FUNCTIONS ANALYTIC AT INFINITY AND
NORMALITY

TRISTRAM DE PIRO

ABSTRACT. This paper explores the notion of analytic at infinity
and normality. We prove that we can define a Fourier transform
for normal functions.

Definition 0.1. A smooth real function f : R — R is non oscillatory
if it is eventually monotone, that is there exist v € R~q for which f|(r.c0)
is increasing or decreasing and similarly for f|(—eory. We say that f is
of very moderate decrease if there exists a constant C € R~q for which
1f(z)] < |% for |z| > 1. We say that f is of moderate decrease if there

exists a constant C' € R~q for which |f(z)| < % for |z| > 1.

Definition 0.2. Given a smooth real function f: R\ W — R, where
W is a bounded closed set of R, we say that [ is analytic at infinity,
if there exist {€1, €2} C Ro such that, for 0 < x < €;

where a(x) =Y a,x™, a, € R, n > 1, is an absolutely convergent

real power series on the interval (0,€;), and for —ey < x < 0;
where b(x) =Y 07 byx™, by, € R, n > 1, is an absolutely convergent
real power series on the interval (—ez, 0).

Lemma 0.3. The functions fy(x) = \:c_id| where d € R are analytic at
infinity.

Proof. 1f d > 0, we have that for 0 < x < é, using the formula for a
geometric progression;
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and, for —é <z <0
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The facts that f; are smooth, for x # d, and the cases d = 0 and
d < 0 are left to the reader.

O

Lemma 0.4. If f : R\ W — R is analytic at infinity, then so is [,
moreover [’ is of moderate decrease.

Proof. As f is analytic at infinity, we have that, for 0 < x < €y;

f(%) = Zn:l a”‘rn

so that, by the chain rule, and the fact that > 7 na,z"! is abso-
lutely convergent for 0 < = < ey;
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()

_ oo n—1
- = Y ore NaRT

so that, rearranging;

'(3) = —a* Loy naga"!
=—> na,z"!

=—> " ,(n—1a,_1z" (C)

A similar calculation holds for —e; < = < 0, to show that f is
analytic at infinity. From (C), using the proof of Lemma 0.5, we can

show that f’ is of moderate decrease.
O

Lemma 0.5. If f is analytic at infinity, then it is of very moderate
decrease and non-oscillatory.

Proof. By the definition, we have that, for 0 < x < €, that;

where, assuming f is non vanishing on (i, 00)), n > 1 and u(0) # 0,
and |u(z)| < M on (0,€;), so that;

[f()] < Ma™

|flz) <2

for x > é Similar considerations apply for x < 0, so that;

@)l < 2

for z < —é, m > 1, N € R.o. Without loss of generality, assum-
11

ing that max(e,€e) < 1, taking D = max(M,N), r = max(a,a),
p = min(m,n), we obtain that;
f@) < <B

[P = ||
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for |x| > r. As f is smooth, |f|_rq| < M < 2 so f is of very

||
moderate decrease, taking C' = max (D, Mr).

By Lemma 0.4, we have that f’ is analytic at infinity. If /" = 0, the
result follows. Otherwise, we clam that the zero set of f', Zero(f') is
contained in [—s, s], for some s € R~q, in which case the result again
follows. To see this is the case, suppose there exists a sequence of
zeros of f', {s, : n € N}, for which |s,| — oo, Without loss of gen-
erality we may assume that s, > 0, so that the absolutely convergent
power series a(x) has infinitely many zeros in the interval (0, €), for any
0 < € < €. Writing a(z) = z"u(z), with u(0) # 0, by continuity we
can assume that u(x) # 0, in the interval (0,€3), where 0 < €3 < €.
Then 2"u(z) =0iff z =0 or u(z) =0, iff t =0 or u(z) =0, iff 2 =0
or x ¢ (0,€3), which is a contradiction.

O

Remarks 0.6. The class of non-oscillatory functions, with very moder-
ate decrease, was considered in the paper [1], where we proved a Fourier
wnwversion theorem.

Definition 0.7. Let f : R*\ W — R be smooth, with W closed and
bounded, we say that f is of very moderate decrease if there exists a
constant C € R~g such that |f(z,y)| < ‘(m—cy)', for |(z,y)| > 1. We say

that f is of moderate decrease if there exists a constant C' € R~q such
that | f(x,y)| < ﬁ, for|(x,y)| > 1. We say that f is of moderate de-

crease n, if there exists a constant C € R~q such that | f(z,y)| < W,
for |(z,y)| > 1, with n > 2. We say that f is normal, if;

(7). For x € R, f.(y) is analytic at infinity.
(17). Fory e R, f,(z) is analytic at infinity.
(7i1). f is of very moderate decrease.

(iv). The higher derivatives % and g—i, are of moderate decrease.

(v). There is a uniform bound val in the number of zeros of fu, (f2) (fz)”

and fy, (f,)'s (fy)"-
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We say that f is quasi normal if (i) — (iv) hold and (v)', for suffi-
ciently large x, the zeros of f, are contained in the union of bounded
intervals (—M,, —Ny)U(N,, M), with M,— N, uniformly bounded in x,
and similarly for {(f:)'(fz)"}, with corresponding M., M N N and
{fy: (fy) (f,)"}, with corresponding {M,, My, M/, N, N?; Né’} We say
that f is quasi split normal if (i) — (iv) hold and (U)”, for sufficiently
large (x,y), f(x,y) = fi(z,y) + fo(x,y), with fi and fy quasi normal,
and {f, f1, fa} are smooth.

Lemma 0.8. If {a,b} C R, and W is a closed ball B((a,b),s), s > 0,
containing (a,b), the function f(x,y)|r2\w

where f(l’ y) m7 (flf,y) 7& (CL, b)
18 normal.
If p > 0 is continuous with compact support, p # 0, the function;

f( fRQ xy (1, y_)|d','[;/dy

is quasi normal, and if p is smooth with compact support, p # 0;

T(,y) = Jro iy da'dy
1s quasi split normal.
Proof. Fix x¢ € R, then;

fao(y) = !

((z0—a)2+(y—b)2) 2

Without loss of generality, assuming that zy # a, we have that, for
y > 0;
1) — 1
fwo(y) ((zo—a)z-‘r(%—b)z)%

— )
- 1
(¥2(zo—a)?+1—2yb+y2b?)2

For y < 1, we have that y?> < y, so that;

[y% (2o — a)? — 2yb + y?b%| < y|(xo — a)? + 2|b] + b?| < 1
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. 1
Mty < [

and, applying Newton’s theorem, with b, = %,

foo () =y 2020 ba(y? (20 — @)* = 2yb + y°b%)"

= Zzo:l anyn

is an absolutely convergent power series in y of order 1. A similar re-
sult holds for y < 0, so that f,, is analytic at infinity. Similarly, fixing

Yo € R, we can see that f,, (z) is analytic at infinity. Let 7 = (z,v),
r=|z,y|, @ = (a,b), then, switching to polars, for 0 < 6 < 2;

lim, _oorf(r,0) = lim,q_mm

15 1
S o
T

T

5 1
= limr—oo =5

=1

so that fixing a closed ball B(0,s) D W, using the fact that f is
smooth on B(0,s)¢, r|f| < D, where D € R+q, on B(0,s)¢, so that
|f] < 2, forr>s. As f is continuous on B(0,s) \ W*, it is bounded,
by compactness of B(0,s) \ W°, so that |f| < M for |z| > 1. Tt follows
that |f| < €, for |z| > 1, where C' = maxz (D, Ms). Therefore, f|ga\w
is of very moderate decrease.

We have that f, has no zeros, similarly for f,, and, by the chain rule;

1
(z—a)2+(y—b)2) 2

Q>|Q>
8~

=—12(z —a)

(2=0)*+(y—b))?
so that (f,)" has a zero when = = q, similarly (f,)" has a zero when
y = b. We have;

. 210f 1 __ 1. (z—a)r?
lim,_oor |%| = llmr—mow
: r?[r—al
< lzmr—mom
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2
— ] r
= lim, 0o 75m

= iMoo
= lim, o0z
=1

so that fixing a closed ball B(0,s) D W, using the fact that % is
smooth on B(0,s), 7*|2| < D, where D € R, on B(0, s)", so that
laf] < L forr>s. As 8f is continuous on B(0, s) \ W°, it is bounded,
by compactness of B(0, s) \ W* again, so that |(9$| < M for |z| > 1. It
follows that 2| < %, for |z| > 1, where C' = maz(D, Ms?). A sim-
ilar proof works for g—];, and the higher derivatives %, n+m>1,

the details are left to the reader, so that {g:—gyjfiw\w :n+m > 1} are

of moderate decrease. We have that, by the product rule;

92f 1 + 3(z—a)? -0

927 T () +y-b)D)E | (@-a)*+(y-b)*)3

iff 3(z — a)? — [(z — a)? + (y — )] = 0

iff 2(x — a)? = (y — b)*
ncfw—a—f( b)oraz—a——T( y—b)

so that (f,)” has at most 2 zeros for y € R and we can take val = 2.
A similar result holds for (f,)".

For the second claim, note that if (z,y) € Supp(p), then;
f@.9) = Jra Ty df

= fR2 p(ﬂc‘(; ;/y ‘y dz'dy’

= fo o fR>O La.y(r9) rszn(&)drd@

= Joor Jro, Pry(r,0)sin(0)drdd

so that;
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|f(z,y)| < fo,zw fR>0 |pr,y(7ﬂ7 0)|drdo

< 2M7R(z,y)

where Supp, ,(p) C B(0, R(z,y)), |p| < M, so that f is defined ev-
erywhere. If p is smooth, we have that f is smooth, as;

oitif O fra P ety
Oz OyI ( ) Ozt OyI

9tti
L (z—a'y—

2t y
_ fR2 9 ale(r ) d.’L',dy/

with Bz’6y3 having compact support again. If p is continuous, but

not necessarily smooth, we have that, for (z,y) ¢ Supp(p);

ot f
OxtOyI (

oiti

= Jra (2 y/)aziayj(ux,y) @) dr'dy’

so that f is smooth, outside Supp(p). For (i), in Definition 0.7, we
have, for o € R, y > 0;

-T / /
fxo f'RQ |(x0 ) ’y/)‘dx dy

p(a’y")
yfR (1492 (20— )2—2yy/ +y2y?) 2

so that, with y < 1, y? < vy, letting;
Mon = sup(x/,y/)egupp(p)\(:vo - .1’/’2 + 2’:1/’ + y'2], if y < MLEO, then;
|y2(x0 _ x/)? _ ny/ + y2y/2| < y|<x0 _ x/)Q _|_ 2|yl| +y12| < 1

so that, we can apply Newton’s theorem uniformly in (2/,y') €
Supp(p), to obtain;

Foo(5) = Y Ssuppiy P ¥ (n by (wo—a')* = 2yy +yy?)" ) da'dy

where b,, is as above. With y < 1 again, |2/| < M, |¢'| < M, for

(', y") C Supp(p), |p| < N,y < (|x0|+M)21+2M+M2, we have, applying
the DCT;

[ fao ()] < yN@M)? 320 ¢ [bul ([0l + M)y + 2y M + yM?)"
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< AYyNM?370 o |baly™ (o] + M)? +2M + M?)"
< AyNM? ">y ((|wo| + M) + 2M + M?)™

defines an absolutely convergent series. A similar proof works for
y < 0. (i1) is similar. For (zi4), with Supp(p) C B(0, M), |p| < N, if
()] 2 2M, and (', 41) € Supplp), (2:9) = (.9} 2 152, 50 that

(@y)— < NS |<z o> and;

/
|fSuzap I(I,y (1‘ ') dx dy|

2
S e fSupp(m p(a", ') |da'dy’

2rM2N

= (=)
r (iv), we have that if |(z,y)] > max(2M,1), and (2,y') €
Supp( ) (@) — (x ERIE < |(xy IEE ‘:U z | < ‘(:L‘ ) (*T’y)‘ < |(x>y)‘+M;

_ (z’
|fSupp(p (Z y)— (m E0) \3 da:’dy ‘

8(|(x, M
< % fSupp(p) |p(a:',y’)|dx’dy’

8m M2 N (|(z,y)|+M)
()3

8r(M2+M)N

= =yl

IN

The proof for g—i is similar. For (v)’, we have that if p > 0 is contin-

uous with compact support, p # 0, that f > 0. For (z,y) ¢ Supp(p),
we have that;

ng _—7?;) E dx’dy

and for v > M, (z —2') > 0, for v < M, (z — 2') < 0, where
x’ € Supp(p), so that for |y| > M, (f,) <0, for x > M, and (f,) >0
for x < M, as p > 0. In particular, the zeros of f, are contained in the
interval (—(M +1), (M +1)), with the length 2(M + 1) of the interval,
uniformly bounded in y. We have that;

o2 3(zx—2a’
5 = Jre 0@ ) - [amtmaE T T y>|5]d“”'dy
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_ z—a')?—( )2
= Jrz 0l V) B ' dyf

so that if 2(x — 2/)? — (y — ¢/)? > 0, for (z'y") € Supp(p), (f,)" >0,
and if 2(z — 2')? — (y — y')? < 0, for ( "y') € Supp(p), (fy)" < 0. We
have that;

2@ -2 = (y—y)* >0
iff |2 — 2’| > Z5ly — '] (i)
20 —a') = (y—y)* <0
iff o — 2’| < Zly —y'| (id)

so that if |z| > M + == (|y| + M), (i) holds, and if |z| < —M +
75(]y| — M), (i7) holds, for |y| > 2M. In particularly, the zeros of (f,)”
are contained in the intervals (—M + - syl — M), M+ - 5 (ly[+M))U
(—M — \/Li(|y| +M), M — \%(|y| —M)), Wlth the length of the intervals,
(2 4+ +/2)M uniform in |y| > 2M. For (v)”, we can split p into p* and

p~ which are continuous with compact support, and use the previous
result, noting that quasi normal implies quasi split normal, as f = §+§

O

Remarks 0.9. The above functions hcwe stronger properties, for exam-
ple it can probably be shown that 2 o ma — has moderate decrease n+m+1,
forn+m > 1, and there is a umform bound on the zeros of all the
higher derivatives £ and £\™, for allm > 1, m > 1. The details are
left as an exercise. We include the case of (f,)" for the first function;

027 T (2—a)2+(y—0)2)F  ((w—a)>+(y—b)2)
iff 9z —a)[(x —a)*+ (y — b)*] = 15(z —a)®* =0

Bf 9(z—a) B 15(z—a)?® —0

[V

iff I(x —a)* + (y — b)?] — 15(x — a)* =0

iff 6(z —a)? = 9(y — b)?

iﬁx—a:\/g(y—b) orac:—\/g(y—b)
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so that (f,)" has at most 2 zeros for y € R and we can take val = 2.
A similar result holds for (f.)".

Lemma 0.10. Let f : R?> — R be smooth and normal, then, for
{«f,y} - R} kl 7£ 07 kQ ?é 07'

F(ki,y) = limysoo 1 f(z,y)e”"1%dz
Gz, k) = lim, o0 7 f(x,y)e *Vdy

both exist and F(ky1,y), G(x,ks) are of moderate decrease.

Proof. The first claim follows from [1] together with Lemma 0.5 and
(i), (44) in Definition 0.7. In fact, the first integral is indefinite, in the
sense that we could define it as;

F(kla y) = limr—)oo,s—)oo(far f($a y)eiiklxdl' + ffs f($, y)€7ik1wdl’)
for a choice of a € R, and similarly for G(z, k2). We then have, using
integration by parts, for yg € R;

ikx

. . —ikqx r iﬂx e
I7 o yo)e®ody = [Hewe ™y - pr igpeane

k1 -r -7 k1

so that, as f,, is of very moderate decrease, by (7i7), integrating by
parts;

F(ky,yo) = lim,oo |7, f(@,y0)e” ™" da

. » o i

(LT C Uy S )
. i 91 (z, —ikyz

= lim,o0(— f—Tr %dm)

Lfoo 8f(x’y0>e—ik‘1xdx

Tk J- 02

the last integral being definite, as (%)yO is of moderate decrease,

using (iv). It follows that F'(k,y) is smooth, as differentiating under
the integral sign is justified by the DCT, MVT and (iv), with;

i oo 9itm —ikix
F(kyy) = — 5 [7, Grage (@, y)e 0 da
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We have that ( )y0 is analytic at infinity by (iz) and Lemma 0.4.
By (v) in the deﬁn1t1on of normality, we can assume that for suffi-
ciently large vy, ( )y is monotone and positive/negative in the inter-
vals (=00, a1(y)), - - -, (awa(y),00), where aq, . .., ayq vary continuously
with y. Splitting the integral into cos(kix) and sin(kix) Components,
in a similar calculation to [2], for any interval of length at least 2 ]y e

obtain an alternating cancellation in the contribution to the integral
2m|| £yl

we obtain
3N

of at most

and for any interval of length at most

i
47f|‘k‘fiv” It follows that, for

sufficiently large y, using the fact that % has moderate decrease;

a contribution to the integral of at most

| = [ g (@ y)e i da

k1 oo Oz

1+1) 4= fyll
< (va y
= k1] k1]

47r(val+1)||f?;||
k1|

4m(val+1)C
< Teppe ()

so that;

|F (k)| <

|yl

for sufficiently large y, with D = W. As F(ky,y) is smooth,
we obtain that F'(k1,y) is of moderate decrease. Similarly, we can show

that G(z, ko) is of moderate decrease, for ky # 0. O

Lemma 0.11. The same result as Lemma 0.10 holds, with the as-
sumption that f is smooth and quasi normal or smooth and quasi split
normal.

Proof. We just have to replace the uses of (v) in Definition 0.7 with the
use of (v)" or (v)”. For (v)’, we have that, for sufficiently large v, (%)y is
monotone and positive/negative outside a finite union 7, of S intervals
whose total length is uniformly bounded by a constant R € R~ which
is independent of y. By the usual argument, we obtain a contribution
of at most || f; || R to the integral over this interval. As before, splitting
the integral into cos(kix) and sin(kyz) components, we can bound the

contribution of the remaining integral by %W to give a total
bound for the calculation in (x) of Lemma 0.10 of ( Slzllzm + R)|| £,

and we can then, as before, use the fact that % has moderate decrease.
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For (v)", we can split f, = f y—l— f2.,> and repeating the above argument
twice obtain a total bound of ( S‘fl“ + R)(|[f1,/ + 1] f2,1]), where the
bounds S and R work for both f] and f;,. We can then use the the

fact that % and % have moderate decrease.
O

Lemma 0.12. Let hypotheses and notation be as in Lemma 0.10, then
we can define, for ky # 0, ky # 0;

F(ky, ko) = [72 F(ki,y)e *vdy
G(k1, ko) = [ Gz, ky)e ™ da
We have that;

F(ky, ko) = G(k1, k2) = limumsoon—soo [0 J5 [z, y)e”F1%e™ v dudy

Proof. The definition follows from the previous lemma, as F'(kq,y) and
G(x, ko) are smooth and of moderate decrease. Integrating by parts
again, using the fact that f is of very moderate decrease, we have that,
for n € R<o;

f|x|>n f(I, y)e_iklxdx

; , —ikjx . , —ikyx 875( , ) —ikx
— ([%]f + [%L& _ fac|>n % )
i f (n,y)etk1m Yeik1n Ye~ k12
= (_lf(n y]zf 4 U= ny _ fx|>n i%( zle dz)

We have that, using the above calculation (x) in Lemma 0.10, f of
very moderate decrease;

zf(—n,y yetkinif(ny)e”Fny ik
|f|y\<m k1 - k1 )6 deyl

< ol Sy FEy)e ™ 2vdy| + | [ f(n,y)e™2vdy|

4m(wal+1)|| f—nljy|<mll 1 dr(val4+1)|| frljy)<mll
[k1]2 k112

IN

8m(val+1)C
> [k12n
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and using the previous calculation (x) again in Lemma 0.10, we have
that;

L, §
| = 15 Japon e (2, y)e17da]

(val+1) 47r|‘f£;||\m\>n
= |kl [fe1]

A (val+ DI f 1) >n
|k1]?

47t (val+1)C
= Tk12(y2+n2)

so that;

| 5 p B
| = 25 Stz Sion o2 (@ y)e M= dwe vy

47 (val+1)C
y<m TG )

fOO 4 ( val—l—l)Cd

> 0o k1 |2(y2+n2)

_ fOO 1 47r(val+1)C’d

— J_oo n2 2.
" P (14 45)

1 4m(val+1)C —1/Y\|oco
<z ntanT (5)]1%

7 4n(val+1)C
no |k

IN

The above calculations combine, to give that;
| Stz limnsoe J7 fla,y)e™mem®vdudy— [ [ fa,y)e”*Te " 2vdudyl

- ‘ f|y\§m f|x\>n f(l‘, y)e_iklxe_ikzydl’dm

< 8m(val+1)C 7 4m(val+1)C
= |k*n n |k?

so that limy,_005n,m = Soo,m, uniformly in m, where;
_ —ik1x ,—ikay
Snn = Jycm Jiojn £ (2, 9)e 15 0 dudy

Soo,m = ﬁy\ﬁm F(kl, y)e_“”ydy

By the Moore-Osgood Theorem, we obtain the result.
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Lemma 0.13. Let hypotheses and notation be as in Lemma 0.12, then
we have that there exist constants {Cy,, Dg, } C R~o such that;

[Snm — | < %—l—%

In particular, there exists a constant Ey, € R~o such that;
|Smm — | < %

Similarly, there exist constants {C,, Dy, } C Rso such that;
|Snm — | < %—l—%

In particular, there exists a constant Ey, € R~o such that;

|3m,m - Sl S %

Proof. We have that, by the proof of Lemma 0.12;

|3n,m - 5’ S |5n,m - Soo,m| + ‘Soo,m - Sl

< 87 (val+1)C 7 4n(val+1)C + | f‘mzm F(kl, y)e—ikzydy|

= [|k1f?n n |kf?

< 8n(valt))C | 7 4n(valt)C | Jiyzm | F (1, y)ldy

|k1]2n n o |kf?

where, by the result of Lemma 0.10, F'(ky, y) is of moderate decrease;

|F(kyy)l < o5

ly|?

for sufficiently large y, with D = %. It follows that, for suf-

ficiently large m;

o 87 (val+1)C 7 4n(val+1)C D
5| < k1|*n n |ki]? + f|y|2m y? dy

|Sn.m

8m(val+1)C 7 4m(val+1)C + 2D
= |kPn no |k? m
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_ 8w(val+1)C
Ckl - |k1‘2

_ 8m(val4+1)C 47 (val+1)C
D = == ¥ 7w

For the next claim, we can take Ej, = Ck, + Dy,

The claim with ks follows by symmetry, using a corresponding es-
timate for |s, ,, — Spoo| in terms of m and the fact from Lemma 0.10
that G(z, ko) is of moderate decrease, for ky # 0.

O

Lemma 0.14. The same results as Lemma 0.12 and Lemma 0.13 hold
with the assumption that f is smooth and quasi normal or smooth and
quast split normal.

Proof. Again, we can replace the estimates from (v) in Definition 0.7,
used in the proof of Lemma 0.12, with the estimate used in Lemma
0.11. The proof of Lemma 0.13 then goes through.

O

Definition 0.15. Let f: R3*\ W — R be smooth, with W closed and
bounded, we say that f is of very moderate decrease if there exists a con-
stant C' € Rsq such that |f(z,y, z)| < |(xyz)| for |(z,y,2)| > 1. We
say that f is of moderate decrease if there exists a constant C' € R~
such that | f(z,y, z)| < m, for |(x,y,z)| > 1. We say that f is
of moderate decrease n, if there exists a constant C' € R~ such that
|f(z,y,2)] < |xyz s Jor [(@,y, 2 2)| > 1, withn > 2. We say that f is
normal, if;

(7). Forx € R, f.(y,z) is normal.
(i1). Fory e R, fy(x,2) is normal.
(1ii). For z € R, f.(x,y) is normal.
(iv). f is of very moderate decrease.

v). The higher deriwatives —Z Mfk are of moderate decrease i+ j +
070z
kE+1, fori+j+k>1.
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(vi). There is a uniform bound val(x,y) in the number of zeros of;
fe (Fen)s (Fo)”"s (fa)”s (fau)™

and similarly, for fi ., fy.-

We say that f is quasi normal, if;

(7). Forz € R, f.(y,2) is quasi normal, and, similarly for (ii), (ii7),
(iv), (v) hold and;

(vi)'. For sufficiently large (x,y), the zeros of;

oy (Fay)'s (Fa)"s ()" (Fe)™

are contained in a finite unton of S intervals, with total length R,
uniform in (x,y).

and similarly, for fu ., fy.-.
We say that f is quasi split normal, if;

(1)". For x € R, f.(y,2) is quasi split normal, and, similarly for
(i7), (ii1), (), (v) hold and;

(vi)"”. For sufficiently large (x,y), f = f1 + f2, with f, f1, fo smooth
and with f1, fa having the property (vi)'.
Lemma 0.16. If {a,b,c} C R, and W is a closed ball B((a,b,c),s),
s > 0, containing (a,b,c), the function f(x,y,2)|gs\w

where f(xaya Z) = m: (Z)’J,y,Z) 7£ <a7b7 C)

s normal.

If p > 0 is continuous with compact support, p # 0, the function;

f(@,y,2) = [ e 7yp£x ’yxzy ) dx'dy'dz’

18 quasi normal.
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If p is smooth with compact support, p # 0, the function;

flz,y, 2z fRJ e plz'y, Zy ) dx'dy'dz'

7yZ $

1 quasi split normal.

Proof. For the first claim, we have to show, for o € R, that f,,(y, 2)
is normal. Fix zy € R, then;

fro20(y) = !

((z0—a)2-+(20—)2+(y—b)2) 2

Without loss of generality, assuming that zo # a, 2y # ¢, we have
that, for y > 0;

fzo,zo(i) = !

1
((zo—a)?+(20—c)2+(;; —b)?)2
(¥ (zo—a)?+y?(20—c)2+1—2yb+y?b2) 2

For y < 1, we have that y? < y, so that;

[y (20 — a)® + y*(20 — €)* — 2yb + y?b?| < y|(xo — a)® + (20 — ¢)* +
206l + 0| < 1

1

Mty < [P re—or ]

and, applying Newton’s theorem, with b, = #

"(n')2 )
Faoeo () = ¥ 2200 ba (U (w0 — @) + 4(20 — ©)* = 2y + y°b)"
= 220:1 anyn

is an absolutely convergent power series in y of order 1. A similar re-
sult holds for y < 0, so that f,, ., is analytic at infinity. Similarly, fixing
Yo € R, we can see that f,,,(2) is analytic at infinity, and (i), (i¢) in
Definition 0.7 hold for f,,(y,z). That f,, is of very moderate decrease
will follow from the proof below that f is of very moderate decrease.
As if there exists a constant C' € R~ such that |f|(z,y, z) < e for
|(z,y,2)] > 1, then if |(y, z)| > 1, we have that |z¢,y, 2| > |(y, 2)| > 1,
and;
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C C
|fzo|(y7z) < [(z0,y,2)] S [(y,2)]

P fzo

and % —5.2 are of moderate decrease, will
follow from the proof below that the hlgher derivatives E)Zaj—jgfk are of

Similarly, the proof that

moderate decrease i +j + k + 1, As if Bi is of moderate decrease 2, so
of moderate decrease, than, for |(x,y, z)| > 1;

of C
15| < mwar

so that, for |(y, z)| > 1, as above;

Ofzg c c
<
| | < I(zo,w,2)I* — lv:2[?

The proof that for y € R, the zeros of {f.,,(2), fr . (2), fu (2)}

xo,Y zo,Y
are uniformly bounded in y follows from the proof below that the ze-

ros of {fuy(2), f1.,(2), fi,(2), [, (2), [ (2)} are uniformly bounded
in (x,y). It follows that for o € R, fu,(y,2) is normal, similarly
for fy(x,z) and f, (x,y), where yo € R, 2y € R. We have then
verified (i) — (i4i) of Definition 0.15. For (iv), let 7 = (x,y,2), r =
|(z,y,2)|, @ = (a,b,c), then, switching to polars, x = rsin(f)cos(¢),
y = rsin(0)sin(¢), z = rcos(), for 0 <0 < m, —7 < ¢ < 7;

Uiy oo f (1, 0, 6) = 1y o0 gy

— I3 1
- lzmr—)oo |?(r,9,¢) _g‘

r

= iy soo e

=1

so that fixing a closed ball B(0,s) D W, using the fact that f is
smooth on B(0,s)¢, r|f| < D, where D € R~q, on B(0,s)¢, so that
|f] < 2, forr >s. As f is continuous on B(0,s) \ W*, it is bounded,
by compactness of B(0,s)\ W°, so that |f| < M for |[z| > 1. It follows
that |f| < | i, for || > 1, where C' = maxz(D, Ms). Therefore, f|gs\w
is of very moderate decrease.
fititk

Suppose inductively, that, for (i +j+k > 0), GaayiaF 1S of the form;
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‘ (wyi gfzjfc_)ll’liz(ﬂ] 7, where p is homogeneous of degree i + j + k,

then, using the product rule;

pptithrl (@)= (ab)2 2 (@—ay—bz—c)— (z—) (142(i+j+k))p(a—ay—b,z—c)
D 0yT0F T (@)~ (@b, [ 20 FI TR

which is of the form;

q(x—a,y—b,z—c)
|(2,y,2)—(a,b,c)[1H2GHiTh+1) 7

where ¢ is homogeneous of degree i+ j+k+1;
s(IL+20+j+k)>i+j+k fori+j+k>0

Similar inductions work for -2 5, and ‘9 , so that we can assume that;

% is of the form;
pla—ay—bz—c) __ where p is homogeneous of degree i + j + k

[(z,y,2)—(a,b,c)|FF2G+i+F) 1

We then have that;

li 1+z‘+j+k’ _gfititk ‘ li PR S ik Gt i (T—a)’ (=)' (z—c)¥’
UMy 00T 8x28yj82k My 00 |;_a|1+2(i+j+k)

< lim r1+i+j+k(2i’+j’+k’ |Ci’j’k’|)|F_a‘i+j+k

= T—00 |;_6|1+2(i+j+k)

pltititk
=FK lzmr%ooww

. 1
= Blimy oo m—=presre
s T

— Bli B
= Elim,_, EE=EaEe:

=F

where B =3, i |cirjrie ], so that fixing a closed ball B(0, s) D

W, using the fact that na—aafk is smooth on B(0, 5)¢, rititktl] %] <

i+j+k
D, where D € R+, on B(0, s)¢, so that lagfayjazk\ < e, forr > s

As % is continuous on B(0, s) \ W°, it is bounded, by compact-
ness of B(0, s) \ W° again, so that |%| < M for |z| > 1. It follows
that |£;ng£,€| < mmﬂkﬂ, for |Z] > 1, where C = max (D, Ms™Titrt1),
It follows that {

3i+j+kf

BrBOF R\ :i4 7+ k > 1} are of moderate decrease
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i+ g+ k41

Fixing {y, 2} C R, we have that f,, has no zeros, and, by the chain
rule;

0
%Ly = —42(a - a) 1

 ((r—a)2+(y—b)2+(=—b)2) ]

so that (f,.)" has a zero when z = a. We have that, by the product
rule;

82_f| - —
02 19,2 ((x—a)24(y—b)2+(2—c)?)

iff 3(z —a)? = [(w—a)® + (y =0+ (z = ¢)’] =0

1 . + 3(x—a)? - = 0
2 ((z—a)?+(y—b)2+(2—c)?)2

iff 2(x —a)? = (y — b)* + (z — ¢)?

N

iffz—a=J5l(y=b)+ (=07} ora—a=—Ll(y—bP+(z—0)

Sl

so that (f,. 2

~—

" has at most 2 zeros for (y,2) € R

Similarly;

2f L = _
08102 (@) (y-b)2H =0T (0-a)+(y-b)2+(z—0)?)

iff 9z —a)[(z—a)*+ (y—b)*+ (2 — )’ = 15(z —a)®* =0

9(z—a) 15(z—a)? -0

NI

9z —a)+(y—0>*+(z—0c)]—15(x—a)*=0
iff 6(x —a)>=9((y —0)>+ (z — ¢)?)

iffz—a = /3(y—)?+ (=)t orw—a = = /3y +(z -0}

so that (f,.)"” has at most 2 zeros for (y,z) € R%.

Finally;
84_f| — 9 _ 90(3370,)2 + 105(1‘—0,)4
Tt ™ (o)t y—b2+ (=) T (1-0)2+y—b2+ (=) T | (3—a)+(y—b)2+(z—0)?)F
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—0
T 9[(z —a)* + (y—0)*+ (2 — ¢)*]* = 90(z — a)*[(z — a)* + (y — b)?
+(z — )} + 105(x — a)* =0
iff 9(u® + s%)? — 90u?(u? + s?) + 105u = 0
iff 24u* — 72u*s* + 9s* = 0

iff 8ut — 24u?s® + 35t =0

. 9 24524 /—/2425%1—4.245%
iff u® = 6

. 2 24824 /—/480s%

iff u* = —=—

. 6+/—/30
iff o2 = SH/v30 =7

iff u = /6 +/30s or u = /6 — /305 or u = —(/6+/30)s
or u=—(1/6—1/30)s
where u = = —a, s = [(y — b)> + (2 — ¢)?)2, so that (f,.)"" has at

most 4 zeros for (y, z) € R?, and we can take val = 4. A similar result
holds for f,, and f, .. It follows that f is normal.

For the second claim, note that if (z,y,2) € Supp(p), then, switch-
ing to polars;

f(x,y, 2 fm xR ypix yxzy = dz'dy'dz’

= Jroo P iy

= f0,7r f:r fR>0 —pz,y,zr(r,e,@ r?sin(0)drdfde

- fO,ﬂ fjﬂ fR>0 px,yz(ﬁ 97 ¢)Tsm(9)drd9d¢

so that;

|f(:L’, Y, Z)l < fo,w fjw fR>0 |pz,y,z(ra 0, ¢)|d7“d9d¢
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<2M7*R(z,y,z)

where Supp,,.(p) C B(0, R(x,y,2)), p| < M, so that f is defined
everywhere. If p is smooth, we have that f is smooth, as;

8i+j+k fR3 P(I*I/»y*y/vzle) dm’dy’dz’

otk f _ (G772
Oz 9yI zk (l‘, Ys Z> - Oz 9yI Ozk
ottsth, (z—='y—y',2—2")
leayﬂazk ’ ! o ol
= [ ] da'dy'dz

with % having compact support again. If p is continuous, but

not necessarily smooth, we have that, for (z,y, 2) ¢ Supp(p);

3i+j+kf (

oititk
0xtOyI OzF T,y

2) = fR3 p(ay' ') Oz Oyl BzF ( |(z,y,z)—1(a:’,y’,z’)\ Jda'dy'd2'

so that f is smooth, outside Supp(p). When p > 0 with compact
support, we have to show that f,, (y,z) is quasi normal. For (i), in
Definition 0.7, we have, for xo € R,20 € R, y > 0;

fzo Z() f'RS 10’77x7y 273/72/ dx/dy/dZ
yfR ,D(J,’, ,Z)

1
(I+y*(wo—a')?+y?(20—2")? —2yy'+y?y"?) 2

so that, with y < 1, y? < y, letting;

]\4‘,,30720 = SUP( y Nesupp(p)| (X0 — )2 + (20 — 2)2 + 2|y + v, if
y < 35—, then;

|y2(l‘0 —I/)Q +y2(z[) —Z/)2 _ ny/+y2y/2| < y|(x0 _x/)Q + (ZO _ 2)2 +
2ly'|+y”? <1

so that, we can apply Newton’s theorem uniformly in (2/,y/,2") €
Supp(p), to obtain;

fﬂfo,zo@) =Y fsupp(p) p(a,y', 2 ) (300 bu(y (z0 — &) +y* (20 — 2)% —
ny/ —I—yQy/Q)n)dl‘/dyldzl

where b, is as above. With y < 1 again, |2'| < M, |y| <M, || <M
for (z',y,2") C Supp(p), |p| < N,y < we
have, applying the DCT;

(Jzo|+M)2+ (|z0+M) +2M+M2>
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[ Fao,0 ()] < yN(@2M)? 3207 [ba| ((Jwol + M)y + (|20] + M) + 2y M +
yMQ)n

< BYNM? 32 |bnly™((|Jzo| + M)? + (|20 + M)? +2M + M?)"
< 8YNM3 Y7 ™ ((Jwo| + M)? + (20| + M)? + 2M + M?)"

defines an absolutely convergent series. A similar proof works for
y < 0. (i) is similar. For (7i7), in Definition 0.7, this will follow, as
above, from the main result that f itself is of very moderate decrea,se
similarly, for (iv), as above, the moderate decrease in the fibre 2 8—

and %xo, will follow from the moderate decrease i + j + k + 1 in the

derivatives %W’ i+j+k>1. For (v), again, as above, the claim
on the intervals and zeros follows from the main proof.

For (iv)’ in Definition 0.15, with Supp(p) C B(0, M), M > 1, |p| <
N, if |(x,y,2)| > 2M, and (', vy, 2') € Supp(p), |(z,y,2)— (2", ¢, z)| >

I(m y z) 1 2 )
» 80 that ooy < ey and;

19, = Usumi) Tt e’ dy'd'|

2
< [(z,y,2)] fsupp(p) |p(l’l, y/, 2/)|d$’dy’dz’
8TtM3N
= 3 (2l

For (v)’, we have that, combining results above, with ¢ + 7 + k > 1,
(z,y,2) ¢ Supp(p);

ai+j+kf oy 2 pla— oy o Z L
0xt0yI OzF ZE y Y, 2 f’RS (2,9,2)—(a iy’ ,2) LT 2(F3+F) dx dy dz

where p is homogeneous of degree i + j + k. Then, if |(z,y,2)| >
max(2M, 1), and (2',y', 2") € Supp(p);

1 21+2(i+j+k)
(z,y,2)— (2’ 2/ )[FF2OFTHR) = |(z,y,2)[1 T2+ TR)

|l’ - IE/| < |($7y72) - (Ilaylaz/” < |(l’,’y72)| + M7 and similarly
ly =y < (.9, 2)[ + M, |2 = 2| < (2,9, 2)[ + M, so that;

|p($ - "L‘I7y - ylv Z = Z/)| S T(|(I‘,y,2’>| + M)iJerrk
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where T'= 3", gk =ik @i and p =3, gk =it gk ] x2 x3 -

It follows that;

gititky pla ' 2 )p(a—a y—y' 2—2") L
amlayJsz | | fSupp ) [(@9,2)— (&' 2 )‘1+2(2+]+k) dx dy dz |

21+2(7«+J+k)T(‘(m’y7z)|+M)l+J+k

= [(@,2) |1 T2+ E) fgupp lp(a',y/, 2")|dz'dy' d2’'

21+2(i+j+k)TN47r]\4 (|(x,y7 )|+M)z+]+k
= [(g.7) P20+

21+2(L+J+k)TN47'rM (Z+]+k+1)|Mz+]+k
- |(z,y, Z)l”(””k)

so that %(z, y, z) is of moderate decrease i + j + k + 1.

For (vi)', we have that if p > 0 is continuous with compact sup-
port, p # 0, that f > 0. Repeating the argument above, and the
calculation of the derivatives, fixing (y,z) € R? and letting s =
(22 + y2)2, we see that the zeros of s, are contained in the interval
(—(M +1), M+1), with the length 2(M + 1) of the interval, uniformly
bounded in (y, z), the zeros of (f,,)"” are contained in the intervals
(=M +5(s= M), M+ (s+M)U(=M— 5 (s+ M), M~ (s—M)),
with the length of the intervals, (2 + v/2)M uniform in s > 2M, the

zeros of (f,,)" are contained in the intervals (—M + %(s — M), M +

%(S—FM))U(—M ?(S%—M) M—%(S—M)), with the length of the

intervals, (2 4+ /6)M uniform in s > 2M, the zeros of (f;,)" are con-

tained in the intervals (—M + /6 +/30(s — M), M + /6 —|— (s +
M)) \/6+ 5+M M \/6+ 0(s — M M+
6—\/%( M+\/ V30(s + M)) \/6— 0(s +
— V6 —+/30(s — W1th the length of the mtervals, (2 +
2/6 + v/30) M and (2 + 2\/6 —/30)M uniform in s > 2M.

Again the proof that if p # 0 is smooth with compact support, then
f is quasi split normal, follows easily by observing that p = pt + p—,
with {p*, p~} being continuous, p™ > 0, p~ < 0, and using the proof
for quasi normality, along with the previous observation in dimension
2, that quasi normality implies quasi split normality.

O

kl
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Lemma 0.17. Let f : R®> — R be normal, then, for {z,y,2} C R,
k1#07 k?#o; k37é0;

Alky,y, z2) = limyoo |7 f(2,y, 2)e” ™ 7da
B(x, ko, 2) = lim, o ffr Fla,y, 2)e k2 dy
C(z,y, ks) = lim, o0 f:f fla,y, z)e a2z

all ezist and A(ky,y, z), B(x, ke, 2),C(x,y, ks) are of moderate de-
crease 3.

and, for {x,y,z} CR, k1 #0, ko #0, k3 #0;

F(ky ko, 2) = limy 500 f; fjs fx,y, 2)e"* e Ry dpdy
G(k1,y,ks) = limp oo [1 [°, fa,y, 2)e" 1 %e®s2dadz
H(x, ko, ks) = limyssoo [ [°, [y, 2)e Ve 2 dydz

all exist and F(ky, ko, 2), G(k1,y, ks), H(x, ke, k3) are of moderate de-

crease.

Moreover,
F(ky ko, z) = [72 Ak, y, 2)e”*2vdy

and corresponding results hold for {A, B,C, F,G, H}, integrating out
the variables in a similar way.

Proof. The first claim follows from [1] together with Lemma 0.5 and

(7), (23), (i27) in Definition 0.15, using the fact that, by normality, f,,(2), fz.2(y), fy,2(x)
are analytic at infinity, for {(x,v), (z,2), (y,2)} C R? (x). We then

have, using integration by parts, for (yo, 29) € R?;

—ikqx of

f_rr f(x, Yo, Zo)e_iklxdl‘ — [M o fT i55(z,90,20)e

. —ikyx
k1 ]*7” —r k1 £z

so that, as fy, ., is of very moderate decrease, by (iv) in Definition
0.15, integrating by parts;
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Ak1, Yo, 20) = limy o fjr f(2, 90, 20)e" ™ dx

| . N k
L (€= Gl Uy S - A )

:O0f —ikix
T _r 1575 (7,90,20)e "1
= lim, 00 f_r ”k—lda:)

2 B,z

the last integral being definite, as (%)ywO is of moderate decrease,
using (v) in Definition 0.15. It follows that A(ki,y, z) is smooth, as
differentiating under the integral sign is justified by the DCT, MVT
and (v) again, with;

+E ; 14j+k
8;38j€ (k17y7 )_ k:ll foow%(x y, ) ’Lklxdx

Integrating by parts again;

oo §? —ik1x
A(ky, Yo, 20) = — % g f@ Yo, 20)€ 1 Tdx

k3 J—oo 822

Wlth 2 of moderate decrease 3, by (v) again . We have that
(82f )yo,zo is analytic at infinity by (%) and Lemma 0.4. By (vi) in the

Ox2
Definition 0.15, we can assume that for sufficiently large (y, 2), (%)y,z
is monotone and positive/negative in the intervals (—oo, a1 (y, 2)), - . ., (@va (Y, 2), 00),
where aq,...,a,y vary continuously with y, z. Splitting the integral
into cos(kyx) and sin(kyx) components, in a similar calculation to [2],
for any interval of length at least é’r', we obtain an alternating cancel-

lation in the contribution to the integral of at most QTL‘{%H and for any

interval of length at most ﬁf', we obtain a contribution to the integral
of at most 2 Tt follows that, for sufficiently large (y, z), using the

K]
fact that % has moderate decrease 3;

. 2
I )

(val+1) 47| fy ]
= |kl |k1]

_ Aw(wal+ D))
B [k1]?

4m(val+1)C
= [E1lP|(w,2)? (*)
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so that;
|A(k17y7 Z)‘ S |y,DZ‘3 (**)
for sufficiently large (y,z), with D = %. As A(ky1,y,2) is

smooth, we obtain that A(ky, v, 2z) is of moderate decrease 3. Similarly,
we can show that B(z, ks, z) and C(x,y, k3) are of moderate decrease
37 for ]{32 7é O, ]{33 7é 0.

The second claim follows from Lemma 0.12, using normality of the
fibres, (i), (i7), (¢i7) in Definition 0.15. In fact, the first integral is in-
definite, in the sense that we could define it as;

F(kh k27 Z) = limm%oo,rgﬁoo,slﬂoo,w%oo(fjrl + f;’2>(fE51 + f;2>f<x7 Y, Z)e_iklxe_ibyd%dy

for a choice of a,b C R, and similarly for G(k1,vy, ks3), H(z, k, k3).
Now observe that;

F(kla k:2> Z) = f_oooo A(kla Y, Z)eiikady

where Ay, is from the first part of the lemma, and of moderate de-
crease 3. This follows from the result of Lemma 0.12, and the fact
that the fibre f, is normal. We claim that F'(ki, k2, z) is of moderate
decrease 2. We have that |Ag, (v, z)| < 5—23 for |(y,z) > 1, by (xx). It

follows that, for sufficiently large z;
|F(k1, ko 2)| < |ffoC>O A(ky,y, z)e~*2vdy|
(e 9] Ck
< 1 _|d
< ’(y2+z2)% dy
C 00 C
= S A ldy

2,3
> (44)2

=y f_%g g zsec(0)do, ((tan(6) = ¥), dy = zsec*(0)do)

=T[5, dd

5 sec(0)

VAN
=
~—
V)
3
(@)
e
®
—~
>
SN—
IS8
>

VAN
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so that F'(ky, ko, z) is of moderate decrease. Similar results hold for
G(z, ko, 2) and H(x,y, ks), with k; # 0, ks # 0, k3 # 0.
O

Lemma 0.18. Let f : R3 — R, the same result as Lemma 0.17 holds,
if f is quasi normal or f is quasi split normal.

Proof. Again, we just have to replace the uses of (i) — (vi) in Definition
0.15, within Lemma 0.17, with the use of (i) — (vi)" or (i) — (vi)”.
The method of replacing (vi) by (vi)’ is given in Lemma 0.11. The
fact that we can replace (i), (i), (i73) by (i)', (ii), (i4i)" at the beginning
of the proof of the second claim follows from Lemma 0.14, and at
the beginning of the proof from Definition 0.7. The use of (iv), (v)
and (iv)'(v') is the same. A similar argument works in the quasi split

normal case, using the argument at the end of Lemma 0.11.
O

Lemma 0.19. Let hypotheses and notation be as in the previous lemma,

then we can define, for ky # 0, ko # 0, ks # 0;
Aky ko ks) = [0 72 Ak, y, z)e”Fve k2 dydz
B(ky, ko, k3) = f f B(x, ko, z)e"*1e=tksz pd
C(ky, ko, ks) = [72 [7° B(w,y, ks)e *1me~*2vdzdy
F(ky, ko, ks) = [72 F(kq, ko, 2)e"*%dz
G(ky, ko, ks) = [72 G(k1,y, ks)e ™vdy
H(ky, ko, ks) = [72 H(x, ko, ks)e *17dx

We have that,

A(klak27k3) = B(k17k27k3) - C(k17k27k:3) - F(k17k27k3) - G(kth)k:S) =

H(kla k?a k3) ]L)

= Mmr%oo,sﬁoo,t%oo f_TT fjs fjt f(xa Y, Z)e—iklze—ikzye—ike,zdxdydz (.H—)

Proof. The definitions follows from Lemma 0.17, using the fact that
A(ky1,y,2) is of moderate decrease 3 and smooth, so it belongs to
L'(R?). We can then use the usual Fourier transform. Similarly, for
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B(x, ks, z) and C(z,vy, k3).

Similarly, as F'(ky, ks, z) is smooth and of moderate decrease, we can
then define the usual Fourier transform, for ks # 0;

F(kﬁl, ]{52, /Cg) = ffooo F(kl, ]{?2, Z)€_ik3zd2

It is clear that () holds, from the last claim in Lemma 0.17, once
we have shown that F' = G = H and (f1).

We have that;

[ (F i ha2) = [° [, F,y, 2)e Mt Randady)e-ite=dz|

1T 7 g, 2)e e ndady— 7, [, £y, 2)eMre b dady)e e
=| ij(f(\:dSs,\ygt)c f(z,y, z)e " Fre= 2y dudy)e*s%dz|

= L yor [ oo fla,y, 2)e ™t R2vdady

+ f|z|>s I fla,y, z)e™eem Py dgdy

- f|z|>s f|y\>t f(z,y, 2)e"Fee=tk2y dpdyle=tks=dz|

< o S0 F @y, 2)emtme v dady)e—2dz] (i)

+| f_rr(ﬁxbs 7 [y, 2)eRme Ry dpdy)e~*s2dz| (i)

H S Sapos Sy £ @y, 2)emHrmem Ry dudy)e=ho=dz| (iii)

We estimate the three terms separately, using integration by parts,
for k1 # 0, ke # 0, k3 # 0. For (i), as f is of very moderate decrease,

% is of moderate decrease 4;
| f—rr‘(ﬁybt ffooo f(xa Y, Z)e_iklwe_ikzydﬂfdy)€_ik3zdzj’

= ‘;1 f fly|>t foooo gic 517 Y, 2 Zklwe_ikwdl’dy)e_ikg’zdd

f|y|>t )= gj:? (7,1, 2)e"*@e=k2y dydy)e*s%dz|
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Sy 5 2 e ey
ﬁ f\y|>t ffooo f |ax3 |dzdzdy
T st Jow S e duddy

— |k1|3 f\y|>tf 2+Z2)2 f (H%)dedzdy

y2+z

IN

I/\

00 5 1
= ﬁ f\y|>t ffoo y2+1z2)2 fi secg(e) 8602(8> (y2 + Z2> Qd‘gdZdy

S \y|>tf 0o (y2+22 f_ﬁ Ccos?(0)d0dzdy

Cn
= [k f\y|>t f*OO (y2+22)% dzdy

_ on B

= i Jise P Jooe (1223 dzdy

Cr 1 5 2

Wf\ylﬂwffg cos*(0)dOdy
Cr?

< o Sy pEW

2
< & (1)

IA

3f'
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For (ii), as f is of very moderate decrease, g? is of moderate de-

crease 4, using the same argument;

7 g S5 g, 2)eamemovdady)e= =] < FERC

For (iii), we have that, using integration by parts again;

| fjr(ﬁxbs Jysi (@9, z)e"kwe=tk2y dydy) e k3% 2|
=1/, fx\>s (= f(z,t,2) + f(, —t, 2))e" Rz dy

15 St Jiyior 5 (@Y, 2)eFr e v dady)e 9% dz |

<1/, Jiaj>s (= fx,t,2) + fz, —t, 2))e M FeH2drdz|

+ [, % f|x|>s f‘y|>t g—g(x,y, 2)e~ k1T e~k dody) e =32 d 2|

= | [0, m; (= f(s, =t 2)+ f(=s, —t, 2)+ f (5,1, 2) = f (=,

—t, z))

e—ik‘gzdz
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t fj?“ f\x|>s klle( gx(x t,z) + af c(x,—t,2))e ke iksZ |
+| f_rr kiz f|x|>s f‘y|>t g—if(x, y, z)e” MTe R dydy)e~hszd|
SIS EE(—F (5=t 24 (=8, =t 2)+ (5,1, 2)— f (5, —t, 2) )7z

+| f—rr jix|>s kllkz( gﬁ <:U t Z) + %(l‘, _t7 Z>>6_iklme_ik3zdxdz‘

+ kLz f|x|>s f\y|>t g_if(xa y, z)e" *Tem ke ddy etz |

| f r klk? _t’ Z)+f(—8, _t7 Z>+f<87 tu Z)_f(_87 _ta Z)>€_ik3ZdZ|
r 1 1¢) o ) Cihes
+| f—r k%k)g ai(s 2 2) af( 5,1 Z)_a_i:(S) —t, Z)"‘%(—S, —t, Z))e ksz ]

; 02 o2 o .
I b 0.2) 4 Bt e e o
. 9 » » »
+| fir kLQ f|z|>s f\y|>t 8—5(1', Y, 2)6 k12 ZkadiCdy)e zk3zdz|

< ol SO (5o =t 2) 4 f(=s, =t 2) 4 f (5,8, 2) = (=5, —t, 2))e~*sdz]

r 2 —iki1x ,—ik3z
+\k§11k2\|ffr flzl>s ng(x t Z> + %(Iﬂ —t,z))e freiks dxdz| (C)
r 0 —ikiz ,—1 —ik3z
+‘k—12|| I f\x|>s f|y|>ta—£(x,y,z)e Mze=th2y dydy)e*s%dz| (d)

For (a), (b), by the definition of normality, the fibres { fs;, f—s+, fs.—¢t, f-s—t}
are analytlc at mﬁmty, and of very moderate decrease, and, similarly,
of of

the fibres {&nst’ e —s4? Brst? Tr—s, _,} are analytic at infinity, and of

moderate decrease. Using the bound val on the zeros, uniform in (s, t),
we can then repeat the calculation above 8 times, to obtain that, uni-
formly in r;

(@) + (b) < gy (val + Ddmmaz (|| foell, || £,

s,tl])

+\k2kk|(Ual+1)4ﬂmax(||axst” ||ax st|| ||axs t|| ||am _s, t||)
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4 4
< Tekahs o (Yol + DAT + g (val + 1)dm

For (c), we have that % is of moderate decrease 3, hence belongs
to L'(R?), so we can repeat the calculation above, to obtain that, uni-
formly in 7;

S f ko | f f:r:\>s 8:c2 (z,t,2) + %(-T, —t, z)|dzdz

< k‘Tkz fa:\>s f 00 (x2+z2+t2) dZd:C
< |1326;c7;| f:p\>s 2+t2 i

= |/Z€1%C_I<:Z| fa:\>s 112 dx

< Wk

We also have that;

|fz|>s x2+t2)dx < 1 OOOO 1+1%dx

= iltan™ (D))"

T
¢
so that;

. 8Cm  4CH?
(¢) < mm(mfk;s’ |I<:fkT;|t>

4v/2C7?
= |kikalls.t|

For (d), we can combine (a), (b), (¢) to obtain that;

| f—rr(f|:c|>s f|y\>t f(xa Y, Z)e_iklme_ik?ydfﬂdy)e_ik3zdz‘

4C' 4 44/2C72
< Tk T (vl + VAT + ey (val + 1Am + gy

" 9 —ikiz ,—i —iksz
Pl T S Sy L@y, 2o HmeRavdady)e=itazdz

<+ il T s Sy L,y 2)e ime R dudy e dz |
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|(s,t)] > 1

so that repeating the above argument Wlth replacmg f;

(d) < m+ﬁ| I flr\>s f|y|>t%(I,y,z)e‘iklwe_ikzydxdy)e_“%zdz|

and, nesting the arguments, uniformly in r;

|f_rr(f|x|>8 flybtf(x,y, 2)e " Fize=ik2y dydy)eh2 dz |

< T oAt i ) Lo s Jiss 58 (@, )™ e evdady)em ez

(1)
3

Now, we can use the fact that e is of moderate decrease 4, to see

that 8 f € L'(R?), so that, uniformly in r, repeating the argument (});

r;

83 o . .
|fir f\x|>s f\y|>t8_y§(a:7y7z)e zk1xe szyd:L'dy)e zkgzdz|

o0 3
< |7 f|z|>s f‘y|>t |%|($,y,z)dxdydz

< min f| ‘>Sf e (x,y, z)dydzdz, f| |>tf = (ZL‘ Yy, z)dxdzdy)
< mzn(zc;ﬂz, QCt’T )
< 22072

= 10l

Now, from (1), we obtain that, uniformly in r;

| f—Tr(f|z|>s f|y\>t f(l', Y, Z)eiiklxeiikzydxdy)67ik3zdz|

[E]

which is (ii7). Combining with (¢), (i7), we obtain that, uniformly in

|f (F ]{217,1{52, f f f T zk1x€—ik2ydxdy)e—ik3zdz|

Ak koks By koks Clykoks
S TR T T G
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where the constants {Ag, kykss Brikokss Chikaks ; C Rso can be read
from the proof.

Applying the Moore-Osgood Theorem, it is then clear that;
F(ky, ko, ks) = C(ky, ko, k3)

= lIMy 00 500 1300 f; fjs fftf(x,y, z)e Mz e=ikaye=iksz do dyd
and similarly;

G(k1, ko, k3) = B(kq, ko, k3)

= lIMy 00 5300 t—300 f; ffs fjtf(x,y,z)e‘iklxe_ikwe_ik”dxdydz
H(ky, ko, k3) = A(ky, ks, k3)

= UMy 00,500,300 f -0 f s fftf(:v,y, z)e~hizemikaye=ikaz do

4

Lemma 0.20. Let hypotheses and notation be as in Lemma 0.19, then

we have that there exist constants { Dy, koks > Fkykakss Frikoks } C Rso such
that;

_ S| S Dk1§2k3 + Ek1:2k3 + Fklf2k3

|Ss,t,7’
In particular, there exists a constant Gy, ks € Rso Such that;

Grykok
_ 1koks
|3m,m,m S| < m

Proof. We have that, by the proof of Lemma 0.12;

|Ss,t,7’ - 8| S |Ss,t,7" - Soo,oo,r' + |Soo,oo,7" - 3|

Ak koky B kaks Chykoky —iksz
S s + t + |(S,t)| + | f|3|27" F(k]_, kQ, Z)e dZ|

|F(k1, kz, Z)‘dZ

- S

Ak boks By kaks +Ck;koks
< + t + f\z|2r

where, by the result of Lemma 0.17, F'(ky, ks, z) is of moderate de-
crease;
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|F(k17k27z)| S L

EN

for sufficiently large z, with D = 7w Cy,. It follows that, for sufficiently
large r;

_ 5| S Ak1:2k3 + Bk1k2k3+0k1k2k3 +f|

’ D

|Ss,t,r y|>r 22

Ak kok Biykoky TCk  kok 2D
< 123+ 123t 123+7

- S

Dy koks + Ekqkoks + Foq koks
s t T

where;

Dk1k2k3 = Ak1k2k3

Eikaks = Brykoks + Chykaks

Fk1k2k3 = 27T0k1

For the next claim, we can take lek‘gkg = Dk1k2k3 + Eklkzkg + Fklekg

l

Lemma 0.21. If f : R® — R, the same results as Lemma 0.19 and
Lemma 0.20 hold, with the assumption that f is quasi normal or quasi
split normal.

Proof. Again, we can replace the use of (i) — (vi) in Definition 0.15,
within the proof of Lemma 0.19, by (i)’ — (vi)" or (7)” — (vi)”, with
the argument used in Lemma 0.18. The argument of Lemma 0.20 then
goes through.

U
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