coordinates with p = (0, 0), l defined by y = mx, then s ≤ d,
and there exists a variation fh,a

′
of fh in the space of homogeneous

polynomials of degree d, such that Card((V (fh,a
′
)) ∩ l ∩ Vp) = s.

....................

Lemma 0.14. Let f1 and f2 be irreducible and indefinite, with V (fh1 ) 6=
V (fh2 ), defined by {a1, a2}, not both lines. Then if p ∈ V (fh1 ) ∩ V (fh2 )
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is nonsingular for both curves, we have that V (fh1 ) and V (fh2 ) are alge-
braically tangent, in the sense that they share a common algebraically
tangent line, iff there exists variations fh1,a′1

and fh2,a′2
, with a′1a

′
2 ∈ Va1a2

such that Card(fh1,a′1
∩ fh2,a′2)∩Vp ≥ 2. If p is singular for either curve,

then there exist variations having the same property as above.

Proof. For the first part, we can assume both varieties are not lines, or
reduce to Lemma 0.12. By Lemma 0.12, taking l to be the tangent line

to V (fh1 ), there exists a variation f
h,a′1
1 of fh in the space of homoge-

neous polynomials of degree d, such that Card((V (fh,a
′
))∩ l∩Vp) ≥ 2.

By the explicit form of the variation, there are two points of intersection
(0, 0) and (a′,ma′), where a′ ∈ V0 solves xr1(x) = −ε, for ε ∈ V0 arbi-

trary, r1(x) = g1(x,mx)
xn1

, n1 ≥ 2, r1(0) 6= 0, g1 representing f1 in affine co-
ordinates around (0, 0). Without loss of generality, |xr2(x)| < |xr1(x)|,
and by the same argument, we can solve xr2(x) = −δ, |δ| < |ε|. Then
we construct the variation g2 representing f2, of degree e, given by
f2(x, y) + δxn2−1, where xn2r2(x) = g2(x,mx), r2(0) 6= 0. The second
part is the same, picking l to be the tangent line to the other curve, if
p is nonsingular, and any line if p is nonsingular for both curves.

�

Lemma 0.15. Let f1 and f2 be irreducible and indefinite, with V (fh1 ) 6=
V (fh2 ), defined by {a1, a2}, not both lines. Then if p ∈ V (fh1 ) ∩ V (fh2 )
is nonsingular for both curves, we have that V (fh1 ) and V (fh2 ) are alge-
braically tangent, in the sense that they share a common algebraically
tangent line, iff there exists a variation fh2,a′2

, with a′2 ∈ Va2 such that

Card(fh1,a1∩f
h
2,a′2

)∩Vp ≥ 2. If p is singular for V (fh1 ), and not isolated,

then there exists a variation having the same property as above.

Proof. If p is nonsingular for f1, we work in affine coordinates so that
p = (0, 0) and {g1, g2} represent {fh1 , fh2 }. Without loss of generality, let
f1 be represented by the implicit function h1, so that g1(x, h1(x)) = 0,
and let p1(x) = g2(x, h1(x)). As before, we have that p1 6= 0 and
p1(x) = xrr1(x), with r1(0) 6= 0, r ≥ 2. As deg(f2) ≥ 2, we have that
g2(x, y) + εx defined a variation of fh2 which intersects V (fh1 ) locally
when;

xrr1(x) + εx = 0

iff x(xr−1r1(x) + ε) = 0
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iff x = 0 or xr−1r1(x) = −ε

Taking ε < 0, the second condition holds if xs1(x) = δ, (∗) where
δr = ε, and sr1 = r1, s1 is analytic and s1(0) 6= 0. δ is an infinitesimal
as st(δr) = st(δ)r = st(ε) = 0, so that st(δ) = 0. Applying the inverse
funcion theorem, we can find δ1 6= 0, solving (∗), with δ1 ∈ V0. Then
(0, 0) and δ1, h(δ1) witness Card(fh1,a1 ∩ f

h
2,a′2

) ∩ Vp ≥ 2.

........... �

Lemma 0.16. Let f1 be irreducible and indefinite, f2 irreducible and
indefinite, f1 6= f2, such that deg(f1) = d1, deg(f2) = d2, d1 ≥ 2,
d2 ≥ 2, with p ∈ V (fh1 ) ∩ V (fh2 ), defined over {a1, a2}, such that p is
nonsingular for V (fh1 ) and V (fh2 ). Then working in affine coordinates
such that p = (0, 0), with g1 a representation for f1 and h1 an implicit
function, g2 a representation for f2, we have that ordxf2(x, h1(x)) =

s ≤ d1d2, and for d1d2 < d2(d2+3)
2

, there exists a variation fh2,a′2
of

fh2,a2 in the space of homogeneous polynomials of degree d2, such that

Card(V (fh1,a1)∩V (fh2,a′2
)∩Vp) = s. In particular, using the terminology

of [1], we have that;

Iitalian(V (fh1 ), V (fh2 ), p) = Mult(F, p)

where Mult(F, p) is the real multiplicity, for the cover F ⊂ V (fh1 )∩
P

d2(d2+3)
2 obtained by intersecting V (fh1 with a homogeneous polyno-

mial in R∗[X, Y, Z] of degree d2, the intersection taken in P 2(R∗) ×
P

d2(d2+3)
2 (R∗).

Proof. By the theory developed in [1], we have that Iitalian(V (fh1 ), V (fh2 ), p) =
ordxf2(x, h1(x)) = s. We can intersect the curve defined by f1, with the
variation f2(x, y)+ε, where ε ∈ V0 is generic, which has solutions when;

f2(x, h1(x)) + ε = 0

iff

xsu(x) + ε = 0

u(0) 6= 0

Taking the s distinct roots {ε1, . . . εs} ⊂ V0 of −ε, we can solve
u(x)v(x) = εi, for 1 ≤ i ≤ s, where v(x)s = u(x), v(x) v(0) ≤ 0, v
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analytic, using either the inverse function theorem or the method of
etale extensions. This gives s distinct {(x1, g1(x1)) . . . , (xs, g1(xs))} ⊂
(f1(x, y) = 0) ∩ (f2(x, y) + ε = 0) ∩ (V(0,0). These intersections have
multiplicity 1, which gives the result.

By Bezout’s theorem s ≤ d1d2. As p is non singular for both curves,
we can find implicit functions {g1, g2} which are analytic and can be
expanded locally as;

g1(x) =
∑∞

i=1 bi1x
i

g2(x) =
∑∞

i=1 bi2x
i

By uniqueness of these representations, we have that g1 6= g2. Let
s1 = µi(bi1 6= bi2). Similarly, we claim that s1 = s. In order to see
this, first note that g1(x) − g2(x) = xs1w(x), with w(0) 6= 0. Then
we have that that f2(x, y − ε), ε ∈ V0 defines a variation of f2, with
implicit function defined by g2 + ε. We have that the solutions to
f1(x, y) ∩ f2(x, y − ε) ∩ V(0,0) are given locally by solutions;

g1 − (g2 + ε) = 0

iff

xs1w(x) = ε

Using the same trick as above, we can find s1 distinct intersections
in f1(x, y) ∩ f2(x, y − ε) ∩ V(0,0) and these intersections are transverse,
proving that s1 = s.

By repeatedly differentiating the implicit function relation f2(x, g2(x)) =
0, and evaluating at (0, 0), we obtain a system of algebraic equations

{H1, . . . , Hr} relating the coefficients (aij) ⊂ A
(d+1)(d+2)

2 (R) for poly-

nomials of degree d, with the derivatives {g(1)2 (0), . . . g
(r)
2 (0)}, defin-

ing a real algebraic variety Vr ⊂ Ar × A
(d+1)(d+2)

2 (R). The fibres of
pr1 : Vr → Ar are hyperplanes defined by r linear equations over R.
Using dimension considerations and projectivising the equations, tak-

ing r = s − 1, s − 1 ≤ de − 1 < de < d(d+3)
2

, pr1 is onto. The

image of pr2 : Vr → A
(d+1)(d+2)

2 is an open set U ⊂ A
(d+1)(d+2)

2 and,
by the inverse function theorem, pr2|pr−1

2 (U)∩Vr is bijective, hence Vr
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is irreducible. Let q be the dimension of a generic fibre of pr2 so

that q = d(d+3)
2
− (s − 1) > 0. By linear algebra, the condition

that dim(pr2(g)) ≥ q + 1 is definable by a set of C
(d+1)(d+2)

2
s−1 equations

in As−1(R), so for sufficiently large d, we expect this to define the
empty set by dimension considerations. It follows that the cover pr2
is equidimensional, and using the cell decomposition, we can vary the

{g(1)2 (0), . . . g
(s)
2 (0)} to {g(1)2 (0), . . . g

(s)
2 (0) + ε}, with ε ∈ V0, and obtain

a variation f2,ε, such that the common solution to f1∩f2,ε∩V0 is given
by;

xsw1(x) + εxs−1 = 0

where w1 is an infinitesimal variation of w, in particular w1(0) 6= 0.

and;

xsw1(x) + εxs−1 = 0

iff xs−1(xw1(x) + ε1) = 0

iff x = 0 or xw1(x) = −ε1

and, following the proof above, choosing ε1 ∈ V0 generic, we find
(x1, h1(x)) ∈ V (fh1,a1) ∩ V (fh2,a′2

) ∩ Vp, with (x1, h1(x)) distinct from

(0, 0).

We now consider V (fh1,a′1
) as defining a curve over R∗ and work in

the ultraproduct;

(R∗,2,+, �, 0, 1, <) =
∏

D(R∗,+, �, 0, 1, <)

so that R∗ ≺ R∗,2.

We now have ordxg2,ε1(x, h1(x)) = s− 1, and we consider the varia-
tion;

g2,ε1ε2 , (x, y) = g2(x, y) + ε1x
s−1 + ε2x

s−2 = 0

with ε2 ∈ V0 generic, and ε2 infinitesimal with respect to R∗, in par-
ticular 0 < |ε2| < |ε1|. The point (x1, h1(x1)) moves to a new point
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(x12, h1(x12)) under the variation defined by (ε1, ε2), as the intersection
was transverse, by the non-existence of coincident mobile points, and
clearly x12 ∈ Vx1 is distinct from the new point of intersection, ob-
tained via the method above, (x3, g1(x3)), x1 ∈ V0, obtaining at least
3 intersections.

Continuing this process, we can find a tuple 0 < |εs| < . . . |ε2| < |ε1|,
such that for this variation, Card(V (fh1 ) ∩ V (fh2,ε ∩ Vp) ≥ s, computed
in R∗,s. We can use saturation of R∗ to find the variation in R∗. We
then, have as;

Iitalian(V (fh1 ), V (fh2,ε, p) = s

that, there are exactly s intersections and;

Mult(F, p) = s

as required.

�
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