A FOURIER INVERSION THEOREM FOR NORMAL FUNCTIONS

TRISTRAM DE PIRO

Abstract

This paper proves an inversion theorem for the Fourier transform defined in [2], applied to the class of normal functions.

We recall the definition of the Fourier transform for quasi split normal functions, which includes normal functions, introduced in the paper [2], normalised by the factor $\frac{1}{2 \pi}$ in dimension 2 , and by $\frac{1}{(2 \pi)^{\frac{3}{2}}}$ in dimension 3 , which we denote by \mathcal{F}. The aim of this paper is to prove an inversion theorem for such functions. We first have the following;

Lemma 0.1. Let $f: \mathcal{R}^{2} \rightarrow \mathcal{R}$ be smooth and quasi split normal, then $\mathcal{F}(f) \in L^{1}\left(\mathcal{R}^{2}\right)$ and is of rapid decay, in the sense that, for $|\bar{k}|>1$, $k_{1} \neq 0, k_{2} \neq 0$

$$
|\mathcal{F}(f)(\bar{k})| \leq \frac{C_{n}}{|\bar{k}|^{n}}
$$

where $C_{n} \in \mathcal{R}, n \in \mathcal{N}$.
A similar result holds for smooth quasi split normal $f: \mathcal{R}^{3} \rightarrow \mathcal{R}$, with $\mathcal{F}(f) \in L^{1}\left(\mathcal{R}^{3}\right)$, and for $|\bar{k}|>1, k_{1} \neq 0, k_{2} \neq 0, k_{3} \neq 0$

$$
\begin{aligned}
& |\mathcal{F}(f)(\bar{k})| \leq \frac{C_{n}}{|\bar{k}|^{n}} \\
& \text { where } C_{n} \in \mathcal{R}, n \in \mathcal{N} .
\end{aligned}
$$

Proof. In dimension 2, by [2], we have that integration by parts is justified, for $k_{1} \neq 0, k_{2} \neq 0$, and we obtain that;

$$
\begin{aligned}
& \mathcal{F}\left(\nabla^{2}(f)\right)\left(\bar{k}=-k^{2} \mathcal{F}(f)(\bar{k})\right. \\
& \mathcal{F}\left(\left(\nabla^{2}\right)^{n} f\right)=-k^{2 n} \mathcal{F}(f)(\bar{k})(*)
\end{aligned}
$$

By the definition of quasi split normality, $\left(\nabla^{2}\right)^{n} f$ is of moderate decrease $2 n+1$ and smooth, so that for $n \geq 1,\left(\nabla^{2}\right)^{n} f \in L^{1}\left(\mathcal{R}^{2}\right)$, and we have the trivial bound;

$$
\left|\mathcal{F}\left(\left(\nabla^{2}\right)^{n} f\right)\right| \leq \frac{\left\|\left(\nabla^{2}\right)^{n} f\right\|_{L^{1}\left(\mathcal{R}^{2}\right)}}{2 \pi}=C_{2 n}
$$

Rearranging $(*)$, we obtain that, for $|\bar{k}|>1, k_{1} \neq 0, k_{2} \neq 0$;

$$
|\mathcal{F}(f)(\bar{k})| \leq \frac{C_{2 n}}{k^{2 n}} \leq \frac{C_{2 n}}{|k|^{m}}, \text { for } 1 \leq m \leq 2 n
$$

The proof for $f: \mathcal{R}^{3} \rightarrow \mathcal{R}$ is similar, noting that $\left(\nabla^{2}\right)^{n} f \in L^{1}\left(\mathcal{R}^{3}\right)$, for $n \geq 2$, and repeating the argument in three variables.

We have that, by the definition of quasi split normality, for f : $\mathcal{R}^{2} \rightarrow \mathcal{R},\left\{\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\}$ are of moderate decrease 2 , and smooth, so belong to $L^{\frac{3}{2}}\left(\mathcal{R}^{2}\right)$. By the Haussdorff-Young inequality, using the fact that $1 \leq \frac{3}{2} \leq 2$, we have that $\left\{\mathcal{F}\left(\frac{\partial f}{\partial x}\right), \mathcal{F}\left(\frac{\partial f}{\partial y}\right)\right\} \subset L^{3}\left(\mathcal{R}^{2}\right)$, in particularly $\left\{\mathcal{F}\left(\frac{\partial f}{\partial x}\right), \mathcal{F}\left(\frac{\partial f}{\partial y}\right),\left|\mathcal{F}\left(\frac{\partial f}{\partial x}\right)\right|+\left|\mathcal{F}\left(\frac{\partial f}{\partial y}\right)\right|\right\} \subset L^{3}(B(\overline{0}, 1))$. A simple integration using polar coordinates, shows that $\frac{1}{k} \in L^{\frac{3}{2}}(B(\overline{0}, 1))$. As above, we have that, for $k_{1} \neq 0, k_{2} \neq 0$;

$$
\mathcal{F}(f)(\bar{k})=\frac{\mathcal{F}\left(\frac{\partial f}{\partial x}\right)(\bar{k})}{i k_{1}}=\frac{\mathcal{F}\left(\frac{\partial f}{\partial y}\right)(\bar{k})}{i k_{2}}(A)
$$

Observe that;

$$
\frac{1}{k}=\frac{1}{\left|k_{1}\right|} \frac{1}{\left(1+\frac{k_{2}^{2}}{k_{1}^{2}} \frac{1}{2}\right.}=\frac{1}{\left|k_{2}\right|} \frac{1}{\left(1+\frac{k_{1}^{2}}{k_{2}^{2}}\right)^{\frac{1}{2}}}
$$

and;

$$
\begin{aligned}
& 1 \leq\left(1+\frac{k_{1}^{2}}{k_{2}^{2}}\right)^{\frac{1}{2}} \leq \sqrt{2}, \text { for }\left|k_{1}\right| \leq\left|k_{2}\right| \\
& 1 \leq\left(1+\frac{k_{2}^{2}}{k_{1}^{2}}\right)^{\frac{1}{2}} \leq \sqrt{2}, \text { for }\left|k_{2}\right| \leq\left|k_{1}\right|
\end{aligned}
$$

so that $\frac{1}{\left|k_{1}\right|} \leq \frac{\sqrt{2}}{k}$, for $\left|k_{2}\right| \leq\left|k_{1}\right|, \frac{1}{\left|k_{2}\right|} \leq \frac{2}{k}$, for $\left|k_{1}\right| \leq\left|k_{2}\right|$, the cases being exhaustive, (B). Combining $(A),(B)$, we obtain that;

$$
|\mathcal{F}(f)(\bar{k})| \leq \sqrt{2}\left|\frac{\left.\mathcal{F}\left(\frac{\partial f}{\partial x}\right)(\bar{k}) \right\rvert\,}{k}\right|, \text { for }\left|k_{2}\right| \leq\left|k_{1}\right|
$$

$$
\begin{aligned}
& |\mathcal{F}(f)(\bar{k})| \leq \sqrt{2}\left|\frac{\left.\mathcal{F}\left(\frac{\partial f}{\partial y}\right)(\bar{k}) \right\rvert\,}{k}\right|, \text { for }\left|k_{1}\right| \leq\left|k_{2}\right| \\
& |\mathcal{F}(f)(\bar{k})| \leq \sqrt{2} \frac{\max \left(\left|\mathcal{F}\left(\frac{\partial f}{\partial x}\right)(\bar{k}),\left|\mathcal{F}\left(\frac{\partial f}{\partial y}\right)(\bar{k})\right|\right)\right.}{k} \\
& \leq \frac{\sqrt{2}\left(\left|\mathcal{F}\left(\frac{\partial f}{\partial x}\right)(\bar{k})\right|+\left|\mathcal{F}\left(\frac{\partial f}{\partial y}\right)(\bar{k})\right|\right)}{k}
\end{aligned}
$$

By Holder's inequality, we have that;

$$
\frac{\sqrt{2}\left(\left|\mathcal{F}\left(\frac{\partial f}{\partial x}\right)(\bar{k})\right|+\left|\mathcal{F}\left(\frac{\partial f}{\partial y}\right)(\bar{k})\right|\right)}{k} \in L^{1}(B(\overline{0}, 1))
$$

so that $\mathcal{F}(f)(\bar{k}) \in L^{1}(B(\overline{0}, 1))$. By the rapid decrease of $\mathcal{F}(f)$, for $|\bar{k}|>1$, we have that $\mathcal{F}(f)(\bar{k}) \in L^{1}\left(\mathcal{R}^{2} \backslash B(\overline{0}, 1)\right)$, so that $\mathcal{F}(f)(\bar{k}) \in$ $L^{1}\left(\mathcal{R}^{2}\right)$.

For $f: \mathcal{R}^{3} \rightarrow \mathcal{R},\left\{\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\}$ are of moderate decrease 2 , and smooth, so belong to $L^{2}\left(\mathcal{R}^{3}\right)$, and by classical theory;

$$
\left\{\mathcal{F}\left(\frac{\partial f}{\partial x}\right), \mathcal{F}\left(\frac{\partial f}{\partial y}\right), \mathcal{F}\left(\frac{\partial f}{\partial z}\right),\left|\mathcal{F}\left(\frac{\partial f}{\partial x}\right)\right|+\left|\mathcal{F}\left(\frac{\partial f}{\partial y}\right)\right|+\left|\mathcal{F}\left(\frac{\partial f}{\partial z}\right)\right|\right\} \subset L^{2}\left(\mathcal{R}^{3}\right)
$$

as well. In particular;

$$
\left\{\mathcal{F}\left(\frac{\partial f}{\partial x}\right), \mathcal{F}\left(\frac{\partial f}{\partial y}\right), \mathcal{F}\left(\frac{\partial f}{\partial z}\right),\left|\mathcal{F}\left(\frac{\partial f}{\partial x}\right)\right|+\left|\mathcal{F}\left(\frac{\partial f}{\partial y}\right)\right|+\left|\mathcal{F}\left(\frac{\partial f}{\partial z}\right)\right|\right\} \subset L^{2}(B(\overline{0}, 1))
$$

A simple integration using polar coordinates, shows that $\frac{1}{k} \in L^{2}(B(\overline{0}, 1))$. As above, we have that, for $k_{1} \neq 0, k_{2} \neq 0, k_{3} \neq 0$;

$$
\begin{equation*}
\mathcal{F}(f)(\bar{k})=\frac{\mathcal{F}\left(\frac{\partial f}{\partial x}\right)(\bar{k})}{i k_{1}}=\frac{\mathcal{F}\left(\frac{\partial f}{\partial y}\right)(\bar{k})}{i k_{2}}=\frac{\mathcal{F}\left(\frac{\partial f}{\partial k_{2}}\right)(\bar{k})}{i k_{3}} \tag{AA}
\end{equation*}
$$

Observe that;
$\frac{1}{k}=\frac{1}{\left|k_{1}\right|} \frac{1}{\left(1+\frac{k_{2}^{2}}{k_{1}^{2}}+\frac{k_{3}^{2}}{k_{1}^{2}}\right)^{\frac{1}{2}}}=\frac{1}{\left|k_{2}\right|} \frac{1}{\left(1+\frac{k_{1}^{2}}{k_{2}^{2}}+\frac{k_{3}^{2}}{k_{2}^{2}}\right)^{\frac{1}{2}}}=\frac{1}{\left|k_{3}\right|} \frac{1}{\left(1+\frac{k_{1}^{2}}{k_{3}^{2}}+\frac{k_{2}^{2}}{k_{3}^{2}}\right)^{\frac{1}{2}}}$
and;
$1 \leq\left(1+\frac{k_{1}^{2}}{k_{2}^{2}}+\frac{k_{3}^{2}}{k_{2}^{2}}\right)^{\frac{1}{2}} \leq \sqrt{3}$, for $\max \left(\left|k_{1}\right|,\left|k_{3}\right|\right) \leq\left|k_{2}\right|$
$1 \leq\left(1+\frac{k_{2}^{2}}{k_{1}^{2}}+\frac{k_{3}^{2}}{k_{1}^{2}}\right)^{\frac{1}{2}} \leq \sqrt{3}$, for $\max \left(\left|k_{2}\right|,\left|k_{3}\right|\right) \leq\left|k_{1}\right|$
$1 \leq\left(1+\frac{k_{1}^{2}}{k_{3}^{2}}+\frac{k_{2}^{2}}{k_{3}^{2}} \frac{1}{2} \leq \sqrt{3}\right.$, for $\max \left(\left|k_{1}\right|,\left|k_{2}\right|\right) \leq\left|k_{3}\right|$
so that $\frac{1}{\left|k_{1}\right|} \leq \frac{\sqrt{3}}{k}$, for $\max \left(\left|k_{2}\right|,\left|k_{3}\right|\right) \leq\left|k_{1}\right|, \frac{1}{\left|k_{2}\right|} \leq \frac{\sqrt{3}}{k}$, for $\max \left(\left|k_{1}\right|,\left|k_{3}\right|\right) \leq$ $\left|k_{2}\right|, \frac{1}{\left|k_{3}\right|} \leq \frac{\sqrt{3}}{k}$, for $\max \left(\left|k_{1}\right|,\left|k_{2}\right|\right) \leq\left|k_{3}\right|$ the cases being exhaustive, $(B B)$. Combining $(A A),(B B)$, we obtain that;

$$
\begin{aligned}
& |\mathcal{F}(f)(\bar{k})| \leq \sqrt{3}\left|\frac{\left.\mathcal{F}\left(\frac{\partial f}{\partial x}\right)(\bar{k}) \right\rvert\,}{k}\right| \text {, for } \max \left(\left|k_{2}\right|,\left|k_{3}\right|\right) \leq\left|k_{1}\right| \\
& |\mathcal{F}(f)(\bar{k})| \leq \sqrt{3}\left|\frac{\left.\mathcal{F}\left(\frac{\partial f}{\partial y}\right)(\bar{k}) \right\rvert\,}{k}\right| \text {, for } \max \left(\left|k_{1}\right|,\left|k_{3}\right|\right) \leq\left|k_{2}\right| \\
& |\mathcal{F}(f)(\bar{k})| \leq \sqrt{3}\left|\frac{\left.\mathcal{F}\left(\frac{\partial f}{\partial z}\right)(\bar{k}) \right\rvert\,}{k}\right| \text {, for } \max \left(\left|k_{1}\right|,\left|k_{2}\right|\right) \leq\left|k_{3}\right| \\
& |\mathcal{F}(f)(\bar{k})| \leq \sqrt{3} \frac{\max \left(\left|\mathcal{F}\left(\frac{\partial f}{\partial x}\right)(\bar{k})\right|,\left|\mathcal{F}\left(\frac{\partial f}{\partial y}\right)(\bar{k})\right|,\left|\mathcal{F}\left(\frac{\partial f}{\partial z}\right)(\bar{k})\right|\right)}{k} \\
& \leq \frac{\sqrt{3}\left(\left|\mathcal{F}\left(\frac{\partial f}{\partial x}\right)(\bar{k})\right|+\left|\mathcal{F}\left(\frac{\partial f}{\partial y}\right)(\bar{k})\right|+\left|\mathcal{F}\left(\frac{\partial f}{\partial z}\right)(\bar{k})\right|\right)}{k}
\end{aligned}
$$

By the Cauchy-Schwartz inequality, we have that;

$$
\frac{\sqrt{3}\left(\left|\mathcal{F}\left(\frac{\partial f}{\partial x}\right)(\bar{k})\right|+\left|\mathcal{F}\left(\frac{\partial f}{\partial y}\right)(\bar{k})\right|+\left|\mathcal{F}\left(\frac{\partial f}{\partial x}\right)(\bar{k})\right|\right)}{k} \in L^{1}(B(\overline{0}, 1))
$$

so that $\mathcal{F}(f)(\bar{k}) \in L^{1}(B(\overline{0}, 1))$. By the rapid decrease of $\mathcal{F}(f)$, for $|\bar{k}|>1$, we have that $\mathcal{F}(f)(\bar{k}) \in L^{1}\left(\mathcal{R}^{3} \backslash B(\overline{0}, 1)\right)$, so that $\mathcal{F}(f)(\bar{k}) \in$ $L^{1}\left(\mathcal{R}^{3}\right)$.

Definition 0.2. Let $f \in C^{\infty}\left(\mathcal{R}^{2}\right)$ be quasi split normal with $\frac{\partial^{i_{1}+i_{2}} f}{\partial x^{i_{1}} \partial y^{i_{2}}}$ bounded for $0 \leq i_{1}+i_{2} \leq 27$. Let $C_{m}=\left\{(x, y) \in \mathcal{R}^{2}:|x| \leq m,|y| \leq\right.$ $m\}$. Let;
$Q_{m}=\mathcal{R}^{2} \backslash(x=m \cup x=-m \cup y=m \cup y=-m)$
$C^{13,14, m}\left(\mathcal{R}^{2}\right)=\left\{h: \frac{\partial^{i+j} h}{\partial x^{i} \partial y^{j}}, 0 \leq i, j \leq 13\right.$, define continuous functions,
$\frac{\partial^{i+14} h}{\partial x^{i} \partial y^{14}}, \frac{\partial^{i+14} h}{\partial x^{14} \partial y^{i}}, 0 \leq i \leq 13$, define bounded functions on $\left.Q_{m}\right\}$
Then we define an inflexionary approximation sequence $\left\{f_{m}: m \in\right.$ $\mathcal{N}\}$ by the requirements;
(i). $f_{m} \in C^{13,14, m}\left(\mathcal{R}^{2}\right)$
(ii). $\left.f_{m}\right|_{C_{m}}=\left.f\right|_{C_{m}}$
(iii) $\left.f_{m}\right|_{\left(\mathcal{R}^{2} \backslash C_{m+\frac{1}{m^{2}}}\right)}=0$

Letting $g_{m}=\left.f_{m}\right|_{[-m, m] \times\left[-m-\frac{1}{m^{2}}, m+\frac{1}{m^{2}}\right]}$;
(iv). For $|x| \leq m$, for $0 \leq i \leq 13$;
$\left.\frac{\partial^{i} g_{m}}{\partial y^{i}}\right|_{(x, m)}=\left.\frac{\partial^{i} f}{\partial y^{i}}\right|_{(x, m)}$
$\left.\frac{\partial^{i} g_{m}}{\partial y^{i}}\right|_{(x,-m)}=\left.\frac{\partial^{i} f}{\partial y^{i}}\right|_{(x,-m)}$
$\left.\frac{\partial^{i} g_{m}}{\partial y^{i}}\right|_{\left(x, m+\frac{1}{m}\right)}=0$
$\left.\frac{\partial^{i} g_{m}}{\partial y^{i}}\right|_{\left(x,-m-\frac{1}{m}\right)}=0$
(v). For $|x| \leq m$
if $\left.\frac{\partial^{14} f}{\partial y^{14}}\right|_{(x, m)}>0,\left.\frac{\partial^{14} g_{m}}{\partial y^{14}}\right|_{V_{x, m}} \geq 0$
if $\left.\frac{\partial^{14} f}{\partial y^{14}}\right|_{(x, m)}<0,\left.\frac{\partial^{14} g_{m}}{\partial y^{14}}\right|_{V_{x, m}} \leq 0$
if $\left.\frac{\partial^{14} f}{\partial y^{14}}\right|_{(x,-m)}>0,\left.\frac{\partial^{14} g_{m}}{\partial y^{14}}\right|_{V_{x,-m}} \geq 0$
if $\left.\frac{\partial^{14} f}{\partial y^{14}}\right|_{(x,-m)}<0,\left.\frac{\partial^{14} g_{m}}{\partial y^{14}}\right|_{V_{x,-m}} \leq 0$
The same property as $(i v),(v)$ holding, replacing f and g_{m} with $\frac{\partial^{i} f}{\partial x^{i}}$ and $\frac{\partial g_{m}}{\partial x^{i}}$, for $0 \leq i \leq 13$.
(vi). For $|y| \leq m+\frac{1}{m^{2}}, 0 \leq i \leq 13$
$\left.\frac{\partial^{i} f_{m}}{\partial x^{i}}\right|_{(m, y)}=\left.\frac{\partial^{i} g_{m}}{\partial x^{i}}\right|_{(m, y)}$
$\left.\frac{\partial^{i} f_{m}}{\partial x^{i}}\right|_{(-m, y)}=\left.\frac{\partial^{i} g_{m}}{\partial x^{i}}\right|_{(-m, y)}$
$\left.\frac{\partial^{i} f_{m}}{\partial x^{i}}\right|_{\left(m+\frac{1}{m}, y\right)}=0$
$\left.\frac{\partial^{i} f_{m}}{\partial x^{i}}\right|_{\left(-m-\frac{1}{m}, y\right)}=0$
(vii) For $|y| \leq m+\frac{1}{m^{2}}$

$$
\begin{aligned}
& \text { if }\left.\frac{\partial^{14} g_{m}}{\partial x^{14}}\right|_{(m, y)}>0,\left.\frac{\partial^{14} f_{m}}{\partial x^{14}}\right|_{H_{m, y}} \geq 0 \\
& \text { if }\left.\frac{\partial^{14} g_{m}}{\partial x^{14}}\right|_{(m, y)}<0,\left.\frac{\partial^{14} f_{m}}{\partial x^{14}}\right|_{H_{m, y}} \leq 0 \\
& \text { if }\left.\frac{\partial^{14} g_{m}}{\partial x^{14}}\right|_{(-m, y)}>0,\left.\frac{\partial^{14} f_{m}}{\partial x^{14}}\right|_{H_{-m, y}} \geq 0 \\
& \text { if }\left.\frac{\partial^{14} g_{m}}{\partial x^{14}}\right|_{(-m, y)}<0,\left.\frac{\partial^{14} f_{m}}{\partial x^{14}}\right|_{H_{-m, y}} \leq 0
\end{aligned}
$$

The same property as (vi), (vii) holding, replacing f_{m} and g_{m} with $\frac{\partial^{i} f_{m}}{\partial y^{i}}$ and $\frac{\partial g_{m}}{\partial y^{i}}$, for $0 \leq i \leq 14$.
where;

$$
\begin{aligned}
& V_{x, m}=\left\{(x, y) \in \mathcal{R}^{2}: y \in\left(m, m+\frac{1}{m^{2}}\right)\right\} \\
& V_{x,-m}=\left\{(x, y) \in \mathcal{R}^{2}: y \in\left(-m-\frac{1}{m^{2}},-m\right)\right\} \\
& H_{m, y}=\left\{(x, y) \in \mathcal{R}^{2}: x \in\left(m, m+\frac{1}{m^{2}}\right)\right\} \\
& H_{-m, y}=\left\{(x, y) \in \mathcal{R}^{2}: x \in\left(-m-\frac{1}{m^{2}},-m\right)\right\}
\end{aligned}
$$

Definition 0.3. Let $f \in C^{\infty}\left(\mathcal{R}^{3}\right)$ be quasi split normal with $\frac{\partial^{i_{1}+i_{2}+i_{3}} f}{\partial x^{i_{1} \partial y^{i}} \partial z^{i_{3}}}$ bounded for $0 \leq i_{1}+i_{2}+i_{3} \leq 40$. Let $C_{m}=\left\{(x, y, z) \in \mathcal{R}^{2}:|x| \leq\right.$ $m,|y| \leq m,|z| \leq m\}$. Let;
$Q_{m}=\mathcal{R}^{3} \backslash(x=m \cup x=-m \cup y=m \cup y=-m \cup z=m \cup z=-m)$
$C^{13,13,14, m}\left(\mathcal{R}^{3}\right)=\left\{h: \frac{\partial^{i+j+k} h}{\partial x^{i} \partial y^{j} \partial z^{k}}, 0 \leq i, j, k \leq 13\right.$, define continuous functions,
$\frac{\partial^{i+j+14} h}{\partial x^{i} \partial y^{j} \partial z^{14}}, \frac{\partial^{i+j+14} h}{\partial x^{i} \partial y^{14} \partial z^{j}}, \frac{\partial^{i+j+14} h}{\partial x^{14} \partial y^{i} \partial z^{j}}, 0 \leq i, j \leq 13$, define bounded functions on $\left.Q_{m}\right\}$
Then we define an inflexionary approximation sequence $\left\{f_{m}: m \in\right.$ $\mathcal{N}\}$ by the requirements;
(i). $f_{m} \in C^{13,13,14}\left(\mathcal{R}^{3}\right)$
(ii). $\left.f_{m}\right|_{C_{m}}=\left.f\right|_{C_{m}}$
(iii) $\left.f_{m}\right|_{\left(\mathcal{R}^{3} \backslash C_{m+\frac{1}{m^{3}}}\right)}=0$
(iv). For $0 \leq|y| \leq m, 0 \leq|z| \leq m$, for $0 \leq i \leq 13$;
$\left.\frac{\partial^{i} f_{m}}{\partial x^{i}}\right|_{(m, y, z)}=\left.\frac{\partial^{i} f}{\partial x^{i}}\right|_{(m, y, z)}$
$\left.\frac{\partial^{i} f_{m}}{\partial x^{i}}\right|_{(-m, y, z)}=\left.\frac{\partial^{i} f}{\partial x^{i}}\right|_{(-m, y, z)}$
$\left.\frac{\partial^{i} f_{m}}{\partial x^{i}}\right|_{\left(m+\frac{1}{m}, y, z\right)}=0$
$\left.\frac{\partial^{i} f_{m}}{\partial x^{i}}\right|_{\left(-m-\frac{1}{m}, y, z\right)}=0$
(v). For $0 \leq|y| \leq m, 0 \leq|z| \leq m$
if $\left.\frac{\partial^{14} f}{\partial x^{14}}\right|_{(m, y, z)}>0,\left.\frac{\partial^{14} f_{m}}{\partial x^{14}}\right|_{H_{m, y, z}} \geq 0$
if $\left.\frac{\partial^{14} f}{\partial y^{14}}\right|_{(m, y, z)}<0,\left.\frac{\partial^{14} f_{m}}{\partial x^{14}}\right|_{H_{m, y, z}} \leq 0$
if $\left.\frac{\partial^{14} f}{\partial y^{14}}\right|_{(-m, y, z)}>0,\left.\frac{\partial^{14} f_{m}}{\partial x^{14}}\right|_{H_{-m, y, z}} \geq 0$
if $\left.\frac{\partial^{14} f}{\partial y^{14}}\right|_{(-m, y, z)}<0,\left.\frac{\partial^{14} f_{m}}{\partial x^{14}}\right|_{H_{-m, y, z}} \leq 0$
(vi). For $0 \leq|x| \leq m+\frac{1}{m^{3}} 0 \leq|z| \leq m, 0 \leq i \leq 13$
$\left.\frac{\partial^{i} f_{m}}{\partial y^{i}}\right|_{(x, y, z)}=\left.\frac{\partial^{i} f_{m}}{\partial y^{i}}\right|_{(x, m, z)}, m \leq y \leq m+\frac{1}{m}$
$\left.\frac{\partial^{i} f_{m}}{\partial y^{i}}\right|_{(x, y, z)}=\left.\frac{\partial^{i} f_{m}}{\partial y^{i}}\right|_{(x,-m, z)},-m-\frac{1}{m} \leq y \leq-m$
$\left.\frac{\partial^{i} f_{m}}{\partial y^{i}}\right|_{\left(x, m+\frac{1}{m^{3}}, z\right)}=0$
$\left.\frac{\partial^{i} f_{m}}{\partial y^{i}}\right|_{\left(x,-m-\frac{1}{m^{3}}, z\right)}=0$
(vii) For $0 \leq|x| \leq m+\frac{1}{m^{3}}, 0 \leq|z| \leq m$
if $\left.\frac{\partial^{14} f_{m}}{\partial y^{14}}\right|_{(x, m, z)}>0,\left.\frac{\partial^{14} f_{m}}{\partial y^{14}}\right|_{V_{x, m, z}} \geq 0$
if $\left.\frac{\partial^{14} f_{m}}{\partial y^{14}}\right|_{(x, m, z)}<0,\left.\frac{\partial^{14} f_{m}}{\partial y^{14}}\right|_{V_{x, m, z}} \leq 0$
if $\left.\frac{\partial^{14} f_{m}}{\partial y^{14}}\right|_{(x,-m, z)}>0,\left.\frac{\partial^{14} f_{m}}{\partial y^{14}}\right|_{V_{x,-m, z}} \geq 0$
if $\left.\frac{\partial^{14} f_{m}}{\partial y^{14}}\right|_{(x,-m, z)}<0,\left.\frac{\partial^{14} f_{m}}{\partial y^{14}}\right|_{V_{x,-m, z}} \leq 0$
(viii). For $0 \leq|x| \leq m+\frac{1}{m^{3}} 0 \leq|y| \leq m+\frac{1}{m^{3}}, 0 \leq i \leq 13$

$$
\begin{aligned}
& \left.\frac{\partial^{i} f_{m}}{\partial z^{i}}\right|_{(x, y, z)}=\left.\frac{\partial^{i} f_{m}}{\partial z^{i}}\right|_{(x, y, m)}, m \leq z \leq m+\frac{1}{m^{3}} \\
& \left.\frac{\partial^{i} f_{m}}{\partial z^{i}}\right|_{(x, y, z)}=\left.\frac{\partial^{i} f_{m}}{\partial z^{i}}\right|_{(x, y,-m)},-m-\frac{1}{m^{3}} \leq z \leq-m \\
& \left.\frac{\partial^{i} f_{m}}{\partial z^{i}}\right|_{\left(x, y, m+\frac{1}{m^{3}}\right)}=0 \\
& \left.\frac{\partial^{i} f_{m}}{\partial z^{i}}\right|_{\left(x, y,-m-\frac{1}{m^{3}}\right)}=0 \\
& \text { (ix) For } 0 \leq|x| \leq m+\frac{1}{m^{3}}, 0 \leq|y| \leq m+\frac{1}{m^{3}} \\
& \text { if }\left.\frac{\partial^{14} f_{m}}{\partial z^{14}}\right|_{(x, y, m)}>0,\left.\frac{\partial^{14} f_{m}}{\partial z^{14}}\right|_{D_{x, y, m}} \geq 0 \\
& \text { if }\left.\frac{\partial^{14} f}{\partial z^{14}}\right|_{(x, y, m)}<0,\left.\frac{\partial^{14} f_{m}}{\partial z^{14}}\right|_{D_{x, y, m}} \leq 0 \\
& \text { if }\left.\frac{\partial^{14} f}{\partial z^{14}}\right|_{(x, y,-m)}>0,\left.\frac{\partial^{14} f_{m}}{\partial z^{14}}\right|_{D_{x, y,-m}} \geq 0 \\
& \text { if }\left.\frac{\partial^{14} f}{\partial z^{14}}\right|_{(x, y,-m)}<0,\left.\frac{\partial^{14} f_{m}}{\partial z^{14}}\right|_{D_{x, y,-m}} \leq 0
\end{aligned}
$$

where;

$$
\begin{aligned}
& H_{m, y, z}=\left\{(x, y, z) \in \mathcal{R}^{3}: x \in\left(m, m+\frac{1}{m^{3}}\right)\right\} \\
& H_{-m, y, z}=\left\{(x, y, z) \in \mathcal{R}^{3}: x \in\left(-m-\frac{1}{m^{3}},-m\right)\right\} \\
& V_{x, m, z}=\left\{(x, y, z) \in \mathcal{R}^{3}: y \in\left(m, m+\frac{1}{m^{3}}\right)\right\} \\
& V_{x,-m, z}=\left\{(x, y, z) \in \mathcal{R}^{3}: y \in\left(-m-\frac{1}{m^{3}},-m\right)\right\} \\
& D_{x, y, m}=\left\{(x, y, z) \in \mathcal{R}^{3}: z \in\left(m, m+\frac{1}{m^{3}}\right)\right\} \\
& D_{x, y,-m}=\left\{(x, y, z) \in \mathcal{R}^{3}: z \in\left(-m-\frac{1}{m^{3}},-m\right)\right\}
\end{aligned}
$$

We now address the issue of the construction of inflexionary approximation sequences in the 2 and 3 dimensional cases.

Lemma 0.4. The results of Lemma 0.5 in [3] hold, replacing the intervals $\left[m, m+\frac{1}{m}\right]$ with $\left[m, m+\frac{1}{m^{2}}\right]$ and $\left[m, m+\frac{1}{m^{3}}\right]$.

Proof. In the proof of Lemma 0.5 in [3], observe that the coefficients of the polynomial p, depend only on the $\frac{1}{m}$ term, so we can obtain the new coefficients for p by substituting m^{2} or m^{3} for m. We then calculate in
the $\frac{1}{m^{3}}$ case, that;

$$
\begin{aligned}
& h^{\prime \prime \prime}(x)=\left(-360 a_{0} m^{15}+O\left(m^{12}\right)\right) x^{2}+\left(288 a_{0} m^{18}+O\left(m^{16}\right)\right) x \\
& +\left(-36 a_{0} m^{21}+O\left(m^{19}\right)\right)
\end{aligned}
$$

which has roots when;

$$
x \simeq \frac{-288 a_{0}+/-176 a_{0} m^{18}+O\left(m^{16}\right)}{-720 a_{0} m^{15}+O\left(m^{12}\right)}=O\left(m^{3}\right)+O(m)>0
$$

Clearly, we can then assume that for sufficiently large $m, h^{\prime \prime \prime}(x)$ has no roots in the interval $\left[-m-\frac{1}{m^{3}}\right] \cup\left[m, m+\frac{1}{m^{3}}\right]$. For the final calculation, with $|h|_{\left[m+\frac{1}{m^{3}}\right]}$, we can replace m by m^{3} throughout the proof, to get the same result, that $|h|_{\left[m+\frac{1}{m^{3}}\right]} \leq C$, independently of $m>1$. The case with m^{2} replacing m is left to the reader.

Lemma 0.5. If $[a, b] \subset \mathcal{R}$, with a, b finite, and $\left\{g, g_{1}, g_{2}\right\} \subset C^{\infty}([a, b])$, then, if $m \in \mathcal{R}_{>0}$ is sufficiently large, there exists $h \in C^{\infty}\left(\left[m, m+\frac{1}{m^{2}}\right] \times\right.$ $[a, b])$, with the property that;

$$
\begin{aligned}
& h(m, y)=g(y),\left.\frac{\partial h}{\partial x}\right|_{(m, y)}=g_{1}(y),\left.\frac{\partial^{2} h}{\partial x^{2}}\right|_{(m, y)}=g_{2}(y), y \in[a, b],(i) \\
& h\left(m+\frac{1}{m^{2}}, y\right)=\frac{\partial h}{\partial x}\left(m+\frac{1}{m^{2}}, y\right)=\frac{\partial^{2} h}{\partial x^{2}}\left(m+\frac{1}{m^{2}}, y\right)=0, y \in[a, b], \text { (ii) } \\
& \left.|h|_{\left[m, m+\frac{1}{m^{2}}\right] \times[a, b]} \right\rvert\, \leq C
\end{aligned}
$$

for some $C \in \mathcal{R}_{>0}$, independent of m sufficiently large, and, if $\frac{\partial^{3} h}{\partial x^{3}}(m, y)>0, \frac{\partial^{3} h}{\partial x^{3}}(x, y)>0$, for $x \in\left[m, m+\frac{1}{m^{2}}\right]$, and if $\frac{\partial^{3} h}{\partial x^{3}}(m, y)<0$, $\frac{\partial^{3} h}{\partial x^{3}}(x, y)<0$, for $x \in\left[m, m+\frac{1}{m^{2}}\right]$, (*). In particularly;

$$
\int_{m}^{m+\frac{1}{m^{2}}}\left|\frac{\partial^{3} h}{\partial x^{3}}\right|_{(x, y)}\left|d x=\left|g_{2}(y)\right|\right.
$$

Moreover, for $i \in \mathcal{N}, \frac{\partial^{i} h}{\partial y^{i}}$ has the property that;

$$
\begin{aligned}
& \frac{\partial^{i} h}{\partial y^{i}}(m, y)=g^{(i)}(y),\left.\frac{\partial^{i+1} h}{\partial y^{i} \partial x}\right|_{(m, y)}=g_{1}^{(i)}(y),\left.\frac{\partial^{i+2} h}{\partial y^{i} \partial x^{2}}\right|_{(m, y)}=g_{2}^{(i)}(y) \\
& y \in[a, b],(i)^{\prime}
\end{aligned}
$$

$$
\frac{\partial^{i} h}{\partial y^{i}}\left(m+\frac{1}{m^{2}}, y\right)=\frac{\partial^{i+1} h}{\partial y^{i} \partial x}\left(m+\frac{1}{m^{2}}, y\right)=\frac{\partial^{i+2} h}{\partial y^{i} \partial x^{2}}\left(m+\frac{1}{m^{2}}, y\right)=0
$$

$$
y \in[a, b],(i i)^{\prime}
$$

$$
\left.\left|\frac{\partial^{i} h}{\partial y^{i}}\right|_{\left[m, m+\frac{1}{m^{2}}\right] \times[a, b]} \right\rvert\, \leq C_{i}
$$

for some $C_{i} \in \mathcal{R}_{>0}$, independent of m sufficiently large, and, if $\frac{\partial^{i+3} h}{\partial y^{i} \partial x^{3}}(m, y)>0, \frac{\partial^{i+3} h}{\partial y^{i} \partial x^{3}}(x, y)>0$, for $x \in\left[m, m+\frac{1}{m^{2}}\right]$, and if $\frac{\partial^{i+3} h}{\partial y^{i} \partial x^{3}}(m, y)<$ $0, \frac{\partial^{i+3} h}{\partial y^{i} \partial x^{3}}(x, y)<0$, for $x \in\left[m, m+\frac{1}{m^{2}}\right]$, $(* *)$. In particularly;

$$
\int_{m}^{m+\frac{1}{m^{2}}}\left|\frac{\partial^{i+3} h}{\partial y^{i} \partial x^{3}}\right|_{(x, y)}\left|d x=\left|g_{2}^{(i)}(y)\right|\right.
$$

Proof. For the construction of h in the first part, just use the proof of Lemma 0.4 and Lemma 0.5 in [3], replacing the constant coefficients $\left\{a_{0}, a_{1}, a_{2}\right\} \subset \mathcal{R}$ with the data $\left\{g(y), g_{1}(y), g_{2}(y)\right\}$. The properties $(i),(i i)$ are then clear. Noting that $[a, b]$ is a finite interval and $\left\{g, g_{1}, g_{2}\right\} \subset C^{\infty}([a, b])$, by continuity, there exists a constant D, with $\max \left(|g(y)|,\left|g_{1}(y)\right|,\left|g_{2}(y)\right|: y \in[a, b]\right) \leq D$, so, as in the proof of Lemma 0.4 and Lemma 0.5 in [3], we can use the bound $C=$ $16 D+7 D+D=24 D$, for $m>1$. The proof of $(*)$ follows uniformly in y, as in the proof of 0.4 and Lemma 0.5 in [3], for sufficiently large m, again using the fact that the data $\left\{g(y), g_{1}(y), g_{2}(y): y \in[a, b]\right\}$ is bounded. The next claim is just the FTC again. For the second part, when we calculate $\frac{\partial^{i} h}{\partial y^{i}}$, for $i \in \mathcal{N}$, we are just differentiating the coefficients which are linear in the data $\left\{g(y), g_{1}(y), g_{2}(y)\right\}$, so we obtain a function which fits the data $\left\{g^{(i)}(y), g_{1}^{(i)}(y), g_{2}^{(i)}(y)\right\}$ and $(i)^{\prime},(i i)^{\prime}$ follow. Noting that, for $i \in \mathcal{N},\left\{g^{(i)}, g_{1}^{(i)}, g_{2}^{(i)}\right\} \subset C^{\infty}([a, b])$, again by continuity, there exists constants D_{i}, with $\max \left(\left|g^{(i)}(y)\right|,\left|g_{1}^{(i)}(y)\right|,\left|g_{2}^{(i)}(y)\right|: y \in\right.$ $[a, b]) \leq D_{i}$, so, again, as in the proof of Lemma ??, we can use the bound $C_{i}=16 D_{i}+7 D_{i}+D_{i}=24 D_{i}$, for $m>1$. The proof of $(* *)$ follows uniformly in y, for each $i \in \mathcal{N}$, as in the proof of Lemma 0.4 and Lemma 0.5 in [3], for sufficiently large m, again using the fact that the data $\left\{g^{(i)}(y), g_{1}^{(i)}(y), g_{2}^{(i)}(y): y \in[a, b]\right\}$ is bounded. The last claim is again just the FTC.
Lemma 0.6. Conjecture
Fix $n \in \mathcal{N}$, with $n \geq 3$. If $m \in \mathcal{R}_{>0}$ is sufficiently large, $\left\{a_{i}: 0 \leq i \leq\right.$ $n-1\} \subset \mathcal{R}$, there exists $h \in \mathcal{R}[x]$ of degree $2 n-1$, with the property that;

$$
h^{(i)}(m)=a_{i}, 0 \leq i \leq n-1(i)
$$

$$
\begin{aligned}
& h^{(i)}\left(m+\frac{1}{m}\right)=0,0 \leq i \leq n-1(i i) \\
& \left.|h|_{\left[m, m+\frac{1}{m}\right]} \right\rvert\, \leq C
\end{aligned}
$$

for some $C \in \mathcal{R}_{>0}$, independent of m sufficiently large, and, if $h^{(n)}(m)>0,\left.h^{(n)}(x)\right|_{\left[m, m+\frac{1}{m}\right]}>0$, if $h^{(n)}(m)<0,\left.h^{(n)}\right|_{\left[m, m+\frac{1}{m}\right]}<0$. In particularly;

$$
\int_{m}^{m+\frac{1}{m}}\left|h^{(n)}(x)\right| d x=\left|a_{n-1}\right|, \quad()
$$

The same conjecture applies with $\frac{1}{m^{2}}$ and $\frac{1}{m^{3}}$ replacing $\frac{1}{m}$.
Proof. We sketch a proof based on the special case $n=3$, which was shown in Lemma 0.5 of [3], leaving the details to the reader, $\left({ }^{2}\right)$. We have that $h(x)=\left(x-\left(m+\frac{1}{m}\right)\right)^{n} p(x)$ where $p(x)$ is a polynomial satisfies condition (ii). Computing the derivatives $h^{(i)}(m)$, for $0 \leq i \leq n-1$, we obtain n linear equations involving the unknowns $p^{(i)}(m), 0 \leq i \leq n-1$, of the form;

$$
\sum_{k=0}^{i} \frac{d_{i k} p^{(k)}(m)}{m^{n-i+k}}=a_{i},(0 \leq i \leq n-1)(*)
$$

which we can solve for $p^{(i)}(m), 0 \leq i \leq n-1$, using the fact that the matrix $\left(d_{i k}\right)_{0 \leq i \leq n-1,0 \leq k \leq i}$ is lower triangular and $\left|d_{i i}\right|=1$,

[^0]for $0 \leq i \leq n-1$. Then we can take;
$$
p(x)=\sum_{i=0}^{n-1} p^{(i)}(m)(x-m)^{i}
$$
so that h has degree $n+(n-1)=2 n-1$. It is clear from $(*)$, that we have;
$$
p^{(i)}(m)=\sum_{k=0}^{i} c_{i k} a_{i-k} m^{n+k},(0 \leq i \leq n-1)
$$
where $\left(c_{i k}\right)_{0 \leq i \leq n-1,0 \leq k \leq i}$ is a real matrix, so that $p(x)$ has the form;
$$
p(x)=\sum_{i=0}^{n-1} v_{i} x^{i}(* *)
$$
where;
$$
v_{n-1-i}=\sum_{k=0}^{n-1} r_{i k} m^{n+k}+\sum_{l=0}^{i} s_{i l} m^{2 n-1+l},(0 \leq i \leq n-1)
$$
for real matrices $\left(r_{i k}\right)_{0 \leq i \leq n-1,0 \leq k \leq n-1}$ and $\left(s_{i l}\right)_{0 \leq i \leq n-1,0 \leq l \leq i}$.
It is then clear, using the product rule and $(* *)$, that;
$$
h^{(n)}(x)=\sum_{k=0}^{n-1} w_{k} x^{k}
$$
where $w_{k}=z_{k} a_{0} m^{3 n-2-k}+O\left(m^{3 n-3-k}\right),(0 \leq k \leq n-1)$
By homogeneity, it is then clear that the real roots of $h^{(n)}(x)$ are of the form $t_{s_{0}} m+O(1)$, where $t_{s_{0}} \in \mathcal{R}, 1 \leq s_{0} \leq n-1$, and $t_{s_{0}}$ satisfies a polynomial $r(x)$ of degree $n-1$, which is effectively computable for given n. We can exclude any roots in the interval $\left[m, m+\frac{1}{m}\right]$, for sufficiently large m, provided $t_{s_{0}} \neq 1$, for $1 \leq s_{0} \leq n-1$, which we can check by showing that $r(1) \neq 0$. We have that;
\[

$$
\begin{aligned}
& |h|_{\left(m, m+\frac{1}{m}\right)}\left|=\left|\left(x-\left(m+\frac{1}{m}\right)\right)^{n} p(x)\right|\right. \\
& \leq \frac{1}{m^{n}}\left|\sum_{i=0}^{n-1} p^{(i)}(m)(x-m)^{i}\right| \\
& \leq \frac{1}{m^{n}} \sum_{i=0}^{n-1} \frac{\left|p^{(i)}(m)\right|}{m^{i}} \\
& \leq \sum_{i=0}^{n-1} \sum_{k=0}^{i}\left|c_{i k}\right| a_{i-k} \left\lvert\, \frac{m^{n+k}}{m^{n+i}}\right.
\end{aligned}
$$
\]

$$
\leq \sum_{i=0}^{n-1} \sum_{k=0}^{i}\left|c_{i k}\right| a_{i-k} \mid=C,(m>1)
$$

The last claim is just the FTC.

Lemma 0.7. If $[a, b] \subset \mathcal{R}$, with a, b finite, $n \geq 3$, and $\left\{g_{j}: 0 \leq j \leq\right.$ $n-1\} \subset C^{\infty}([a, b])$, then, if $m \in \mathcal{R}_{>0}$ is sufficiently large, there exists $h \in C^{\infty}\left(\left[m, m+\frac{1}{m^{2}}\right] \times[a, b]\right)$, with the property that;

$$
\begin{aligned}
& \left.\frac{\partial^{(j)} h}{\partial x^{j}}\right|_{(m, y)}=g_{j}(y), y \in[a, b],(i) \\
& \frac{\partial h^{j}}{\partial x^{j}}\left(m+\frac{1}{m^{2}}, y\right)=0, y \in[a, b],(i i)
\end{aligned}
$$

$$
\left.|h|_{\left[m, m+\frac{1}{m^{2}}\right] \times[a, b]} \right\rvert\, \leq C
$$

for some $C \in \mathcal{R}_{>0}$, independent of m sufficiently large, and, if $\frac{\partial^{n} h}{\partial x^{n}}(m, y)>0, \frac{\partial^{n} h}{\partial x^{n}}(x, y)>0$, for $x \in\left[m, m+\frac{1}{m^{2}}\right]$, and if $\frac{\partial^{n} h}{\partial x^{n}}(m, y)<0$, $\frac{\partial^{n} h}{\partial x^{n}}(x, y)<0$, for $x \in\left[m, m+\frac{1}{m^{2}}\right]$, (*). In particularly;

$$
\int_{m}^{m+\frac{1}{m^{2}}}\left|\frac{\partial^{n} h}{\partial x^{n}}\right|_{(x, y)}\left|d x=\left|g_{n-1}(y)\right|\right.
$$

Moreover, for $i \in \mathcal{N}, \frac{\partial^{i} h}{\partial y^{i}}$ has the property that;

$$
\begin{aligned}
& \frac{\partial^{i+j} h}{\partial x^{j} \partial y^{i}}(m, y)=g_{j}^{(i)}(y), y \in[a, b],(i)^{\prime} \\
& \frac{\partial^{i+j} h}{\partial x^{j} \partial y^{i}}\left(m+\frac{1}{m^{2}}, y\right)=0, y \in[a, b],(i i)^{\prime} \\
& \left.\left|\frac{\partial^{i} h}{\partial y^{i}}\right|_{\left[m, m+\frac{1}{m^{2}}\right] \times[a, b]} \right\rvert\, \leq C_{i}
\end{aligned}
$$

for some $C_{i} \in \mathcal{R}_{>0}$, independent of m sufficiently large, and, if $\frac{\partial^{i+n} h}{\partial y^{i} \partial x^{n}}(m, y)>0, \frac{\partial^{i+n} h}{\partial y^{i} \partial x^{n}}(x, y)>0$, for $x \in\left[m, m+\frac{1}{m^{2}}\right]$, and if $\frac{\partial^{i+n} h}{\partial y^{i} \partial x^{n}}(m, y)<$ $0, \frac{\partial^{i+n} h}{\partial y^{2} \partial x^{n}}(x, y)<0$, for $x \in\left[m, m+\frac{1}{m^{2}}\right],(* *)$. In particularly;

$$
\int_{m}^{m+\frac{1}{m^{2}}}\left|\frac{\partial^{i+n} h}{\partial y^{i} \partial x^{n}}\right|_{(x, y)}\left|d x=\left|g_{n-1}^{(i)}(y)\right|\right.
$$

Proof. For the construction of h in the first part, just use the proof of Lemma 0.6 , replacing the constant coefficients $\left\{a_{j}: 0 \leq j \leq n-1\right\} \subset \mathcal{R}$ with the data $\left\{g_{j}(y): 0 \leq j \leq n-1\right\}$. The properties $(i),(i i)$ are then clear. Noting that $[a, b]$ is a finite interval and $\left\{g_{j}: 0 \leq j \leq\right.$ $n-1\} \subset C^{\infty}([a, b])$, by continuity, there exists a constant D, with
$\max \left(\left|g_{j}(y)\right|: 0 \leq j \leq n-1, y \in[a, b]\right) \leq D$, so, as in the proof of Lemma 0.5 in [3], we can use the bound $C=\sum_{0 \leq j \leq n-1} L_{j} D$, for $m>1$. The proof of $(*)$ follows uniformly in y, as in the proof of Lemma 0.5 in [3], for sufficiently large m, again using the fact that the data $\left\{g_{j}(y): 0 \leq j \leq n-1, y \in[a, b]\right\}$ is bounded. The next claim is just the FTC again. For the second part, when we calculate $\frac{\partial^{i} h}{\partial y^{i}}$, for $i \in \mathcal{N}$, we are just differentiating the coefficients which are linear in the data $\left\{g_{j}(y): 0 \leq j \leq n-1\right\}$, so we obtain a function which fits the data $\left\{g_{j}^{(i)}(y): 0 \leq j \leq n-1\right\}$ and $(i)^{\prime},(i i)^{\prime}$ follow. Noting that, for $i \in \mathcal{N},\left\{g_{j}^{(i)}: 0 \leq j \leq n-1\right\} \subset C^{\infty}([a, b])$, again by continuity, there exist constants D_{i}, with $\max \left(\left|g_{j}^{(i)}(y)\right|: 0 \leq j \leq n-1, y \in[a, b]\right) \leq D_{i}$, so, again, as in the proof of Lemma 0.5 in [3], we can use the bound $C_{i}=\sum_{0 \leq j \leq n-1} L_{j} D_{i}$, for $m>1$. The proof of $(* *)$ follows uniformly in y, for each $i \in \mathcal{N}$, as in the proof of Lemma 0.5 in [3], for sufficiently large m, again using the fact that the data $\left\{g_{j}^{(i)}(y): 0 \leq j \leq n-1, y \in\right.$ $[a, b]\}$ is bounded. The last claim is again just the FTC.
Lemma 0.8. If $[a, b] \subset \mathcal{R},[c, d] \subset \mathcal{R}$, with a, b, c, d finite, $n \geq 3$, and $\left\{g_{j}: 0 \leq j \leq n-1\right\} \subset C^{\infty}([a, b] \times[c, d])$, then, if $m \in \mathcal{R}_{>0}$ is sufficiently large, there exists $h \in C^{\infty}\left(\left[m, m+\frac{1}{m^{3}}\right] \times[a, b] \times[c, d]\right)$, with the property that;

$$
\begin{aligned}
& \left.\frac{\partial^{(j)} h}{\partial x^{j}}\right|_{(m, y, z)}=g_{j}(y, z),(y, z) \in[a, b] \times[c, d],(i) \\
& \frac{\partial h^{j}}{\partial x^{j}}\left(m+\frac{1}{m^{3}}, y, z\right)=0,(y, z) \in[a, b] \times[c, d],(i i) \\
& \left.|h|_{\left[m, m+\frac{1}{m^{3}}\right] \times[a, b] \times[c, d]} \right\rvert\, \leq C
\end{aligned}
$$

for some $C \in \mathcal{R}_{>0}$, independent of m sufficiently large, and, if $\frac{\partial^{n} h}{\partial x^{n}}(m, y, z)>0, \frac{\partial^{n} h}{\partial x^{n}}(x, y, z)>0$, for $x \in\left[m, m+\frac{1}{m^{3}}\right]$, and if $\frac{\partial^{n} h}{\partial x^{n}}(m, y, z)<$ 0 , $\frac{\partial^{n} h}{\partial x^{n}}(x, y, z)<0$, for $x \in\left[m, m+\frac{1}{m^{3}}\right]$, (*). In particularly;

$$
\int_{m}^{m+\frac{1}{m^{3}}}\left|\frac{\partial^{n} h}{\partial x^{n}}\right|_{(x, y, z)}\left|d x=\left|g_{n-1}(y, z)\right|\right.
$$

Moreover, for $(i, k) \subset \mathcal{N}^{2}, 0 \leq j \leq n-1, \frac{\partial^{i+k} h}{\partial y^{i} \partial z^{k}}$, has the property that;

$$
\begin{aligned}
& \frac{\partial^{i+j+k} h}{\partial x^{j} \partial y^{i} \partial z^{k}}(m, y, z)=\frac{\partial^{i+k} g_{j}}{\partial y^{2} \partial z^{k}}(y, z),(y, z) \in[a, b] \times[c, d],(i)^{\prime} \\
& \frac{\partial^{i+j+k} h}{\partial x^{j} \partial y^{i} \partial z^{k}}\left(m+\frac{1}{m^{3}}, y, z\right)=0,(y, z) \in[a, b] \times[c, d],(i i)^{\prime}
\end{aligned}
$$

$$
\left.\left|\frac{\partial^{i+k} h}{\partial y^{i} \partial z^{k}}\right|_{\left[m, m+\frac{1}{m^{3}}\right] \times[a, b] \times[c, d]} \right\rvert\, \leq C_{i, k}
$$

for some $C_{i, k} \in \mathcal{R}_{>0}$, independent of m sufficiently large, and, if $\frac{\partial^{i+k+n} h}{\partial y^{i} \partial z^{k} \partial x^{n}}(m, y, z)>0, \frac{\partial^{i+k+n} h}{\partial y^{i} \partial z^{k} \partial x^{n}}(x, y, z)>0$, for $x \in\left[m, m+\frac{1}{m^{3}}\right]$, and if $\frac{\partial^{i+k+n} h}{\partial y^{i} \partial z^{k} \partial x^{n}}(m, y)<0, \frac{\partial^{i+k+n} h}{\partial y^{i} \partial z^{k} \partial x^{n}}(x, y, z)<0$, for $x \in\left[m, m+\frac{1}{m^{3}}\right],(* *)$. In particularly;

$$
\int_{m}^{m+\frac{1}{m^{3}}}\left|\frac{\partial^{i+k+n} h}{\partial y^{i} \partial z^{k} \partial x^{n}}\right|_{(x, y, z)}\left|d x=\left|\frac{\partial^{i+k} g_{n-1}}{\partial y^{i} \partial z^{k}}(y, z)\right|\right.
$$

Proof. For the construction of h in the first part, just use the proof of Lemma 0.6 , replacing the constant coefficients $\left\{a_{j}: 0 \leq j \leq n-1\right\} \subset \mathcal{R}$ with the data $\left\{g_{j}(y, z): 0 \leq j \leq n-1\right\}$. The properties $(i),(i i)$ are then clear. Noting that $[a, b] \times[c, d]$ is compact and $\left\{g_{j}: 0 \leq j \leq\right.$ $n-1\} \subset C^{\infty}([a, b] \times[c, d])$, by continuity, there exists a constant D, with $\max \left(\left|g_{j}(y, z)\right|: 0 \leq j \leq n-1,(y, z) \in[a, b] \times[c, d]\right) \leq D$, so, as in the proof of Lemma 0.6 , we can use the bound $C=\sum_{0 \leq j \leq n-1} L_{j} D$, for $m>1$. The proof of $(*)$ follows uniformly in y, as in the proof of 0.6 , for sufficiently large m, again using the fact that the data $\left\{g_{j}(y, z): 0 \leq\right.$ $j \leq n-1,(y, z) \in[a, b]\}$ is bounded. The next claim is just the FTC again. For the second part, when we calculate $\frac{\partial^{i+k} h}{\partial y^{i} \partial z^{k}}$, for $\left(i, j \in \mathcal{N}^{2}\right.$, we are just differentiating the coefficients which are linear in the data $\left\{g_{j}(y, z): 0 \leq j \leq n-1\right\}$, so we obtain a function which fits the data $\left\{\frac{\partial^{i+k} g_{j}}{\partial y^{i} \partial z^{k}}(y, z): 0 \leq j \leq n-1\right\}$ and $(i)^{\prime},(i i)^{\prime}$ follow. Noting that, for $(i, k) \in \mathcal{N}^{2},\left\{\frac{\partial^{i+k} g_{j}}{\partial y^{i} \partial z^{k}}: 0 \leq j \leq n-1\right\} \subset C^{\infty}([a, b] \times[c, d])$, again by continuity, there exist constants $D_{i, k}$, with $\max \left(\left|\frac{\partial^{i+k} g_{j}}{\partial y^{i} \partial z^{k}}(y, z)\right|: 0 \leq j \leq\right.$ $n-1, y \in[a, b] \times[c, d]) \leq D_{i, k}$, so, again, as in the proof of Lemma 0.6, we can use the bound $C_{i, k}=\sum_{0 \leq j \leq n-1} L_{j} D_{i, k}$, for $m>1$. The proof of $(* *)$ follows uniformly in (y, z), for each $(i, k) \in \mathcal{N}^{2}$, as in the proof of Lemma 0.6 , for sufficiently large m, again using the fact that the data $\left\{\frac{\partial^{i+k} g_{j}}{\partial Y^{i} \partial z^{k}}(y): 0 \leq j \leq n-1,(y, z) \in[a, b] \times[c, d]\right\}$ is bounded. The last claim is again just the FTC.

Lemma 0.9. For $f \in C^{\infty}\left(\mathcal{R}^{2}\right)$ with $\frac{\partial^{i_{1}+i_{2}}}{\partial x^{i_{1}} \partial y^{i_{2}}}$ bounded by some constant $F \in \mathcal{R}_{>0}$, for $0 \leq i_{1}+i_{2} \leq 27$. Then for sufficiently large m, there exists an inflexionary approximation sequence $\left\{f_{m}: m \in \mathcal{N}\right\}$, with the property that;

$$
\max \left(\int_{\mathcal{R}^{2}}\left|\frac{\partial f_{m}}{\partial x^{14}}\right| d x d y, \int_{\mathcal{R}^{2}}\left|\frac{\partial f_{m}}{\partial y^{14}}\right| d x d y\right) \leq G m^{2}
$$

for some $G \in \mathcal{R}_{>0}$, for sufficiently large m.

Proof. Define $f_{m}=f$ on C_{m}, so that ($i i$) of Definition 0.2 is satisfied. Using two applications of Lemma 0.7 with $n=14$, changing to a vertical rather than horizontal orientation, and the fact that, for $0 \leq i \leq 13$, $|x| \leq m,\left.\frac{\partial^{i} f}{\partial y^{i}}\right|_{(x, m)}$ and $\left.\frac{\partial^{i} f}{\partial y^{i}}\right|_{(x,-m)}$ define smooth functions on $[-m, m]$, we can extend f_{m} to $R=\left\{(x, y):|x| \leq m, m \leq|y| \leq m+\frac{1}{m^{2}}\right\}$, such that $f_{m} \mid R_{1}$ satisfies conditions $(i v),(v)$ of Definition 0.2 , where $R_{1}=\left\{(x, y):|x| \leq m, 0 \leq|y| \leq m+\frac{1}{m^{2}}\right\}$. Again, using two applications of Lemma 0.7 with $n=14$, and the original horizontal orientation, and the fact that, for $0 \leq i \leq 13,0 \leq|y| \leq m+\frac{1}{m^{2}},\left.\frac{\partial^{i} f_{m}}{\partial x^{2}}\right|_{(m, y)}$ and $\left.\frac{\partial^{i} f}{\partial x^{i}}\right|_{(-m, y)}$ define smooth functions on $\left[-m-\frac{1}{m^{2}}, m+\frac{1}{m^{2}}\right]$, we can extend f_{m} to $S=\left\{(x, y): m \leq|x| \leq m+\frac{1}{m^{2}}, 0 \leq|y| \leq m+\frac{1}{m^{2}}\right\}$, such that $f_{m} \left\lvert\, C_{m+\frac{1}{m^{2}}}\right.$ satisfies conditions $(v i),(v i i)$ of Definition 0.2. Conditions (i), (iii) are then clear. We then have, using (iii), that;

$$
\begin{aligned}
& \int_{\mathcal{R}^{2}}\left|\frac{\partial f_{m}}{\partial x^{14}}\right| d x d y=\int_{C_{m+\frac{1}{m^{2}}}}\left|\frac{\partial f_{m}}{\partial x^{14}}\right| d x d y \\
& =\int_{|x| \leq m,|y| \leq m}\left|\frac{\partial f_{m}}{\partial x^{14}}\right| d x d y+\int_{|x| \leq m, m \leq|y| \leq m+\frac{1}{m^{2}}}\left|\frac{\partial f_{m}}{\partial x^{14}}\right| d x d y+\int_{m \leq|x| \leq m+\frac{1}{m^{2}},|y| \leq m}\left|\frac{\partial f_{m}}{\partial x^{14}}\right| d x d y \\
& +\int_{m \leq|x| \leq m+\frac{1}{m^{2}}, m \leq|y| \leq m+\frac{1}{m^{2}}}\left|\frac{\partial f_{m}}{\partial x^{14}}\right| d x d y \\
& \int_{\mathcal{R}^{2}}\left|\frac{\partial f_{m}}{\partial y^{14}}\right| d x d y=\int_{C_{m+\frac{1}{}}^{m^{2}}}\left|\frac{\partial f_{m}}{\partial y^{14}}\right| d x d y \\
& =\int_{|x| \leq m,|y| \leq m}\left|\frac{\partial f_{m}}{\partial y^{14}}\right| d x d y+\int_{|x| \leq m, m \leq|y| \leq m+\frac{1}{m^{2}}}\left|\frac{\partial f_{m}}{\partial y^{14}}\right| d x d y+\int_{m \leq|x| \leq m+\frac{1}{m^{2}},|y| \leq m}\left|\frac{\partial f_{m}}{\partial y^{14}}\right| d x d y \\
& +\int_{m \leq|x| \leq m+\frac{1}{m^{2}}, m \leq|y| \leq m+\frac{1}{m^{2}}}\left|\frac{\partial f_{m}}{\partial y^{14}}\right| d x d y(*)
\end{aligned}
$$

We then have the following cases, using the second clause in Lemma 0.7 repeatedly with the appropriate orientations;

Case 1;

$$
\begin{aligned}
& \int_{|x| \leq m,|y| \leq m}\left|\frac{\partial^{14} f_{m}}{\partial x^{14}}\right| d x d y \\
& =\int_{|x| \leq m,|y| \leq m}\left|\frac{\partial^{14} f}{\partial x^{14}}\right| d x d y \leq F m^{2} \\
& \int_{|x| \leq m,|y| \leq m}\left|\frac{\partial^{14} f_{m}}{\partial y^{14}}\right| d x d y
\end{aligned}
$$

$=\int_{|x| \leq m,|y| \leq m}\left|\frac{\partial^{14} f}{\partial y^{14}}\right| d x d y \leq F m^{2}$
Case 2;

$$
\begin{aligned}
& \int_{|x| \leq m, m \leq|y| \leq m+\frac{1}{m^{2}}}\left|\frac{\partial^{14} f_{m}}{\partial x^{14}}\right| d x d y \\
& =\int_{|x| \leq m}\left(\int_{|y| \leq m+\frac{1}{m^{2}}}\left|\frac{\partial^{14} f_{m}}{\partial x^{14}}\right| d y\right) d x \\
& \leq \frac{2}{m^{2}} \int_{|x| \leq m} C_{14} d x \\
& \leq 2 m \frac{2}{m^{2}} C_{14} \\
& =4 \frac{C_{14}}{m}
\end{aligned}
$$

Case 3;
$\int_{m \leq|x| \leq m+\frac{1}{m^{2}},|y| \leq m}\left|\frac{\partial^{14} f_{m}}{\partial x^{14}}\right| d x d y$
$=\int_{|y| \leq m}\left(\left.\int_{m \leq|x| \leq m+\frac{1}{m^{2}}} \frac{\partial^{14} f_{m}}{\partial x^{14}} \right\rvert\, d x\right) d y$
$=\int_{|y| \leq m}\left(\left|\frac{\partial^{13} f}{\partial x^{13}}\right|_{(m, y)}+\left|\frac{\partial^{13} f}{\partial x^{13}}\right|_{(-m, y)}\right) d y$
$\leq 4 m F$
Case 4.
$\int_{m \leq|x| \leq m+\frac{1}{m^{2}}, m \leq|y| \leq m+\frac{1}{m^{2}}}\left|\frac{\partial^{14} f_{m}}{\partial x^{14}}\right| d x d y$
$=\int_{m \leq|y| \leq m+\frac{1}{m^{2}}}\left(\int_{m \leq|x| \leq m+\frac{1}{m^{2}}}\left|\frac{\partial^{14} f_{m}}{\partial x^{14}}\right| d x\right) d y$
$=\int_{m \leq|y| \leq m+\frac{1}{m^{2}}}\left(\left|\frac{\partial^{13} f_{m}}{\partial x^{13}}\right|_{(m, y)}+\left|\frac{\partial^{13} f_{m}}{\partial x^{13}}\right|_{(-m, y)} d y\right.$
$\leq \int_{m \leq y \leq m+\frac{1}{m^{2}}} C_{13,1} d y+\int_{-m-\frac{1}{m^{2}} \leq-m} C_{13,2} d y$
$\leq \frac{\max \left(C_{13,1}, C_{13,2}\right)}{m^{2}}$ (the constants $\left\{C_{13,1}, C_{13,2}\right\}$ coming from the two applications of Lemma 0.7 at the two boundaries)

Case 5;

$$
\int_{|x| \leq m, m \leq|y| \leq m+\frac{1}{m^{2}}}\left|\frac{\partial^{14} f_{m}}{\partial y^{14}}\right| d x d y
$$

$$
\begin{aligned}
& =\int_{|x| \leq m}\left(\int_{m \leq|y| \leq m+\frac{1}{m^{2}}}\left|\frac{\partial^{14} f_{m}}{\partial y^{14}}\right| d y\right) d x \\
& =\int_{|x| \leq m}\left(\left|\frac{\partial f}{\partial y^{13}}\right|_{(x, m)}+\left|\frac{\partial f(x, y)}{\partial y^{13}}\right|_{(x,-m)} d x\right) \\
& \leq 4 m F
\end{aligned}
$$

Case 6;

$$
\begin{aligned}
& \int_{|y| \leq m, m \leq|x| \leq m+\frac{1}{m^{2}}}\left|\frac{\partial^{14} f_{m}}{\partial y^{14}}\right| d x d y \\
& =\int_{|y| \leq m}\left(\int_{m \leq|x| \leq m+\frac{1}{m^{2}}}\left|\frac{\partial^{14} f_{m}}{\partial y^{14}}\right| d x\right) d y \\
& \leq \frac{1}{m^{2}} \int_{|y| \leq m}\left(\left|\sum_{i=0}^{13} D_{i}\right| \frac{\partial^{i} \partial^{14} f}{\partial y^{14} \partial x^{i}}\left|(m, y)+\left|\sum_{i=0}^{13} D_{i}\right| \frac{\partial^{i} \partial^{14} f}{\partial y^{14} \partial x^{i}}\right|(-m, y)\right) d y \\
& \leq \frac{2}{m^{2}}(2 m) F\left(\sum_{i=0}^{13} D_{i}\right) \\
& =4 F \frac{\left(\sum_{i=0}^{13} D_{i}\right)}{m}
\end{aligned}
$$

Case 7.

$$
\begin{aligned}
& \int_{m \leq|x| \leq m+\frac{1}{m^{2}}, m \leq|y| \leq m+\frac{1}{m^{2}}}\left|\frac{\partial^{14} f_{m}}{\partial y^{14}}\right| d x d y \\
& =\int_{m \leq|y| \leq m+\frac{1}{m^{2}}}\left(\int_{m \leq|x| \leq m+\frac{1}{m^{2}}}\left|\frac{\partial^{14} f_{m}}{\partial y^{14}}\right| d x\right) d y \\
& \quad \leq \frac{1}{m^{2}} \int_{m \leq|y| \leq m+\frac{1}{m^{2}}}\left(\sum_{i=0}^{13} L_{i, 14}\left|\frac{\partial^{i+14} f_{m}}{\partial x^{i} \partial y^{14}}\right|_{(m, y)}+L_{i, 14}\left|\frac{\partial^{i+14} f_{m}}{\partial x^{i} \partial y^{14}}\right|_{(-m, y)}\right) d y \\
& =\frac{1}{m^{2}} \sum_{i=0}^{13} L_{i, 14}\left(\left.\left|\frac{\partial^{i+13} f}{\partial x^{i} \partial y^{13}}\right|_{(m, m)}\left|+\left|\frac{\partial^{i+13} f}{\partial x^{i} \partial y^{13}}\right|_{(m,-m)}\right|+\left|\frac{\partial^{i+13} f}{\partial x^{i} \partial y^{13}}\right|_{(-m, m)} \right\rvert\,+\right. \\
& \left.\left.\left|\frac{\partial^{i+13} f}{\partial x^{i} \partial y^{13}}\right|_{(-m,-m)} \right\rvert\,\right) \\
& \quad \leq \frac{4 F\left(\sum_{i=0}^{13} L_{i, 14}\right)}{m^{2}} \text { (the constants } L_{i, 14}, 0 \leq i \leq 13 \text { coming from the proof } \\
& \text { of Lemma } 0.7)
\end{aligned}
$$

Combining the seven cases and $(*)$, we obtain, for sufficiently large m, that;

$$
\begin{aligned}
& \int_{\mathcal{R}^{2}}\left|\frac{\partial f_{m}}{\partial x^{14}}\right| d x d y \leq F m^{2}+4 \frac{C_{14}}{m}+4 m F+\frac{\max \left(C_{13,1}, C_{13,2}\right)}{m^{2}} \leq G m^{2} \\
& \int_{\mathcal{R}^{2}}\left|\frac{\partial f_{m}}{\partial y^{14}}\right| d x d y \leq F m^{2}+4 m F+4 F \frac{\left(\sum_{i=0}^{13} D_{i}\right)}{m}+\frac{4 F\left(\sum_{i=0}^{13} L_{i, 14}\right)}{m^{2}} \leq G m^{2}
\end{aligned}
$$

Lemma 0.10. For $f \in C^{40}\left(\mathcal{R}^{3}\right)$ with $\frac{\partial^{i_{1}+i_{2}+i_{3}}}{\partial x^{i_{1}} \partial y^{i_{2}} 2 z^{i}}$ bounded by some constant $F \in \mathcal{R}_{>0}$, for $0 \leq i_{1}+i_{2}+i_{3} \leq 40$. Then for sufficiently large m, there exists an inflexionary approximation sequence $\left\{f_{m}: m \in \mathcal{N}\right\}$, with the property that;

$$
\max \left(\int_{\mathcal{R}^{3}}\left|\frac{\partial f_{m}}{\partial x^{14}}\right| d x d y d z, \int_{\mathcal{R}^{3}}\left|\frac{\partial f_{m}}{\partial y^{14}}\right| d x d y d z, \int_{\mathcal{R}^{3}}\left|\frac{\partial f_{m}}{\partial z^{14}}\right| d x d y d z\right) \leq G m^{3}
$$

for some $G \in \mathcal{R}_{>0}$, for sufficiently large m.

Proof. Define $f_{m}=f$ on W_{m}, so that ($i i$) of Definition 0.3 is satisfied. Using two applications of Lemma 0.8 with $n=14$, with a horizontal orientation, and the fact that, for $0 \leq i \leq 13,0 \leq|y| \leq m, 0 \leq|z| \leq m$ $\left.\frac{\partial^{i} f}{\partial x^{i}}\right|_{(m, y, z)}$ and $\left.\frac{\partial^{i} f}{\partial x^{i}}\right|_{(-m, y, z)}$ define smooth functions on $[-m, m]^{2}$, we can extend f_{m} to $A_{1}=\left\{(x, y, z): m \leq|x| \leq m+\frac{1}{m^{3}}, 0 \leq|y| \leq m, 0 \leq\right.$ $|z| \leq m\}$, such that $f_{m} \mid A_{2}$ satisfies conditions (iv), (v) of Definition 0.3, where $A_{2}=\left\{(x, y, z): 0 \leq|x| \leq m+\frac{1}{m^{3}}, 0 \leq|y| \leq m, 0 \leq|z| \leq m\right\}$. Again, using two applications of Lemma 0.8 with $n=14$ again, this time with a vertical orientation, and the fact that, for $0 \leq i \leq 13$, $0 \leq|x| \leq m+\frac{1}{m^{3}}, 0 \leq|z| \leq m,\left.\frac{\partial^{i} f_{m}}{\partial y^{2}}\right|_{(x, m, z)}$ and $\left.\frac{\partial^{i} f_{m}}{\partial y^{i}}\right|_{(x,-m, z)}$ define smooth functions on $\left[-m-\frac{1}{m^{3}}, m+\frac{1}{m^{3}}\right] \times[-m, m]$, we can extend f_{m} to $A_{3}=\left\{(x, y, z): 0 \leq|x| \leq m+\frac{1}{m^{3}}, m \leq|y| \leq m+\frac{1}{m^{3}}, 0 \leq|z| \leq m\right\}$, such that $f_{m} \mid A_{4}$ satisfies conditions (vi), (vii) of Definition 0.3 , where $A_{4}=\left\{(x, y, z): 0 \leq|x| \leq m+\frac{1}{m^{3}}, 0 \leq|y| \leq m+\frac{1}{m^{3}}, 0 \leq|z| \leq m\right\}$. Again, using two applications of Lemma 0.8 with $n=14$ again, this time with a lateral orientation, and the fact that, for $0 \leq i \leq 13$, $0 \leq|x| \leq m+\frac{1}{m^{3}}, 0 \leq|y| \leq m+\frac{1}{m^{3}},\left.\frac{\partial^{i} f_{m}}{\partial z^{i}}\right|_{(x, y, m)}$ and $\left.\frac{\partial^{i} f_{m}}{\partial z^{i}}\right|_{(x, y,-m)}$ define smooth functions on $\left[-m-\frac{1}{m^{3}}, m+\frac{1}{m^{3}}\right]^{2}$, we can extend f_{m} to $W_{m+\frac{1}{m^{3}}}$ such that $\left.f_{m}\right|_{W_{m+\frac{1}{m^{3}}}}$ satisfies conditions (viii), (ix) of Definition 0.3.

Conditions (i), (iii) are then clear. We then have, using (iii), that;

$$
\begin{aligned}
& \text { (a). } \int_{\mathcal{R}^{3}}\left|\frac{\partial f_{m}}{\partial x^{14}}\right| d x d y d z=\int_{W_{m+\frac{1}{}}^{m^{3}}}\left|\frac{\partial f_{m}}{\partial x^{14}}\right| d x d y d z \\
& =\int_{|x| \leq m,|y| \leq m,|z| \leq m}\left|\frac{\partial f_{m}}{\partial x^{14}}\right| d x d y d z+\int_{m \leq|x| \leq m+\frac{1}{m^{3}}}, \left.y|\leq m,|z| \leq m| \frac{\partial f_{m}}{\partial x^{14}} \right\rvert\, d x d y d z \\
& +\int_{|x| \leq m, m \leq|y| \leq m+\frac{1}{m^{3}},|z| \leq m}\left|\frac{\partial f_{m}}{\partial x^{14}}\right| d x d y d z+\int_{m \leq|x| \leq m+\frac{1}{m^{3}}, m \leq|y| \leq m+\frac{1}{m^{3}},|z| \leq m}\left|\frac{\partial f_{m}}{\partial x^{14}}\right| d x d y d z \\
& +\int_{|x| \leq m,|y| \leq m, m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial f_{m}}{\partial x^{14}}\right| d x d y d z+\int_{m \leq|x| \leq m+\frac{1}{m^{3}},|y| \leq m, m \leq|z| \leq m+\frac{1}{m^{3}}\left|\frac{\partial f_{m}}{\partial x^{14}}\right| d x d y d z}
\end{aligned}
$$

$$
+\int_{|x| \leq m, m \leq|y| \leq m+\frac{1}{m^{3}}, m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial f_{m}}{\partial x^{14}}\right| d x d y d z+\int_{m \leq|x| \leq m+\frac{1}{m^{3}}, m \leq|y| \leq m+\frac{1}{m^{3}}, m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial f_{m}}{\partial x^{14}}\right| d x d y a
$$

$$
\text { (b). } \int_{\mathcal{R}^{3}}\left|\frac{\partial f_{m}}{\partial y^{14}}\right| d x d y d z=\int_{W_{m+\frac{1}{m^{3}}}}\left|\frac{\partial f_{m}}{\partial y^{14}}\right| d x d y d z
$$

$$
=\int_{|x| \leq m,|y| \leq m,|z| \leq m}\left|\frac{\partial f_{m}}{\partial y^{4}}\right| d x d y d z+\int_{m \leq|x| \leq m+\frac{1}{m^{3}},|y| \leq m,|z| \leq m}\left|\frac{\partial f_{m}}{\partial y^{4}}\right| d x d y d z
$$

$$
+\int_{|x| \leq m, m \leq|y| \leq m+\frac{1}{m^{3}},|z| \leq m}\left|\frac{\partial f_{m}}{\partial y^{14}}\right| d x d y d z+\int_{m \leq|x| \leq m+\frac{1}{m^{3}}, m \leq|y| \leq m+\frac{1}{m^{3}},|z| \leq m}\left|\frac{\partial f_{m}}{\partial y^{4}}\right| d x d y d z
$$

$$
+\int_{|x| \leq m,|y| \leq m, m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial f_{m}}{\partial y^{4}}\right| d x d y d z+\int_{m \leq|x| \leq m+\frac{1}{m^{3}},|y| \leq m, m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial f_{m}}{\partial y^{4}}\right| d x d y d z
$$

$$
+\int_{|x| \leq m, m \leq|y| \leq m+\frac{1}{m^{3}}, m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial f_{m}}{\partial y^{14}}\right| d x d y d z+\int_{m \leq|x| \leq m+\frac{1}{m^{3}}, m \leq|y| \leq m+\frac{1}{m^{3}}, m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial f_{m}}{\partial y^{4}}\right| d x d y d
$$

$$
(c) . \int_{\mathcal{R}^{3}}\left|\frac{\partial f_{m}}{\partial z^{14}}\right| d x d y d z=\int_{W_{m+\frac{1}{m^{3}}}}\left|\frac{\partial f_{m}}{\partial z^{14}}\right| d x d y d z
$$

$$
=\int_{|x| \leq m,|y| \leq m,|z| \leq m}\left|\frac{\partial f_{m}}{\partial z^{4}}\right| d x d y d z+\int_{m \leq|x| \leq m+\frac{1}{m^{3}},|y| \leq m,|z| \leq m}\left|\frac{\partial f_{m}}{\partial z^{4}}\right| d x d y d z
$$

$$
+\int_{|x| \leq m, m \leq|y| \leq m+\frac{1}{m^{3}},|z| \leq m}\left|\frac{\partial f_{m}}{\partial z^{14}}\right| d x d y d z+\int_{m \leq|x| \leq m+\frac{1}{m^{3}}, m \leq|y| \leq m+\frac{1}{m^{3}},|z| \leq m}\left|\frac{\partial f_{m}}{\partial z^{14}}\right| d x d y d z
$$

$$
+\int_{|x| \leq m,|y| \leq m, m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial f_{m}}{\partial z^{4}}\right| d x d y d z+\int_{m \leq|x| \leq m+\frac{1}{m^{3}},|y| \leq m, m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial f_{m}}{\partial z^{4}}\right| d x d y d z
$$

$$
\begin{equation*}
+\int_{|x| \leq m, m \leq|y| \leq m+\frac{1}{m^{3}}, m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial f_{m}}{\partial z^{44}}\right| d x d y d z+\int_{m \leq|x| \leq m+\frac{1}{m^{3}}, m \leq|y| \leq m+\frac{1}{m^{3}}, m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial f_{m}}{\partial z^{14}}\right| d x d y d \tag{*}
\end{equation*}
$$

We then have the following cases, using the second clause in Lemma 0.8 repeatedly with the appropriate orientations;

Case 1;
$\int_{|x| \leq m,|y| \leq m,|z| \leq m}\left|\frac{\partial^{14} f_{m}}{\partial x^{14}}\right| d x d y d z$
$=\int_{|x| \leq m,|y| \leq m,|z| \leq m}\left|\frac{\partial^{14} f}{\partial x^{14}}\right| d x d y d z \leq F m^{3}$
$\int_{|x| \leq m,|y| \leq m,|z| \leq m}\left|\frac{\partial^{14} f_{m}}{\partial y^{14}}\right| d x d y d z$
$=\int_{|x| \leq m,|y| \leq m,|z| \leq m}\left|\frac{\partial^{14} f}{\partial y^{14}}\right| d x d y d z \leq F m^{3}$
$\int_{|x| \leq m,|y| \leq m,|z| \leq m}\left|\frac{\partial^{14} f_{m}}{\partial z^{14}}\right| d x d y d z$
$=\int_{|x| \leq m,|y| \leq m,|z| \leq m}\left|\frac{\partial^{14} f}{\partial z^{14}}\right| d x d y d z \leq F m^{3}$

Case 2;

$$
\begin{aligned}
& \int_{m \leq|x| \leq m+\frac{1}{m^{3}}},|y| \leq m,|z| \leq m \\
& =\int_{|y| \leq m,|z| \leq m}\left(\left.\int_{m \leq|x| \leq m+\frac{1}{m^{3}}} \frac{\partial^{14} f_{m}}{\partial x^{14}} \right\rvert\, d x d y d z\right. \\
& =\int_{|y| \leq m,|z| \leq m}\left(\left|\frac{\partial^{14} f_{m}}{\partial x^{14}}\right| d x\right) d y d z \\
& \leq 2(2 m)^{2} F \\
& =8 m^{2} F
\end{aligned}
$$

Case 3;

$$
\begin{aligned}
& \int_{m \leq|x| \leq m+\frac{1}{m^{3}},|y| \leq m,|z| \leq m}\left|\frac{\partial^{14} f_{m}}{\partial y^{14}}\right| d x d y d z \\
& =\int_{|y| \leq m,|z| \leq m}\left(\int_{m \leq|x| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial^{14} f_{m}}{\partial y^{14}}\right| d x\right) d y d z \\
& \leq \frac{1}{m^{3}} \int_{|y| \leq m,|z| \leq m}\left(\left|\sum_{i=0}^{13} D_{i}\right| \frac{\partial^{i} 1^{14} f}{\partial y^{14} \partial x^{i}}\left|(m, y, z)+\left|\sum_{i=0}^{13} D_{i}\right| \frac{\partial^{i} \partial^{14} f}{\partial y^{14} \partial x^{i}}\right|(-m, y, z)\right) d y d z \\
& \leq \frac{2}{m^{3}}(2 m)^{2} F\left(\sum_{i=0}^{13} D_{i}\right) \\
& =\frac{8 F\left(\sum_{i=0}^{13} D_{i}\right)}{m}
\end{aligned}
$$

Case 4;

$$
\begin{aligned}
& \int_{m \leq|x| \leq m+\frac{1}{m^{3}},|y| \leq m,|z| \leq m}\left|\frac{\partial^{14} f_{m}}{\partial z^{14}}\right| d x d y d z \\
& =\int_{|y| \leq m,|z| \leq m}\left(\int_{m \leq|x| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial^{14} f_{m}}{\partial z^{14}}\right| d x\right) d y d z \\
& \leq \frac{1}{m^{3}} \int_{|y| \leq m,|z| \leq m}\left(\left|\sum_{i=0}^{13} D_{i}\right| \frac{\partial^{i} \partial^{14} f}{\partial z^{14} \partial x^{i}}\left|(m, y, z)+\left|\sum_{i=0}^{13} D_{i}\right| \frac{\partial^{i} \partial^{14} f}{\partial z^{14} \partial x^{i}}\right|(-m, y, z)\right) d y d z \\
& \leq \frac{2}{m^{3}}(2 m)^{2} F\left(\sum_{i=0}^{13} D_{i}\right) \\
& =\frac{8 F\left(\sum_{i=0}^{13} D_{i}\right)}{m}
\end{aligned}
$$

Case 5.
$\int_{|x| \leq m, m \leq|y| \leq m+\frac{1}{m^{3}},|z| \leq m}\left|\frac{\partial^{14} f_{m}}{\partial x^{14}}\right| d x d y d z$

$$
\begin{aligned}
& =\int_{|x| \leq m,|z| \leq m}\left(\int_{|y| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial^{14} f_{m}}{\partial x^{14}}\right| d y\right) d x d z \\
& \leq \frac{2}{m^{3}} \int_{|x| \leq m,|z| \leq m} C_{14} d x \\
& =(2 m)^{2} \frac{2}{m^{3}} C_{14,0} \\
& =\frac{8 C_{14,0}}{m}
\end{aligned}
$$

Csse 6.
$\int_{|x| \leq m, m \leq|y| \leq m+\frac{1}{m^{3}},|z| \leq m}\left|\frac{\partial^{14} f_{m}}{\partial z^{14}}\right| d x d y d z$
$=\int_{|x| \leq m,|z| \leq m}\left(\int_{|y| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial^{14} f_{m}}{\partial z^{14}}\right| d y\right) d x d z$
$\leq \frac{2}{m^{3}} \int_{|x| \leq m,|z| \leq m} C_{0,14} d x$
$=(2 m)^{2} \frac{2}{m^{3}} C_{0,14}$
$=\frac{8 C_{0,14}}{m}$

Case 7.

$\int_{|x| \leq m, m \leq|y| \leq m+\frac{1}{m^{3}},|z| \leq m}\left|\frac{\partial^{14} f_{m}}{\partial y^{14}}\right| d x d y d z$
$=\int_{|x| \leq m,|z| \leq m}\left(\int_{m \leq|y| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial^{14} f_{m}}{\partial y^{14}}\right| d y\right) d x d z$
$\left.=\int_{|x| \leq m,|z| \leq m}\left(\left|\frac{\partial f}{\partial y^{13}}\right|_{(x, m, z)}+\left|\frac{\partial f}{\partial y^{13}}\right|_{(x,-m, z)}\right) d x d z\right)$
$\leq 2(2 m)^{2} F$
$=8 m^{2} F$

Case 8.

$$
\begin{aligned}
& \int_{m \leq|x| \leq m+\frac{1}{m^{3}}, m \leq|y| \leq m+\frac{1}{m^{3}},|z| \leq m}\left|\frac{\partial^{14} f_{m}}{\partial x^{14}}\right| d x d y d z \\
& =\int_{m \leq|x| \leq m+\frac{1}{m^{3}}},|z| \leq m \\
& \left.\leq \frac{1}{m \leq|y| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial^{14} f_{m}}{\partial x^{14}}\right| d y\right) d x d z \\
& \leq \frac{1}{m^{3}} \int_{m \leq|x| \leq m+\frac{1}{m^{3}},|z| \leq m}\left(\sum_{i=0}^{13} L_{i, 14}\left|\frac{\partial^{i+14} \partial^{14} f_{m}}{\partial y^{2} \partial x^{14}}\right|_{(x, m, z)}+L_{i, 14}\left|\frac{\partial^{i+14} \partial^{14} f_{m}}{\partial y^{2} \partial x^{14}}\right|_{(x,-m, z)}\right) d x d z
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{m^{3}} \int_{|z| \leq m}\left(\sum _ { i = 0 } ^ { 1 3 } L _ { i , 1 4 } \left(\left.\left|\frac{\partial^{i+13} \partial^{14} f}{\partial y^{i} \partial x^{13}}\right|_{(m, m, z)}\left|+\left|\frac{\partial^{i+13} \partial^{14} f}{\partial y^{i} \partial x^{13}}\right|_{(m,-m, z)}\right|+\left|\frac{\partial^{i+13} \partial^{14} f}{\partial y^{i} \partial x^{13}}\right|_{(-m, m, z)} \right\rvert\,\right.\right. \\
& \left.\left.\left.+\left|\frac{\partial^{i+13} \partial^{14} f}{\partial y^{i} \partial x^{13}}\right|_{(-m,-m, z)} \right\rvert\,\right)\right) d z \\
& \leq(2 m) \frac{4 F\left(\sum_{i=0}^{13} L_{i, 14}\right)}{m^{3}} \\
& =\frac{8 F\left(\sum_{i=0}^{13} L_{i, 14}\right)}{m^{2}}
\end{aligned}
$$

(the constants $L_{i, 14}, 0 \leq i \leq 13$ coming from the proof of Lemma 0.7)
Case 9.

$$
\begin{aligned}
& \int_{m \leq|x| \leq m+\frac{1}{m^{3}}, m \leq|y| \leq m+\frac{1}{m^{3}},|z| \leq m}\left|\frac{\partial^{14} f_{m}}{\partial y^{14}}\right| d x d y d z \\
& =\int_{m \leq|x| \leq m+\frac{1}{m^{3}},|z| \leq m}\left(\int_{m \leq|y| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial^{14} f_{m}}{\partial y^{14}}\right| d y\right) d x d z \\
& =\int_{m \leq|x| \leq m+\frac{1}{m^{3}},|z| \leq m}\left(\left|\frac{\partial^{13} f_{m}}{\partial y^{13}}\right|_{(x, m, z)}+\left|\frac{\partial^{13} f_{m}}{\partial y^{13}}\right|_{(x,-m, z)}\right) d x d z \\
& \leq \frac{1}{m^{3}}\left(\int_{|z| \leq m} C_{13,1} d z+\int_{|z| \leq m} C_{13,2} d z\right) \\
& \leq(2 m) \frac{\max \left(C_{13,1}, C_{13,2)}\right.}{m^{3}} \\
& =\frac{2 \max \left(C_{13,1}, C_{13,2)}\right.}{m^{2}}
\end{aligned}
$$

(the constants $\left\{C_{13,1}, C_{13,2}\right\}$ coming from the two applications of Lemma 0.7 at the two boundaries)

Case 10.

$$
\begin{aligned}
& \int_{m \leq|x| \leq m+\frac{1}{m^{3}}, m \leq|y| \leq m+\frac{1}{m^{3}},|z| \leq m}\left|\frac{\partial^{14} f_{m}}{\partial z^{14}}\right| d x d y d z \\
& =\int_{m \leq|x| \leq m+\frac{1}{m^{3}},|z| \leq m}\left(\int_{m \leq|y| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial^{14} f_{m}}{\partial z^{14}}\right| d y\right) d x d z \\
& \leq \frac{1}{m^{3}} \int_{m \leq|x| \leq m+\frac{1}{m^{3}},|z| \leq m}\left(\sum_{i=0}^{13} L_{i, 14}\left|\frac{\partial^{i+14} f_{m}}{\partial y^{2} \partial z^{14}}\right|_{(x, m, z)}+L_{i, 14}\left|\frac{\partial^{i+14} f_{m}}{\partial y^{2} \partial z^{14}}\right|_{(x,-m, z)}\right) d x d z \\
& \leq \frac{1}{m^{6}} \int_{|z| \leq m}\left(\sum _ { i = 0 } ^ { 1 3 } \sum _ { j = 0 } ^ { 1 3 } L _ { i , 1 4 } L _ { j , i , 1 4 } \left(\left|\frac{\partial^{i+j+14} f}{\partial x^{j} \partial y^{i} \partial z^{14}}\right|_{(m, m, z)}\left|+\left|\frac{\partial^{i+j+14} f}{\partial x^{j} \partial y^{i} \partial z^{14}}\right|_{(m,-m, z)}\right|\right.\right. \\
& \left.\left.+\left|\frac{\partial^{i+j+14} f}{\partial x^{j} \partial y^{i} \partial z^{14}}\right|_{(-m, m, z)}\left|+\left|\frac{\partial^{i+j+14} f}{\partial x^{j} \partial y^{i} \partial z^{14}}\right|_{(-m,-m, z)}\right|\right)\right) d z \\
& \leq(2 m) \frac{4 F\left(\sum_{i=0}^{13} \sum_{j=0}^{13} L_{i, 14} L_{j, i, 14}\right)}{m^{6}}
\end{aligned}
$$

$=\frac{8 F\left(\sum_{i=0}^{13} \sum_{j=0}^{13} L_{i, 14} L_{j, i, 14}\right)}{m^{5}}$
(the constants $L_{i, 14}, L_{j, i, 14}, 0 \leq i \leq 13,0 \leq j \leq 13$ coming from two applications of the proof of Lemma 0.8)

Case 11.

$$
\begin{aligned}
& \int_{|x| \leq m,|y| \leq m, m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial f_{m}}{\partial x^{14}}\right| d x d y d z \\
& =\int_{|x| \leq m,|y| \leq m}\left(\int_{m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial f_{m}}{\partial x^{14}}\right| d z\right) d x d y \\
& \leq \frac{2}{m^{3}} \int_{|x| \leq m,|y| \leq m}\left(E_{14,0}\right) \\
& =(2 m)^{2} \frac{2}{m^{3}} E_{14,0} \\
& =\frac{8 E_{14,0}}{m}
\end{aligned}
$$

Case 12.

$$
\begin{aligned}
& \int_{|x| \leq m,|y| \leq m, m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial f_{m}}{\partial y^{14}}\right| d x d y d z \\
& =\int_{|x| \leq m,|y| \leq m}\left(\int_{m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial f_{m}}{\partial y^{4}}\right| d z\right) d x d y \\
& \leq \frac{2}{m^{3}} \int_{|x| \leq m,|y| \leq m}\left(E_{0,14}\right) \\
& =(2 m)^{2} \frac{2}{m^{3}} E_{0,14} \\
& =\frac{8 E_{0,14}}{m}
\end{aligned}
$$

(the constants $E_{0,14}, E_{14,0}$ coming from an application of Lemma 0.8 with a different orientation)

Case 13.
$\int_{|x| \leq m,|y| \leq m, m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial f_{m}}{\partial z^{14}}\right| d x d y d z$
$=\int_{|x| \leq m,|y| \leq m}\left(\int_{m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial f_{m}}{\partial z^{14}}\right| d z\right) d x d y$
$=\int_{|x| \leq m,|y| \leq m}\left(\left|\frac{\partial f}{\partial z^{13}}\right|(x, y, m)+\left|\frac{\partial f}{\partial z^{13}}\right|(x, y, m)\right) d x d y$
$\leq 2(2 m)^{2} F$
$=8 m^{2} F$
Case 14.

$$
\begin{aligned}
& \int_{m \leq|x| \leq m+\frac{1}{m^{3}}},|y| \leq m, m \leq|z| \leq m+\frac{1}{m^{3}}\left|\frac{\partial^{14} f_{m}}{\partial x^{14}}\right| d x d y d z \\
& =\int_{m \leq|x| \leq m+\frac{1}{m^{3}}},|y| \leq m \\
& \leq \frac{1}{m^{3}} \int_{m \leq|x| \leq m+\frac{1}{m^{3}},|y| \leq m}\left(\sum_{i=0}^{13} L_{i, 14}\left|\frac{\partial^{i+14} f_{m}}{\partial z^{i} \partial x^{14}}\right|(x, y, m)+L_{i, 14}\left|\frac{\partial^{i+14} f_{m}}{\partial z^{i} \partial x^{14}}\right|(x, y,-m)\right) d x d y \\
& =\frac{1}{m^{3}} \int_{|y| \leq m}\left(\int _ { m \leq | x | \leq m + \frac { 1 } { m ^ { 3 } } } \left(\sum_{i=0}^{13} L_{i, 14}\left(\left|\frac{\partial^{i+14} f_{m}}{\partial z^{i} \partial x^{14}}\right|(x, y, m)+L_{i, 14}\left(\left|\frac{\partial^{i+14} f_{m}}{\partial z^{i} \partial x^{14}}\right|(x, y,-m)\right) d x\right) d y\right.\right. \\
& =\frac{1}{m^{3}} \int_{|y| \leq m}\left(\sum_{i=0}^{13} L_{i, 14}\left|\frac{\partial^{i+13} f}{\partial z^{i} \partial x^{13}}\right|(m, y, m)+\sum_{i=0}^{13} L_{i, 14}\left|\frac{\partial^{i+13} f}{\partial z^{i} \partial x^{13}}\right|(-m, y, m)\right. \\
& \left.+\sum_{i=0}^{13} L_{i, 14}\left|\frac{\partial^{i+13} f}{\partial z^{i} \partial x^{13}}\right|(m, y, m)+\sum_{i=0}^{13} L_{i, 14}\left|\frac{\partial^{i+13} f}{\partial z^{i} \partial x^{13}}\right|(-m, y,-m)\right) d y \\
& \leq(2 m) \frac{1}{m^{3}}(4 F)\left(\sum_{i=0}^{13} L_{i, 14}\right) \\
& =\frac{8 F\left(\sum_{i=0}^{13} L_{i, 14}\right)}{m^{2}}
\end{aligned}
$$

Case 15.

$$
\begin{aligned}
& \int_{m \leq|x| \leq m+\frac{1}{m^{3}},|y| \leq m, m \leq|z| \leq m+\frac{1}{m^{3}}\left|\frac{\partial^{14} f_{m}}{\partial y^{14}}\right| d x d y d z}=\int_{m \leq|x| \leq m+\frac{1}{m},|y| \leq m}\left(\int_{m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial^{14} f_{m}}{\partial y^{14}}\right| d z\right) d x d y \\
& \leq \frac{1}{m^{3}} \int_{m \leq|x| \leq m+\frac{1}{m^{3}},|y| \leq m}\left(\sum_{i=0}^{13} L_{i, 14}\left|\frac{\partial^{i+14} f_{m}}{\partial z^{i} \partial y^{14}}\right|(x, y, m)+L_{i, 14}\left|\frac{\partial^{i+14} f_{m}}{\partial y^{i} \partial x^{14}}\right|(x, y,-m)\right) d x d y \\
& =\frac{1}{m^{3}} \int_{|y| \leq m}\left(\int _ { m \leq | x | \leq m + \frac { 1 } { m ^ { 3 } } } \left(\sum_{i=0}^{13} L_{i, 14}\left(\left|\frac{\partial^{i+14} f_{m}}{\partial z^{i} \partial y^{14}}\right|(x, y, m)+L_{i, 14}\left(\left|\frac{\partial^{i+14} f_{m}}{\partial z^{i} \partial y^{14}}\right|(x, y,-m)\right) d x\right) d y\right.\right. \\
& \leq \frac{1}{m^{6}} \int_{|y| \leq m}\left(\sum_{i=0}^{13} \sum_{j=0}^{13} L_{i, 14} L_{i, j, 14}\left|\frac{\partial^{i+j+14}}{\partial x^{j} \partial z^{i} \partial y^{14}}\right|(m, y, m)\right. \\
& +\sum_{i=0}^{13} \sum_{j=0}^{13} L_{i, 14} L_{i, j, 14}\left|\frac{\partial^{i+j+14}}{\partial x^{j} \partial z^{i} \partial y^{14}}\right|(-m, y, m) \\
& +\sum_{i=0}^{13} \sum_{j=0}^{13} L_{i, 14} L_{i, j, 14}\left|\frac{\partial^{i+j+14}}{\partial x^{j} \partial z^{i} \partial y^{14}}\right|(m, y,-m) \\
& \left.+\sum_{i=0}^{13} \sum_{j=0}^{13} L_{i, 14} L_{i, j, 14}\left|\frac{\partial^{i+j+14} f}{\partial x^{j} \partial z^{i} \partial y^{14}}\right|(-m, y,-m)\right) d y \\
& \leq(2 m) \frac{1}{m^{6}}(4 F)\left(\sum_{i=0}^{13} \sum_{j=0}^{13} L_{i, 14} L_{i, j, 14}\right)
\end{aligned}
$$

$$
=\frac{8 F\left(\sum_{i=0}^{13} \sum_{j=0}^{13} L_{i, 14} L_{i, j, 14}\right)}{m^{5}}
$$

Case 16.

$$
\begin{aligned}
& \int_{m \leq|x| \leq m+\frac{1}{m^{3}},|y| \leq m, m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial^{14} f_{m}}{\partial z^{14}}\right| d x d y d z \\
& =\int_{m \leq|x| \leq m+\frac{1}{m^{3}},|y| \leq m}\left(\int_{m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial^{14} f_{m}}{\partial z^{14}}\right| d z\right) d x d y \\
& =\int_{m \leq|x| \leq m+\frac{1}{m^{3}},|y| \leq m}\left(\left|\frac{\partial^{13} f_{m}}{\partial z^{13}}\right|(x, y, m)+\left|\frac{\partial^{13} f_{m}}{\partial z^{13}}\right|(x, y,-m)\right) d x d y \\
& =\int_{|y| \leq m}\left(\int_{m \leq|x| \leq m+\frac{1}{m^{3}}}\left(\left|\frac{\partial^{13} f_{m}}{\partial z^{13}}\right|(x, y, m)+\left|\frac{\partial^{13} f_{m}}{\partial z^{13}}\right|(x, y,-m)\right) d x\right) d y \\
& \leq \frac{1}{m^{3}} \int_{|y| \leq m}\left(\sum_{i=0}^{13} L_{i, 13}\left|\frac{\partial^{i+13} f}{\partial x^{i} \partial z^{13}}\right|(m, y, m)+\sum_{i=0}^{13} L_{i, 13}\left|\frac{\partial^{i+13} f}{\partial x^{i} \partial z^{13}}\right|(-m, y, m)\right. \\
& \left.+\sum_{i=0}^{13} L_{i, 13}\left|\frac{\partial^{i+13} f}{\partial x^{i} \partial z^{13}}\right|(m, y,-m)+\sum_{i=0}^{13} L_{i, 13}\left|\frac{\partial^{i+13} f}{\partial x^{i} \partial z^{13}}\right|(-m, y,-m)\right) \\
& \leq(2 m) \frac{1}{m^{3}}(4 F)\left(\sum_{i=0}^{13} L_{i, 13}\right) \\
& =\frac{8 F\left(\sum_{i=0}^{13} L_{i, 13}\right)}{m^{2}}
\end{aligned}
$$

Cases 17-19 are similar to cases 14-16, interchanging the orders of integration, with case 17 corresponding to case 15 , case 18 corresponding to case 14 and case 19 corresponding to case 16 , so that;

Case 17.

$$
\begin{aligned}
& \int_{|x| \leq m, m \leq|y| \leq m+\frac{1}{m^{3}}, m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial^{14} f_{m}}{\partial x^{14}}\right| d x d y d z \\
& \leq \frac{8 F\left(\sum_{i=0}^{13} \sum_{j=0}^{13} L_{i, 14} L_{i, j, 14}\right)}{m^{5}}
\end{aligned}
$$

Case 18.

$$
\begin{aligned}
& \int_{|x| \leq m, m \leq|y| \leq m+\frac{1}{m^{3}}, m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial^{14} f_{m}}{\partial y^{14}}\right| d x d y d z \\
& \leq \frac{8 F\left(\sum_{i=0}^{13} L_{i, 14}\right)}{m^{2}}
\end{aligned}
$$

Case 19.

$$
\int_{|x| \leq m, m \leq|y| \leq m+\frac{1}{m^{3}}, m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial^{14} f_{m}}{\partial z^{14}}\right| d x d y d z
$$

$$
\leq \frac{8 F\left(\sum_{i=0}^{13} L_{i, 13}\right)}{m^{2}}
$$

Case 20.

$$
\begin{aligned}
& =\int_{m \leq|x| \leq m+\frac{1}{m^{3}}, m \leq|y| \leq m+\frac{1}{m^{3}}}\left(\int_{m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial^{14} f_{m}}{\partial x^{14}}\right| d z\right) d x d y \\
& \leq \frac{1}{m^{3}} \int_{m \leq|x| \leq m+\frac{1}{m^{3}}, m \leq|y| \leq m+\frac{1}{m^{3}}}\left(\sum_{i=0}^{13} L_{i, 14}\left|\frac{\partial^{i+14} f_{m}}{\partial z^{i} \partial x^{14}}\right|(x, y, m)+\sum_{i=0}^{13} L_{i, 14}\left|\frac{\partial^{i+14} f_{m}}{\partial z^{i} \partial x^{14}}\right|(x, y,-m)\right) d x d y \\
& =\frac{1}{m^{3}} \int_{m \leq|x| \leq m+\frac{1}{m^{3}}}\left(\int _ { m \leq | y | \leq m + \frac { 1 } { m ^ { 3 } } } \left(\sum _ { i = 0 } ^ { 1 3 } L _ { i , 1 4 } \left(\left|\frac{\partial^{i+14} f_{m}}{\partial z^{i} \partial x^{14}}\right|(x, y, m)\right.\right.\right. \\
& \left.+\sum_{i=0}^{13} L_{i, 14}\left(\left|\frac{\partial^{i+14} f_{m}}{\partial z^{i} \partial x^{14}}\right|(x, y,-m)\right) d y\right) d x \\
& \leq \frac{1}{m^{6}} \int_{m \leq|x| \leq m+\frac{1}{m^{3}}}\left(\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 14} L_{i, j, 14}\left|\frac{\partial^{i+j+14} f_{m}}{\partial y^{j} \partial z^{i} \partial x^{14}}\right|(x, m, m)\right. \\
& +\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 14} L_{i, j, 14}\left|\frac{\partial^{i+j+14} f_{m}}{\partial y^{j} \partial z^{i} \partial x^{14}}\right|(x,-m, m) \\
& +\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 14} L_{i, j, 14}\left|\frac{\partial^{i+j+14} f_{m}}{\partial y^{j} \partial z^{i} \partial x^{14}}\right|(x, m,-m) \\
& \left.+\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 14} L_{i, j, 14}\left|\frac{\partial^{i+j+14} f_{m}}{\partial y^{j} \partial z^{i} \partial x^{14}}\right|(x,-m,-m)\right) d x \\
& =\frac{1}{m^{6}}\left(\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 14} L_{i, j, 14}\left|\frac{\partial^{i+j+13} f}{\partial y^{j} \partial z^{i} \partial x^{13}}\right|(m, m, m)+\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 14} L_{i, j, 14}\left|\frac{\partial^{i+j+13} f}{\partial y^{j} \partial z^{i} \partial x^{13}}\right|(-m, m, m)\right. \\
& +\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 14} L_{i, j, 14}\left|\frac{\partial^{i+j+13} f}{\partial y^{j} \partial z^{i} \partial x^{13}}\right|(m,-m, m)+\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 14} L_{i, j, 14}\left|\frac{\partial^{i+j+13} f}{\partial y^{j} \partial z^{i} \partial x^{13}}\right|(-m,-m, m) \\
& +\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 14} L_{i, j, 14}\left|\frac{\partial^{i+j+13} f}{\partial y^{j} \partial z^{i} \partial x^{13}}\right|(m, m,-m)+\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 14} L_{i, j, 14}\left|\frac{\partial^{i+j+13} f}{\partial y^{j} \partial z^{i} \partial x^{13}}\right|(-m, m,-m) \\
& +\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 14} L_{i, j, 14}\left|\frac{\partial^{i+j+13} f}{\partial y^{j} \partial z^{i} \partial x^{13}}\right|(m,-m,-m) \\
& \left.+\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 14} L_{i, j, 14}\left|\frac{\partial^{i+j+13} f}{\partial y^{j} \partial z^{i} \partial x^{13}}\right|(-m,-m,-m)\right) \\
& \leq \frac{8 F}{m^{6}}\left(\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 14} L_{i, j, 14}\right)
\end{aligned}
$$

Case 21.

$\int_{m \leq|x| \leq m+\frac{1}{m^{3}}, m \leq|y| \leq m+\frac{1}{m^{3}}, m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial^{14} f_{m}}{\partial y^{4}}\right| d x d y d z$
$=\int_{m \leq|x| \leq m+\frac{1}{m^{3}}, m \leq|y| \leq m+\frac{1}{m^{3}}}\left(\int_{m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial^{14} f_{m}}{\partial y^{14}}\right| d z\right) d x d y$

$$
\begin{aligned}
& \leq \frac{1}{m^{3}} \int_{m \leq|x| \leq m+\frac{1}{m^{3}}, m \leq|y| \leq m+\frac{1}{m^{3}}}\left(\sum_{i=0}^{13} L_{i, 14}\left|\frac{\partial^{i+14} f_{m}}{\partial z^{i} \partial y^{14}}\right|(x, y, m)+\sum_{i=0}^{13} L_{i, 14}\left|\frac{\partial^{i+14} f_{m}}{\partial z^{i} \partial y^{14}}\right|(x, y,-m)\right) d x d y \\
& =\frac{1}{m^{3}} \int_{|x| \leq m+\frac{1}{m^{3}}}\left(\int _ { m \leq | y | \leq m + \frac { 1 } { m ^ { 3 } } } \left(\sum_{i=0}^{13} L_{i, 14}\left(| | \frac{\partial^{i+14} f_{m}}{\partial z^{i} \partial y^{14}} \left\lvert\,(x, y, m)+\sum_{i=0}^{13} L_{i, 14}\left(\left|\frac{\partial^{i+14} f_{m}}{\partial z^{i} \partial y^{14}}\right|(x, y,-m)\right) d y\right.\right) d\right.\right. \\
& =\frac{1}{m^{3}} \int_{m \leq|x| \leq m+\frac{1}{m^{3}}}\left(\sum_{i=0}^{13} L_{i, 14}\left|\frac{\partial^{i+13} f_{m}}{\partial z^{i} \partial y^{13}}\right|(x, m, m)\right. \\
& +\sum_{i=0}^{13} L_{i, 14}\left|\frac{\partial^{i+13} f_{m}}{\partial z^{i} \partial y^{13}}\right|(x,-m, m) \\
& +\sum_{i=0}^{13} L_{i, 14}\left|\frac{\partial^{i+13} f_{m}}{\partial z^{i} \partial y^{13}}\right|(x, m,-m) \\
& \left.+\sum_{i=0}^{13} L_{i, 14}\left|\frac{\partial^{i+13} f_{m}}{\partial z^{i} \partial y^{13}}\right|(x,-m,-m)\right) d x \\
& \leq \frac{1}{m^{6}}\left(\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 14} L_{i, j, 13}\left|\frac{\partial^{i+j+13} f}{\partial x^{j} \partial z^{i} \partial y^{13}}\right|(m, m, m)+\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 14} L_{i, j, 13}\left|\frac{\partial^{i+j+13} f}{\partial x^{j} \partial z^{i} \partial y^{13}}\right|(-m, m, m)\right. \\
& +\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 14} L_{i, j, 13}\left|\frac{\partial^{i+j+13} f}{\partial x^{j} \partial z^{i} \partial y^{13}}\right|(m,-m, m)+\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 14} L_{i, j, 13}\left|\frac{\partial^{i+j+13} f}{\partial x^{j} \partial z^{i} \partial y^{13}}\right|(-m,-m, m) \\
& +\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 14} L_{i, j, 13}\left|\frac{\partial^{i+j+13} f}{\partial x^{j} \partial z^{i} \partial y^{13}}\right|(m, m,-m)+\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 14} L_{i, j, 13}\left|\frac{\partial^{i+j+13} f}{\partial x^{j} \partial z^{i} \partial y^{13}}\right|(-m, m,-m) \\
& +\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 14} L_{i, j, 13}\left|\frac{\partial^{i+j+13} f}{\partial x^{j} \partial z^{i} \partial y^{13}}\right|(m,-m,-m) \\
& \left.+\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 14} L_{i, j, 13}\left|\frac{\partial^{i+j+13} f}{\partial x^{j} \partial z^{i} \partial y^{13}}\right|(-m,-m,-m)\right) \\
& \leq \frac{8 F\left(\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 14} L_{i, j, 13}\right)}{m^{6}}
\end{aligned}
$$

Case 22.

$$
\begin{aligned}
& \int_{m \leq|x| \leq m+\frac{1}{m^{3}}, m \leq|y| \leq m+\frac{1}{m^{3}}, m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial^{14} f_{m}}{\partial z^{14}}\right| d x d y d z \\
& =\int_{m \leq|x| \leq m+\frac{1}{m^{3}}, m \leq|y| \leq m+\frac{1}{m^{3}}}\left(\int_{m \leq|z| \leq m+\frac{1}{m^{3}}}\left|\frac{\partial^{14} f_{m}}{\partial z^{14}}\right| d z\right) d x d y \\
& =\int_{m \leq|x| \leq m+\frac{1}{m^{3}}, m \leq|y| \leq m+\frac{1}{m^{3}}}\left(\left|\frac{\partial^{13} f_{m}}{\partial z^{13}}\right|(x, y, m)+\left|\frac{\partial^{13} f_{m}}{\partial z^{13}}\right|(x, y,-m)\right) d x d y \\
& =\int_{m \leq|x| \leq m+\frac{1}{m^{3}}}\left(\int_{m \leq|y| \leq m+\frac{1}{m^{3}}}\left(\left(\left|\frac{\partial^{13} f_{m}}{\partial z^{13}}\right|(x, y, m)+\left|\frac{\partial^{13} f_{m}}{\partial z^{13}}\right|(x, y,-m)\right) d y\right) d x\right. \\
& \leq \frac{1}{m^{3}} \int_{|x| \leq m+\frac{1}{m^{3}}}\left(\sum_{i=0}^{13} L_{i, 13}\left|\frac{\partial^{i+13} f_{m}}{\partial y^{i} \partial z^{13}}\right|(x, m, m)\right. \\
& +\sum_{i=0}^{13} L_{i, 13}\left|\frac{\partial^{i+13} f_{m}}{\partial y^{i} \partial z^{13}}\right|(x,-m, m) \\
& +\sum_{i=0}^{13} L_{i, 13}\left|\frac{\partial^{i+13} f_{m}}{\partial y^{i} \partial z^{13}}\right|(x, m,-m)
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\sum_{i=0}^{13} L_{i, 13}\left|\frac{\partial^{i+13} f m}{\partial y^{i} \partial z^{13}}\right|(x,-m,-m)\right) d x \\
& \leq \frac{1}{m^{6}}\left(\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 13} L_{i, j, 13}\left|\frac{\partial^{i+j+13} f}{\partial x^{j} \partial y^{i} \partial z^{13}}\right|(m, m, m)+\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 13} L_{i, j, 13}\left|\frac{\partial^{i+j+13} f}{\partial x^{j} \partial y^{i} \partial z^{13}}\right|(-m, m, m)\right. \\
& +\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 13} L_{i, j, 13}\left|\frac{\partial^{i+j+13} f}{\partial x^{j} \partial y^{i} \partial z^{13}}\right|(m,-m, m)+\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 13} L_{i, j, 13}\left|\frac{\partial^{i+j+13} f}{\partial x^{j} \partial y^{i} \partial z^{13}}\right|(-m,-m, m) \\
& +\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 13} L_{i, j, 13}\left|\frac{\partial^{i+j+13} f}{\partial x^{j} \partial y^{i} \partial z^{13}}\right|(m, m,-m)+\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 13} L_{i, j, 13}\left|\frac{\partial^{i+j+13} f}{\partial x^{j} \partial y^{i} \partial z^{13}}\right|(-m, m,-m) \\
& +\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 13} L_{i, j, 13}\left|\frac{\partial^{i+j+13} f}{\partial x^{j} \partial y^{i} \partial z^{13}}\right|(m,-m,-m) \\
& \left.+\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 13} L_{i, j, 13}\left|\frac{\partial^{i j+13} f}{\partial x^{j} \partial y^{i} \partial z^{13}}\right|(-m,-m,-m)\right) \\
& \leq \frac{8 F\left(\sum_{j=0}^{13} \sum_{i=0}^{13} L_{i, 13} L_{i, j, 13}\right.}{m^{6}}
\end{aligned}
$$

It is then clear from $(*)$, summing the bounds from the individual cases 1-19, as at the end of the proof of Lemma 0.9, that there exists a constant $G \in \mathcal{R}_{>0}$ with;

$$
\max \left(\int_{\mathcal{R}^{3}}\left|\frac{\partial f_{m}}{\partial x^{14}}\right| d x d y d z, \int_{\mathcal{R}^{3}}\left|\frac{\partial f_{m}}{\partial y^{14}}\right| d x d y d z, \int_{\mathcal{R}^{3}}\left|\frac{\partial f_{m}}{\partial z^{14}}\right| d x d y d z\right) \leq G m^{3}
$$

for sufficiently large m.

Lemma 0.11. Let $\left\{f_{m}: m \in \mathcal{N}\right\}$ be the inflexionary sequence constructed in Lemma 0.10, then for $\bar{k} \in \mathcal{R}^{3}, \bar{k} \neq \overline{0}$, sufficiently large m, we have that there exists $D \in \mathcal{R}_{>0}$, independent of m, with;

$$
\left|\mathcal{F}\left(f_{m}\right)(\bar{k})\right| \leq \frac{D m^{3}}{|\bar{k}|^{14}}
$$

Moreover, for sufficiently large $m, \mathcal{F}\left(f_{m}\right) \in L^{1}\left(\mathcal{R}^{3}\right)$.
A similar result holds for the inflexionary sequence $\left\{f_{m}: m \in \mathcal{N}\right\}$, constructed in Lemma 0.9, for $\bar{k} \neq 0$, sufficiently large m, we have that there exists $D \in \mathcal{R}_{>0}$, independent of m, with;

$$
\left|\mathcal{F}\left(f_{m}\right)(\bar{k})\right| \leq \frac{D m^{2}}{|\bar{k}|^{14}}
$$

Moreover, for sufficiently large $m, \mathcal{F}\left(f_{m}\right) \in L^{1}\left(\mathcal{R}^{3}\right)$.

Proof. For $\left(k_{1}, k_{2}, k_{3}\right) \in \mathcal{R}^{3}$, using repeated integration by parts, and the fact that;

$$
\begin{aligned}
& \left\{\frac{\partial f_{m}}{\partial x^{14}}, \frac{\partial f_{m}}{\partial y^{14}}, \frac{\partial f_{m}}{\partial z^{14}}\right\} \subset L^{1}\left(\mathcal{R}^{3}\right) \\
& \left\{\frac{\partial f_{m}}{\partial x^{i}}, \frac{\partial f_{m}}{\partial y^{i}}, \frac{\partial f_{m}}{\partial z^{i}}\right\} \subset C_{c}\left(\mathcal{R}^{3}\right), \text { for } 1 \leq i \leq 13
\end{aligned}
$$

where $C_{c}\left(\mathcal{R}^{3}\right)$ is the space of continuous functions with compact support, we have, for $m \in \mathcal{N}$;

$$
\begin{aligned}
& \mathcal{F}\left(\frac{\partial^{14} f_{m}}{\partial x^{14}}+\frac{\partial^{14} g}{\partial y^{14}}+\frac{\partial^{14} g}{\partial z^{14}}\right)(\bar{k}) \\
& =\frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(\frac{\partial^{14} f_{m}}{\partial x^{14}}+\frac{\partial^{14} f_{m}}{\partial y^{14}}+\frac{\partial^{14} f_{m}}{\partial z^{14}}\right) e^{-i k_{1} x} e^{-i k_{2} y} e^{-i k_{3} z} d x d y d z \\
& =\left(\left(i k_{1}\right)^{14}+\left(i k_{2}\right)^{14}+\left(i k_{3}\right)^{14}\right) \frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{m}(x, y, z) e^{-i k_{1} x} e^{-i k_{2} y} e^{-i k_{3} z} d x d y d z \\
& =\left(-k_{1}^{14}-k_{2}^{14}-k_{3}^{14}\right) \mathcal{F}\left(f_{m}\right)(\bar{k})
\end{aligned}
$$

so that, for $\bar{k} \neq \overline{0}$;

$$
\left|\mathcal{F}\left(f_{m}\right)(\bar{k})\right| \leq \frac{\left|\mathcal{F}\left(\frac{\partial^{14} f_{m}}{\partial x^{14}}+\frac{\partial^{14} f_{m}}{\partial y}{ }^{14}+\frac{\partial^{14} f_{m}}{\partial z)^{14}}\right)(\bar{k})\right|}{\left(k_{1}^{14}+k_{2}^{14}+k_{3}^{14}\right)}(\dagger)
$$

We have, using the result of Lemma 0.10, for sufficiently large m, that;

$$
\begin{aligned}
& \left|\mathcal{F}\left(\frac{\partial^{14} f_{m}}{\partial x^{14}}+\frac{\partial^{14} f_{m}}{\partial y^{14}}+\frac{\partial^{14} f_{m}}{\partial z^{14}}\right)(\bar{k})\right| \\
& \left.\frac{1}{(2 \pi)^{\frac{3}{2}}} \left\lvert\, \int_{\mathcal{R}^{3}} \frac{\partial^{14} f_{m}}{\partial x^{14}}+\frac{\partial^{14} f_{m}}{\partial y^{14}}+\frac{\partial^{14} f_{m}}{\partial z^{14}}\right.\right) e^{-i k_{1} x} e^{-i k_{2} y} e^{-i k_{3} z} d x d y d z \mid \\
& \leq \frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{\mathcal{R}^{3}}\left(\left|\frac{\partial f_{m}}{\partial x^{14}}\right|+\left|\frac{\partial f_{m}}{\partial y 1^{14}}\right|+\left|\frac{\partial f_{m}}{\partial z^{14}}\right|\right) d x d y d z \\
& \leq \frac{3 G}{(2 \pi)^{\frac{3}{2}}} m^{3}(\dagger \dagger)
\end{aligned}
$$

so that, combining (\dagger) and $(\dagger \dagger)$, we have, for $\bar{k} \neq \overline{0}$, sufficiently large m;

$$
\left|\mathcal{F}\left(f_{m}\right)(\bar{k})\right| \leq \frac{3 G}{(2 \pi)^{\frac{3}{2}}} \frac{m^{3}}{\left(k_{1}^{14}+k_{2}^{14}+k_{3}^{14}\right)}(*)
$$

Using polar coordinates $k_{1}=r \sin (\theta) \cos (\phi), k_{2}=r \sin (\theta) \sin (\phi)$, $k_{3}=r \cos (\theta), 0 \leq \theta \leq \pi,-\pi<\phi \leq \pi$, we have that;
$\frac{1}{\left(k_{1}^{14}+k_{2}^{14}+k_{3}^{14}\right)}=\frac{1}{r^{14}} \frac{1}{\alpha(\theta, \phi)}$
where $\alpha(\theta, \phi)=\sin ^{14}(\theta)\left(\cos ^{14}(\phi)+\sin ^{14}(\phi)\right)+\cos ^{14}(\theta)$
We have that, in the range $0 \leq \theta \leq \pi,-\pi \leq \phi \leq \pi$, with $\theta \neq \frac{\pi}{2}$, $|\phi| \neq \frac{\pi}{2}$;
$\alpha(\theta, \phi)=0$
iff $\tan ^{14}(\theta)\left(1+\tan ^{14}(\phi)\right)+\frac{1}{\cos ^{14}(\phi)}=0$
iff $\tan ^{14}(\theta)\left(1+\tan ^{14}(\phi)\right)=-\frac{1}{\cos ^{14}(\phi)}$
which has no solution, as the two sides of the equation have opposite signs.
and, with $\theta=\frac{\pi}{2},|\phi| \neq \frac{\pi}{2}$
$\alpha(\theta, \phi)=0$
iff $\cos ^{14}(\phi)+\sin ^{14}(\phi)=0$
iff $\tan ^{14}(\phi)=-1$
which has no solution, as the two sides of the equation have opposite signs.
and, with $\theta \neq \frac{\pi}{2},|\phi|=\frac{\pi}{2}$
$\alpha(\theta, \phi)=0$
iff $\cos ^{14}(\theta)+\sin ^{14}(\theta)=0$
iff $\tan ^{14}(\theta)=-1$
which has no solution, as the two sides of the equation have opposite signs.
and, with $\theta=\frac{\pi}{2},|\phi|=\frac{\pi}{2}$

$$
\alpha(\theta, \phi)=0
$$

iff $1=0$
which is not the case. It follows that $\alpha(\theta, \phi)=0$ has no solution in the range $0 \leq \theta \leq \pi,-\pi \leq \phi \leq \pi$. By continuity, compactness of $[0 \pi] \times[-\pi, \pi]$ and the fact that $\alpha\left(\frac{\pi}{2}, \frac{\pi}{2}\right)=1$, restricting the interval $[-\pi, \pi]$, there exists $\epsilon>0$, with $\alpha(\theta, \phi) \geq \epsilon$, for $0 \leq \theta \leq \pi$, $-\pi<\phi \leq \pi$. In particularly;

$$
\begin{aligned}
& \frac{1}{\left(k_{1}^{14}+k_{2}^{14}+k_{3}^{14}\right)} \leq \frac{1}{\epsilon r^{14}} \\
& =\frac{1}{\epsilon|\bar{k}|^{14}}
\end{aligned}
$$

so that, from (*);

$$
\begin{aligned}
& \left|\mathcal{F}\left(f_{m}\right)(\bar{k})\right| \leq \frac{3 G}{(2 \pi)^{\frac{3}{2}}} \frac{m^{3}}{\epsilon|\bar{k}|^{14}} \\
& =\frac{D m^{3}}{|\bar{k}|^{14}}
\end{aligned}
$$

where $D=\frac{3 G}{\epsilon(2 \pi)^{\frac{3}{2}}}$
For the final claim, we have, for $1 \leq i \leq 3, m \in \mathcal{N}$, as f_{m} is supported on $W_{m+\frac{1}{m}}$ and continuous, that $x_{i} f_{m} \in L^{1}\left(\mathcal{R}^{3}\right)$ and, differentiating under the integral sign;

$$
\begin{aligned}
& \left|\frac{\partial \mathcal{F}\left(f_{m}\right)(\bar{k})}{\partial k^{i}}\right|=\left|\frac{\partial}{\partial k^{i}}\left(\frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{\mathcal{R}^{3}} f_{m}(\bar{x}) e^{-i \bar{k} \cdot \bar{x}} d \bar{x}\right)\right| \\
& \left.=\left\lvert\, \frac{-i}{(2 \pi)^{\frac{3}{2}}} \int_{\mathcal{R}^{3}} x_{i} f_{m}(\bar{x}) e^{-i \bar{k} \cdot \bar{x}} d \bar{x}\right.\right) \mid \\
& \leq \frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{\mathcal{R}^{3}}\left|x_{i} f_{m}(\bar{x})\right| d \bar{x} \\
& =\frac{1}{(2 \pi)^{\frac{3}{2}}}\left\|x_{i} f_{m}(\bar{x})\right\|_{1}
\end{aligned}
$$

so that $\frac{\partial \mathcal{F}\left(f_{m}\right)(\bar{k})}{\partial k^{i}}$ is bounded, and, in particularly, $\mathcal{F}\left(f_{m}\right)$ is continuous, for $m \in \mathcal{N}$. It follows, using the first result, and polar coordinates, that, for $n>1$, sufficiently large m;

$$
\left|\int_{\mathcal{R}^{3}} \mathcal{F}\left(f_{m}\right)(\bar{k}) d \bar{k}\right| \leq \int_{B(\overline{0}, n)}\left|\mathcal{F}\left(f_{m}\right)(\bar{k})\right| d \bar{k}+\int_{\mathcal{R}^{3} \backslash B(\overline{0}, n)}\left|\mathcal{F}\left(f_{m}\right)(\bar{k})\right| d \bar{k}
$$

$$
\begin{aligned}
& \leq \frac{4 C_{n} \pi^{3}}{3}+\int_{\mathcal{R}^{3} \backslash B(\overline{0}, n)} \frac{D m^{3}}{|\bar{k}|^{14}} \\
& \leq \frac{4 C_{n} \pi^{3}}{3}+\int_{0}^{\pi} \int_{-\pi}^{\pi} \int_{n}^{\infty} \frac{D m^{3}}{r^{14}}\left|r^{2} \sin (\theta)\right| d r d \theta d \phi \\
& \leq \frac{4 C_{n} \pi^{3}}{3}+2 D \pi^{2} m^{3} \int_{n}^{\infty} \frac{d r}{r^{12}} \\
& \leq \frac{4 C_{n} \pi^{3}}{3}+2 D \pi^{2} m^{3}\left[\frac{-1}{11 r^{11}}\right]_{n}^{\infty} \\
& =\frac{4 C_{n} \pi^{3}}{3}+\frac{2 D \pi^{2} m^{3}}{11 n^{11}}
\end{aligned}
$$

where $C_{n}=\left\|\left.\mathcal{F}\left(f_{m}\right)\right|_{B(\overline{0}, n)}\right\|_{\infty}$, so that $\mathcal{F}\left(f_{m}\right) \in L^{1}\left(\mathcal{R}^{3}\right)$.
A similar proof works in the two dimensional case.

Lemma 0.12. Let $\left\{f_{m}: m \in \mathcal{N}\right\}$ be the inflexionary sequences constructed in Lemmas 0.9 and 0.10, then;

$$
\int_{\left[-m-\frac{1}{m^{2}}, m+\frac{1}{m^{2}}\right]^{2} \backslash[-m, m]^{2}}\left|f_{m}\right| d x d y \leq \frac{E}{m}
$$

for sufficiently large $m \in \mathcal{N}$, where $E \in \mathcal{R}_{>0}$.
$\int_{\left[-m-\frac{1}{m^{3}}, m+\frac{1}{m^{3}}\right]^{3} \backslash[-m, m]^{3}}\left|f_{m}\right| d x d y d z \leq \frac{E}{m}$
for sufficiently large $m \in \mathcal{N}$, where $E \in \mathcal{R}_{>0}$.

Proof. By the construction, we obtain the result that for an inflexionary approximation sequence f_{m} in \mathcal{R}^{2} or \mathcal{R}^{3};

$$
\begin{aligned}
& \left|f_{m}\right|_{\left[-m-\frac{1}{m^{2}}, m+\frac{1}{m^{2}}\right]^{2} \backslash[-m, m]^{2}} \leq D \\
& \left|f_{m}\right|_{\left[-m-\frac{1}{m^{3}}, m+\frac{1}{m^{3}}{ }^{3} \backslash[-m, m]^{3}\right.} \leq D(*)
\end{aligned}
$$

independently of m. We give the proof of $(*)$ in the 3 -dimensional case. We have that, for $m \leq x \leq m+\frac{1}{m^{3}}, m \leq y \leq m+\frac{1}{m^{3}}$, $m \leq z \leq m+\frac{1}{m^{3}}$;

$$
\begin{aligned}
& \left|f_{m}\right|(x, y, z) \leq \sum_{i=0}^{13} D_{i}\left|\frac{\partial^{i} f_{m}}{\partial z^{i}}\right|(x, y, m) \\
& \left.\leq \sum_{i=0}^{13} D_{i} \sum_{j=0}^{13} D_{i j} \frac{\partial^{i+j} f_{m}}{\partial y^{j} \partial z^{i}} \right\rvert\,(x, m, m)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\leq \sum_{i=0}^{13} D_{i} \sum_{j=0}^{13} D_{i j} \sum_{k=0}^{13} D_{i j k} \frac{\partial^{i+j+k} f_{m}}{\partial x^{k} \partial y^{j} \partial z^{i}} \right\rvert\,(m, m, m) \\
& \left.=\sum_{i=0}^{13} D_{i} \sum_{j=0}^{13} D_{i j} \sum_{k=0}^{13} D_{i j k} \frac{\partial^{+j+k} f}{\partial x^{k} \partial y^{j} \partial z^{i}} \right\rvert\,(m, m, m) \\
& \leq C \sum_{i, j, k=0}^{13} D_{i} D_{i j} D_{i j k} \\
& =C \sum_{i, j, k=0}^{13} D_{i} D_{j} D_{k}=D
\end{aligned}
$$

The proof of the bound for the other regions is similar and left to the reader, as is the two dimensional case. It follows that, using the binomial theorem;

$$
\begin{aligned}
& \int_{\left[-m-\frac{1}{m^{2}}, m+\frac{1}{m^{2}}\right]^{2} \backslash[-m, m]^{2}}\left|f_{m}\right| d x d y \\
& \leq \operatorname{Darea}\left(\left[-m-\frac{1}{m^{2}}, m+\frac{1}{m^{2}}\right]^{2} \backslash[-m, m]^{2}\right) \\
& =4 D\left(\left(m+\frac{1}{m^{2}}\right)^{2}-m^{2}\right) \\
& 4 D\left(m^{2}+\frac{2 m}{m^{2}}+\frac{1}{m^{4}}-m^{2}\right) \\
& \leq \frac{E}{m}
\end{aligned}
$$

and;

$$
\begin{aligned}
& \int_{\left[-m-\frac{1}{m^{3}}, m+\frac{1}{m^{3}}\right]^{3} \backslash[-m, m]^{3}}\left|f_{m}\right| d x d y d z \\
& \leq \operatorname{Dol}\left(\left[-m-\frac{1}{m^{3}}, m+\frac{1}{m^{3}}\right]^{3} \backslash[-m, m]^{3}\right) \\
& =8 D\left(\left(m+\frac{1}{m^{3}}\right)^{3}-m^{3}\right) \\
& 8 D\left(m^{3}+\frac{3 m^{2}}{m^{3}}+\frac{3 m}{m^{6}}+\frac{1}{m^{9}}-m^{3}\right) \\
& \leq \frac{E}{m}
\end{aligned}
$$

for m sufficiently large, where $E \in \mathcal{R}_{>0}$.

Lemma 0.13. Let $f \in C^{\infty}\left(\mathcal{R}^{3}\right)$ be quasi split normal, with the Fourier transform \mathcal{F} defined in $[2]$. Let $\left\{f_{m}: m \in \mathcal{N}\right\}$ be the inflexionary sequence constructed in Lemma 0.10. Let \mathcal{F} be the ordinary Fourier transform, defined for each f_{m}, then, for any $\left(k_{01}, k_{02}, k_{03}\right)$, with $k_{01} \neq$
$0, k_{02} \neq 0, k_{03} \neq 0$, the sequence $\left\{\mathcal{F}\left(f_{m}\right): m \in \mathcal{N}\right\}$ converges pointwise and uniformly to $\mathcal{F}(f)$ on $\mathcal{R}^{3} \backslash\left(\left|k_{1}\right|<k_{01}\right) \cup\left(\left|k_{2}\right|<k_{02}\right) \cup\left(\left|k_{3}\right|<k_{03}\right)$. In particularly, $\mathcal{F}(f) \in C\left(\mathcal{R}^{3} \backslash\left\{k_{1}=0 \cup k_{2}=0 \cup k_{3}=0\right\}\right)$. A corresponding result holds in dimension 2.

Proof. For $g \in C_{c}\left(\mathcal{R}^{3}\right)$ or g quasi split normal, and $m \in \mathcal{N}$, define;

$$
\mathcal{F}_{m}(g)(\bar{k})=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{C_{m}} g(\bar{x}) e^{-i \bar{k} . \bar{x}} d \bar{x}
$$

For $\bar{k} \in \mathcal{R}^{3} \backslash\left(\left|k_{1}\right|<k_{01}\right) \cup\left(\left|k_{2}\right|<k_{02}\right) \cup\left(\left|k_{3}\right|<k_{03}\right), m \in \mathcal{N}, \epsilon>0$, we have, using Lemma 0.12;

$$
\begin{aligned}
& \left|\mathcal{F}(f)(\bar{k})-\mathcal{F}\left(f_{m}\right)(\bar{k})\right| \leq\left|\mathcal{F}(f)(\bar{k})-\mathcal{F}_{m}(f)(\bar{k})\right|+\left|\mathcal{F}_{m}(f)(\bar{k})-\mathcal{F}_{m}\left(f_{m}\right)(\bar{k})\right| \\
& +\left|\mathcal{F}_{m}\left(f_{m}\right)(\bar{k})-\mathcal{F}\left(f_{m}\right)(\bar{k})\right| \\
& =\left|\mathcal{F}(f)(\bar{k})-\mathcal{F}_{m}(f)(\bar{k})\right|+\left|\mathcal{F}_{m}\left(f_{m}\right)(\bar{k})-\mathcal{F}\left(f_{m}\right)(\bar{k})\right| \\
& \leq\left|\mathcal{F}(f)(\bar{k})-\mathcal{F}_{m}(f)(\bar{k})\right|+\left|\int_{\mathcal{R}^{3} \backslash C_{m}} f_{m}(\bar{x}) e^{-i \bar{k} . \bar{x}} d \bar{x}\right| \\
& \leq\left|\mathcal{F}(f)(\bar{k})-\mathcal{F}_{m}(f)(\bar{k})\right|+\int_{C_{m+\frac{1}{m^{3}}} \backslash C_{m}}\left|f_{m}(\bar{x})\right| d \bar{x} \\
& \leq\left|\mathcal{F}(f)(\bar{k})-\mathcal{F}_{m}(f)(\bar{k})\right|+\frac{E}{m}(B B)
\end{aligned}
$$

By the result in [2], we have that, for sufficiently large m;

$$
\left|\mathcal{F}(f)(\bar{k})-\mathcal{F}_{m}(f)(\bar{k})\right| \leq \frac{C_{k_{01}, k_{02}, k_{03}}}{m}(B)
$$

Combining (B) and $(B B)$, we obtain that;

$$
\left|\mathcal{F}(f)(\bar{k})-\mathcal{F}\left(f_{m}\right)(\bar{k})\right| \leq \frac{C_{k_{01}, k_{02}, k_{03}}+E}{m}
$$

$$
\leq \epsilon
$$

for $m \geq \frac{C_{k_{01}, k_{02}, k_{03}}+E}{\epsilon}$. As $\epsilon>0$ was arbitrary, we obtain the first result. The fact that each $\mathcal{F}\left(f_{m}\right)$ is continuous, follows from the differentiability $\mathcal{F}\left(f_{m}\right)$, which is a consequence of the fact that $x_{i} f_{m}(\bar{x}$ has compact support, for $1 \leq i \leq 3$. The last result then follows immediately from the fact that $k_{01} \neq 0, k_{02} \neq 0, k_{03} \neq 0$ were arbitrary and the uniform limit of continuous functions is continuous. The last claim
is similar.

Lemma 0.14. Let $f \in C^{\infty}\left(\mathcal{R}^{3}\right)$, with $\frac{\partial^{i_{1}+i_{2}+i_{3}}}{\partial x^{i_{1}} \partial y^{i_{2}} \partial z^{i_{3}}}$ bounded for $0 \leq$ $i_{1}+i_{2}+i_{3} \leq 40, f$ quasi split normal, and of moderate decrease. Then;

$$
f(\bar{x})=\mathcal{F}^{-1}(\mathcal{F}(f))(\bar{x}),\left(\bar{x} \in \mathcal{R}^{3}\right)
$$

where, for $g \in L^{1}\left(\mathcal{R}^{3}\right)$;

$$
\mathcal{F}^{-1}(g)(\bar{x})=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{\mathcal{R}^{3}} g(\bar{k}) e^{i \bar{k} . \bar{x}} d \bar{k}
$$

The same claim holds in dimension 2.

Proof. By Lemma 0.1, we have that $\mathcal{F}(f) \in L^{1}\left(\mathcal{R}^{3}\right)$. Let $\left\{f_{m}: m \in\right.$ $\mathcal{N}\}$ be the inflexionary approximating sequence, given by Lemma 0.9 , then, for sufficiently large $\mathrm{m}, f_{m} \in L^{1}\left(\mathcal{R}^{3}\right)$ and $\mathcal{F}\left(f_{m}\right) \in L^{1}\left(\mathcal{R}^{3}\right)$ by Lemma 0.11. It follows, see [1] or the method of [4], that for such m, $f_{m}=\mathcal{F}^{-1}\left(\mathcal{F}\left(f_{m}\right)\right),(* * *)$, By the proof of Lemma 0.13 , we have that, for \bar{k} with $\min \left(\left|k_{1}\right|,\left|k_{2}\right|,\left|k_{3}\right|\right)>\epsilon>0,\left|\mathcal{F}(f)(k)-\mathcal{F}\left(f_{m}\right)(k)\right| \leq \frac{E_{\epsilon}}{m}$, (B). By the fact that f is of very moderate decrease, we have that $\mathcal{F}(f)-\mathcal{F}\left(f_{m}\right) \in L^{2}\left(\mathcal{R}^{3}\right)$, and by the classical theory, and by the proof of Lemma 0.12, we have that;

$$
\begin{aligned}
& \left\|\mathcal{F}(f)-\mathcal{F}\left(f_{m}\right)\right\|_{L^{2}\left(\mathcal{R}^{3}\right)}^{2} \\
& =\left\|f-f_{m}\right\|_{L^{2}\left(\mathcal{R}^{3}\right)}^{2} \\
& \leq \int_{\mathcal{R}^{3} \backslash C_{m}}|f|^{2} d \bar{x}+\int_{C_{m+\frac{1}{m^{3}}} \backslash C_{m}}\left|f_{m}\right|^{2} d \bar{x} \\
& \leq \int_{\mathcal{R}^{3} \backslash B(\overline{0}, m)}|f|^{2} d \bar{x}+\frac{G}{m} \\
& \leq \int_{\mathcal{R}^{3} \backslash B(\overline{0}, m)} \frac{C}{\left.\bar{x}\right|^{4}} d \bar{x}+\frac{G}{m} \\
& \leq 2 \pi^{2} \int_{m}^{\infty} \frac{C}{r^{2}} d r+\frac{G}{m} \\
& \leq \frac{C}{m}+\frac{G}{m} \\
& \leq \frac{F}{m}
\end{aligned}
$$

where $\{C, F, G\} \subset \mathcal{R}_{>0}$. It follows that $\left\|\mathcal{F}(f)-\mathcal{F}\left(f_{m}\right)\right\|_{L^{2}\left(\mathcal{R}^{3}\right)} \rightarrow 0$ as $m \rightarrow \infty$. In particularly, there exists a constant $H \in \mathcal{R}_{>0}$ with $\left\|\mathcal{F}(f)-\mathcal{F}\left(f_{m}\right)\right\|_{L^{2}\left(\mathcal{R}^{3}\right)} \leq H$, for sufficiently large m. By the Cauchy Schwarz inequality, we have that, for m sufficiently large;

$$
\begin{aligned}
& \left\|\mathcal{F}(f)-\mathcal{F}\left(f_{m}\right)\right\|_{L^{1}(B(\overline{0}, n))} \\
& \leq\left\|\left.\left(\mathcal{F}(f)-\mathcal{F}\left(f_{m}\right)\right)\right|_{B(\overline{0}, n)}\right\|_{L^{2}(B(\overline{0}, n))}\left\|1_{B(\overline{0}, n)}\right\|_{L^{2}(B(\overline{0}, n))} \\
& \leq \frac{\sqrt{F}}{\sqrt{m}}\left\|1_{B(\overline{0}, n)}\right\|_{L^{2}(B(\overline{0}, n))} \\
& =\frac{2 \sqrt{F \pi} n^{\frac{3}{2}}}{\sqrt{3 m}} \\
& =\frac{K n^{\frac{3}{2}}}{m^{\frac{1}{2}}},(A)
\end{aligned}
$$

Using the fact from Lemma 0.1 , that $\mathcal{F}(f) \in L^{1}(\mathcal{R})$, and of rapid decrease, for $\delta>0$ arbitrary, we have that;

$$
\int_{\mathcal{R}^{3} \backslash B(\overline{0}, n)} \mid \mathcal{F}(f)(\bar{k} \mid d \bar{k}<\delta
$$

for $n \in \mathcal{N}$, sufficiently large, $n \geq n_{0}$. Choosing $n \in \mathcal{N}$, with $m=\left[n^{\frac{10}{3}}\right]$, and using (A), Lemma 0.11 , we have, for $\bar{x} \in \mathcal{R}^{3}$, that;

$$
\begin{aligned}
& \left|\mathcal{F}^{-1}(\mathcal{F}(f))(\bar{x})-\mathcal{F}^{-1}\left(\mathcal{F}\left(f_{m}\right)\right)(\bar{x})\right|=\left|\mathcal{F}^{-1}\left(\mathcal{F}(f)(\bar{k})-\mathcal{F}\left(f_{m}\right)(\bar{k})\right)\right| \\
& \left.=\frac{1}{(2 \pi)^{\frac{3}{2}}} \right\rvert\, \int_{B(\overline{0}, n)}\left(\mathcal{F}(f)(\bar{k})-\mathcal{F}\left(f_{m}\right)(\bar{k})\right) e^{i \bar{k} \cdot \bar{x}} d \bar{k} \\
& +\int_{\mathcal{R}^{3} \backslash B(\overline{0}, n)}\left(\mathcal{F}(f)(\bar{k})-\mathcal{F}\left(f_{m}\right)(\bar{k})\right) e^{i \bar{k} \cdot \bar{x}} d \bar{k} \mid \\
& \leq \frac{1}{(2 \pi)^{\frac{3}{2}}}\left(\int_{B(\overline{0}, n)}\left|\mathcal{F}(f)(\bar{k})-\mathcal{F}\left(f_{m}\right)(\bar{k})\right| d \bar{k}\right. \\
& \left.+\int_{\mathcal{R}^{3} \backslash B(\overline{0}, n)}|\mathcal{F}(f)(\bar{k})| d \bar{k}+\int_{\mathcal{R}^{3} \backslash B(\overline{0}, n)}\left|\mathcal{F}\left(f_{m}\right)(\bar{k})\right| d \bar{k}\right) \\
& \leq \frac{1}{(2 \pi)^{\frac{3}{2}}}\left(\int_{B(\overline{0}, n)}\left|\mathcal{F}(f)(\bar{k})-\mathcal{F}\left(f_{m}\right)(\bar{k})\right| d \bar{k}+\delta+\int_{\mathcal{R}^{3} \backslash B(\overline{0}, n)} \frac{D m^{3}}{\left.|k|\right|^{14}} d \bar{k}\right) \\
& \leq \frac{1}{(2 \pi)^{\frac{3}{2}}}\left(\frac{K n^{\frac{3}{2}}}{3 m^{\frac{1}{2}}}+\delta+\int_{\mathcal{R}^{3} \backslash B(\overline{0}, n)} \frac{D m^{3}}{|k|^{14}} d \bar{k}\right) \\
& \leq \frac{1}{(2 \pi)^{\frac{3}{2}}}\left(\frac{K n^{\frac{3}{2}}}{\left[n^{\frac{10}{3}}\right]^{\frac{1}{2}}}+\delta+\int_{\mathcal{R}^{3} \backslash B(\overline{0}, n)} \frac{D n^{10}}{|k|^{14}} d \bar{k}\right) \\
& \leq \frac{1}{(2 \pi)^{\frac{3}{2}}}\left(\frac{K}{n^{\frac{1}{6}}}+\delta+2 \pi^{2} \int_{r>n} \frac{D n^{10}}{r^{14}} d r\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{(2 \pi)^{\frac{3}{2}}}\left(\frac{K}{n^{\frac{1}{6}}}+\delta+2 D \pi^{2} n^{10}\left[\frac{-1}{13 r^{13}}\right]_{n}^{\infty}\right) \\
& =\frac{1}{(2 \pi)^{\frac{3}{2}}}\left(\frac{K}{n^{\frac{1}{6}}}+\delta+\frac{2 D \pi^{2}}{13 n^{3}}\right) \\
& <\frac{2 \delta}{(2 \pi)^{\frac{3}{2}}}
\end{aligned}
$$

for sufficiently large $n \geq n_{0}$, or $m \geq m_{0}$, so that, as $\epsilon>0$ and $\delta>0$ were arbitrary, for $\bar{x} \in \mathcal{R}^{3}$;

$$
\lim _{m \rightarrow \infty} \mathcal{F}^{-1}\left(\mathcal{F}\left(f_{m}\right)\right)(\bar{x})=\mathcal{F}^{-1} \mathcal{F}(f)(\bar{x}),(* * * *)
$$

and, by Definition 0.3, ($* * *$), ($* * * *$);

$$
f(\bar{x})=\lim _{m \rightarrow \infty} f_{m}(\bar{x})=\lim _{m \rightarrow \infty} \mathcal{F}^{-1}\left(\mathcal{F}\left(f_{m}\right)\right)(\bar{x})=\mathcal{F}^{-1} \mathcal{F}(f)(\bar{x})
$$

The proof of the final claim in dimension 2 is identical.

The following results are not required for the proof of the inversion theorem but are required in [4].

Definition 0.15. We say that $f: \mathcal{R}^{3} \rightarrow \mathcal{R}$ is of very moderate decrease if $|f(\bar{x})| \leq \frac{C}{|\bar{x}|}$ for $|\bar{x}|>C, C \in \mathcal{R}_{>0}$. We say that $f: \mathcal{R}^{3} \rightarrow \mathcal{R}$ is of moderate decrease n if $|f(\bar{x})| \leq \frac{C}{|\bar{x}|^{n}}$ for $|\bar{x}|>C, C \in \mathcal{R}_{>0}, n \geq 2$. We just say that f is of moderate decrease if f is of moderate decrease 2 . We call $\{\theta, \phi\}$ generic if $\sin (\theta) \cos (\phi) \neq 0, \sin (\theta) \sin (\phi) \neq 0$, $\cos (\theta) \neq 0$

Lemma 0.16. Let f be of very moderate decrease and quasi split normal, $f \in C^{41}\left(\mathcal{R}^{3}\right)$, such that the partial derivatives $\left\{\frac{\partial f^{i+j+k}}{\partial x^{2} \partial y^{j} \partial z^{k}}: 1 \leq\right.$ $i+j+k \leq 41\}$ are of moderate decrease, and of moderate decrease $i+j+k+1$, then for $1 \leq i \leq 3$;

$$
\begin{aligned}
& k_{i} \mathcal{F}(f)(\bar{k}) \in C^{1}\left(\mathcal{R}^{3} \backslash\left(k_{1}=0 \cup k_{2}=0 \cup k_{3}=0\right)\right) \\
& \lim _{\bar{k} \rightarrow 0, \bar{k} \notin\left(k_{1}=0 \cup k_{2}=0 \cup k_{3}=0\right)} k_{i} \mathcal{F}(f)(\bar{k})=0
\end{aligned}
$$

The same results hold for $k_{i} \mathcal{F}\left(\frac{\partial f}{\partial x_{j}}\right), 1 \leq i \leq j \leq 3$, when $f \in$ $C^{42}\left(\mathcal{R}^{3}\right)$.

Making a polar coordinate change, for $\{\theta, \phi\}$ generic, $r \mathcal{F}(f)_{\theta, \phi}(r) \in$ $C^{1}\left(\mathcal{R}_{>0}\right), \lim _{r \rightarrow 0} r \mathcal{F}(f)_{\theta, \phi}(r)=0$, and similarly for $r \mathcal{F}\left(\frac{\partial f}{\partial x_{j}}\right), 1 \leq j \leq$ 3.

We have that $\mathcal{F}(f)(\bar{k}) \in L^{1}\left(\mathcal{R}^{3}\right),\left\{\frac{\mathcal{F}\left(\frac{\partial f}{\partial x_{j}}\right)(\bar{k})}{|\bar{k}|}: 1 \leq j \leq 3\right\} \subset L^{1}\left(\mathcal{R}^{3}\right)$

$$
\text { and }\left\{\frac{\mathcal{F}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)(\bar{k})}{|\bar{k}|^{2}}: 1 \leq i, j \leq 3\right\} \subset L^{1}\left(\mathcal{R}^{3}\right)
$$

For any given $\epsilon>0$, there exists $\delta>0$, for $1 \leq j \leq 3$, such that for a generic translation \bar{l} with $l_{1} \neq 0, l_{2} \neq 0, l_{3} \neq 0$;

$$
\max \left(\left\lvert\, \int_{0}^{\delta} r \mathcal{F}_{\theta, \phi, \bar{l}} \frac{\partial f}{\partial x_{j}}\right.\right)(r) d r\left|,\left|\int_{0}^{\delta} \frac{d}{d r}\left(r \mathcal{F}_{\theta, \phi, \bar{l}}\left(\frac{\partial f}{\partial x_{j}}\right)(r)\right) d r\right|\right)<\epsilon
$$

uniformly in $\{\theta, \phi\}$.

Proof. As $\frac{\partial f}{\partial x}$ is of moderate decrease and quasi split normal, for fixed $y, z, f_{y, z}$ is of very moderate decrease and analytic at infinity, we have for $k_{1} \neq 0, k_{2} \neq 0, k_{3} \neq 0$;

$$
\begin{aligned}
& \mathcal{F}\left(\frac{\partial f}{\partial x}\right)=\frac{1}{(2 \pi)^{\frac{3}{2}}} \lim _{r_{1} \rightarrow \infty} \lim _{r_{2} \rightarrow \infty} \lim _{r_{3} \rightarrow \infty} \int_{-r_{1}}^{r_{1}} \int_{-r_{2}}^{r_{2}} \int_{-r_{3}}^{r_{3}} \frac{\partial f}{\partial x}(\bar{x}) e^{-i \bar{k} \cdot \bar{x}} d x_{1} d x_{2} d x_{3} \\
& =\frac{1}{(2 \pi)^{\frac{3}{2}}} \lim _{r_{2} \rightarrow \infty} \lim _{r_{3} \rightarrow \infty} \int_{-r_{2}}^{r_{2}} \int_{-r_{3}}^{r_{3}}\left(\lim _{r_{1} \rightarrow \infty} \int_{-r_{1}}^{r_{1}} \frac{\partial f}{\partial x}(\bar{x}) e^{-i k_{1} x_{1}} d x_{1}\right) e^{-i\left(k_{2} x_{2}+k_{3} x_{3}\right)} d x_{2} d x_{3} \\
& =\frac{1}{(2 \pi)^{\frac{3}{2}}} \lim _{r_{2} \rightarrow \infty} \lim _{r_{3} \rightarrow \infty} \int_{-r_{2}}^{r_{2}} \int_{-r_{3}}^{r_{3}}\left(\lim _{r_{1} \rightarrow \infty}\left(\left[f e^{-i k x_{1}}\right]_{-r_{1}}^{r_{1}}+i k_{1} \int_{-r_{1}}^{r_{1}} f(\bar{x}) e^{-i k x_{1}} d x_{1}\right)\right. \\
& e^{-i\left(k_{2} x_{2}+k x_{3} x_{3}\right)} d x_{2} d x_{3} \\
& =i k_{1} \frac{1}{(2 \pi)^{\frac{3}{2}}} \lim _{r_{2} \rightarrow \infty} \lim _{r_{3} \rightarrow \infty} \int_{-r_{2}}^{r_{2}} \int_{-r_{3}}^{r_{3}}\left(\lim _{r_{1} \rightarrow \infty} \int_{-r_{1}}^{r_{1}} f(\bar{x}) e^{-i k x_{1}} d x_{1}\right) e^{-i\left(k_{2} x_{2}+k_{3} x_{3}\right)} d x_{2} d x_{3} \\
& =i k_{1} \frac{1}{(2 \pi)^{\frac{3}{2}}} \lim _{r_{1} \rightarrow \infty} \lim _{r_{2} \rightarrow \infty} \lim _{r_{3} \rightarrow \infty} \int_{-r_{1}}^{r_{1}} \int_{-r_{2}}^{r_{2}} \int_{-r_{3}}^{r_{3}} f(\bar{x}) e^{-i \bar{k} \cdot \bar{x}} d x_{1} d x_{2} d x_{3} \\
& =i k_{1} \mathcal{F}(f)(\bar{k})(T T)
\end{aligned}
$$

the limit interchange being justified by the calculation in [2]. It follows that, for $k_{1} \neq 0, k_{2} \neq 0, k_{3} \neq 0$, we have that;

$$
k_{1} \mathcal{F}(f)(\bar{k})=-i \mathcal{F}\left(\frac{\partial f}{\partial x}\right)
$$

and similarly;
$k_{i} \mathcal{F}(f)(\bar{k})=-i \mathcal{F}\left(\frac{\partial f}{\partial x_{i}}\right)(A)$, for $1 \leq i \leq 3$ and $k_{1} \neq 0, k_{2} \neq 0, k_{3} \neq 0$.
It follows that, using the fact that;

$$
F\left(x_{1}, k_{2}, k_{3}\right)=\lim _{r_{2} \rightarrow \infty} \lim _{r_{3} \rightarrow \infty} \int_{-r_{2}}^{r_{2}} \int_{-r_{3}}^{r_{3}} \frac{\partial f}{\partial x}\left(x_{1}, x_{2}, x_{3}\right) e^{-i k_{2} x_{2}} e^{-i k_{3} x_{3}} d x_{2} d x_{3}
$$

is of moderate decrease, the DCT and the FTC, and the fact that $f_{y, z}$ is of very moderate decrease;

$$
\begin{aligned}
& \lim _{\bar{k} \rightarrow 0, \bar{k} \notin\left(k_{1}=0 \cup k_{2}=0 \cup k_{3}=0\right)} k_{1} \mathcal{F}(f)(\bar{k}) \\
& -\operatorname{ilim}_{\bar{k} \rightarrow 0, \bar{k} \notin\left(k_{1}=0 \cup k_{2}=0 \cup k_{3}=0\right)} \mathcal{F}(f)\left(\frac{\partial f}{\partial x}\right)(\bar{k}) \\
& =\frac{-i}{(2 \pi)^{\frac{3}{2}}} \lim _{\bar{k} \rightarrow 0, \bar{k} \notin\left(k_{1}=0 \cup k_{2}=0 \cup k_{3}=0\right)} \lim _{r_{1} \rightarrow \infty} \lim _{r_{2} \rightarrow \infty} \lim _{r_{3} \rightarrow \infty} \int_{-r_{1}}^{r_{1}} \int_{-r_{2}}^{r_{2}} \int_{-r_{3}}^{r_{3}} \frac{\partial f}{\partial x}(\bar{x}) e^{-i \bar{k} \cdot \bar{x}} d x_{1} d x_{2} d x_{3} \\
& =\frac{1}{(2 \pi)^{\frac{3}{2}}} \lim _{k_{2} \rightarrow 0, k_{3} \rightarrow 0, k_{2} \neq 0, k_{3} \neq 0} \lim _{r_{2} \rightarrow \infty} \lim _{r_{3} \rightarrow \infty} \int_{-r_{2}}^{r_{2}} \int_{-r_{3}}^{r_{3}}\left(\lim _{k_{1} \rightarrow 0} \int_{-\infty}^{\infty} \frac{\partial f}{\partial x}(\bar{x}) e^{-i k_{1} x_{1}} d x_{1}\right) \\
& e^{-i\left(k_{2} x_{2}+k_{3} x_{3}\right)} d x_{2} d x_{3} \\
& =\frac{1}{(2 \pi)^{\frac{3}{2}}} \lim _{k_{2} \rightarrow 0, k_{3} \rightarrow 0, k_{2} \neq 0, k_{3} \neq 0} \lim _{r_{2} \rightarrow \infty} \lim _{r_{3} \rightarrow \infty} \int_{-r_{2}}^{r_{2}} \int_{-r_{3}}^{r_{3}}\left(\int_{-\infty}^{\infty} \frac{\partial f}{\partial x}(\bar{x}) d x_{1}\right) e^{-i\left(k_{2} x_{2}+k_{3} x_{3}\right)} d x_{2} d x_{3} \\
& =\frac{1}{(2 \pi)^{\frac{3}{2}}} \lim _{k_{2} \rightarrow 0, k_{3} \rightarrow 0, k_{2} \neq 0, k_{3} \neq 0} \lim _{r_{2} \rightarrow \infty} \lim _{r_{3} \rightarrow \infty} \int_{-r_{2}}^{r_{2}} \int_{-r_{3}}^{r_{3}}\left([f]_{-\infty}^{\infty}\right) e^{-i\left(k_{2} x_{2}+k_{3} x_{3}\right)} d x_{2} d x_{3} \\
& =0(E)
\end{aligned}
$$

Similarly;
$\lim _{\bar{k} \rightarrow 0, \bar{k} \notin\left(k_{1}=0 \cup k_{2}=0 \cup k_{3}=0\right)} k_{i} \mathcal{F}(f)(\bar{k})=0,1 \leq i \leq 3$
As $f \in C^{41}\left(\mathcal{R}^{3}\right)$, we have, by the product rule, that $x_{i} \frac{\partial f}{\partial x_{j}} \in C^{40}\left(\mathcal{R}^{3}\right)$, $1 \leq i \leq j \leq 3$. As f is of very moderate decrease and;

$$
\left\{\frac{\partial f^{l+m+n}}{\partial x_{1}^{l} \partial x_{2}^{m} \partial x_{3}^{m}}: 1 \leq l+m+n \leq 40\right\}
$$

are of very moderate decrease, we have, by repeated application of the product rule again, that;

$$
\left\{\frac{\partial^{l+m+n} x_{i} \frac{\partial f}{\partial x_{j}}}{\partial x_{1}^{l} \partial x_{2}^{m} \partial x_{3}^{n}}: 0 \leq l+m+n \leq 40\right\}, 1 \leq i \leq j \leq 3
$$

are bounded. By Lemma 0.4, there exists an inflexionary approximation sequence g_{m} for $x \frac{\partial f}{\partial x}$ with the properties that;
(i) $g_{m} \in C^{13,13,14}\left(\mathcal{R}^{3}\right)$
(ii). $\left.g_{m}\right|_{[-m, m]^{3}}=\left.x \frac{\partial f}{\partial x}\right|_{[-m, m]^{3}}$
(iii). $\left.\int_{\left[-m-\frac{1}{m^{3}}, m+\frac{1}{m^{3}}\right]^{3} \backslash[-m, m]^{3}} \right\rvert\, g_{m}(\bar{x}) d \bar{x} \leq \frac{E}{m}$
(iv). $\left.g_{m}\right|_{\mathcal{R}^{3} \backslash\left[-m-\frac{1}{m^{3}}, m+\frac{1}{m^{3}}\right]^{3}}=0$

By the construction of g_{m}, we have that $f_{m}=\frac{g_{m}}{x}$ is an approximation sequence for $\frac{\partial f}{\partial x}$, with the property that;

$$
\left.\begin{aligned}
& (i)^{\prime} f_{m} \in C^{13,13,14}\left(\mathcal{R}^{3}\right) \\
& \left.(i i)^{\prime} \cdot f_{m}\right|_{[-m, m]^{3}}=\left.\frac{\partial f}{\partial x}\right|_{[-m, m]^{3}} \\
& (i i i)^{\prime} \cdot \int_{\left[-m-\frac{1}{m^{3}}, m+\frac{1}{m^{3}}\right.}{ }^{3} \backslash[-m, m]^{3}
\end{aligned} \right\rvert\, f_{m}(\bar{x}) d \bar{x} \leq \frac{E^{\prime}}{m} .
$$

Following through the proof of Lemma 0.13 , as $\frac{\partial f}{\partial x}$ is quasi split normal of moderate decrease and, therefore, of very moderate decrease, we have that $\mathcal{F}\left(f_{m}\right)$ converges uniformly to $\mathcal{F}\left(\frac{\partial f}{\partial x}\right)$ on compact subsets of $\mathcal{R}^{3} \backslash\left(k_{1}=0 \cup k_{2}=0 \cup k_{3}=0\right)$, so that $\mathcal{F}\left(\frac{\partial f}{\partial x}\right) \in C\left(\mathcal{R}^{3} \backslash\left(k_{1}=0 \cup k_{2}=0 \cup k_{3}=0\right)\right)$, As $x_{i} x_{j} f_{m} \in L^{1}\left(\mathcal{R}^{3}\right)$, for $1 \leq i \leq j \leq 3$, we have that $\mathcal{F}\left(f_{m}\right)$ is twice differentiable, in particularly, $\mathcal{F}\left(f_{m}\right) \in C^{1}\left(\mathcal{R}^{3}\right)$. As f is quasi split normal, so is $\frac{\partial f}{\partial x}$ and $x \frac{\partial f}{\partial x}$. It follows that for $\{m, n\} \subset \mathcal{N}$, with $m \geq n$, differentiating under the integral sign, using the DCT, property (iii) of an inflexionary approximating sequence, and the fact that $x \frac{\partial f}{\partial x}$ is of very moderate decrease and quasi split normal, for $\left|k_{1}\right| \geq \epsilon_{1}>0$, $\left|k_{2}\right| \geq \epsilon_{2}>0,\left|k_{3}\right| \geq \epsilon_{3}>0$, we have that;

$$
\begin{aligned}
& \left|\frac{\partial \mathcal{F}\left(f_{m}\right)}{\partial k_{1}}-\frac{\partial \mathcal{F}\left(f_{n}\right)}{\partial k_{1}}\right| \\
& =\frac{1}{(2 \pi)^{\frac{3}{2}}} \left\lvert\, \frac{\partial}{\partial k_{1}}\left(\left.\int_{\mathcal{R}^{3}} f_{m}(\bar{x}) e^{-i \bar{k} \cdot \bar{x}} d \bar{x}-\frac{\partial}{\partial k_{1}} \int_{\mathcal{R}^{3}} f_{n}(\bar{x}) e^{-i \bar{k} \cdot \bar{x}} d \bar{x} \right\rvert\,\right.\right. \\
& =\frac{1}{(2 \pi)^{\frac{3}{2}}}\left|\int_{\mathcal{R}^{3}}-i x_{1} f_{m}(\bar{x}) e^{-i \bar{k} \cdot \bar{x}} d \bar{x}-\int_{\mathcal{R}^{3}}-i x_{1} f_{n}(\bar{x}) e^{-i \bar{k} \cdot \bar{x}} d \bar{x}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{(2 \pi)^{\frac{3}{2}}}\left|\int_{\mathcal{R}^{3}}\left(g_{m}-g_{n}\right)(\bar{x}) e^{-i \bar{k} \cdot \bar{x}} d \bar{x}\right| \\
& \leq \frac{1}{(2 \pi)^{\frac{3}{2}}}\left(\int_{\left[-m-\frac{1}{m^{3}}, m+\frac{1}{m^{3}}{ }^{3} \backslash[-m, m]^{3}\right.}\left|g_{m}(\bar{x})\right| d \bar{x}+\int_{\left[-m-\frac{1}{m^{3}}, m+\frac{1}{m^{3}}\right]^{3} \backslash[-m, m]^{3}}\left|g_{n}(\bar{x})\right| d \bar{x}\right. \\
& \left.+\left|\int_{[-m, m]^{3} \backslash[-n, n]^{3}} x_{1} \frac{\partial f}{\partial x_{1}} e^{-i \bar{k} . \bar{x}} d \bar{x}\right|\right) \\
& \leq \frac{E}{m}+\frac{E}{n}+\frac{C(\bar{k})}{n}(*)
\end{aligned}
$$

where $C(\bar{k})$ is uniformly bounded on the region $\left|k_{1}\right| \geq \epsilon_{1}>0,\left|k_{2}\right| \geq$ $\epsilon_{2}>0,\left|k_{3}\right| \geq \epsilon_{3}>0$. It follows that the sequence $\left\{\frac{\partial \mathcal{F}\left(f_{m}\right)}{\partial k_{1}}: m \in \mathcal{N}\right\}$ is uniformly Cauchy on the region $\left|k_{1}\right| \geq \epsilon_{1}>0,\left|k_{2}\right| \geq \epsilon_{2}>0$, $\left|k_{3}\right| \geq \epsilon_{3}>0$, and converges uniformly. By considering inflexionary sequences for $y \frac{\partial f}{\partial x}$ and $z \frac{\partial f}{\partial x}$, we can similarly show that the sequences $\left\{\frac{\partial \mathcal{F}\left(f_{m}\right)}{\partial k_{2}}: m \in \mathcal{N}\right\}$ and $\left\{\frac{\partial \mathcal{F}\left(f_{m}\right)}{\partial k_{3}}: m \in \mathcal{N}\right\}$ are uniformly Cauchy on the region $\left|k_{1}\right| \geq \epsilon_{1}>0,\left|k_{2}\right| \geq \epsilon_{2}>0,\left|k_{3}\right| \geq \epsilon_{3}>0$, and converge uniformly. As $\mathcal{F}\left(f_{m}\right)$ converges uniformly to $\mathcal{F}\left(\frac{\partial f}{\partial x}\right)$ on the regions $\left|k_{1}\right| \geq \epsilon_{1}>0,\left|k_{2}\right| \geq \epsilon_{2}>0,\left|k_{3}\right| \geq \epsilon_{3}>0$, it follows that $\mathcal{F}\left(\frac{\partial f}{\partial x}\right) \in C^{1}\left(\mathcal{R}^{3} \backslash\left(k_{1}=0 \cup k_{2}=0 \cup k_{3}=0\right)\right)$. The same result folds for $\mathcal{F}\left(\frac{\partial f}{\partial y}\right)$ and $\mathcal{F}\left(\frac{\partial f}{\partial z}\right)$, so by (A);

$$
\begin{equation*}
\left\{k_{1} \mathcal{F}(f)(\bar{k}), k_{2} \mathcal{F}(f)(\bar{k}), k_{3} \mathcal{F}(f)(\bar{k})\right\} \subset C^{1}\left(\mathcal{R}^{3} \backslash\left(k_{1}=0 \cup k_{2}=0 \cup k_{3}=0\right)\right) \tag{B}
\end{equation*}
$$

It follows that, changing to polars;

$$
\begin{aligned}
& \frac{\partial r \mathcal{F}(f)(\bar{k})}{\partial r}=\left(\frac{\partial}{\partial k_{1}} \frac{k_{1}}{r}+\frac{\partial}{\partial k_{2}} \frac{k_{2}}{r}+\frac{\partial}{\partial k_{3}} \frac{k_{3}}{r}\right)(r \mathcal{F}(f)(\bar{k})) \\
& =\frac{\partial k_{1} \mathcal{F}(f)(\bar{k})}{\partial k_{1}}+\frac{\partial k_{2} \mathcal{F}(f)(\bar{k})}{\partial k_{2}}+\frac{\partial k_{3} \mathcal{F}(f)(\bar{k})}{\partial k_{3}}(W W)
\end{aligned}
$$

so that, for generic $\{\theta, \phi\}, r \mathcal{F}(f)(r)_{\theta, \phi} \in C^{1}\left(\mathcal{R}_{>0}\right)$, by (B). Moreover;

$$
\begin{aligned}
& \lim _{r \rightarrow 0} r \mathcal{F}(f)(r)_{\theta, \phi} . \\
& =\lim _{\bar{k}(\theta, \phi) \rightarrow 0} \frac{r}{k_{1}} \lim _{\bar{k}(\theta, \phi) \rightarrow \overline{0}, k_{1} \neq 0, k_{2} \neq 0, k_{3} \neq 0} k_{1} \mathcal{F}(f)(\bar{k}) \\
& =\lim _{\bar{k}(\theta, \phi) \rightarrow 0} \frac{r}{k_{2}} \lim _{\bar{k}(\theta, \phi) \rightarrow \overline{0}, k_{1} \neq 0, k_{2} \neq 0, k_{3} \neq 0} k_{2} \mathcal{F}(f)(\bar{k}) \\
& =\lim _{\bar{k}(\theta, \phi) \rightarrow 0} \frac{r}{k_{3}} \lim _{\bar{k}(\theta, \phi) \rightarrow \overline{0}, k_{1} \neq 0, k_{2} \neq 0, k_{3} \neq 0} k_{3} \mathcal{F}(f)(\bar{k})
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{\bar{k}(\theta, \phi) \rightarrow 0} \operatorname{sign}\left(k_{1}\right)\left(1+\frac{k_{2}^{2}}{k_{1}^{2}}+\frac{k_{3}^{2}}{k_{1}^{2}}\right) \lim _{\bar{k}(\theta, \phi) \rightarrow \overline{0}, k_{1} \neq 0, k_{2} \neq 0, k_{3} \neq 0} k_{1} \mathcal{F}(f)(\bar{k}) \\
& =\lim _{\bar{k}(\theta, \phi) \rightarrow 0} \operatorname{sign}\left(k_{2}\right)\left(1+\frac{k_{1}^{2}}{k_{2}^{2}}+\frac{k_{3}^{2}}{k_{2}^{2}}\right) \lim _{\bar{k}(\theta, \phi) \rightarrow \overline{0}, k_{1} \neq 0, k_{2} \neq 0, k_{3} \neq 0} k_{2} \mathcal{F}(f)(\bar{k}) \\
& =\lim _{\bar{k}(\theta, \phi) \rightarrow 0} \operatorname{sign}\left(k_{3}\right)\left(1+\frac{k_{1}^{2}}{k_{3}^{2}}+\frac{k_{2}^{2}}{k_{3}^{2}}\right) \lim _{\bar{k}(\theta, \phi) \rightarrow \overline{0}, k_{1} \neq 0, k_{2} \neq 0, k_{3} \neq 0} k_{3} \mathcal{F}(f)(\bar{k}) \\
& =0
\end{aligned}
$$

as the cases $\max \left(\left|k_{2}\right|,\left|k_{3}\right|\right) \leq\left|k_{1}\right|, \max \left(\left|k_{1}\right|,\left|k_{3}\right|\right) \leq\left|k_{2}\right|$ and $\max \left(\left|k_{1}\right|,\left|k_{2}\right|\right) \leq$ $\left|k_{3}\right|$ are exhaustive.

Clearly, we can repeat the above arguments for $\frac{\partial f}{\partial x_{i}}, 1 \leq i \leq 3$, and $f \in C^{42}\left(\mathcal{R}^{3}\right)$, using the fact that $\frac{\partial f}{\partial x_{i}}$ is of moderate decrease, in particularly of very moderate decrease, with the higher derivatives $\frac{\partial^{l+m+n} \frac{\partial f}{\partial x_{i}}}{\partial x^{l} y^{m} z^{n}}$ of moderate decrease $l+m+n+2$, in particularly of moderate decrease $l+m+n+1$.

For the next claim, we have, $\mathcal{F}(f) \in L^{1}\left(\mathcal{R}^{3}\right),(R)$, by Lemma 0.1. A similar calculation shows that, as $\frac{\partial f}{\partial x}$ is of moderate decrease 2, that $f \in L^{\frac{3}{2}+\epsilon}\left(\mathcal{R}^{3}\right)$, for $\epsilon>0$. Applying the Haussdorff-Young inequality, $\mathcal{F}\left(\frac{\partial f}{\partial x}\right) \in L^{3-\delta}\left(\mathcal{R}^{3}\right)$, for $\delta>0$. In particular, due to the decay again, $\mathcal{F}\left(\frac{\partial f}{\partial x}\right) \in L^{2}\left(\mathcal{R}^{3}\right)$. Locally, on $B(\overline{0}, 1)$, for $\delta>0$;

$$
\begin{aligned}
& \int_{B(\overline{0}, 1)} \frac{1}{|\bar{k}|^{3-\delta}} d \bar{k} \\
& =\int_{0 \leq \theta \leq \pi,-\pi \leq \phi \leq \phi} \int_{0}^{1} \frac{r^{2}}{r^{3-\delta}} d r d \theta d \phi \\
& \leq 2 \pi^{2}\left[r^{\delta}\right]_{0}^{1} \\
& =2 \pi^{2}<\infty
\end{aligned}
$$

so that $\frac{1}{|\bar{k}|} \in L^{3-\delta}(B(\overline{0}, 1))$, in particularly $\frac{1}{|\bar{k}|} \in L^{2}(B(\overline{0}, 1))$. As $\mathcal{F}\left(\frac{\partial f}{\partial x}\right) \in L^{2}(B(\overline{0}, 1))$, by the Cauchy Schwarz inequality, we obtain that $\frac{\mathcal{F}\left(\frac{\partial f}{\partial x}\right)(\bar{k})}{|\bar{k}|} \in L^{1}(B(\overline{0}, 1))$, and by the decay, we have that $\frac{\mathcal{F}\left(\frac{\partial f}{\partial x}\right)(\bar{k})}{|\bar{k}|} \in$ $L^{1}\left(\mathcal{R}^{3}\right)$. Similar arguments show that $\frac{\mathcal{F}\left(\frac{\partial f}{\partial x_{i}}\right)(\bar{k})}{|\bar{k}|} \in L^{1}\left(\mathcal{R}^{3}\right)$, for $1 \leq i \leq 3$. We also have, using the fact that $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$ is of moderate decrease and quasi split normal, $1 \leq i \leq j \leq 3$, using the argument $(T T)$ twice, that
for $k_{1} \neq 0, k_{2} \neq 0, k_{3} \neq 0$;

$$
\begin{aligned}
& \mathcal{F}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)=\left(i k_{i}\right)\left(i k_{j}\right) \mathcal{F}(f)(\bar{k}) \\
& =-k_{i} k_{j} \mathcal{F}(f)(\bar{k})
\end{aligned}
$$

so that;

$$
\frac{\mathcal{F}\left(\frac{\partial^{2} f}{\partial x_{i} \partial_{j} j^{2}}\right)(\bar{k})}{|\bar{k}|^{2}}=\frac{-k_{i} k_{j}}{|\bar{k}|^{2}} \mathcal{F}(f)(\bar{k})
$$

with, for $k_{i} \neq 0, k_{j} \neq 0$;
so that;

$$
\left|\frac{\mathcal{F}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)(\bar{k})}{|\bar{k}|^{2}}\right| \leq|\mathcal{F}(f)(\bar{k})|
$$

and, by $(R), \mathcal{F}(f)(\bar{k}) \in L^{1}\left(\mathcal{R}^{3}\right)$, so that $\frac{\mathcal{F}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)(\bar{k})}{|\bar{k}|^{2}} \in L^{1}\left(\mathcal{R}^{3}\right)$.
The last claim follows from the fact that, for \bar{l}, with $l_{1} \neq 0, l_{2} \neq 0$, $l_{3} \neq 0$, the translation $\mathcal{F}_{\bar{l}}\left(\frac{\partial f}{\partial x_{i}}\right)(\bar{k}) \in C^{1}\left(B\left(\overline{0}, \epsilon^{\prime}\right)\right)$, for some $\epsilon^{\prime}>0$. In particular, given $\epsilon>0$, there exists $\delta>0$, such that;

$$
\max \left(\left\lvert\, \int_{0}^{\delta} r \mathcal{F}_{\theta, \phi, \bar{l}} \frac{\partial f}{\partial x_{j}}\right.\right)(r) d r\left|,\left|\int_{0}^{\delta} \frac{d}{d r}\left(r \mathcal{F}_{\theta, \phi, \bar{l}}\left(\frac{\partial f}{\partial x_{j}}\right)(r)\right) d r\right|\right)<\epsilon
$$

uniformly in $\{\theta, \phi\}$.

References

[1] Fourier Analysis and its Applications, Folland, G. B., Wadsworth, (1992).
[2] Functions Analytic at Infinity and Normality, Tristram de Piro, available at http://www.curvalinea.net/papers, (2024).
[3] Non Oscillatory Functions and a Fourier Inversion Theorem for Functions of Very Moderate Decrease, Tristram de Piro, submitted to the Journal of Functional Analysis and Applications, (2023).
[4] Some Argument for the Wave Equation in Quantum Theory 4, Tristram de Piro, unpublished notes, available at http://www.curvalinea.net/papers (2024).

Flat 3, Redesdale House, 85 The Park, Cheltenham, GL50 2RP
E-mail address: t.depiro@curvalinea.net

[^0]: ${ }^{1}$ If $a_{0}>0, a_{1}>0$, there does not exist a smooth function h on the interval $\left(m, m+\frac{1}{m}\right)$, with $h(m)=a_{0}, h^{\prime}(m)=a_{1}, h\left(m+\frac{1}{m}\right)=0, h^{\prime}\left(m+\frac{1}{m}\right)=0$, such that $h^{\prime \prime}>0$ or $h^{\prime \prime}<0$. To see this, if $h^{\prime \prime}>0$, using the MVT, we have that $h^{\prime}(x)>$ $h^{\prime}(m)>0$, for $x \in\left(m, m+\frac{1}{m}\right)$, contradicting the fact that $h^{\prime}\left(m+\frac{1}{m}\right)=0$. If $h^{\prime \prime}<0$, and $h^{\prime}(x)$ has no roots in the interval $\left(m, m+\frac{1}{m}\right)$, then as $h^{\prime}(m)>0, h^{\prime}(x)>0$ on $\left(m, m+\frac{1}{m}\right)$, and h is increasing on $\left(m, m+\frac{1}{m}\right)$, so that $h\left(m+\frac{1}{m}\right)>h(m)=a_{0}>0$, contradicting the fact that $h\left(m+\frac{1}{m}\right)=0$. Otherwise, if $h^{\prime}(x)$ has a root in the interval $\left(m, m+\frac{1}{m}\right)$, as $h^{\prime \prime}<0$, it attains a maximum at $x_{0} \in\left(m, m+\frac{1}{m}\right)$. Using the MVT again, we must have that for $y \in\left(x_{0}, m+\frac{1}{m}\right), h^{\prime}(y)<h^{\prime}\left(x_{0}\right)=0$, so that $h^{\prime}\left(m+\frac{1}{m}\right)<0$, contradicting the fact that $h^{\prime}\left(m+\frac{1}{m}\right)=0$.
 ${ }^{2}$ One step requires the verification that for a computable polynomial r_{n} of degree $n-1, r_{n}(1) \neq 0$, which is highly unlikely on generic grounds and the fact that $r_{3}(1) \neq 1$, although $r_{2}(1)=1$, see footnote 1 . The geometric idea is that allowing for inflexionary type curves, where we can have points $x_{0, i} \in\left(m, m+\frac{1}{m}\right)$ for which $h^{(i)}\left(x_{0, i}\right)=0$, where $2 \leq i \leq n-1$, the end conditions can be satisfied while still having $\left.h^{(n)}\right|_{\left(m, m+\frac{1}{m}\right)}>0$ or $\left.h^{(n)}\right|_{\left(m, m+\frac{1}{m}\right)}<0$. However, you still need to do a concrete calculation, which in the case of verifying the conjecture for all $n \in \mathcal{N}, n \geq 3$, would involve finding the exact pattern in the coefficients obtained in the proof of Lemma 0.5 of [3]. We actually only need the result for some $n \geq 14$ in the rest of this paper.

