THE RELATIVITY OF ROTATING FRAMES
TRISTRAM DE PIRO

ABSTRACT.

Lemma 0.1. If p is a mass density in R3, then the force on a test
particle of mass m at position T is given by;

F(7) = —Gm [, 20" gy

[7—7'|2
In particular, we have that;
V. F = —4rGmp (¥)
where G is the gravitational constant.

If we rotate R? about the avis v = y = 0, with an angular velocity

of w, then a particle of mass m with coordinates (x,y, z) experiences a

force F = —mw*r7), where r = \/22 + 42, and 7, = (z,y,0).

We have that, in this case, that;
Ve F = —2mw? (xx)

so that p = %

Proof. The first claim is a consequence of Newton’s universal law of
gravitation, the second claim follows from the corresponding result for
the force between charges, see [1]. The third claim is a standard result
in the theory of circular orbits, see [?], the fourth claim follows from
the expression of 17 in cylindrical coordinates;
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= L(—2mw?r)
= —2mw?
The final claim is just obtained by rearranging (x), (sx).

O

Lemma 0.2. Let g € R and let p(x,y,z) be the smooth mass den-
sity, defined by;

pla,y,2) = 2=, for 0 < (22 +y%)7 <y

p(x,y,z) = g(?“)

where r = (22 +y2)2, r > 1o, g(ro) = %, lg(r)] < &, for D € R,
r>Tg.

Let F(F) be the corresponding force for a mass m, then for 0 <
(a2 + y?)2;
F(‘Ta Y, Z) = —mw2|h|?;\

Proof. We first claim that F(7) is well defined. We have that;

[F(P)| = | = Gm [, R dr

[7F—7"

= | = Gm [ LA AT, (7 =T —T)

< Gm ng |p(r17|zﬁfét“;;§/‘g372)|dxdydz

lo(r1 +:v sr24y,r3+2)|
=Gm fR3 L drdydz

=Gm fR3 —'p(”ﬂ 2y, ‘dxdydz

[(z,y,2)|?

¢ o492
< GM Jprytirxr |<x,y,z>|2dxdde+Gm Jioorrimxrye T dwdydz

=Gm fD 0,70+ F) xR T drd@dz—i—Gm f Mdmdydz

DOro+[)xR)e  [(zy,2

< GmC froJrlr\ f tan~"'(2)|®, drd0+Gm fD(O rot|F dxdydz

NxR)e |(zy, Z)|2|T+(x y,2)|?
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< 2GmCm*(ro + [7]) + Gm [ 50,0017 zdadydz

D
)XR)C |(@,9,2) [T +(2,y,2)

< 2GmC72(ro+[r|)+Gm fB(O e ] dxdydz+Evol(B(0,71) \ (D(0,70 + |7]) x R))

myz\‘l

< 2GmCT*(ro + [F|) + 4Dm*Gm [ 45 i | BF
< 2GmCr%(ry + [F]) + 4Dm*Gm foo @+ EF
< 2GmCr(rg + [7]) + 229" 4 EF < oo

where C' = max(%, lg(F + (2,9, 2))| | D0,r0+7)xR)s T1 € Rso is suffi-
ciently large, {F, F'} C Rso.

By the symmetry of the distribution p, it is clear that F(7) =
h(T.)7?, where h is a smooth function on R?, and by the result of
Lemma 0.1, we have that v/ . F' = —2mw? in the region D(0,70) X R.
Using cylindrical coordinates for 57 again, we have that;

o = Hrnr)

= @ + 1 (r) = —2mw?
so that, as h is smooth, h(r) = —mw?r, and F(T) = —mw?|T.|7).

O

Definition 0.3. We let g,., be the metric on R, considered as a
Lorentzian manifold, satisfying Einstein’s field equations, see [2];

1
Rijwywo 87TG( ijw,wo §TW7WOgiijyw0)

for 0 < 4,5 < 3, where Rjj., are the components of the Ricci
curvature, G is the gravitational constant, T;; , ., are the components of
the Mazwell stress tensor for the mass density distribution p, defined in
Lemma 0.2, rotating at angular velocity wy and T, ., ts the contraction.

Lemma 0.4.

Proof. In the region D(0,79) x R?, we have that;

2

Too(t,r,0,2) = p(t,r,0,2) = 325

T()j = 1o = (p(ta r, Q? Z)E(tv T, 87 Z))J 27rG (0 o, 0>
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for 1 <j <3.
so that;
Tor=Tip=0

TDJ2W
Toe = Toy = 5=5"

270G

Tog =13 =0

Ty =T = (Toi(t,r,0,2)v(t,r, 0, 2));
for1<i<j<3

so that;

T11 = 0(0, rwp, 0);

=0

Tio = To1 = 0(0, 7w, 0)9

=0

T3 = T3 = 0(0,rwp,0)3

=0

2
Ty = "5-22(0,7w, 0)2

2,2, ,2
T W Wy

227G

Twzw
T23 - T32 - 27TGO (Oa rwo, 0)3

=0
T33 = O(O, TWo, 0)3
=0

7‘20020.)2

T = Too + Tur + Too + Tz = 2 + ol
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o w2(1+7"2w(2))
- 221G

Lemma 0.5.

Proof. We have that;

or

3 % 3 ore 3 a Tb a Tb
Rij =3 o tae = Qa0 ot T a0 Lol sy — Tl

where;

c — 1N™3  (Ogpa 4 Oad _ 99ab) cd
Loy = 3 Ed:o( 9ze T Bgb D )g

By the cylindrical symmetry, we can assume that the metric g is of

the form;
g = a(r)dt* + B(r)dr* + v(r)d6* + (r)dz?

so that;

Fgl = F(1)0 =2

F%2 = F%l =1

27(r)
[y =135, = 3:5((:))
Fh = 2%((:))
rh, =
Ty = _;é((:))
Fé?) = _%(:))

I'¢, = 0 otherwise

or

We have that -2
X

we have that;

23 g _
(l:() 8xﬂ -

5 — 0, unless a = 1, and if i # j, I'}; = 0. Similarly,
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unless j = 1, and then, if ¢ # j, we have i € {0,2,3}. We then have
that '}, = 0, for0<a<3 We have that, for0<a<4 re, # 0 iff
b=1, and then Ffj =0, if 7 # j. We have that, by the enumeration
above;

{T6:To;: Tool'y}, 4 # 0
{l'0; T515,, T, Ty} 7 # 1
{I5,15;, T3}, # 2
{T5,03, Tl 3, 5 # 3

are all equal to {0}, so that, for 0 < a, < 3, I4I%, =0, if i # j. It
follows that R;; =0, if © # j.

When wy = 0, we are then left with the 4 equations;

Ry = 882, + (09 + T3, + T3, + T304, — 20, T8,

) o) | B, A SN () o'(r) o (r)
= —(50) + Gam T 50 T 250 T 500 (T 250)) ~ 2509 (" 280))

L@@y ) | B A0 80y o)
= —(559)" + (= 5at3 * 5503 + 565 T 2509 (550
= 4w? — 2w%ggo

= 4w? — 2w?a(r)

1 0 1 2 3
Ry = Gt — 2ROl 4 (0, + T + T3, + T3)T,
_(Fcl)Orgl + F%l]ﬁ%l + F%2F§1 + F§)3F§1)

= —2w?gn

RQZ -

_I_ (Fgl + F 11 + F%l + Fgl)F%Z - 2F§1F%2

"(r r "(r & (r "(r "(r "(r
:_<V())/+< ()+26((r))+;y((r))+25((r)))(_;/ﬁ((r)))_27()(_7())

)y B A0, SN )
= (3 +<av)+2mm 20 T w0 (T3Em)
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= —2w%gn
= —2w?y(r)

or}
Ry = 528 + (I, + Ty + T3, +T3)T3 — 215,134

& (r o (r "(r "(r & (r & (r & (r & (r
:_(2())/+( ()+B()+;W()+ ())(_2())_2 ()(_ ())

B0 5a(r) T 26 T () T 28\ T2/ T 430\ 26(r)
_FW oy ), B, A &) &)

= (@) + @ T 50 T ne — w0) ("5e)

= —2w%gss

= —2w?§(r)

By the symmetry of the equations, we can assume that there exists
a solution for ~(r) = §(r), in which case we can reduce the last two
equations to;

)y ) B 2
~(350))" * (Gain * 250)) (— 280

) AWE) | e By )
25 T 220 T (Gat T 28m)( )

¥ (r) (a’(r) B'(r) )(_ 7' (r) )

= T 28(n) 2a(r)  28(r) 28(r)

= —2wy(r)

_5”(7") a’(r) . B (r) N &' (r)

26(r) (2a(r) 26(r)>( 2B(r))
= —2w?§(r)
O
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