
FUNCTIONS ANALYTIC AT INFINITY AND
NORMALITY

TRISTRAM DE PIRO

Abstract. This paper explores the notion of analytic at infinity
and normality. We prove that we can define a Fourier transform
for normal functions.

Definition 0.1. A smooth real function f : R → R is non oscillatory
if it is eventually monotone, that is there exist r ∈ R>0 for which f |(r,∞)

is increasing or decreasing and similarly for f |(−∞,r). We say that f is
of very moderate decrease if there exists a constant C ∈ R>0 for which
|f(x)| ≤ C

|x| for |x| > 1. We say that f is of moderate decrease if there

exists a constant C ∈ R>0 for which |f(x)| ≤ C
|x|2 for |x| > 1.

Definition 0.2. Given a smooth real function f : R \W → R, where
W is a bounded closed set of R, we say that f is analytic at infinity,
if there exist {ε1, ε2} ⊂ R>0 such that, for 0 < x < ε1;

f( 1
x
) = a(x)

where a(x) =
∑∞

n=1 anx
n, an ∈ R, n ≥ 1, is an absolutely convergent

real power series on the interval (0, ε1), and for −ε2 < x < 0;

f( 1
x
) = b(x)

where b(x) =
∑∞

n=1 bnx
n, bn ∈ R, n ≥ 1, is an absolutely convergent

real power series on the interval (−ε2, 0).

Lemma 0.3. The functions fd(x) = 1
|x−d| where d ∈ R are analytic at

infinity.

Proof. If d > 0, we have that for 0 < x < 1
d
, using the formula for a

geometric progression;
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fd(
1
x
) = 1

| 1
x
−d|

= |x|
|1−dx|

= x
1−dx

x
∑∞

n=0(dx)n

=
∑∞

n=0 d
nxn+1

=
∑∞

n=1 d
n−1xn

and, for −1
d
< x < 0

fd(
1
x
) = 1

| 1
x
−d|

= |x|
|1−dx|

= − x
1−dx

−x
∑∞

n=0(dx)n

= −
∑∞

n=0 d
nxn+1

= −
∑∞

n=1 d
n−1xn

The facts that fd are smooth, for x 6= d, and the cases d = 0 and
d < 0 are left to the reader.

�

Lemma 0.4. If f : R \W → R is analytic at infinity, then so is f ′,
moreover f ′ is of moderate decrease.

Proof. As f is analytic at infinity, we have that, for 0 < x < ε1;

f( 1
x
) =

∑
n=1 anx

n

so that, by the chain rule, and the fact that
∑∞

n=1 nanx
n−1 is abso-

lutely convergent for 0 < x < ε1;
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−f ′( 1
x
)

x2
=

∑∞
n=1 nanx

n−1

so that, rearranging;

f ′( 1
x
) = −x2

∑∞
n=1 nanx

n−1

= −
∑∞

n=1 nanx
n+1

= −
∑∞

n=2(n− 1)an−1x
n (C)

A similar calculation holds for −ε2 < x < 0, to show that f is
analytic at infinity. From (C), using the proof of Lemma 0.5, we can
show that f ′ is of moderate decrease.

�

Lemma 0.5. If f is analytic at infinity, then it is of very moderate
decrease and non-oscillatory.

Proof. By the definition, we have that, for 0 < x < ε1, that;

f( 1
x
) = xnu(x)

where, assuming f is non vanishing on ( 1
ε1
,∞)), n ≥ 1 and u(0) 6= 0,

and |u(x)| ≤M on (0, ε1), so that;

|f( 1
x
)| ≤Mxn

|f(x) ≤ M
xn

for x > 1
ε1

. Similar considerations apply for x < 0, so that;

|f(x)| ≤ N
|x|m

for x < − 1
ε2

, m ≥ 1, N ∈ R>0. Without loss of generality, assum-

ing that max(ε1, ε2) < 1, taking D = max(M,N), r = max( 1
ε1
, 1
ε2

),

p = min(m,n), we obtain that;

|f(x)| ≤ D
|x|p ≤

D
|x|
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for |x| > r. As f is smooth, |f |[−r,r]| ≤ M < Mr
|x| , so f is of very

moderate decrease, taking C = max(D,Mr).

By Lemma 0.4, we have that f ′ is analytic at infinity. If f ′ = 0, the
result follows. Otherwise, we clam that the zero set of f ′, Zero(f ′) is
contained in [−s, s], for some s ∈ R>0, in which case the result again
follows. To see this is the case, suppose there exists a sequence of
zeros of f ′, {sn : n ∈ N}, for which |sn| → ∞, Without loss of gen-
erality we may assume that sn > 0, so that the absolutely convergent
power series a(x) has infinitely many zeros in the interval (0, ε), for any
0 < ε < ε1. Writing a(x) = xnu(x), with u(0) 6= 0, by continuity we
can assume that u(x) 6= 0, in the interval (0, ε3), where 0 < ε3 < ε1.
Then xnu(x) = 0 iff x = 0 or u(x) = 0, iff x = 0 or u(x) = 0, iff x = 0
or x /∈ (0, ε3), which is a contradiction.

�

Remarks 0.6. The class of non-oscillatory functions, with very moder-
ate decrease, was considered in the paper [1], where we proved a Fourier
inversion theorem.

Definition 0.7. Let f : R2 \W → R be smooth, with W closed and
bounded, we say that f is of very moderate decrease if there exists a
constant C ∈ R>0 such that |f(x, y)| ≤ C

|(x,y)| , for |(x, y)| > 1. We say

that f is of moderate decrease if there exists a constant C ∈ R>0 such
that |f(x, y)| ≤ C

|(x,y)|2 , for |(x, y)| > 1. We say that f is of moderate de-

crease n, if there exists a constant C ∈ R>0 such that |f(x, y)| ≤ C
|(x,y)|n ,

for |(x, y)| > 1, with n ≥ 2. We say that f is normal, if;

(i). For x ∈ R, fx(y) is analytic at infinity.

(ii). For y ∈ R, fy(x) is analytic at infinity.

(iii). f is of very moderate decrease.

(iv). The higher derivatives ∂f
∂x

and ∂f
∂y

, are of moderate decrease.

(v). There is a uniform bound val in the number of zeros of fx, (fx)
′(fx)

′′

and fy, (fy)
′, (fy)

′′.
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We say that f is quasi normal if (i) − (iv) hold and (v)′, for suffi-
ciently large x, the zeros of fx are contained in the union of bounded
intervals (−Mx,−Nx)∪(Nx,Mx), with Mx−Nx uniformly bounded in x,
and similarly for {(fx)′(fx)′′}, with corresponding M ′

x,M
′′
x , N

′
x, N

′′
x , and

{fy, (fy)′(fy)′′}, with corresponding {My,M
′
y,M

′′
y , Ny, N

′
y, N

′′
y }. We say

that f is quasi split normal if (i) − (iv) hold and (v)′′, for sufficiently
large (x, y), f(x, y) = f1(x, y) + f2(x, y), with f1 and f2 quasi normal,
and {f, f1, f2} are smooth.

Lemma 0.8. If {a, b} ⊂ R, and W is a closed ball B((a, b), s), s > 0,
containing (a, b), the function f(x, y)|R2\W

where f(x, y) = 1
|(x,y)−(a,b)| , (x, y) 6= (a, b)

is normal.

If ρ ≥ 0 is continuous with compact support, ρ 6= 0, the function;

f(x, y) =
∫
R2

ρ(x′,y′)
|(x,y)−(x′,y′)|dx

′dy′

is quasi normal, and if ρ is smooth with compact support, ρ 6= 0;

f(x, y) =
∫
R2

ρ(x′,y′)
|(x,y)−(x′,y′)|dx

′dy′

is quasi split normal.

Proof. Fix x0 ∈ R, then;

fx0(y) = 1

((x0−a)2+(y−b)2)
1
2

Without loss of generality, assuming that x0 6= a, we have that, for
y > 0;

fx0(
1
y
) = 1

((x0−a)2+( 1
y
−b)2)

1
2

= y

(y2(x0−a)2+1−2yb+y2b2)
1
2

For y < 1, we have that y2 < y, so that;

|y2(x0 − a)2 − 2yb+ y2b2| < y|(x0 − a)2 + 2|b|+ b2| < 1
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iff y < 1
|(x0−a)2+2|b|+b2|

and, applying Newton’s theorem, with bn = (−1)n(2n)!
22n(n!)2

;

fx0(
1
y
) = y

∑∞
n=0 bn(y2(x0 − a)2 − 2yb+ y2b2)n

=
∑∞

n=1 any
n

is an absolutely convergent power series in y of order 1. A similar re-
sult holds for y < 0, so that fx0 is analytic at infinity. Similarly, fixing
y0 ∈ R, we can see that fy0(x) is analytic at infinity. Let r = (x, y),
r = |x, y|, a = (a, b), then, switching to polars, for 0 ≤ θ < 2π;

limr→∞rf(r, θ) = limr→∞
r

|r(r,θ)−a|

= limr→∞
1

| r(r,θ)
r
−a
r
|

= limr→∞
1

|r̂(r,θ)|

= 1

so that fixing a closed ball B(0, s) ⊃ W , using the fact that f is
smooth on B(0, s)c, r|f | ≤ D, where D ∈ R>0, on B(0, s)c, so that
|f | ≤ D

r
, for r > s. As f is continuous on B(0, s) \W ◦, it is bounded,

by compactness of B(0, s) \W ◦, so that |f | ≤M for |x| ≥ 1. It follows
that |f | ≤ C

r
, for |x| ≥ 1, where C = max(D,Ms). Therefore, f |R2\W

is of very moderate decrease.

We have that fx has no zeros, similarly for fy, and, by the chain rule;

∂f
∂x

= −1
2
2(x− a) 1

((x−a)2+(y−b)2)
3
2

= − x−a
((x−a)2+(y−b)2)

3
2

so that (fy)
′ has a zero when x = a, similarly (fx)

′ has a zero when
y = b. We have;

limr→∞r
2|∂f
∂x
| = limr→∞

(x−a)r2
|r−a|3

≤ limr→∞
r2|r−a|
|r−a|3
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= limr→∞
r2

|r−a|2

= limr→∞
1

| r
r
−a
r
|2

= limr→∞
1
|r̂|2

= 1

so that fixing a closed ball B(0, s) ⊃ W , using the fact that ∂f
∂x

is

smooth on B(0, s)c, r2|∂f
∂x
| ≤ D, where D ∈ R>0, on B(0, s)c, so that

|∂f
∂x
| ≤ D

r2
, for r > s. As ∂f

∂x
is continuous on B(0, s) \W ◦, it is bounded,

by compactness of B(0, s) \W ◦ again, so that |∂f
∂x
| ≤M for |x| ≥ 1. It

follows that |∂f
∂x
| ≤ C

|x|2 , for |x| ≥ 1, where C = max(D,Ms2). A sim-

ilar proof works for ∂f
∂y

, and the higher derivatives ∂fn+m

∂xm∂yn
, n + m ≥ 1,

the details are left to the reader, so that { ∂n+mf
∂xn∂ynR2\W

: n+m ≥ 1} are

of moderate decrease. We have that, by the product rule;

∂2f
∂x2

= − 1

((x−a)2+(y−b)2)
3
2

+ 3(x−a)2

((x−a)2+(y−b)2)
5
2

= 0

iff 3(x− a)2 − [(x− a)2 + (y − b)2] = 0

iff 2(x− a)2 = (y − b)2

iff x− a = 1√
2
(y − b) or x− a = − 1√

2
(y − b)

so that (fy)
′′ has at most 2 zeros for y ∈ R and we can take val = 2.

A similar result holds for (fx)
′′.

For the second claim, note that if (x, y) ∈ Supp(ρ), then;

f(x, y) =
∫
R2

ρ(x′,y′)
|(x,y)−(x′,y′)|dx

′dy′

=
∫
R2

ρ(x−x′,y−y′)
|(x′,y′)| dx′dy′

=
∫
0,2π

∫
R>0

ρx,y(r,θ)

r
rsin(θ)drdθ

=
∫
0,2π

∫
R>0

ρx,y(r, θ)sin(θ)drdθ

so that;
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|f(x, y)| ≤
∫
0,2π

∫
R>0
|ρx,y(r, θ)|drdθ

≤ 2MπR(x, y)

where Suppx,y(ρ) ⊂ B(0, R(x, y)), |ρ| ≤ M , so that f is defined ev-
erywhere. If ρ is smooth, we have that f is smooth, as;

∂i+jf
∂xi∂yj

(x, y) =
∂i+j

∫
R2

ρ(x−x′,y−y′)
|(x′,y′)| dx′dy′

∂xi∂yj

=
∫
R2

∂i+jρ

∂xi∂yj
(x−x′,y−y′)
|(x′,y′)| dx′dy′

with ∂i+jρ
∂xi∂yj

having compact support again. If ρ is continuous, but

not necessarily smooth, we have that, for (x, y) /∈ Supp(ρ);

∂i+jf
∂xi∂yj

(x, y) =
∫
R2 ρ(x′, y′) ∂i+j

∂xi∂yj
( 1
|(x,y)−(x′,y′)|)dx

′dy′

so that f is smooth, outside Supp(ρ). For (i), in Definition 0.7, we
have, for x0 ∈ R, y > 0;

fx0(
1
y
) =

∫
R2

ρ(x′,y′)

|(x0, 1y )−(x′,y′)|
dx′dy′

= y
∫
R2

ρ(x′,y′)

(1+y2(x0−x′)2−2yy′+y2y′2)
1
2

so that, with y < 1, y2 < y, letting;

Mx0 = sup(x′,y′)∈Supp(ρ)|(x0 − x′|2 + 2|y′|+ y′2|, if y < 1
Mx0

, then;

|y2(x0 − x′)2 − 2yy′ + y2y′2| < y|(x0 − x′)2 + 2|y′|+ y′2| < 1

so that, we can apply Newton’s theorem uniformly in (x′, y′) ∈
Supp(ρ), to obtain;

fx0(
1
y
) = y

∫
Supp(ρ)

ρ(x′, y′)(
∑∞

n=0 bn(y2(x0−x′)2−2yy′+y2y′2)n)dx′dy′

where bn is as above. With y < 1 again, |x′| ≤ M , |y′| ≤ M , for
(x′, y′) ⊂ Supp(ρ), |ρ| ≤ N , y < 1

(|x0|+M)2+2M+M2 , we have, applying

the DCT;

|fx0( 1
y
)| ≤ yN(2M)2

∑∞
n=0 |bn|((|x0|+M)2y + 2yM + yM2)n
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≤ 4yNM2
∑∞

n=0 |bn|yn((|x0|+M)2 + 2M +M2)n

≤ 4yNM2
∑∞

n=0 y
n((|x0|+M)2 + 2M +M2)n

defines an absolutely convergent series. A similar proof works for
y < 0. (ii) is similar. For (iii), with Supp(ρ) ⊂ B(0,M), |ρ| ≤ N , if

|(x, y)| ≥ 2M , and (x′, y′) ∈ Supp(ρ), |(x, y)− (x′, y′)| ≥ |(x,y)
2

, so that
1

|(x,y)−(x′,y′)| ≤
2

|(x,y)| , and;

|f(x, y)| = |
∫
Supp(ρ)

ρ(x′,y′)
|(x,y)−(x′,y′)|dx

′dy′|

≤ 2
|(x,y)|

∫
Supp(ρ)

|ρ(x′, y′)|dx′dy′

≤ 2πM2N
|(x,y)|

For (iv), we have that, if |(x, y)| ≥ max(2M, 1), and (x′, y′) ∈
Supp(ρ), 1

|(x,y)−(x′,y′)|3 ≤
8

|(x,y)|3 , |x−x′| ≤ |(x, y)−(x′, y′)| ≤ |(x, y)|+M ;

|∂f
∂x
| = |

∫
Supp(ρ)

−ρ(x′,y′)(x−x′)
|(x,y)−(x′,y′)|3 dx

′dy′|

≤ 8(|(x,y)|+M)
|(x,y)|3

∫
Supp(ρ)

|ρ(x′, y′)|dx′dy′

≤ 8πM2N(|(x,y)|+M)
|(x,y)|3

≤ 8π(M2+M)N
|(x,y)|2

The proof for ∂f
∂y

is similar. For (v)′, we have that if ρ ≥ 0 is contin-

uous with compact support, ρ 6= 0, that f > 0. For (x, y) /∈ Supp(ρ),
we have that;

∂f
∂x

=
∫
R2 − ρ(x′,y′)(x−x′)

|(x,y)−(x′,y′)|3dx
′dy′

and for x > M , (x − x′) > 0, for x < M , (x − x′) < 0, where
x′ ∈ Supp(ρ), so that for |y| > M , (fy)

′ < 0, for x > M , and (fy)
′ > 0,

for x < M , as ρ ≥ 0. In particular, the zeros of fy are contained in the
interval (−(M + 1), (M + 1)), with the length 2(M + 1) of the interval,
uniformly bounded in y. We have that;

∂2f
∂x2

=
∫
R2 ρ(x′, y′)[− 1

|(x,y)−(x′,y′)|3 + 3(x−x′)2
|(x,y)−(x′,y′)|5 ]dx′dy′
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=
∫
R2 ρ(x′, y′)[2(x−x

′)2−(y−y′)2
|(x,y)−(x′,y′)|5 ]dx′dy′

so that if 2(x− x′)2 − (y − y′)2 > 0, for (x′y′) ∈ Supp(ρ), (fy)
′′ > 0,

and if 2(x − x′)2 − (y − y′)2 < 0, for (x′y′) ∈ Supp(ρ), (fy)
′′ < 0. We

have that;

2(x− x′)2 − (y − y′)2 > 0

iff |x− x′| > 1√
2
|y − y′| (i)

2(x− x′)2 − (y − y′)2 < 0

iff |x− x′| < 1√
2
|y − y′| (ii)

so that if |x| > M + 1√
2
(|y| + M), (i) holds, and if |x| < −M +

1√
2
(|y|−M), (ii) holds, for |y| > 2M . In particularly, the zeros of (fy)

′′

are contained in the intervals (−M + 1√
2
(|y| −M),M + 1√

2
(|y|+M))∪

(−M− 1√
2
(|y|+M),M− 1√

2
(|y|−M)), with the length of the intervals,

(2 +
√

2)M uniform in |y| > 2M . For (v)′′, we can split ρ into ρ+ and
ρ− which are continuous with compact support, and use the previous
result, noting that quasi normal implies quasi split normal, as f = f

2
+ f

2
.

�

Remarks 0.9. The above functions have stronger properties, for exam-

ple it can probably be shown that ∂fn+m

∂xm∂yn
has moderate decrease n+m+1,

for n + m ≥ 1, and there is a uniform bound on the zeros of all the

higher derivatives f
(n)
x and f

(m)
y , for all n ≥ 1, m ≥ 1. The details are

left as an exercise. We include the case of (fy)
′′′ for the first function;

∂3f
∂x3

= 9(x−a)
((x−a)2+(y−b)2)

5
2
− 15(x−a)3

((x−a)2+(y−b)2)
7
2

= 0

iff 9(x− a)[(x− a)2 + (y − b)2]− 15(x− a)3 = 0

iff 9[(x− a)2 + (y − b)2]− 15(x− a)2 = 0

iff 6(x− a)2 = 9(y − b)2

iff x− a =
√

3
2
(y − b) or x = −

√
3
2
(y − b)
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so that (fy)
′′′ has at most 2 zeros for y ∈ R and we can take val = 2.

A similar result holds for (fx)
′′′.

Lemma 0.10. Let f : R2 → R be smooth and normal, then, for
{x, y} ⊂ R, k1 6= 0, k2 6= 0;

F (k1, y) = limr→∞
∫ r
−r f(x, y)e−ik1xdx

G(x, k2) = limr→∞
∫ r
−r f(x, y)e−ik2ydy

both exist and F (k1, y), G(x, k2) are of moderate decrease.

Proof. The first claim follows from [1] together with Lemma 0.5 and
(i), (ii) in Definition 0.7. In fact, the first integral is indefinite, in the
sense that we could define it as;

F (k1, y) = limr→∞,s→∞(
∫ r
a
f(x, y)e−ik1xdx+

∫ a
−s f(x, y)e−ik1xdx)

for a choice of a ∈ R, and similarly for G(x, k2). We then have, using
integration by parts, for y0 ∈ R;∫ r

−r f(x, y0)e
−ik1xdx = [ if(x,y0)e

−ik1x

k1
]r−r −

∫ r
−r

i ∂f
∂x

(x,y0)e−ik1x

k1
dx

so that, as fy0 is of very moderate decrease, by (iii), integrating by
parts;

F (k1, y0) = limr→∞
∫ r
−r f(x, y0)e

−ik1xdx

= limr→∞([ if(x,y0)e
−ik1x

k1
]r−r −

∫ r
−r

i ∂f
∂x

(x,y0)e−ik1x

k1
dx)

= limr→∞(−
∫ r
−r

i ∂f
∂x

(x,y0)e−ik1x

k1
dx)

= − i
k1

∫∞
−∞

∂f
∂x

(x, y0)e
−ik1xdx

the last integral being definite, as (∂f
∂x

)y0 is of moderate decrease,
using (iv). It follows that F (k1, y) is smooth, as differentiating under
the integral sign is justified by the DCT, MVT and (iv), with;

F (n)(k1, y) = − i
k1

∫∞
−∞

∂1+nf
∂x∂yn

(x, y)e−ik1xdx
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We have that (∂f
∂x

)y0 is analytic at infinity by (ii) and Lemma 0.4.
By (v) in the definition of normality, we can assume that for suffi-
ciently large y, (∂f

∂x
)y is monotone and positive/negative in the inter-

vals (−∞, a1(y)), . . . , (aval(y),∞), where a1, . . . , aval vary continuously
with y. Splitting the integral into cos(k1x) and sin(k1x) components,
in a similar calculation to [2], for any interval of length at least 2π

|k1| , we

obtain an alternating cancellation in the contribution to the integral

of at most
2π||f ′y ||
|k1| and for any interval of length at most 2π

|k1| , we obtain

a contribution to the integral of at most
4π||f ′y ||
|k1| . It follows that, for

sufficiently large y, using the fact that ∂f
∂x

has moderate decrease;

| − i
k1

∫∞
−∞

∂f
∂x

(x, y)e−ik1xdx|

≤ (val+1)
|k1|

4π||f ′y ||
|k1|

=
4π(val+1)||f ′y ||

|k1|2

≤ 4π(val+1)C
|k1|2|y|2 (∗)

so that;

|F (k1, y)| ≤ D
|y|2

for sufficiently large y, with D = 4π(val+1)C
|k1|2 . As F (k1, y) is smooth,

we obtain that F (k1, y) is of moderate decrease. Similarly, we can show
that G(x, k2) is of moderate decrease, for k2 6= 0. �

Lemma 0.11. The same result as Lemma 0.10 holds, with the as-
sumption that f is smooth and quasi normal or smooth and quasi split
normal.

Proof. We just have to replace the uses of (v) in Definition 0.7 with the
use of (v)′ or (v)′′. For (v)′, we have that, for sufficiently large y, (∂f

∂x
)y is

monotone and positive/negative outside a finite union Iy of S intervals
whose total length is uniformly bounded by a constant R ∈ R>0 which
is independent of y. By the usual argument, we obtain a contribution
of at most ||f ′y||R to the integral over this interval. As before, splitting
the integral into cos(k1x) and sin(k1x) components, we can bound the

contribution of the remaining integral by
(S+1)4π||f ′y ||

|k1| to give a total

bound for the calculation in (∗) of Lemma 0.10 of ( (S+1)4π
|k1| + R)||f ′y||,

and we can then, as before, use the fact that ∂f
∂x

has moderate decrease.
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For (v)′′, we can split f ′y = f ′1,y+f ′2,y, and repeating the above argument

twice obtain a total bound of ( (S+1)4π
|k1| +R)(||f ′1,y||+ ||f ′2,y||), where the

bounds S and R work for both f ′1,y and f ′2,y. We can then use the the

fact that ∂f1
∂x

and ∂f2
∂x

have moderate decrease.
�

Lemma 0.12. Let hypotheses and notation be as in Lemma 0.10, then
we can define, for k1 6= 0, k2 6= 0;

F (k1, k2) =
∫∞
−∞ F (k1, y)e−ik2ydy

G(k1, k2) =
∫∞
−∞G(x, k2)e

−ik1xdx

We have that;

F (k1, k2) = G(k1, k2) = limm→∞,n→∞
∫ m
−m

∫ n
−n f(x, y)e−ik1xe−ik2ydxdy

Proof. The definition follows from the previous lemma, as F (k1, y) and
G(x, k2) are smooth and of moderate decrease. Integrating by parts
again, using the fact that f is of very moderate decrease, we have that,
for n ∈ R>0;∫

|x|>n f(x, y)e−ik1xdx

= ([ if(x,y)e
−ik1x

k1
]∞n + [ if(x,y)e

−ik1x

k1
]−n−∞ −

∫
|x|>n

i ∂f
∂x

(x,y)e−ik1x

k1
dx)

= (− if(n,y)e−ik1n

k1
+ if(−n,y)eik1n

k1
−

∫
|x|>n

i ∂f
∂x

(x,y)e−ik1x

k1
dx)

We have that, using the above calculation (∗) in Lemma 0.10, f of
very moderate decrease;

|
∫
|y|≤m( if(−n,y)e

ik1n

k1
− if(n,y)e−ik1n

k1
)e−ik2ydy|

≤ 1
k1
|
∫
|y|≤m f(−n, y)e−ik2ydy|+ 1

k1
|
∫
|y|≤m f(n, y)e−ik2ydy|

≤ 4π(val+1)||f−n||y|≤m||
|k1|2 +

4π(val+1)||fn||y|≤m||
|k1|2

≤ 8π(val+1)C
|k1|2n
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and using the previous calculation (∗) again in Lemma 0.10, we have
that;

| − i
k1

∫
|x|>n

∂f
∂x

(x, y)e−ik1xdx|

≤ (val+1)
|k1|

4π||f ′y |||x|>n
|k1|

=
4π(val+1)||f ′y |||x|>n

|k1|2

≤ 4π(val+1)C
|k1|2(y2+n2)

so that;

| − i
k1

∫
|y|≤m

∫
|x|>n

∂f
∂x

(x, y)e−ik1xdxe−ik2ydy|

≤
∫
|y≤m

4π(val+1)C
|k1|2(y2+n2)

dy

≤
∫∞
−∞

4π(val+1)C
|k1|2(y2+n2)

dy

=
∫∞
−∞

1
n2

4π(val+1)C

|k1|2(1+ y2

n2
)
dy

≤ 1
n2

4π(val+1)C
|k1|2 ntan−1( y

n
)|∞−∞

≤ π
n
4π(val+1)C
|k1|2

The above calculations combine, to give that;

|
∫
|y|≤m limn→∞

∫ n
−n f(x, y)e−ik1xe−ik2ydxdy−

∫
|y|≤m

∫
|x|≤n f(x, y)e−ik1xe−ik2ydxdy|

= |
∫
|y|≤m

∫
|x|>n f(x, y)e−ik1xe−ik2ydxdy|

≤ 8π(val+1)C
|k1|2n + π

n
4π(val+1)C
|k1|2

so that limn→∞sn,m = s∞,m, uniformly in m, where;

sn,m =
∫
|y|≤m

∫
|x|≤n f(x, y)e−ik1xe−ik2ydxdy

s∞,m =
∫
|y|≤m F (k1, y)e−ik2ydy

By the Moore-Osgood Theorem, we obtain the result.
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�

Lemma 0.13. Let hypotheses and notation be as in Lemma 0.12, then
we have that there exist constants {Ck1 , Dk1} ⊂ R>0 such that;

|sn,m − s| ≤
Ck1
m

+
Dk1
n

In particular, there exists a constant Ek1 ∈ R>0 such that;

|sm,m − s| ≤
Ek1
m

Similarly, there exist constants {Ck2 , Dk2} ⊂ R>0 such that;

|sn,m − s| ≤
Ck2
m

+
Dk2
n

In particular, there exists a constant Ek2 ∈ R>0 such that;

|sm,m − s| ≤
Ek2
m

Proof. We have that, by the proof of Lemma 0.12;

|sn,m − s| ≤ |sn,m − s∞,m|+ |s∞,m − s|

≤ 8π(val+1)C
|k1|2n + π

n
4π(val+1)C
|k1|2 + |

∫
|y|≥m F (k1, y)e−ik2ydy|

≤ 8π(val+1)C
|k1|2n + π

n
4π(val+1)C
|k1|2 +

∫
|y|≥m |F (k1, y)|dy

where, by the result of Lemma 0.10, F (k1, y) is of moderate decrease;

|F (k1, y)| ≤ D
|y|2

for sufficiently large y, with D = 4π(val+1)C
|k1|2 . It follows that, for suf-

ficiently large m;

|sn,m − s| ≤ 8π(val+1)C
|k1|2n + π

n
4π(val+1)C
|k1|2 +

∫
|y|≥m

D
y2
dy

≤ 8π(val+1)C
|k1|2n + π

n
4π(val+1)C
|k1|2 + 2D

m

=
Ck1
m

+
Dk1
n

where;
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Ck1 = 8π(val+1)C
|k1|2

Dk1 = 8π(val+1)C
|k1|2 + π 4π(val+1)C

|k1|2

For the next claim, we can take Ek1 = Ck1 +Dk1

The claim with k2 follows by symmetry, using a corresponding es-
timate for |sn,m − sn,∞| in terms of m and the fact from Lemma 0.10
that G(x, k2) is of moderate decrease, for k2 6= 0.

�

Lemma 0.14. The same results as Lemma 0.12 and Lemma 0.13 hold
with the assumption that f is smooth and quasi normal or smooth and
quasi split normal.

Proof. Again, we can replace the estimates from (v) in Definition 0.7,
used in the proof of Lemma 0.12, with the estimate used in Lemma
0.11. The proof of Lemma 0.13 then goes through.

�

Definition 0.15. Let f : R3 \W → R be smooth, with W closed and
bounded, we say that f is of very moderate decrease if there exists a con-
stant C ∈ R>0 such that |f(x, y, z)| ≤ C

|(x,y,z)| , for |(x, y, z)| > 1. We

say that f is of moderate decrease if there exists a constant C ∈ R>0

such that |f(x, y, z)| ≤ C
|(x,y,z)|2 , for |(x, y, z)| > 1. We say that f is

of moderate decrease n, if there exists a constant C ∈ R>0 such that
|f(x, y, z)| ≤ C

|(x,y,z)|n , for |(x, y, z)| > 1, with n ≥ 2. We say that f is

normal, if;

(i). For x ∈ R, fx(y, z) is normal.

(ii). For y ∈ R, fy(x, z) is normal.

(iii). For z ∈ R, fz(x, y) is normal.

(iv). f is of very moderate decrease.

(v). The higher derivatives ∂i+j+kf
∂xi∂yj∂zk

are of moderate decrease i+ j+

k + 1, for i+ j + k ≥ 1.
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(vi). There is a uniform bound val(x, y) in the number of zeros of;

fx,y, (fx,y)
′, (fx,y)

′′, (fx,y)
′′′, (fx,y)

′′′′

and similarly, for fx,z, fy,z.

We say that f is quasi normal, if;

(i)′. For x ∈ R, fx(y, z) is quasi normal, and, similarly for (ii), (iii),
(iv), (v) hold and;

(vi)′. For sufficiently large (x, y), the zeros of;

fx,y, (fx,y)
′, (fx,y)

′′, (fx,y)
′′′, (fx,y)

′′′′

are contained in a finite union of S intervals, with total length R,
uniform in (x, y).

and similarly, for fx,z, fy,z.

We say that f is quasi split normal, if;

(i)′′. For x ∈ R, fx(y, z) is quasi split normal, and, similarly for
(ii), (iii), (iv), (v) hold and;

(vi)′′. For sufficiently large (x, y), f = f1 + f2, with f, f1, f2 smooth
and with f1, f2 having the property (vi)′.

Lemma 0.16. If {a, b, c} ⊂ R, and W is a closed ball B((a, b, c), s),
s > 0, containing (a, b, c), the function f(x, y, z)|R3\W

where f(x, y, z) = 1
|(x,y,z)−(a,b,c)| , (x, y, z) 6= (a, b, c)

is normal.

If ρ ≥ 0 is continuous with compact support, ρ 6= 0, the function;

f(x, y, z) =
∫
R3

ρ(x′,y′,z′)
|(x,y,z)−(x′,y′,z′)|dx

′dy′dz′

is quasi normal.
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If ρ is smooth with compact support, ρ 6= 0, the function;

f(x, y, z) =
∫
R3

ρ(x′,y′,z′)
|(x,y,z)−(x′,y′,z′)|dx

′dy′dz′

is quasi split normal.

Proof. For the first claim, we have to show, for x0 ∈ R, that fx0(y, z)
is normal. Fix z0 ∈ R, then;

fx0,z0(y) = 1

((x0−a)2+(z0−c)2+(y−b)2)
1
2

Without loss of generality, assuming that x0 6= a, z0 6= c, we have
that, for y > 0;

fx0,z0(
1
y
) = 1

((x0−a)2+(z0−c)2+( 1
y
−b)2)

1
2

= y

(y2(x0−a)2+y2(z0−c)2+1−2yb+y2b2)
1
2

For y < 1, we have that y2 < y, so that;

|y2(x0 − a)2 + y2(z0 − c)2 − 2yb + y2b2| < y|(x0 − a)2 + (z0 − c)2 +
2|b|+ b2| < 1

iff y < 1
|(x0−a)2+(z0−c)2+2|b|+b2|

and, applying Newton’s theorem, with bn = (−1)n(2n)!
22n(n!)2

;

fx0,z0(
1
y
) = y

∑∞
n=0 bn(y2(x0 − a)2 + y2(z0 − c)2 − 2yb+ y2b2)n

=
∑∞

n=1 any
n

is an absolutely convergent power series in y of order 1. A similar re-
sult holds for y < 0, so that fx0,z0 is analytic at infinity. Similarly, fixing
y0 ∈ R, we can see that fx0,y0(z) is analytic at infinity, and (i), (ii) in
Definition 0.7 hold for fx0(y, z). That fx0 is of very moderate decrease
will follow from the proof below that f is of very moderate decrease.
As if there exists a constant C ∈ R>0 such that |f |(x, y, z) ≤ C

|x,y,z| , for

|(x, y, z)| ≥ 1, then if |(y, z)| ≥ 1, we have that |x0, y, z| ≥ |(y, z)| ≥ 1,
and;
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|fx0 |(y, z) ≤ C
|(x0,y,z)| ≤

C
|(y,z)|

Similarly, the proof that
∂fx0
∂y

and
∂fx0
∂z

are of moderate decrease, will

follow from the proof below that the higher derivatives ∂i+j+kf
∂xi∂yj∂zk

are of

moderate decrease i+ j + k + 1, As if ∂f
∂y

is of moderate decrease 2, so

of moderate decrease, than, for |(x, y, z)| > 1;

|∂f
∂y
| ≤ C

|(x,y,z)|2

so that, for |(y, z)| ≥ 1, as above;

|∂fx0
∂y
| ≤ C

|(x0,y,z)|2 ≤
C
|y,z|2

The proof that for y ∈ R, the zeros of {fx0,y(z), f ′x0,y(z), f ′′x0,y(z)}
are uniformly bounded in y follows from the proof below that the ze-
ros of {fx,y(z), f ′x,y(z), f ′′x,y(z), f ′′′x,y(z), f ′′′′x,y(z)} are uniformly bounded
in (x, y). It follows that for x0 ∈ R, fx0(y, z) is normal, similarly
for fy0(x, z) and fz0(x, y), where y0 ∈ R, z0 ∈ R. We have then
verified (i) − (iii) of Definition 0.15. For (iv), let r = (x, y, z), r =
|(x, y, z)|, a = (a, b, c), then, switching to polars, x = rsin(θ)cos(φ),
y = rsin(θ)sin(φ), z = rcos(θ), for 0 ≤ θ ≤ π, −π ≤ φ < π;

limr→∞rf(r, θ, φ) = limr→∞
r

|r(r,θ,φ)−a|

= limr→∞
1

| r(r,θ,φ)
r
−a
r
|

= limr→∞
1

|r̂(r,θ,φ)|

= 1

so that fixing a closed ball B(0, s) ⊃ W , using the fact that f is
smooth on B(0, s)c, r|f | ≤ D, where D ∈ R>0, on B(0, s)c, so that
|f | ≤ D

r
, for r > s. As f is continuous on B(0, s) \W ◦, it is bounded,

by compactness of B(0, s) \W ◦, so that |f | ≤M for |x| ≥ 1. It follows
that |f | ≤ C

|x| , for |x| ≥ 1, where C = max(D,Ms). Therefore, f |R3\W
is of very moderate decrease.

Suppose inductively, that, for (i+ j+k ≥ 0), ∂f i+j+k

∂xi∂yj∂zk
is of the form;
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p(x−a,y−b,z−c)
|(x,y,z)−(a,b,c)|1+2(i+j+k) , where p is homogeneous of degree i + j + k,

then, using the product rule;

∂f i+j+k+1

∂xi∂yj∂zk+1 =
|(x,y,z)−(a,b,c)|2 ∂p

∂z
(x−a,y−b,z−c)−(z−c)(1+2(i+j+k))p(x−a,y−b,z−c)
|(x,y,z)−(a,b,c)|1+2(i+j+k+1)

which is of the form;

q(x−a,y−b,z−c)
|(x,y,z)−(a,b,c)|1+2(i+j+k+1) , where q is homogeneous of degree i+j+k+1;

as (1 + 2(i+ j + k)) > i+ j + k, for i+ j + k ≥ 0

Similar inductions work for ∂
∂x

and ∂
∂y

, so that we can assume that;

∂f i+j+k

∂xi∂yj∂zk
is of the form;

p(x−a,y−b,z−c)
|(x,y,z)−(a,b,c)|1+2(i+j+k) , where p is homogeneous of degree i+ j + k

We then have that;

limr→∞r
1+i+j+k| ∂f i+j+k

∂xi∂yj∂zk
| = limr→∞

r1+i+j+k
∑
i′+j′+k′=i+j+k ci′j′k′ (x−a)i

′
(y−b)j′ (z−c)k′

|r−a|1+2(i+j+k)

≤ limr→∞
r1+i+j+k(

∑
i′+j′+k′ |ci′j′k′ |)|r−a|i+j+k

|r−a|1+2(i+j+k)

= Elimr→∞
r1+i+j+k

|r−a|1+i+j+k

= Elimr→∞
1

| r
r
−a
r
|1+i+j+k

= Elimr→∞
1

|r̂|1+i+j+k

= E

whereE =
∑

i′+j′+k′=i+j+k |ci′j′k′ |, so that fixing a closed ballB(0, s) ⊃
W , using the fact that ∂i+j+kf

∂xi∂yj∂zk
is smooth onB(0, s)c, ri+j+k+1| ∂f i+j+k

∂xi∂yj∂zk
| ≤

D, where D ∈ R>0, on B(0, s)c, so that | ∂f i+j+k
∂xi∂yj∂zk

| ≤ D
ri+j+k+1 , for r > s.

As ∂i+j+kf
∂xi∂yj∂zk

is continuous on B(0, s) \W ◦, it is bounded, by compact-

ness ofB(0, s) \W ◦ again, so that | ∂i+j+kf
∂xi∂yj∂zk

| ≤M for |x| ≥ 1. It follows

that | ∂i+j+kf
∂xi∂yj∂zk

| ≤ C
|x|i+j+k+1 , for |x| ≥ 1, where C = max(D,Msi+j+k+1).

It follows that { ∂i+j+kf
∂xi∂yj∂zkR3\W

: i+ j+ k ≥ 1} are of moderate decrease
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i+ j + k + 1.

Fixing {y, z} ⊂ R, we have that fy,z has no zeros, and, by the chain
rule;

∂f
∂x
|y,z = −1

2
2(x− a) 1

((x−a)2+(y−b)2+(z−c)2)
3
2

= − x−a
((x−a)2+(y−b)2+(z−b)2)

3
2

so that (fy,z)
′ has a zero when x = a. We have that, by the product

rule;

∂2f
∂x2
|y,z = − 1

((x−a)2+(y−b)2+(z−c)2)
3
2

+ 3(x−a)2

((x−a)2+(y−b)2+(z−c)2)
5
2

= 0

iff 3(x− a)2 − [(x− a)2 + (y − b)2 + (z − c)2] = 0

iff 2(x− a)2 = (y − b)2 + (z − c)2

iff x−a = 1√
2
[(y−b)2 +(z−c)2] 12 or x−a = − 1√

2
[(y−b)2 +(z−c)2] 12

so that (fy,z)
′′ has at most 2 zeros for (y, z) ∈ R2

Similarly;

∂3f
∂x3
|y,z = 9(x−a)

((x−a)2+(y−b)2+(z−c)2)
5
2
− 15(x−a)3

((x−a)2+(y−b)2+(z−c)2)
7
2

= 0

iff 9(x− a)[(x− a)2 + (y − b)2 + (z − c)2]− 15(x− a)3 = 0

iff 9[(x− a)2 + (y − b)2 + (z − c)2]− 15(x− a)2 = 0

iff 6(x− a)2 = 9((y − b)2 + (z − c)2)

iff x−a =
√

3
2
[(y−b)2+(z−c)2] 12 or x−a = −

√
3
2
[(y−b)2+(z−c)2] 12

so that (fy,z)
′′′ has at most 2 zeros for (y, z) ∈ R2.

Finally;

∂4f
∂x4
|y,z = 9

((x−a)2+(y−b)2+(z−c)2)
5
2
− 90(x−a)2

((x−a)2+(y−b)2+(z−c)2)
7
2

+ 105(x−a)4

((x−a)2+(y−b)2+(z−c)2)
9
2
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= 0

iff 9[(x− a)2 + (y − b)2 + (z − c)2]2 − 90(x− a)2[(x− a)2 + (y − b)2

+(z − c)2] + 105(x− a)4 = 0

iff 9(u2 + s2)2 − 90u2(u2 + s2) + 105u4 = 0

iff 24u4 − 72u2s2 + 9s4 = 0

iff 8u4 − 24u2s2 + 3s4 = 0

iff u2 = 24s2+/−
√
242s4−4.24s4
16

iff u2 = 24s2+/−
√
480s4

16

iff u2 = 6+/−
√
30

4
s2

iff u =
√

6 +
√

30s or u =
√

6−
√

30s or u = −(
√

6 +
√

30)s

or u = −(
√

6−
√

30)s

where u = x − a, s = [(y − b)2 + (z − c)2] 12 , so that (fy,z)
′′′′ has at

most 4 zeros for (y, z) ∈ R2, and we can take val = 4. A similar result
holds for fx,y and fx,z. It follows that f is normal.

For the second claim, note that if (x, y, z) ∈ Supp(ρ), then, switch-
ing to polars;

f(x, y, z) =
∫
R2

ρ(x′,y′,z′)
|(x,y,z)−(x′,y′,z′)|dx

′dy′dz′

=
∫
R3

ρ(x−x′,y−y′,z−z′)
|(x′,y′,z′)| dx′dy′dz′

=
∫
0,π

∫ π
−π

∫
R>0

ρx,y,z(r,θ,φ)

r
r2sin(θ)drdθdφ

=
∫
0,π

∫ π
−π

∫
R>0

ρx,y,z(r, θ, φ)rsin(θ)drdθdφ

so that;

|f(x, y, z)| ≤
∫
0,π

∫ π
−π

∫
R>0
|ρx,y,z(r, θ, φ)|drdθdφ
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≤ 2Mπ2R(x, y, z)

where Suppx,y,z(ρ) ⊂ B(0, R(x, y, z)), ρ| ≤ M , so that f is defined
everywhere. If ρ is smooth, we have that f is smooth, as;

∂i+j+kf
∂xi∂yj∂zk

(x, y, z) =
∂i+j+k

∫
R3

ρ(x−x′,y−y′,z−z′)
|(x′,y′,z′)| dx′dy′dz′

∂xi∂yj∂zk

=
∫
R3

∂i+j+kρ

∂xi∂yj∂zk
(x−x′,y−y′,z−z′)
|(x′,y′,z′)| dx′dy′dz′

with ∂i+j+kρ
∂xi∂yj∂zk

having compact support again. If ρ is continuous, but

not necessarily smooth, we have that, for (x, y, z) /∈ Supp(ρ);

∂i+j+kf
∂xi∂yj∂zk

(x, y, z) =
∫
R3 ρ(x′, y′, z′) ∂i+j+k

∂xi∂yj∂zk
( 1
|(x,y,z)−(x′,y′,z′)|)dx

′dy′dz′

so that f is smooth, outside Supp(ρ). When ρ ≥ 0 with compact
support, we have to show that fx0(y, z) is quasi normal. For (i), in
Definition 0.7, we have, for x0 ∈ R, z0 ∈ R, y > 0;

fx0,z0(
1
y
) =

∫
R3

ρ(x′,y′,z′)

|(x0, 1y ,z)−(x′,y′,z′)|
dx′dy′dz′

= y
∫
R3

ρ(x′,y′,z′)

(1+y2(x0−x′)2+y2(z0−z′)2−2yy′+y2y′2)
1
2

so that, with y < 1, y2 < y, letting;

Mx0,z0 = sup(x′,y′,z′)∈Supp(ρ)|(x0 − x′)2 + (z0 − z′)2 + 2|y′| + y′2|, if
y < 1

Mx0,z0
, then;

|y2(x0−x′)2 + y2(z0− z′)2− 2yy′+ y2y′2| < y|(x0−x′)2 + (z0− z)2 +
2|y′|+ y′2| < 1

so that, we can apply Newton’s theorem uniformly in (x′, y′, z′) ∈
Supp(ρ), to obtain;

fx0,z0(
1
y
) = y

∫
Supp(ρ)

ρ(x′, y′, z′)(
∑∞

n=0 bn(y2(x0−x′)2 + y2(z0− z′)2−
2yy′ + y2y′2)n)dx′dy′dz′

where bn is as above. With y < 1 again, |x′| ≤M , |y′| ≤M , |z′| ≤M
for (x′, y′, z′) ⊂ Supp(ρ), |ρ| ≤ N , y < 1

(|x0|+M)2+(|z0+M)2+2M+M2 , we

have, applying the DCT;
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|fx0,z0( 1
y
)| ≤ yN(2M)3

∑∞
n=0 |bn|((|x0|+M)2y+ (|z0|+M)2 + 2yM +

yM2)n

≤ 8yNM3
∑∞

n=0 |bn|yn((|x0|+M)2 + (|z0 +M)2 + 2M +M2)n

≤ 8yNM3
∑∞

n=0 y
n((|x0|+M)2 + (|z0|+M)2 + 2M +M2)n

defines an absolutely convergent series. A similar proof works for
y < 0. (ii) is similar. For (iii), in Definition 0.7, this will follow, as
above, from the main result that f itself is of very moderate decrease,
similarly, for (iv), as above, the moderate decrease in the fibre ∂f

∂y x0

and ∂f
∂z x0

, will follow from the moderate decrease i + j + k + 1 in the

derivatives ∂i+j+kf
∂xi∂yj∂zk

, i+ j + k ≥ 1. For (v), again, as above, the claim

on the intervals and zeros follows from the main proof.

For (iv)′ in Definition 0.15, with Supp(ρ) ⊂ B(0,M), M > 1, |ρ| ≤
N , if |(x, y, z)| ≥ 2M , and (x′, y′, z′) ∈ Supp(ρ), |(x, y, z)− (x′, y′, z)| ≥
|(x,y,z)

2
, so that 1

|(x,y,z)−(x′,y′,z′)| ≤
2

|(x,y,z)| , and;

|f(x, y, z)| = |
∫
Supp(ρ)

ρ(x′,y′,z′)
|(x,y,z)−(x′,y′,z′)|dx

′dy′dz′|

≤ 2
|(x,y,z)|

∫
Supp(ρ)

|ρ(x′, y′, z′)|dx′dy′dz′

≤ 8πM3N
3|(x,y)|

For (v)′, we have that, combining results above, with i+ j + k ≥ 1,
(x, y, z) /∈ Supp(ρ);

∂i+j+kf
∂xi∂yj∂zk

(x, y, z) =
∫
R3

ρ(x′,y′,z′)p(x−x′,y−y′,z−z′)
|(x,y,z)−(x′,y′,z′)|1+2(i+j+k)dx

′dy′dz′

where p is homogeneous of degree i + j + k. Then, if |(x, y, z)| ≥
max(2M, 1), and (x′, y′, z′) ∈ Supp(ρ);

1
|(x,y,z)−(x′,y′,z′)|1+2(i+j+k) ≤ 21+2(i+j+k)

|(x,y,z)|1+2(i+j+k)

|x − x′| ≤ |(x, y, z) − (x′, y′, z′)| ≤ |(x, y, z)| + M , and similarly
|y − y′| ≤ |(x, y, z)|+M , |z − z′| ≤ |(x, y, z)|+M , so that;

|p(x− x′, y − y′, z − z′)| ≤ T (|(x, y, z)|+M)i+j+k
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where T =
∑

i′+j′+k′=i+j+k |ai′j′k′ | and p =
∑

i′+j′+k′=i+j+k ai′j′k′x
i′
1x

j′

2 x
k′
3 .

It follows that;

| ∂i+j+kf
∂xi∂yj∂zk

| = |
∫
Supp(ρ)

ρ(x′,y′,z′)p(x−x′,y−y′,z−z′)
|(x,y,z)−(x′,y′,z′)|1+2(i+j+k)dx

′dy′dz′|

≤ 21+2(i+j+k)T (|(x,y,z)|+M)i+j+k

|(x,y,z)|1+2(i+j+k)

∫
Supp(ρ)

|ρ(x′, y′, z′)|dx′dy′dz′

≤ 21+2(i+j+k)TN 4πM3

3
(|(x,y,z)|+M)i+j+k

|(x,y,z)|1+2(i+j+k)

≤ 21+2(i+j+k)TN 4πM3

3
(i+j+k+1)!M i+j+k

|(x,y,z)|1+(i+j+k)

so that ∂i+j+kf
∂xi∂yj∂zk

(x, y, z) is of moderate decrease i+ j + k + 1.

For (vi)′, we have that if ρ ≥ 0 is continuous with compact sup-
port, ρ 6= 0, that f > 0. Repeating the argument above, and the
calculation of the derivatives, fixing (y, z) ∈ R2, and letting s =

(x2 + y2)
1
2 , we see that the zeros of f ′x,y are contained in the interval

(−(M + 1),M + 1), with the length 2(M + 1) of the interval, uniformly
bounded in (y, z), the zeros of (fx,y)

′′ are contained in the intervals
(−M+ 1√

2
(s−M),M+ 1√

2
(s+M))∪(−M− 1√

2
(s+M),M− 1√

2
(s−M)),

with the length of the intervals, (2 +
√

2)M uniform in s > 2M , the

zeros of (fx,y)
′′ are contained in the intervals (−M +

√
3√
2
(s−M),M +

√
3√
2
(s+M))∪(−M−

√
3√
2
(s+M),M−

√
3√
2
(s−M)), with the length of the

intervals, (2 +
√

6)M uniform in s > 2M , the zeros of (fx,y)
′′′ are con-

tained in the intervals (−M +
√

6 +
√

30(s−M),M +
√

6 +
√

30(s+

M)) ∪ (−M −
√

6 +
√

30(s + M),M −
√

6 +
√

30(s −M)), (−M +√
6−
√

30(s−M),M +
√

6−
√

30(s+M)) ∪ (−M −
√

6−
√

30(s+

M),M −
√

6−
√

30(s − M)) with the length of the intervals, (2 +

2
√

6 +
√

30)M and (2 + 2
√

6−
√

30)M uniform in s > 2M .

Again the proof that if ρ 6= 0 is smooth with compact support, then
f is quasi split normal, follows easily by observing that ρ = ρ+ + ρ−,
with {ρ+, ρ−} being continuous, ρ+ ≥ 0, ρ− ≤ 0, and using the proof
for quasi normality, along with the previous observation in dimension
2, that quasi normality implies quasi split normality.

�
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Lemma 0.17. Let f : R3 → R be normal, then, for {x, y, z} ⊂ R,
k1 6= 0, k2 6= 0, k3 6= 0;

A(k1, y, z) = limr→∞
∫ r
−r f(x, y, z)e−ik1xdx

B(x, k2, z) = limr→∞
∫ r
−r f(x, y, z)e−ik2ydy

C(x, y, k3) = limr→∞
∫ r
−r f(x, y, z)e−ik3zdz

all exist and A(k1, y, z), B(x, k2, z), C(x, y, k3) are of moderate de-
crease 3.

and, for {x, y, z} ⊂ R, k1 6= 0, k2 6= 0, k3 6= 0;

F (k1, k2, z) = limr,s→∞
∫ r
−r

∫ s
−s f(x, y, z)e−ik1xe−ik2ydxdy

G(k1, y, k3) = limr,s→∞
∫ r
−r

∫ s
−s f(x, y, z)e−ik1xe−ik3zdxdz

H(x, k2, k3) = limr,s→∞
∫ r
−r

∫ s
−s f(x, y, z)e−ik2ye−ik3zdydz

all exist and F (k1, k2, z), G(k1, y, k3), H(x, k2, k3) are of moderate de-
crease.

Moreover;

F (k1, k2, z) =
∫∞
−∞A(k1, y, z)e−ik2ydy

and corresponding results hold for {A,B,C, F,G,H}, integrating out
the variables in a similar way.

Proof. The first claim follows from [1] together with Lemma 0.5 and
(i), (ii), (iii) in Definition 0.15, using the fact that, by normality, fx,y(z), fx,z(y), fy,z(x)
are analytic at infinity, for {(x, y), (x, z), (y, z)} ⊂ R2, (∗). We then
have, using integration by parts, for (y0, z0) ∈ R2;∫ r

−r f(x, y0, z0)e
−ik1xdx = [ if(x,y0)e

−ik1x

k1
]r−r −

∫ r
−r

i ∂f
∂x

(x,y0,z0)e−ik1x

k1
dx

so that, as fy0,z0 is of very moderate decrease, by (iv) in Definition
0.15, integrating by parts;
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A(k1, y0, z0) = limr→∞
∫ r
−r f(x, y0, z0)e

−ik1xdx

= limr→∞([ if(x,y0,z0)e
−ik1x

k1
]r−r −

∫ r
−r

i ∂f
∂x

(x,y0,z0)e−ik1x

k1
dx)

= limr→∞(−
∫ r
−r

i ∂f
∂x

(x,y0,z0)e−ik1x

k1
dx)

= − i
k1

∫∞
−∞

∂f
∂x

(x, y0, z0)e
−ik1xdx

the last integral being definite, as (∂f
∂x

)y0,z0 is of moderate decrease,
using (v) in Definition 0.15. It follows that A(k1, y, z) is smooth, as
differentiating under the integral sign is justified by the DCT, MVT
and (v) again, with;

∂j+kA
∂yj∂zk

(k1, y, z) = − i
k1

∫∞
−∞

∂1+j+kf
∂x∂yj∂zk

(x, y, z)e−ik1xdx

Integrating by parts again;

A(k1, y0, z0) = − 1
k21

∫∞
−∞

∂2f
∂x2

(x, y0, z0)e
−ik1xdx

with ∂2f
∂x2

of moderate decrease 3, by (v) again . We have that

(∂
2f
∂x2

)y0,z0 is analytic at infinity by (∗) and Lemma 0.4. By (vi) in the

Definition 0.15, we can assume that for sufficiently large (y, z), (∂
2f
∂x2

)y,z
is monotone and positive/negative in the intervals (−∞, a1(y, z)), . . . , (aval(y, z),∞),
where a1, . . . , aval vary continuously with y, z. Splitting the integral
into cos(k1x) and sin(k1x) components, in a similar calculation to [2],
for any interval of length at least 2π

|k1| , we obtain an alternating cancel-

lation in the contribution to the integral of at most
2π||f ′y ||
|k1| and for any

interval of length at most 2π
|k1| , we obtain a contribution to the integral

of at most
4π||f ′y ||
|k1| . It follows that, for sufficiently large (y, z), using the

fact that ∂2f
∂x2

has moderate decrease 3;

| − i
k1

∫∞
−∞

∂2f
∂x2

(x, y, z)e−ik1xdx|

≤ (val+1)
|k1|

4π||f ′′y,z ||
|k1|

=
4π(val+1)||f ′′y,z ||

|k1|2

≤ 4π(val+1)C
|k1|2|(y,z)|3 (∗)
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so that;

|A(k1, y, z)| ≤ D
|y,z|3 (∗∗)

for sufficiently large (y, z), with D = 4π(val+1)C
|k1|2 . As A(k1, y, z) is

smooth, we obtain that A(k1, y, z) is of moderate decrease 3. Similarly,
we can show that B(x, k2, z) and C(x, y, k3) are of moderate decrease
3, for k2 6= 0, k3 6= 0.

The second claim follows from Lemma 0.12, using normality of the
fibres, (i), (ii), (iii) in Definition 0.15. In fact, the first integral is in-
definite, in the sense that we could define it as;

F (k1, k2, z) = limr1→∞,r2→∞,s1→∞,s2→∞(
∫ a
−r1 +

∫ r2
a

)(
∫ b
−s1 +

∫ s2
a

)f(x, y, z)e−ik1xe−ik2ydxdy

for a choice of a, b ⊂ R, and similarly for G(k1, y, k3), H(x, k2, k3).
Now observe that;

F (k1, k2, z) =
∫∞
−∞A(k1, y, z)e−ik2ydy

where Ak1 is from the first part of the lemma, and of moderate de-
crease 3. This follows from the result of Lemma 0.12, and the fact
that the fibre fz is normal. We claim that F (k1, k2, z) is of moderate

decrease 2. We have that |Ak1(y, z)| ≤
Ck1
|y,z|3 for |(y, z) > 1, by (∗∗). It

follows that, for sufficiently large z;

|F (k1, k2, z)| ≤ |
∫∞
−∞A(k1, y, z)e−ik2ydy|

≤
∫∞
−∞ |

Ck1

(y2+z2)
3
2
|dy

=
Ck1
|z|3

∫∞
−∞ |

Ck1

(1+ y2

z2
)
3
2
|dy

=
Ck1
|z|3

∫ π
2

−π
2

1
sec3(θ)

zsec2(θ)dθ, ((tan(θ) = y
z
), dy = zsec2(θ)dθ)

=
Ck1
|z|2

∫ π
2

−π
2

1
sec(θ)

dθ

≤ Ck1
|z|2

∫ π
2

−π
2
cos(θ)dθ

≤ πCk1
|z|2
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so that F (k1, k2, z) is of moderate decrease. Similar results hold for
G(x, k2, z) and H(x, y, k3), with k1 6= 0, k2 6= 0, k3 6= 0.

�

Lemma 0.18. Let f : R3 → R, the same result as Lemma 0.17 holds,
if f is quasi normal or f is quasi split normal.

Proof. Again, we just have to replace the uses of (i)− (vi) in Definition
0.15, within Lemma 0.17, with the use of (i) − (vi)′ or (i) − (vi)′′.
The method of replacing (vi) by (vi)′ is given in Lemma 0.11. The
fact that we can replace (i), (ii), (iii) by (i)′, (ii), (iii)′ at the beginning
of the proof of the second claim follows from Lemma 0.14, and at
the beginning of the proof from Definition 0.7. The use of (iv), (v)
and (iv)′(v′) is the same. A similar argument works in the quasi split
normal case, using the argument at the end of Lemma 0.11.

�

Lemma 0.19. Let hypotheses and notation be as in the previous lemma,
then we can define, for k1 6= 0, k2 6= 0, k3 6= 0;

A(k1, k2, k3) =
∫∞
−∞

∫∞
−∞A(k1, y, z)e−ik2ye−ik3zdydz

B(k1, k2, k3) =
∫∞
−∞

∫∞
−∞B(x, k2, z)e

−ik1xe−ik3zdxdz

C(k1, k2, k3) =
∫∞
−∞

∫∞
−∞B(x, y, k3)e

−ik1xe−ik2ydxdy

F (k1, k2, k3) =
∫∞
−∞ F (k1, k2, z)e

−ik3zdz

G(k1, k2, k3) =
∫∞
−∞G(k1, y, k3)e

−ik2ydy

H(k1, k2, k3) =
∫∞
−∞H(x, k2, k3)e

−ik1xdx

We have that;

A(k1, k2, k3) = B(k1, k2, k3) = C(k1, k2, k3) = F (k1, k2, k3) = G(k1, k2, k3) =
H(k1, k2, k3) †)

= limr→∞,s→∞,t→∞
∫ r
−r

∫ s
−s

∫ t
−t f(x, y, z)e−ik1xe−ik2ye−ik3zdxdydz (††)

Proof. The definitions follows from Lemma 0.17, using the fact that
A(k1, y, z) is of moderate decrease 3 and smooth, so it belongs to
L1(R2). We can then use the usual Fourier transform. Similarly, for
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B(x, k2, z) and C(x, y, k3).

Similarly, as F (k1, k2, z) is smooth and of moderate decrease, we can
then define the usual Fourier transform, for k3 6= 0;

F (k1, k2, k3) =
∫∞
−∞ F (k1, k2, z)e

−ik3zdz

It is clear that (†) holds, from the last claim in Lemma 0.17, once
we have shown that F = G = H and (††).

We have that;

|
∫ r
−r(F (k1, k2, z)−

∫ s
−s

∫ t
−t f(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz|

= |
∫ r
−r(

∫∞
−∞

∫∞
−∞ f(x, y, z)e−ik1xe−ik2ydxdy−

∫ s
−s

∫ t
−t f(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz|

= |
∫ r
−r(

∫
(|x|≤s,|y≤t)c f(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz|

= |
∫ r
−r[

∫
|y|>t

∫∞
−∞ f(x, y, z)e−ik1xe−ik2ydxdy

+
∫
|x|>s

∫∞
−∞ f(x, y, z)e−ik1xe−ik2ydxdy

−
∫
|x|>s

∫
|y|>t f(x, y, z)e−ik1xe−ik2ydxdy]e−ik3zdz|

≤ |
∫ r
−r(

∫
|y|>t

∫∞
−∞ f(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz| (i)

+|
∫ r
−r(

∫
|x|>s

∫∞
−∞ f(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz| (ii)

+|
∫ r
−r(

∫
|x|>s

∫
|y|>t f(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz| (iii)

We estimate the three terms separately, using integration by parts,
for k1 6= 0, k2 6= 0, k3 6= 0. For (i), as f is of very moderate decrease,
∂3f
∂x3

is of moderate decrease 4;

|
∫ r
−r(

∫
|y|>t

∫∞
−∞ f(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz|

= |−i
k1

∫ r
−r(

∫
|y|>t

∫∞
−∞

∂f
∂x

(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz|

= | − 1
k21

∫ r
−r(

∫
|y|>t

∫∞
−∞

∂2f
∂x2

(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz|
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= | i
k31

∫ r
−r(

∫
|y|>t

∫∞
−∞

∂3f
∂x3

(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz|

≤ 1
|k1|3

∫
|y|>t

∫∞
−∞

∫∞
∞ |

∂3f
∂x3
|dxdzdy

≤ 1
|k1|3

∫
|y|>t

∫∞
−∞

∫∞
∞

C
(x2+y2+z2)2

dxdzdy

= 1
|k1|3

∫
|y|>t

∫∞
−∞

1
(y2+z2)2

∫∞
∞

C

(1+ x2

y2+z2
)2
dxdzdy

= 1
|k1|3

∫
|y|>t

∫∞
−∞

1
(y2+z2)2

∫ π
2
−π
2

C
sec4(θ)

sec2(θ)(y2 + z2)
1
2dθdzdy

≤ C
k31

∫
|y|>t

∫∞
−∞

1

(y2+z2)
3
2

∫ π
2
−π
2

Ccos2(θ)dθdzdy

≤ Cπ
|k1|3

∫
|y|>t

∫∞
−∞

1

(y2+z2)
3
2
dzdy

= Cπ
|k1|3

∫
|y|>t

1
|y|3

∫∞
−∞

1

(1+ z2

y2
)
3
2
dzdy

≤ Cπ
|k1|3

∫
|y|>t

1
|y|2

∫ π
2

−π
2
cos2(θ)dθdy

≤ Cπ2

|k1|3
∫
|y|>t

1
|y|2dy

≤ 2Cπ2

|k1|3t (†)

For (ii), as f is of very moderate decrease, ∂3f
∂y3

is of moderate de-

crease 4, using the same argument;

|
∫ r
−r(

∫
|x|>s

∫∞
−∞ f(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz| ≤ 2Cπ2

|k2|3s

For (iii), we have that, using integration by parts again;

|
∫ r
−r(

∫
|x|>s

∫
|y|>t f(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz|

= |
∫ r
−r(

∫
|x|>s

i
k2

(−f(x, t, z) + f(x,−t, z))e−ik1xdx

− i
k2

∫
|x|>s

∫
|y|>t

∂f
∂y

(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz|

≤ |
∫ r
−r

∫
|x|>s

i
k2

(−f(x, t, z) + f(x,−t, z))e−ik1xe−ik3zdxdz|

+|
∫ r
−r

i
k2

∫
|x|>s

∫
|y|>t

∂f
∂y

(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz|

= |
∫ r
−r

−1
k1k2

(−f(s,−t, z)+f(−s,−t, z)+f(s, t, z)−f(−s,−t, z))e−ik3zdz
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+
∫ r
−r

∫
|x|>s

1
k1k2

(−∂f
∂x

(x, t, z) + ∂f
∂x

(x,−t, z))e−ik1xe−ik3zdxdz|

+|
∫ r
−r

i
k2

∫
|x|>s

∫
|y|>t

∂f
∂y
f(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz|

≤ |
∫ r
−r

−1
k1k2

(−f(s,−t, z)+f(−s,−t, z)+f(s, t, z)−f(−s,−t, z))e−ik3zdz|

+|
∫ r
−r

∫
|x|>s

1
k1k2

(−∂f
∂x

(x, t, z) + ∂f
∂x

(x,−t, z))e−ik1xe−ik3zdxdz|

+|
∫ r
−r

i
k2

∫
|x|>s

∫
|y|>t

∂f
∂y
f(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz|

= |
∫ r
−r

−1
k1k2

(−f(s,−t, z)+f(−s,−t, z)+f(s, t, z)−f(−s,−t, z))e−ik3zdz|

+|
∫ r
−r

i
k21k2

(∂f
∂x

(s, t, z)−∂f
∂x

(−s, t, z)−∂f
∂x

(s,−t, z)+∂f
∂x

(−s,−t, z))e−ik3zdz

−
∫ r
−r

i
k21k2

∫
|x|>s(−

∂2f
∂x2

(x, t, z) + ∂2f
∂x2

(x,−t, z))e−ik1xe−ik3zdxdz|

+|
∫ r
−r

i
k2

∫
|x|>s

∫
|y|>t

∂f
∂y

(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz|

≤ 1
|k1k2| |

∫ r
−r(−f(s,−t, z)+f(−s,−t, z)+f(s, t, z)−f(−s,−t, z))e−ik3zdz|

(a)

+ 1
|k21k2|
|
∫ r
−r(

∂f
∂x

(s, t, z)−∂f
∂x

(−s, t, z)−∂f
∂x

(s,−t, z)+∂f
∂x

(−s,−t, z))e−ik3zdz|

(b)

+ 1
|k21k2|
|
∫ r
−r

∫
|x|>s(−

∂2f
∂x2

(x, t, z) + ∂2f
∂x2

(x,−t, z))e−ik1xe−ik3zdxdz| (c)

+ 1
|k2| |

∫ r
−r

∫
|x|>s

∫
|y|>t

∂f
∂y

(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz| (d)

For (a), (b), by the definition of normality, the fibres {fs,t, f−s,t, fs,−t, f−s,−t}
are analytic at infinity, and of very moderate decrease, and, similarly,
the fibres {∂f

∂x s,t
, ∂f
∂x−s,t,

∂f
∂x s,−t,

∂f
∂x−s,−t} are analytic at infinity, and of

moderate decrease. Using the bound val on the zeros, uniform in (s, t),
we can then repeat the calculation above 8 times, to obtain that, uni-
formly in r;

(a) + (b) ≤ 4
|k1k2k3|(val + 1)4πmax(||fs,t||, ||f−s,t||, ||fs,−t||, ||f−s,−t||)

+ 4
|k21k2k3|

(val + 1)4πmax(||∂f
∂x s,t
||, ||∂f

∂x−s,t||, ||
∂f
∂x s,−t||, ||

∂f
∂x−s,−t||)
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≤ 4C
|k1k2k3||(s,t)|(val + 1)4π + 4

|k21k2k3|(s,t)|2
(val + 1)4π

For (c), we have that ∂2f
∂x2

is of moderate decrease 3, hence belongs
to L1(R2), so we can repeat the calculation above, to obtain that, uni-
formly in r;

(c) ≤ 1
|k21k2|
|
∫∞
−∞

∫
|x|>s | −

∂2f
∂x2

(x, t, z) + ∂2f
∂x2

(x,−t, z)|dxdz

≤ 4C
|k21k2|

∫
|x|>s

∫∞
−∞

1

(x2+z2+t2)
3
2
dzdx

≤ 4Cπ
|k21k2|

∫
|x|>s

1
(x2+t2)

dx

≤ 4Cπ
|k21k2|

∫
|x|>s

1
x2
dx

≤ 8Cπ
|k21k2|s

We also have that;

|
∫
|x|>s

1
(x2+t2)

dx ≤ 1
t2

∫∞
−∞

1

1+x2

t2

dx

= 1
t
[tan−1(x

t
)]∞−∞

= π
t

so that;

(c) ≤ min( 8Cπ
|k21k2|s

, 4Cπ2

|k21k2|t
)

≤ 4
√
2Cπ2

|k21k2||s,t|

For (d), we can combine (a), (b), (c) to obtain that;

|
∫ r
−r(

∫
|x|>s

∫
|y|>t f(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz|

≤ 4C
|k1k2k3||(s,t)|(val + 1)4π + 4

|k21k2k3|(s,t)|2
(val + 1)4π + 4

√
2Cπ2

|k21k2||s,t|

+ 1
|k2| |

∫ r
−r

∫
|x|>s

∫
|y|>t

∂f
∂y

(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz|

≤ E
|(s,t)| + 1

|k2| |
∫ r
−r

∫
|x|>s

∫
|y|>t

∂f
∂y

(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz|
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|(s, t)| > 1

so that repeating the above argument with ∂f
∂y

replacing f ;

(d) ≤ F
|(s,t)||k2|+

1
|k2|2 |

∫ r
−r

∫
|x|>s

∫
|y|>t

∂2f
∂y2

(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz|

and, nesting the arguments, uniformly in r;

|
∫ r
−r(

∫
|x|>s

∫
|y|>t f(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz|

≤ E
|(s,t)|+

F
|(s,t)||k2|+

G
|s,t||k2|2 + 1

|k2|3 |
∫ r
−r

∫
|x|>s

∫
|y|>t

∂3f
∂y3

(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz|

(††)

Now, we can use the fact that ∂3f
∂y3

is of moderate decrease 4, to see

that ∂3f
∂y3
∈ L1(R3), so that, uniformly in r, repeating the argument (†);

|
∫ r
−r

∫
|x|>s

∫
|y|>t

∂3f
∂y3

(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz|

≤
∫∞
−∞

∫
|x|>s

∫
|y|>t |

∂3f
∂y3
|(x, y, z)dxdydz

≤ min(
∫
|x|>s

∫∞
−∞

∫∞
−∞ |

∂3f
∂y3
|(x, y, z)dydzdx,

∫
|y|>t

∫∞
−∞

∫∞
−∞ |

∂3f
∂y3
|(x, y, z)dxdzdy)

≤ min(2Cπ
2

s
, 2Cπ

2

t
)

≤ 2
√
2Cπ2

|(s,t)|

Now, from (††), we obtain that, uniformly in r;

|
∫ r
−r(

∫
|x|>s

∫
|y|>t f(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz|

≤ H
|(s,t)|

which is (iii). Combining with (i), (ii), we obtain that, uniformly in
r;

|
∫ r
−r(F (k1, k2, z)−

∫ s
−s

∫ t
−t f(x, y, z)e−ik1xe−ik2ydxdy)e−ik3zdz|

≤ Ak1k2k3
s

+
Bk1k2k3

t
+

Ck1k2k3
|(s,t)|



FUNCTIONS ANALYTIC AT INFINITY AND NORMALITY 35

where the constants {Ak1k2k3 , Bk1k2k3 , Ck1k2k3} ⊂ R>0 can be read
from the proof.

Applying the Moore-Osgood Theorem, it is then clear that;

F (k1, k2, k3) = C(k1, k2, k3)

= limr→∞,s→∞,t→∞
∫ r
−r

∫ s
−s

∫ t
−t f(x, y, z)e−ik1xe−ik2ye−ik3zdxdydz

and similarly;

G(k1, k2, k3) = B(k1, k2, k3)

= limr→∞,s→∞,t→∞
∫ r
−r

∫ s
−s

∫ t
−t f(x, y, z)e−ik1xe−ik2ye−ik3zdxdydz

H(k1, k2, k3) = A(k1, k2, k3)

= limr→∞,s→∞,t→∞
∫ r
−r

∫ s
−s

∫ t
−t f(x, y, z)e−ik1xe−ik2ye−ik3zdxdydz

�

Lemma 0.20. Let hypotheses and notation be as in Lemma 0.19, then
we have that there exist constants {Dk1k2k3 , Ek1k2k3 , Fk1k2k3} ⊂ R>0 such
that;

|ss,t,r − s| ≤
Dk1k2k3

s
+

Ek1k2k3
t

+
Fk1k2k3

r

In particular, there exists a constant Gk1k2k3 ∈ R>0 such that;

|sm,m,m − s| ≤
Gk1k2k3

m

Proof. We have that, by the proof of Lemma 0.12;

|ss,t,r − s| ≤ |ss,t,r − s∞,∞,r|+ |s∞,∞,r − s|

≤ Ak1k2k3
s

+
Bk1k2k3

t
+

Ck1k2k3
|(s,t)| + |

∫
|z|≥r F (k1, k2, z)e

−ik3zdz|

≤ Ak1k2k3
s

+
Bk1k2k3+Ck1k2k3

t
+
∫
|z|≥r |F (k1, k2, z)|dz

where, by the result of Lemma 0.17, F (k1, k2, z) is of moderate de-
crease;
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|F (k1, k2, z)| ≤ D
|z|2

for sufficiently large z, with D = πCk1 . It follows that, for sufficiently
large r;

|ss,t,r − s| ≤
Ak1k2k3

s
+

Bk1k2k3+Ck1k2k3
t

+
∫
|y|≥r

D
z2
dz

≤ Ak1k2k3
s

+
Bk1k2k3+Ck1k2k3

t
+ 2D

r

=
Dk1k2k3

s
+

Ek1k2k3
t

+
Fk1k2k3

r

where;

Dk1k2k3 = Ak1k2k3

Ek1k2k3 = Bk1k2k3 + Ck1k2k3

Fk1k2k3 = 2πCk1

For the next claim, we can take Gk1k2k3 = Dk1k2k3 +Ek1k2k3 +Fk1k2k3

�

Lemma 0.21. If f : R3 → R, the same results as Lemma 0.19 and
Lemma 0.20 hold, with the assumption that f is quasi normal or quasi
split normal.

Proof. Again, we can replace the use of (i) − (vi) in Definition 0.15,
within the proof of Lemma 0.19, by (i)′ − (vi)′ or (i)′′ − (vi)′′, with
the argument used in Lemma 0.18. The argument of Lemma 0.20 then
goes through.

�
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