MICROWAVE ENGINEERING 3
TRISTRAM DE PIRO

ABSTRACT. We give an explanation of charge and current driven
radiation inside spherical magnetrons, using the equations found
in [10], and by verifying compatibility with the TM and TE modes
used in microwave engineering.

Lemma 0.1. There exist (p,J, E, B) satisfying;

(i). O*(p) = 0.

(ii). O*(J) = 0.

such that;
p(z,y, z,t) = p(z,y, z)e ™"
7 = 5(3:’ Y, Z)e_iwt; 3 = (jlajZajS)-

E=2(x,y,2)e”™ &= (e1,e,€3).

o/
=

(‘I7 Y, Z)e_imf B = (blu b2’ b3)
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In particularly, Mazwell’s equations are satisfied for (p,J, E, B).
Let (V’,Z/) be the global potentials defined by Jefimenko’s equations;
V(7. 1) = & [ 2 dr

A(r,t) = o [ 1T g

Then V! = v'(z,y,2)e !, A =@ (x,y,2)e ™!, @ = (d}, d}, a}).

A similar claim holds for the causal fields {E/,Fl} of Jefimenko’s

equations.
We have that,

for constants {m,l} C N.

The components {jr, jo, j, €r, €0, €4, by, bo, by} of {7(r,0,¢),8(r,0,$),b(r,0,$)}
can be written in terms of {R, R©,0', &, &' r 0 ¢}.

There exist (0,0, E/,F/) satisfying Maxwell’s equations in vacuum;

-/

(7). v.£E =0

.. =i B’
(it). v x E = -2
(iii). V. B =0

. -/ You
(iv) v x B = C%aab;

E =@ (z,y,2)e ™, & = (), ¢}, ¢).
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B =V (2,y,2z)e, b = (b,,b),b,).
with B’ #0

We have that rbl.e™™! =< BT > and rele™™! =< E',7 > satisfy
the wave equation and;

rol(x,y,z) =rb.(r,0,0) = Ri(r)©1(0)®1(s)

T +m®, =0 (C1)
for constants {m/,l'} C R.

A similar result holds for re...

The components {e;, ey, €y, by, by, by} of {€(r,0, )b (r,0,¢)} can be
written in terms of {R, R',©,0", ® ¥ r 0, ¢}.

In particularly, for the TE mode;

b =t

by = zf(1f1+1)%%%<7’255~>

bizﬁ - l’(l’1+1) rsiTIL(H) E%)%(T2b/r>
e =0

ey = l’(l1’+1)rsi711(6) a%(?"%'r)
€y =~z an (70 (X)
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¢ = o

ey = Z/(z'1+1)%%%(7’26;)

6;5 - mrsirlb(e) %%(726;)
=0

by = — 2p () remm(e) 35 (7€)
by = c2l’2luj+1)%%(r2e;) (Y)

The continuity equation holds on the sphere S(0,w), for both the TE
and TM modes. Moreover, if we restrict to the cases where the current
J vanishes on the sphere S(0,w), the continuity equation holds and we
can calculate the surface impedance in particular cases.

Proof. The proof of the first part is similar to [10]. For (i), we have,
substituting p(z,y, z)e”** for p, that;

—iwt _ 1 —iwt

[pxz + DPyy + pzz]e C—Qp(—aﬂ)e
so we require that py, + pyy + p.. + f—jp =0, (*).

The proof that this can be solved in R? is shown in [5], using spheri-
cal polar coordinates. For (7ii), we have, substituting p(z,y, z)e~“* for
p, and j(x,y, z)e” ! for J, that;

iwt

(Prs Dys P2)e ™" = =5 (1, J2, J3) (—iw)e™

so that;

Ji=Sp, = —p,

J2 = %py = _%py

Js = %pz = _%pz ()

If p satisfies (), differentiating, so do p,, p, and p,, then, from (xx),
the components {1, jo, j3} satisfy (x) and (ii) is satisfied. For (iv), we
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have, substituting again, and using (*%), that;

—iwpe” @t = —(

jl:): + j2x + j3x)e_th
—iwt

2 2 2
= _<%px:p + ic_wpyy + %pzz)e

so that;

c2 c2 c2 . .
_Epara: - Epyy - Z_wpzz + wWwp = 0

and multiplying by —i—‘;’;

w2
Dza +pyy +pzz + C_2p =0

which is (x). As all the steps are reversible, we obtain (iv). For

(viit), we require that;

_i_tézéefiwt — _Mojefiwt

so that;

e = —%J&

ey = —%]’2

€3 = —%j?,

and, using (k)

o= ety
oo -

e =~ SEp. = L5 p. (4)

For (vi), we just set by = by = by = 0. For (v), we have from (A),
that £ = —f‘g—g“ V (p), so that 7 x E = 0 and as {p,,p,,p.} satisfy
(%), so do {e1, ez, e3}, so that (0?°E = 0, and (v) is satisfied. For (vii),

we have, using (A) and (x), that;
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d’LU(E) = (6133 + egy + 632)6_Mt

_ _ poct —iwt
2

w

(px:v + pyy + pzz)e

poct —w?  —jwt

= e be

_ uoc2pe—iwt

_ 1 2
= 60020 pe

—iwt

€0

so that (vii) is satisfied. The second claim follows easily by rear-
ranging (v) — (viii).

For the potentials claim, it follows by differentiating under the inte-
gral sign, and using the fact that ¢, =t — @, that;

v, 1 LGRS
f =dT

ot 4meq

. —/ t
_4zw p(™, r)d,r/
TEQ v

= —wV’

Using Peano’s theorem on the uniqueness of solutions of first order
differential equations, we then must have that;

Vi(@,y,2,t) = v'(z,y,2)e™" (AA)

and, similarly;

Az, y, 2,t) =@ (z,y, 2)e ™
The claim on {E/,EI} is similar, using Jefimenko’s equations which
only depend on {p, J} and derivatives.

The formulae (C') can be found in [5], once we have (x). When
R = ji(¥%), where j; is a Bessel function of the first kind of order I,

C

O = P"(cos(0)) where P/ is the associated Legendre polynomial, and
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® = sin(me) or cos(m¢), we denote by pi, s OF Py the correspond-
ing fundamental solutions, see the discussion in [5].

Let {7,0, ¢} be the standard orthonormal spherical frame, then we
have that, using the above calculation;

< J,T>=<],T7>e ™t

_ic2 /Opra 2 o X 0, d¢p 0
i (D[ 7] 4 2B(20, 20, 00) 7] 4 o[22, 20

~

2 ope A1 B 21 Opr9b 96 9py =
jT‘ = Z}C (817[")[ T] + %[(%7%7%) 'r] +8_Z[(8_ﬁ’8_(yb’8_f> .r])

_ 9 F) ek 1o} 0 o] 0 =
= =i (D | B2 B 80y 5 | B0 08 04y, 7))

Similarly:;
o= = (30 0]+ G530, 50,8 01+ 38152 55, 50) - )

_ —ic2(9p[(00 00 00\ G %0 06 96y
= (GBI 550 0+ BI5. 5. 52 )

~

Jo = =GR 01+ GBI(3E 55,89 01 + UG 55, 52) - 6)
= =i (o 20 90y Gy D98 05 06) ) (F)

A similar calculation shows that;

er =~ (52T + GBI5, 5, 50 - 71+ BEL5%. 65 80) - 7D
= (3 + IG5, 8 -7+ B3 5.5 7)

o = —H (10 + G 55, 80) 8 + U2, 55, 52) - 8)
= e (GBI, 50, 50 01+ 155 5. 520 - )

o= U5 (17 0] + G152, 50,891+ B35, 5. 52) - )
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= e (Z(2 B By, )1 (20 02 %) 4)) (E)

w? \90\dz7 5y’ 9z 9z’ By’ Bz

Clearly, we have that b, = by = b; = 0.

The next claim is then clear, calculating {%, g—z, %, %, g—i, g—f} and

@@@}

the orthonormal frame in terms of {r, 0, ¢}, as well as the terms {32, Z&, ¥

in terms of {R, R',0,0’, &, d'}.

For the boundary conditions at the boundary of the cavity magnetron
with radius we need {eg, e, b, } to vanish at the boundary, which we
can achieve with % = 81” =0, as b, = 0. By the explicit form of p in
(C), and the Calculations in (E), if the magnetron has radlus w, this is
achieved when R = ji(“F)[55@.,) = 0, so that ©¢ € 7, w € <!, where
Zy = Zero(j;), the zero set of the Correspondlng Bessel functlon. In
this case, we also have by (E), (F), that jy = j, = 0 at the boundary,
and;

6. — _ poct 8p’ _
T T w2 orlSOw)
s 77,’62@’ _
Jr="0"%r S(0,w)

5= o
The next claim is a special case of the result proved in [10] and left

to the reader.

where p is constant on the boundary, as

For the next claim, rb.e~™! =< B’,7 > satisfies the wave equation,
as;

O%(< B/, 7 >)
=< DB 7>+ <B,0%>+v.B
=0

The equations for the components in the TE and TM modes can be
found in [5], and we assume they hold on the exterior of the sphere
S(0,w). For the boundary conditions at the boundary of the cav-
ity magnetron, we need {eg, ey, b,} to vanish at the boundary again.
In the TE mode case, from (X), we can achieve this wit

a’é—zbr = 0, and 7%b, = 0 at the boundary. By the explicit form of

or?b,
h 00
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rb, in (C1), if the magnetron has radius w, this is again achieved
when R = ji(“)lss@w) = 0, so that “* € Zy, w € ci—”, where
Zy = Zero(jr), the zero set of the corresponding Bessel function. In

the TM mode case, from (Y'), we can achieve this with 8’;9 < =0, as

b, = 0 in the TM mode. By the explicit form of re, in (C1), if the mag-
OrR asz'(wTr) | E—

netron has radius w, this is achieved when 5= 5 65(0,0)

In the TE case, we have that the surface charge o is given by;

oy _ E/L . EL
€0
— €;€_Zwt ere—zwt
— _eTe—iwt
Hoc® Op —iwt

ZwamMMW
while in the TM case, we have that;
of —/1 —1

o=E -FL

—iwt

! ,—iwt e,e

=ee

. 49 .
— 6;6 wt + HoC” Op iwt

o o ls@we
where re!. satisfies the relations above.

In the TE case, we have that the surface current K ; is given by;

m(K;x7)=B"~B'

1 18 8 (.21/\0 1 211NN —iwt
Y555 (200 + 5y vy 5 o (72bL)P)e
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In the TM case, we have that;
mo(Eyx7)=B" - B

ol

=B

_ 1 i w 10 g
= (~arirn @ 08170 + iy ras (e )9)e ™
where re/. satisfies the relations above. It follows that;

T iw 19 = iw 19 N —i
oK s = (—zriemy mmm o5 (7€) — mmren rae(re)0)e

In the TE case, we have that;

Vs@uw) * Moff

1 o] 1 a 10 0,2 1 1 0 0 (,.2 —iwt
= (wsn@ 58> wom@ 205 O)) 7wy v ow or 700): — 7wy rami@y o9 a7 (7 00))e

1 1 02 r2py 1 1 92 r2p))e—iwt
(l’(l’—i-l) w?sin(0) 000¢ 87“( b ) U({l'4+1) w2sin(0 )808¢E< b )) “

=0
In the TM case, we have that;

Vs@uw) * MOFf

_ 1 0 1 a9 1 0 (.2 ] 107/,.2 —
- (wszn(é’) 0¢ 7 wsin(6) 60 8271(9)).( 021’(l’+1) rsin(0) O¢ (T € )’ _CZl/Z?/}-Fl) ;@(T 67"))6 wl

- _c2l'zl07+1)(w2sz}12(9) 5 > (r%e;) + m%@m(@)%(?’?e;)))e‘m
In the TE and TM cases, we have that;

(J =TJ).n

=—J.n

= —jre™™

_ ic? dp

_ —iwt
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In the TE case, we have that;

while in the TM case, we have that

0o ¢
ot

= (—iweoe, — 5 P sgum)e

—iwt
It follows that in the TE case;

— — — .
VS(G,w)'Kf+(J —J)-TL

102 op| _
=0+ w (97"5(0’10)6

—iwt

_ 99y
ot

so the continuity equation holds on the boundary. In the TM case
we have that;

= A
Vs@w * K+ (S —J) i+

ot

w 1 9% (.21 1 0 (s 0
T pocl (I'41) (w Z5in2(0) 042 (7’ 67’) + w?sin(0) 90 (SZ?”L(H)
—iwt

55 (r*e})))e™™" +

+(—iwege;, — < ar’S(O w)e

W 2 —iw
T ol (U+1) (wzs;ﬁ(g) 3(12 (r?e;) + Wn(a) 599 (52”(‘9)2(7"26' )))e !t

—iwegel. et

We 2 —iw
- l’(l’-f?l) (w 81112(9) 8??(7’26;) + w szn(@) 86 (SZTL(Q)Q(TZBI )))6 !
2

iweg (1.9 (,.20(re;) w2r? 1y —iwt
l’(l’+1)<7"8r< o) T 4ae)e

11
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=0

as;

L ()t 2 (1)) + ey 2 (510(0) 5 (re)))+ e, = 0
and we can multiply by r.

We follow the notation in [11], and denote by;

— ——
JloJfo Z lo<m<lp (l(bm ko)’ylo,m ko€ e

for Iy = 1, where;

T(lo, mo, ko) = (2)2 5877 (1, m)*
= i(2 >%4—3W< m)*

and ko e o , for the zero set of j,,. Then J vanishes on the sphere
S(0,w) and satlsﬁes the radial transform condition, so we can find py, ,
such that (piy ko, J10.k) satisfy (i) — (iv). To calculate py,x,, we have
that;

Plo ko (f7 t) = fS f(E) ~Foct) dS(O ko)
[k

ko
EPE) _ [F
clk| c

where f(k) =
so that, using the calculation in [12] or [4];
Pross (T 1) = Kot [ RS (D, ko) (R)
= %e*“foct fS(61 (il q5(@, 1)(7)

3
k(?; —ikgct (27‘( 2

=€ ko3 %(|k0~’f|)
= (kolz])
— ko e—zkoct47.r3’m(|k093|)

|koz|

= 11k p—iwot sinllkoZ]) ( p py
c |koT|
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where wy = koc

We can complete (pkoylovjko,lo) to a tuple (pko,loazko,lmEkoylmEko;lo)
satisfying (i) — (viii) as follows. For (viii), we let Ey, 1, = €16 """
so that;

. 1 .

T WoCko,lg = T ¢y Jkoslo

e =ty

koo =  egwoJkoslo
_ B P ‘
Eko,lo = _%JkOJO' Then, as;

1 87k0alo _ _ w0 T _

2 ot _c_2jk0,lo =—-V (pko,lo)

we have that 7 X Eyy10 =V X Jkoto = V X V(Proto) =0
and, as (% Jy, 4, = 0, O?E}, 4, = 0, so that (v) holds.

We have that;

. .=
Vo Ergto = Vo =5 koo

i Opkg iy

€QWo ot

- onuo (_iwo)pko,lo

— Pholo
€0

so that (vii) is satisfied. Setting B = 0, we obtain (vi). Observe
that by the calculation (PP), pg,, is a scalar multiple of the form con-
sidered before the introduction of J vanishing at the boundary with
the Bessel function defined by [ = 0 and with m = 0. As the set of
relations (i) — (iv) hold for both J,;, and J, where J is defined from
Pho lo Using (k) at the beginning of the paper, we must have that;

kg io—J &
ot =0

O (Jroto —J) =0

so that;
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and;

Jroto = J + ¢(t), by boundedness and the fact that the difference
is harmonic at a given time t. Using the relation (iv) again, we must
have that @ (t) = 0, so that ¢(¢) = ¢ is time independent. By the fact
that the difference J,;, — J is of the form j(x,y, z)e”*0 we must
have that ¢ = 0 so that J,;, = J. We can then use the calculation
above to verify the continuity equation at the boundary.

By construction Eko,lo |S@w) = 0, in particular, the components {ex, 1,0, €xo.10.6 }
vanish at the boundary of the magnetron, so that FLIOJ Y, = 0 and clearly

Eljo,lo = 0 as well. As above, in the TE mode case, from (X), we can

achieve compatibility of the boundaty condition with % = 832’" =0,

and r2b, = 0 at the boundary. By the explicit form of rb, in (C1), if the
magnetron has radius w, we achieve this when R = ji, (“2")|550.,) = 0,
we consider the simplest solution py, 1., With lp = 1, mg = 0. In the
TM mode case, from (Y'), we can achieve this with a’é—Qf’“ =0,asb. =0
in the TM mode. By the explicit form of re, in (C1), if the magnetron

: . . orr | Oriy ()

has radius w, this is achieved when %% = —%——|;545,,) = 0. Note
that we can achieve this condition with a single Bessel function by
Rolle’s theorem and the fact that the Bessel functions j; have infinitely
many zeros for [ > 0. We cannot, however achieve this condition with

Ju» for Iy = [y unless w = 0, as all the non-zero roots are simple.

In the TE case, we have that the surface charge 0'10—0’0 is given by;

—/ L -1
Eko,lo - Eko,lo

— 1
= Lkojlo

_ —iwot
= Cko,lo,r

=0
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by definition of the TE mode and the fact that £ = 0 at the bound-
ary S(0,w).

In the TM case, we have that the surface charge 220l is given by;

€0
— L —1
Eko,lo B EkoJo

— 1
— “ko,lo

0 —iwyt
= Cko,lo,r

/
where e, . satisfies the usual relations with R = j ().
0,t0,T o\ ¢

In the TE case, we have that the surface current Ky, , s is given by;

y7d Ul poll
ILLO(K’CO?thf X T) = k‘o,lo - k:(),lo

Ul
— “ko,lo

= (b;fo,loﬁe + b;€0,107¢¢)6_MOt

_ 1100 (.2 i 1 18 8.2} TN, —iwot
- (lo(lo+1) r 00 Or (’l" bkoyloﬂ")e + lo(lo+1) rsin(0) O¢ Or (T bko,loﬂ")¢)e

where rbj ;. satisfies the relations above. It follows that;

HOFkO,ZO,f - <l0(l3+1)%ﬁﬁ<r2b/ ’ )a_l; 1 QQ(TQb/ ’ )g)e—iwot
In the TM case, we have that;

/’I’O(Kko»l(]vf X 72) = Bko,lo - Bko»lo

il
— “ko,lo

_ (i 19 (.20 5 Wwh 19 (2,0 I il t
= ( 20 (1h+1) rsin(0) ¢ (r* o ton)0 + 20 F1) v (re})p)e "o

where re), ;. satisfies the relations above. It follows that;
Ky = (—o @ 10020 Yo 61020 g
Ho K koo, = ( 210 (1h+1) rsin() a¢>(r €k dor) D 2 (1 +1) 756 (T €y io.0)0)e

It follows that in the TE case, if we fix a circle Sy, on the sphere
given by 6 = 0y, we have that the current along Sy, in the direction of
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Z is given by, when mg =0, [y = 1;
/“L(]?ko,lo,flsbo = 21,, so5m (T Rkg 1 (7 )@ko,low)@ko,lo(¢))|w,90,¢$6_w0t
= 2 (Rigio (1Ol 1 ()1 (8)F-Rhy 1 (1) 1 (6) Bty (0)) [ s~ "
= (Rl 1y (1)l 1y ()P 10 (9) o s, (B (1) = 0)

= L1 (428) (PO (c05(0))) g g€ 01

= L) (c05(0)) g0 0601

szn2(zi)c)wo i( ) fzwotg

which is alternating current of amplitude sm(a‘))wo SCO0 g1 (492) and fre-

C
quency 22.

By the above, we have that the surface charge in the TE mode is zero,
so the potential due to the surface charge on the sphere S(0, ko) is also
zero, by Jefimenko’s equations. As p = 0 outside the magnetron, again
by Jefimenko’s equations, the causal potential on the sphere S(0,w),
due to the TE mode, is again zero. The potential due to the charge
inside the magnetron is found using the method of [10]. We have that,
using the calculation above;

_ c2e0prg 1o (To1)
Vk’o,lo (33, t) = 320

drkdc®eo ot sin(|koT])
cw? |koT|

Ark3ceo e—iwot sin(|koZ|)
wg |koT|

4mkd ceg o—iwot sin(kow)

so the surface S(0,w) is an equipotential Tow

O
In particularly, if we ground ¢ = 0 and take real parts, the impedance
Zy, along Sy, is given by;

47rk8 CEOMO ,—iwgt sin(kgw)

Z . w% kow
B — Tsin(8g)wg (£0%)e—iwgt
2we 1\ ¢
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47l'k8 sin(kgw)
cw(z) kow

_sin(8g)wq ./ ( wow)
2we 1

87 sin(kow)

" c2wo sin(o) g1 (F07)

The cases when [y # 1 mean changing the frequency wy to a new wy,
but the cases can be computed using the formula for the derivative of
an associated Legendre polynomial, when —ly < mqg < lg, Iy > 1, see
[14], with the convention that P/™ = 0 for |m| > [. The quoted formula
assumes the Condon-Shortley phase factor (—1)™° which is not used
here, but the formula is not effected;

(2% = 1) 7 (P (2)) = lox Py (x) = (lo + mo) %, (x)

which gives that;

Pl (cos(0)) = S5 (locos (0) P (cos(6)) — (Io + mo) P, (cos(0)))

= locot(0) P (cos(0)) — (lo + mo)cosec(0) P (cos(0))

It follows that in the TE case, if we fix a circle Sy, on the sphere given
by 6 = 0y, we have that the current along Sy, in the direction of ¢ is
given in general for the basic solutions py s ., for [y > 2, =l <mg < [
by;

zwo

MOKko,lmf'Seo = maoar (TR’CO lo( )@kmlo (0>q)ko,lo( ))|w 9074)9256

N l(l/—H(RkO lO( )@20’10 (0>q)k0’l0 (¢)+R;€OJO (T>®;€0,lo (0)q)ko,l0 ((rb))lw,@o,(ﬁq_be_iwét

= i (Bl 1 (1)Oh 1 (0) 1y 1 (8) gy o4

= iyt (A0 (B0 (cos(00))) o (mod) g, e~ 40

I(lp+1)w

= Ji, (S45) e bt cos(md)d (i cot(00) Py (cos(0o)) — st cosec(0o) Py, (cos(6))

I+ w

We leave it as an exercise to compute the impedance following the
method below.
..... Similarly, in the TM case, if we fix the circle Sy, on the sphere

_ / jl’( cr)cos(moqﬁ)(l’ cot(QO)P (605(90))—(16+m6)cosec(90)Pqu’él(605(90)))6—@6@
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given by 6 = 6y, we have that the current poly, along Sy, in the direc-
tion of ¢ is given by;

_c2z'1(79_+1) ot 55 (Rkosto (1) Okt (0) Py 15 (0 Dlugo.s®)e 0!

— 7y 57y (koo (1) Okt (0) 1 (& Dl o®)e 4"

We consider the case [f, # 1, —I{, < my < [ remembering that we
require %(rjlé(w—gr))bs@w) = 0, which we cannot achieve with [, = 1.
We consider the basic solutions Pl ml -

/
’I,UJO

polo, = — 7Sz s (wow)((ﬂ?o)(003(90)))003<m6¢)'5€_iw6t

2m0w0

= T sy (wow)((PlZlO)(003(‘90)))Sm(mfﬁb)ae—wét

As p = 0 outside the magnetron, again by Jefimenko’s equations, the
causal potential on the sphere S(0,w), due to the TM mode, is again
zero. We can ignore the potential due to the surface charge in the TM
mode, by Jefimenko’s equations. As before, S(0,w) is an equipotential;

_ Amk} ceo —iwot sin(kow)
Vko,lo w2 e kow

due to the configuration inside the magnetron. We consider the 2my,

points ¢ € {% :—my < k < m{ — 1} on the circle defined by 6 = 6.
0

g (+Dm

/0 m6 )

Then the average current between the points ¢ = 2
0

—m{ < 7 < mg — 1 mod my is;
G+)m
/

o[ e () (P (cos(6))) sin (i) de it do

0

(J+1)7r
. / o -
= e i (<22 e bt (P0) (cos(6o)) NS [ "0 sin(myo)do

_2=1img i) i (W()w)efiwét((PlZ”,)(003(90)))¢

porm LG (Ig+1)c? lg

whereas if we ground the mg points corresponding to ¢ € {W

0 < s < mg — 1}, the potential difference across the 2mg regions is
4rkfceq e—iwot sin(kow)
wg kow

Taking real parts, we have that the average current is given by;
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2D e iy () sim(wit) (P ) (cos(60))

whereas the potential is;

drk3ceq sin(kow)
w—(g) TCOS (Cd()t)

We have that;

cos(wpt) — cos(wot) = —2sin((wogwé)t)sin((wogw‘l))t)

so that if we apply a voltage;

V/(t) _ 87FI:J88C60 siw;e((igw) sin( (wo-;-wé)t)sin( (wogw(’))t)

to the sphere boundary, the total sphere potential is;

471'k0 ceo sin(kow)

o fow €08 (wpt)

and the impedance in the 2mg regions is;

47rk8650u0 sin(kgw)

w2 kow
0
ZJ bo = “2CimZ W whw m{)
T mapna (T)((Pzg) )(cos(60)))
2m2(—1)71( ’+1)sm( £
whw

(P "0) (cos(60))

m0 cwwojl (

V' can be generated from an AC potential of frequency C °+ (wotep) , with
a variable transformer, in which the sliding contact determmlng the

turns ratio varies as sz’n((on_%)t). Alternatively, the potentials;

47Tkgceo sin(kow) /

Tl how Cos(wot)

47rk3ceo sin(kow)
""0 kow

cos(wot)

can be generated directly using an RL or RC' circuit, tuned to the
correct resonant frequency, and then combined using a mixer. Notice
that the approximation to the current becomes better with large my,.

[

Lemma 0.2. Let (p,J, E,B) be the configuration found in Lemma

0.1, and let (E/,El) be the causal ﬁeldigenemted by Jefimenko’s equa-
tions for the current and charge (p,J) restricted to B(0,w). Then
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on B°(0,w), F =E+Ey, B = By where (Eo, By) is a solution to
Mazwell’s equation in vacuum, and on B(0,w)e, (E/,El) 1S a solution
to Mazwell’s equation in vacuum.

Proof. By the proof in [11], we have that (p, J, F/, FI) satisfy Maxwell’s
equations on B°(0,w) and (0,0, E’,FI) satisfy Maxwell’s equations on
B(0,w)¢. By the proof in [11], we can find (Ey, By) satisfying Maxwell’s
equations in vacuum on B°(0,w), such that;

V X (E, —Eo) :6
We then have that @ = X (E/ —Ey) =0

so that (E/ — By) is magnetostatic. By the proof of Lemma 0.1 and
a careful examination of the proof in [11], we have that;

B — B,

is of the form E”(x, Y, z)e” ™ so that —jwb =0,b =0and B = B,.
We have that;

(F'~Ey—E,B -By—B)=(E —Ey— E,0-0)
= (F' - E,—E,0)

is a solution to Maxwell’s equation in vacuum, on the ball B(0,w),
so that, by Maxwell’s fourth equation;

UE=EF) _ [ —0=0

Again, using the explicit form e”(z,y, z)e ™" for E - FE, - E, it
follows that & — E,=FE.

0

Lemma 0.3. Let E be a field, of the form e(z,y, z)e™™* with the prop-
erty that 0%(E) =0 and 7. E = 0, or equivalently <7%(€) = —“;—226 and
V « € = 0, then there exists a unique field B of the form be~** such
that the pair (E, B) satisfies Mazwell’s equations in free space.
Proof. Clearly (i) of Maxwell’s equations is satisfied. Let B = be ™,
where b = —£ \7 x@e. For (i), we have that;
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VX E=(yxee™

t

= iw(=) v xee !
wt

= jwbe™"

_ 0B
ot

For (iii), we have that;

VB =v.(be ™)

= (V. (=5 v x@)e™™)

—0

For (iv), we have, by the properties of € that;
vV X B = x (be7™t)

=(V x (=5 v x@))e ™)

= —L(7 x v xee )

For uniqueness, let (E, B1) and (E, By) be two pairs of the above

form, so that, subtracting, (0, By — Bs) is a solution to Maxwell’s equa-
tion in vacuum. By (ii);

9(B1—B: 5] o)
% = —ZQJ(Bl — BQ)
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=—(vx0)
=0
so that By = Bs.
O

Lemma 0.4. If V is a vector potential of the form v(z,y, z)e™™t, with
the property that (V) = 0, or equivalently <7%(v) = —“;—22@, then if
E = <7 x V, we have that E satisfies the properties in Lemma 0.3.
Given boundary conditions {f,g} on 6S(0,w), if;

V X Ulss@uw) = f
— (T XV X0)|550m) =7

then the corresponding fields {E, B} are continuous with fields { fe™™t, ge~**}
on B(0,w). These boundary conditions can be satisfied for v with

the above property, if g = 0 and TT = 72 = 0. In particular, these
boundary conditions are satisfied for the configuration from Lemma
0.1, when T](;B(ﬁ’w) = 0 or when J|spg.. @ which case we obtain
a 2-dimensional family of solutions.

Proof. The first claim follows easily, noting that;

vV-E=v.(vxV)
~0
*(E) =0*(v x V) = v x *(V)

x 0

I
<

I
ol

We can write v in the form;

0(r,8,6) = 3270 X e (V5 (1) 1 (7,6, 8)+0 (1) Wi (1,6, 0) 407, (1) Bira (7,6, 6))

where {Y j, Wi, @1} are vector spherical harmonics, see [2].
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Then;

VA = 20 MG e e i G o ) Wt (G
07, (=7 QA1) Y i+ 2 Vi) +0h, (B 1)Y 1 — 51 (141) Wy,
+od, (= U1+ 1))

= e (L2 p (— L (24H(141))) (2 1(1H+1))) Y i

Gy e 0p, 3 — o S )T
dv? P
(g — Vel 4 1)) D

so that equating coefficients, the condition v/%(v) = —“:—225, becomes;

(1) Fdbr %+ o, (=524 10+ 1)) + b, (BI04 1) = —45 ],

. 1d 2dvlm 1 1 w21
(”)' 2l + /Ulmr2 /Ulmr_Ql(l + 1) =~z
o1 d o 2dvE) 2 1 w2 2
(4id). 5 o-r* == — v, Sl + 1) = =<7,

or equivalently;

2

(8). ()" + 20, )+ (& — TGy 2

02 7'2 Im Im

(). (vh,)" + 2(vh) + (4 — Gyl 4 207 =0

(i) (v7,,)" + 2(0p,) + (& — )ef, = 0 (P)

Letting w = (v, (vr ) vl (v} ), 02 (v2))), we can write these

conditions in the form;
w = Mw
where M is a matrix, with;
Myp=1, M;=0,j=1or3<j<6

M34:1,M3]:0,1§j§274§]§6
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Mse =1, M5;=0,1<j<5

My = —(4 — DY pppy = 2 My = — 20D

r2

M2]20,4§]§6

Mys = —(% — ), My = -2, My = -2
Myy=0,7=2,5<35<6
M65—_(£g_22_l(l:;1))>M66— , Mej =0,1<7<4

By the vector valued version of Peano’s existence and uniqueness
theorem, this has a unique solution given the initial values of w at w.
We have that;

VXD =320 Y (VX (0, Y im) + 7 X (0, W) + 7 X (03, 81m))

= Z?io Z%:—z(_%”fmalm + (dvlm + 103 B+ ((_l(ljl))vfmvlm
(% + Lo}, )W)

= > e (= jl))U?mYIm - (dvlm + 107, Wi,

+(dvlm + Ulm - _Ulm)q%m

so the first boundary condition becomes;
(a). ="E)02, (w) = fi,(w)

(8) —(% () + o () = Fin(w)
(€) (5 (w) + Sojn(w) = Aep(w)) =

We have that, using (P);

VXV XT =320 7 x () V)

— 7 % (% 4 L2 ),,) + 7 x (S 4 Lok, — Lop By
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l (141 dv? dv? =
= 3 S — (2 0y, — (L (B Lo )+ L (S 102 ) Dy,

dv}, v dv,
+(_l(l+1)(% + %,Ullm - %Ulrm»Ylm o (%(% + lvllm o lvlrm)

= >0 e (A + DR (k) + Evh — 2050 im

=) + =, = 5 (0h) = Vi, (W) + S (0h) + B,
— 2] U+ [0, — (02, )+ Fod, — L (02, = L (0},) — 502, [®i)
= 30 S ([FU+ D (R (0h,) + Fol, — H05,) Vi
(k) 2 () + 20k, — 200 Wt [~ (03,) = 2 (02, )+ 02, |y

= Zl 0 me—z([ Il + 1)( (Uzm) + r%vllm - T%v[m)]Ylm

5 _
+[%(Ul1m>/ + ( —1 l:;l) )Ullm + T%U{m + %(Ulrm)/ + T%Ullm - r,%vlrm]q]lm

nml €

N

141 1141
L I e )

T

= 3020 Znea([(FU A+ D) (0h) + 500 = 505)] Y im

F2(0h) + Lo, + (% + 2L T,

c? r2

+[2(vp,) + (

mwl €
|

+[ CZ lm] ®lm)
so the second boundary condition becomes;
il(l . .
(). "L (0h,) (w) + Hop, (w) = o), (w) = G, (w)

() =25 (why)' (1) = (o) () = £ (% + ) (w) = G ()

We can write the two boundary conditions in the form;

Nw|, =
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where w is as above, and;

5= ([ (W), Fron (@), i (), G (W), G (w0), G (w))

and N is a matrix, with;

Nis =10 Ny =0, j=6or 1 <j<4
N25:—i,N26:—1,N2j:0,1§j§4
N65: NGJ—O]—6OY1<j<4

wc27

N3p=—+ Nyzg=-= Ngyy=1 N3;=0,j=20r5<5<6

Ny = _i(l:l)#) Ny = i(lzl) L Ny = (lwl)i Nyj=0,j=2
or5<757<6

Ny = —L1 Ny = _w<02 + Q_llf,l;l)), Nsy=—L2 N;;=0,j=1
or5<7<6

fg:ﬁandT:?Q:o, then;

p—f

5= (0, Fip (1), 0,0,0,0)
and we obtain a solution by setting;

v =0

m

—1
(Vi) = = fim(w)
vlm + vlm + w<vlm) =0

2-1(1+1)
w2

(vh,) +w(% + V0 + 2(v,) =0

which is a 2 dimensional family, as we are free to choose v}, and
(v},). Using the fact that, for the configuration (p, J, F, B) inside the
magnetron;
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VXE:—%:G

VXE:MOQ_]_FC_QB_;:G
we obtain, at the boundary;

(v x E)y, = —"U(E? =0

lm

so that (E)?, (w) =0, and;
Ho(Di = (BN

so that, with the hypothesis that 7T|5B(57w) =0 or 7|5B(57w) =0, we

obtain that (£)] (w) =0, as required.

O

Lemma 0.5. If V and A are potentials of the form v(x,y,z)e ™!

and a(z,y, z)e !, with the property that and 7 « A = —%97 and

[?(A) =0, or equivalently 7 +a@ = %v and 7*(@) = —%a, then if:

E=-v(V)-%=_g(V)+iwA

B=vyxA

we have that {E, B} satisfy Mazwell’s equations in free space on
B(0,w)¢. Given boundary conditions {f,g} on 6S(0,w), if;

— v () +iwalss@ ) = f
V X lsg@w) =9

then the corresponding fields { E, B} are continuous with fields { fe™™* ge=*}
on B(0,w). These boundary conditions can be satisfied for {v,a} with
the above property, if g = 0 and [ = ?2 = 0. In particular, these
boundary conditions are satisfied for the configuration from Lemma 0.1,
with 7|5B(67w) =0, in which case we obtain a 2-dimensional family of
solutions in the TM mode.
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Proof. First observe that if V is of the form v(z,y,2)e ™!, then as

A = 0 and %—‘; = —iwV, we obtain, using the Lorentz gauge condi-
tion, that 7. A = _CLQ%_‘Z;

(V) = i)

t
= 1% (—c? v .A)

= —2i g .(0*4)

2

=< v.(0)
=0

The first claim then follows from the result in [11], as the Lorentz
gauge condition and wave equations for (V, A) are satisfied. We can
write v in the form;

U(Tv 0, (b) = ZEZO Zlmzfl(vlm&)yim(ru 0, (b)

where the {Y},, : { > 0,—1 < m <1} are the spherical harmonics.
Then,;

00 l Vim Il
VZ(U) = ZZ:O Zm:—l(r%d%«ogcz_lr) - (:;l)vlm)yzm

. . e — 2__
so that equating coefficients, the condition v/%(7) = —%, becomes;
C
N1 d(2dy 1(1+1) R
(Z). ﬁﬂ(r d_;n> - r_zvlm I Ulm

or equivalently;

(0). (vum)" + 2(vim)’ + (% = "S5 oim = 0 (P)

We can write @ in the form;
6(7‘, 97 (b) = Z?io Zin:fl(alrm(r)?lmwa 97 (b)"i_allm(r)@lm(r’ 07 ¢)+Gz2m(7“)61m(7"7 97 (b))
where {Y, Ui, @} are vector spherical harmonics, see [2].

Then,;
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daj
\VA a= Zl =0 Zm——l( - alm - l(ljl) a}m)}/lm

so that equating coefficients, the Lorentz gauge condition;

;A2

i o =
v=—-v.a
becomes;
g dal, I(141) 1
74C Im
(”)‘ Uim = w ( + alm T Ty alm)

or equivalently;

(). vim = =" ((a7,,) + 2ap, — “af,) (P2)

Moreover;
d Id J— d 1 J— d 2
Vi@ =37 ozm—fl(%di dlrm)Ylm‘i‘(r%diiﬂ"2 erm)\plmjL(%%TQ Zinm

+a;“m(—7%2(2+l(l+1))Ylm+ \Iflm)+alm(%l(l+1)Ylm—%l(l+1)\lflm)

+al, (— L1+ 1)By)
= (2B (— L (2+1(1+1)))+a),, (ZU(14+1)))Y i

al _
F(H L2 gr 2l L4 1)) T,

&lg.

da? P
(e = B+ 1)

. . . oL — 2__
so that equating coefficients again, the condition $/?(a) = —%a, be-
comes;

(iid). Halr?%in 4 ap, (=52 +1(1+1)) + ah, (311 +1) = —%aj,

(iv). r?Shn +ap, 2 — ol U1 +1) = —%al,
(v). T%d%rzdzlf alm%l(l +1)= C—jalzm

or equivalently;

(i) (af)" + 2(ah,) + (5 — B ar 4 2ED) —

2 72 2
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2

w? I(I+1)N 1 ro_
- )alm + 2y, = 0

(). (ahn)" + Hag,) + (5 — =5

T C

M

(v). (af,)" + 2(ap,) + (% — 5)al, =0 (Q)

C

Lettin ar . (ar ). al . (a- ), a? . (a?)), we can write condi-
g Im lm lm lm lm m

tions (zu),l(umj, (v) in the form;
w = Mw
where M is a 6 X 6 matrix, with;
Mi=1, M;=0,j=1or3<j<6
M3y =1, M3;=0,1<7<3,5<75<6
Ms¢g =1, M5; =0,1<7<5

. 2 24(I+1) 9 o 20(41) .
My = —(% — 2 Aoy = 2 My = -2 0y, =

r)

Mys = —(N_Z - l(lﬂ))y Mys = —%; My = _7«%7 My =0,75 =2

c2 r2

Mgs = —2, Mgs — (% — 0y M =0,1<5<4

r2

By the vector valued version of Peano’s existence and uniqueness
theorem, this has a unique solution given the initial values of w at w.
We have that;

— V() == S MY, + My,

wa = 1w 2;20 Z,lm:_l(a;mYZm + a’llmﬁlm + a’l2m6lm)

VXA =303 (VX (0], Y i) + 7 X (0, Vi) + 7 X (af, i)

o0 r = al = X5
= Zz:o Zin:fl(_%almq)lm + (dd% + %@llm)q)lm + ((_l(l+1)>az2mylm

r
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- Zl 0 Zm—fl( ljl))al%rn?lm - ( alm + alm)qjlm

+(dalm + alm - _alm)q)lm

so the boundary conditions become;

—=r

(a). %= (w) + iwaj,, (w) = f, (w)

(0). =220 4+ jwal, (w) = Fy(w)

and using the two relation (i7), (P2) and (iii);

(141
“al,)

Vim = —i ((alm) + %a;m -

(a?m)// + %(a;m)/ + (w_2 _ 2+l(l+1))a;m + 2l(l+1)a1 —0

2 2 2 Im

we have that;

dv], ic2 I(l+1 I(l+1

Im _ __ic r A\ __ 2 7 2( 1 \/ (+1) 1 W+, 1

drm - 7((alm> r_Qalm + ;(alm) + 2 Ay, (CL
20(1+1) 1

i (~2(gp ) — (4 — 2y gr

], - (], y)

_ic? w_z N I(1+1) l(l+1)a1 (l+1) (al )/)

- w (_(02 r2 ) Im - r2 lm T

so we can rewrite (a), (b) as;

(a)- £ (= (% — ") aj,, (w)—"Elal, (w) =2 (al,, ) (w)) +iway,, (w)

= fim(w)

A, — 2 Ay,

31
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(). 2 ((ah,,) (w) + Zaj,,(w) — Hal, () + iwal,, (w) = T, (w)

or equivalently;

(a) M, (w) — Sl () — S (al,,) (w)

w? lm w2w ww
= fim(w)
ic” T ic . ic —1
(b) 2L, (w) + 2 (af,, ) (w) + (iw — L )al (w) = 7, (w)

We can write the boundary conditions (a'), (b)’, (¢), (d), (e), (f) in the
form;

Nw|, =3

where w is as above, and;

— —1 —2 _ _ _

§= (flm(w)? flm(w)7 flm(w)7 glm<w)7 gllm(w)7 g%m(w))

and N is a matrix, with;

il(I+1)c? ic2l(1+1) ic2l(1+1)
Ny = s Nig = —— 55—, Nuu = — , Nij =0

w2w ww

j=20r5<j<6

_ 27,c
N21 — N22

w2w?

i Nyg = iw — CUED N, 0,4 <5 <6

N35:z'w,N3j:0,1§j§4,j:6

Nys = l(lzl),N4j=0,1§j§4,j:6

Nss = =, Nog = =1, N5; =0, 1 < j <4
Net == Nos =&, Noa =1, Ngj =0, j =2,5<j <6

fg=0and f = f =0, then;

p—

5= <07 7l1m(w)7 07 0’ O’ 0)

and we obtain a solution by setting;
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i i ic?
(af,,) = =% (= 2 ap, (w) + (S — iw)a},, (w) + Fi, (w))

= —Zap,,(w) + (U2 — 2)al (w) — BT, (w)

i(l+1)c iccl(l1+1 iccl(l1+1
BD oy (w) — el (w) — D (! Y (w) =0

which is a 2-dimensional family, as we are free to choose a;,, (w), (a},) (w).
Using the fact that, for the configuration (p, J, E, B) inside the mag-
netron;

VXF:—%:O

we obtain, at the boundary;

lm

(V x B)y, = —2(E), =0
so that (E)?, (w) =0
and B = 0 by properties of the configuration. By equation ( )

0
and the fact that a7 (w) =0, (a},,)'(w) = 0, we obtain that a7 _(r)
for r > w, so that;

@

(Biy, = (v x A)j,, = —H2(A), =0

Im

and we obtain solutions in the TM mode, with no surface charge or
current. Using the fact that;

v X B =] + 52 =0

c? ot

we obtain, at the boundary;
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so that, with the hypothesis that 7T|5B(57w) =0 or 7|5B(57w) =0, we
obtain that (E); (w) = 0, as required.

O
Lemma 0.6. If (E, B) are fields of the form e(x,y, z)e ™" and b(x,y, z)e™ ™"
satisfying Maxwell’s equations in free space, in the region B(0,w)¢,
then there exists potentials V. and A of the form v(z,y, z)e™™t an
a(z,y,2)e”™t, with the property that (V) =0, (A) =0 yv.A =
—c%%—‘;, or equivalently <7*(v) = —c—gv Vi(a) = —‘2—226, V.a = i—“’v,

such that;
E=-v(V)-% =g (V)+iwA
B=yxA

In particularly, the causal field generated by Jefimenko’s equations
Jor the charge and current configuration found in Lemma 0.2 is not in
the 2-dimensional family found in Lemma 0.5, unless Jr](;B(@’w) =0.

Proof. As 7 . B = 0, or equivalently 7 .b = 0, we can find A’ of the
form a’e_i‘i such that 7 x A =B (A), by requiring that 7 x @ = b.
Then, as (E, B) satisfy Maxwell’s equations, we have that;

VX E=(yxee

8B

ot

a(yxA)
ot

= iw(y x a@’)e ™t

so that;

V(e —iwa)=0

and we can find a scalar v’ such that;

—v (V) =€ —iwd
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in which case, setting V' = v'e=**, we have that;

E=-v(V)-% (B)

Using the proof in [6], p417, as (E, B) satisfy Maxwell’s equations
in free space, we have that;

VAV +HGH =0

(V2(A) - 320 —g(v. A+ 52 =0 (C)

We claim that we can find potentials (V, A) satisfying (A), (B), of the
form v(x,y, 2)e”™" and a(z,y, z)e”** such that the additional Lorentz
gauge condition;

VA= -5% (D)

holds, in which case, substituting into (C'), we obtain the relations;
(V) =0

0%(A) =0

as required. As in the proof of [6], for a scalar A, if A=A +v()
and V = V' — 2 ‘then (V, A) satisfy (A),(B), so to obtain (D), we

. E ’
require that;

V.A=v.(A +v(A))

2 —/ ’
Vi) - 25 = - vA) - &%

Writing A in the form Ae™™?, we require a solution to;
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V) + 5N = - v.(@) + B

on B(0,w)¢. Denoting the forcing term — 57 .(a’) + i—“;v’ by 7, and
letting;

T=2 01 Zm——l Tim (1) Yim (6, ¢)
be its expansion in spherical harmonics, expanding;
A= ZEZO Zlm:_l )\lm(r)yim(ev ¢)

in spherical harmonics and equating coefficients, we require that, see
(P) in the proof of Lemma 0.5, that;

()\lm)// + %O\lm)/ + (w_Q . l(l+1))>\lm = Tim (E)

c2 r2

in the region » > w. This is a second order differential equation, the
homogenous version;

Nim)” + 2(Nim)’ + (4 — BN, =0

having two independendent solutions j;(%") and n;(%"), where j; and
n; are the spherical Bessel and Neumann functions of order I. By Abel’s
theorem, the Wronskian W (j;(%-), n;(%F)) is given by;

coexp(— [ 2dr) =%

where ¢y is a constant, and the general solution of (£), given by
variation of parameters, see [3], is;

Aim(1) = c1fi(%F) + cani(%F) + Zim(r)

where ¢; and ¢y are constants and;

. wr nl( )Tlm(””) wr )Tlm(r)
Zin(r) = =il(%) [ ity dr + m(%) [ ke dr
fr 1 () Ty (1) dr + 21 fr J1(EE) T () dr

The last claim is clear by Lemmas 0.5, 0.2 and 0.1.
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Lemma 0.7. When | =0 orl =1, the equations from Lemma 0.5;

2

(D). (V)" + 2 (Vi) + (% = Yo = 0 (P)

T

(). (af,,)" + 2(af,,) + (4 — 252 ap, + 25 al, =0

r c r2 r2

(i). (at,,)" + 2(a},) + (& — ), + Zaf, =0

r r2
(iv). (aZ,)" + 2(a},) + (4% — U2 =0 (Q)

have an explicit general solution in terms of Bessel and Neumann
functions.

Proof. When [ = 0, the equations;

(Z) (Ulm)// + 2(Ulm)/ + (w— - Z(H_l))’l)lm =0

r c? r2

(id). (af,,)" + 2(ap,) + (% — 25 ) ap, + 5 a), =0

r 72 72

(id). (a,)" + 2(a},) + (4 — EH)al,, + Zaf,, =0

c? 72

(iv). (a3,)" + 2(a2,) + (& — U)e2 =0

r c? r2

simplify to;

(1). (Vim)" + (V1) + Sv1m =0

N

(id). (a5,)" + Hai,,) + (% — 2)ai, =0

(iii). (al,,)" + 2(al,,) + %al,, + Zaj,, =0
(). (a2,)" + 2(a2,) + a2, =0

By calculating (ii) + (i77), we obtain that;

(af,, + 2a},)" + 2(al,, + 2a},,) + % (af,, +al,,) =0

which has the general solution;

(a3, + a1)(r) = c1jo(*F) + cono (<)
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where jo and ng are the spherical Bessel and Neumann functions of
order 0. It follows that;

Ay = €1J0(%5) + c2no(%F) — a3, (r) (H)
and substituting into (iii), we obtain that;

(1) + 2(a1,) + Zat, + F(c1jo(2) + cano() = at,,,) = 0

(a1)" + 2(a1y) + (% — F)at, = =3 (cLjo() + cno(2)) (K)

The homogenous version;

(a1,,)" + 3(al,) + (& = F)at, =0 (1)

2
has a general solution;

1 _ S aniy wr
Ay = €3J1(%F) + cana (%)

where j; and n; are the spherical Bessel and Neumann functions of
order 1. By Abel’s theorem, the Wronskian W (j,(“F),ni(*F)) is given
by;

csexp(— [ %dr) =5

where ¢5 is a constant, and the general solution of (K), given by
variation of parameters again, is;

(1) = €351 () + can () + Vi (1)

where;

1 ()= 5 (c1jo(“5) +eano (L 90 [=Z (c1jo () +eano ()]

o ))] wry 1
Vim(r) = = (57) | WG () (25)) dr+ni (%) [ W01 (2),n1 () dr

)

= 2 [ () [ o) + eomo(42)Jdr

FECE [ () [ o) + camo(4))dr

_ 2e1i1(¥) - wr 2c21 (%) wr
= Tfnljo( p )dr + . fnan( c )d’/’
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2ciny (<F . or 2cony (<F . wr
St J () dr — == 015( = J o (2 )dr

C5

so that, substituting into (H), we obtain;
gy (1) = 1o (%) + cano (%) — 2(csfi (%) + cana(5) + Vi (r))

as a general solution. The general solutions of (i) and (iv) are given
by;

Ui (1) = 06]'0(%) + C?”O(W—Z)
A, (1) = csjo(“) + cono(“L)

where cg, c7, cs, cg are constants and jo, ng are Bessel and Neumann
functions of order 0.

When [ = 1, the equations;

(D). (vum)" + 2(vim)" + (% = "5 ) v = 0

c? r2

(). (af,,)" + 2(ap,) + (4 = 25 H)ap,, + 25 a), =0

r 72

(iid). (a,)" + 2(a},) + (% — EH)al, + Zaf,, =0

c2 r2

(iv). (a3,)" + 2(a2,) + (& — Wye2 =0

simplify to;
(). (V)" + 2(01m) + (% — Z)01m =0
(i1). (af,)" + 2(af,.) + (% — &)ai,, + Hal,, =0
(). (@b + 2ab) + (£ — B)al, + Ba, =0
(v). (a?,)" +2(a},) + (% — Z)a},, =0

By calculating (ii) + 2(i77), we obtain that;

(af,, + 2al,,)" + 2(al,, +2al,,) + % (af,, + 2al,) =0
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which has the general solution;
(@i, + 2a1,,)(r) = c1jo(2F) + cano(*F)

where jo and ng are the spherical Bessel and Neumann functions of
order 0. It follows that;

apy, = c1jo(%F) + cono(%F) — 2ay,,(r) (G)
and substituting into (ii7), we obtain that;

(1) + 2(ad) + (% = B)al, + F(erjo() + cano() — 2ai,) = 0

(a1)" + Fa1y) + (& — Z)al, = =5 (cjo(%) + cano (%))

The homogenous version;

2

(aln)" + 2(a,) + (% = )ai, =0 (F)

c2

has a general solution;
Uy = C3J2(%) + cana(%F)

where jo and ny are the spherical Bessel and Neumann functions of
order 2. By Abel’s theorem, the Wronskian W (ja(“F), no(%F)) is given
by;

cseap(— [2dr) = %

where ¢5 is a constant, and the general solution of (F'), given by
variation of parameters again, is;

a3, (1) = €352 (<) + cana(2) + Ty (1)

where;

n2(“0) [ 5 (c1jo () +eano (4 J2(45)[= 5 (e1jo () +eano ()]

. ur ) o
Tim(r) = =22(5) | =Wy~ () | = Gammey

= 2 [ rmy()[ = (enfo( ) + eano () dr
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+2CE [ 1240~ B (o ) + eamo(<))dr

20132

= 22200 [ pgjo(e2)dr + 22202 [ pyng(er)dr

[

201n2

wr 2com wr
szjo T)d - ijzno 7)617’
so that, substituting into (G), we obtain;
A (1) = €1J0(%°) + cono(%) — 2(c3j2(%) + cana () + Tim (7))

as a general solution. The general solutions of (i) and (iv) are given
by;

Vi (1) = c6J1 (%) + crna (%)
ap, (r) = csj1 (<) + cona ()

where cg, ¢7, cg, cg are constants and ji,n; are Bessel and Neumann
functions of order 1.
O

Lemma 0.8. If (p, J, E, B) is the configuration from Lemma 0.1, ob-
tained as a limit of (ps, Js, Es, Bs), where (ps,Js) admit the standard
wave equation representation in terms of Fourier transforms, then E
and J are radial. Moreover, E and J can be expanded in terms of
Bessel functions and spherical harmonica of order 1.

Proof. By (PP) in the proof of Lemma 0.1, we have that;

— _Awk?  —iwt sin([kZ])
p(T,t) = a7 e ]

where « is a complex constant and w = kc. Taking the gradient, and
using the fact that;

aJ] _ T
5 = iwd

== v (p)

it is clear as p is constant on spheres S 0,7), for r > 0, that Z is
radial. As E = ﬁj , by Maxwell’s fourth equation and B = 0, E is
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radial. We have that, by the proof of (PP), that;

J=a > 1<mst U1, m, k) et

where;

U(1,m, k) =i(2)2 ZW(1,m)*

so that, by the calculations in [11], in particularly the spherical ex-

pansion of 7 and using the fact that the coefficient vectors W(1,m),
—1 <m <1, are real;

T =Y e 12) T (1,m) k(2)2 1 (kr) Y1 (6, )™
= adj (kr)e=* S W(1,m)*Yim(6,0)

= adj; (£ )e ! z_lgmg W(1,m) Vim0, 0)

D)e S ey W (L) Y1 (60, 6)

— adjy()e

= O{djl(

m|€

1.3

where d = ;k? = 22‘;ﬂ2 and w = kec.
It follows that;
= 1 . TS

= TWeEQ J = TWweQ adjl(%)e ZWtT

We have that;

El

m

= [s@1) Em + YimdS(0,1)

~

wadii(2)e™! [o61) T+ TYimdS(0,1)

iweQ c

= adj (L)e ! fS 5(0,1)

TWEQ c

and, using the divergence theorem;



MICROWAVE ENGINEERING 3 43

Ez

m

= [s@1) Bim » UmdS(0, 1)

f S@.1) Elm ’I“V( lm)dS(O 1)

= Zadii(2)e ™ [y TV (Yin)dS @O, 1)

TweQ

E

—adji (< )e mf bV (Yim )dS(0,1)

T dweg c

_ i;madjl(%r)e*’m Sy 7> (Yim)dB(@D, 1)

iweo

= U gy () et fs@) Y1 dS(0, 1)

TWeQ

—iwt f l(l:gl)Y}mdB(ﬁ, 1)

a|§

_ 4+ yr wr\ ,—iwt
= iweo (l/d (?)6 50’1(507771

=0

Ep(r) =[50 Bom + UindS(0, 1)

m

- fsm B+ (7 ¥ (¥in))4S(0. 1)

~

= L adj (<) Wtf T (T x 7 (Yin))dS(0,1)

Using the boundary conditions from Lemma 0.5, if w is chosen so
that j; () = 0, we obtain a solution by setting;

Qi (w) = 0
(af,)' (w) =0
(a,,) = = 2aj,, (w) + (GH — 25 )aj,, (w)

a; (w al (w
— it 8+ (al,,) (w) = 0 (X)

for (I,m) # (0,0), and;

ago(w) =0
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(ago)' (w) =0

r r I(l+1 ww
(ago)’ = _%aoo(w> + ( (:; L c—2)a(1]0(w)

_aho(w) w + (aly) (w) =0 (V)

w

In the 2-dimensional family of solutions, we can set;

ab(w) = (al,) (w) = 0

for all (I,m). Then, for (I,m), by (X), (Y);

A (W) = (ai,,)' (W) = g, (w) = (ay,,)'(w)
= ajp, () = (ag,)'(w) =0

m

and, by Peano’s existence and uniqueness theorem, using the condi-
tions (7i7), (iv), (v) in Lemma 0.5;

A (1) = () (r) = . (r) = (@) (7)
= aip, () = (aj,))'(r) = 0

for r > w. By the relation (i), (P2) in Lemma 0.5, we obtain that
Ui (1) = 0, for 7 > w as well, so that we obtain the trivial solution.

O

Lemma 0.9. If (E, B) are fields of the form e(x,y, z)e™™" and b(x, y, z)e” ™"

satisfying Mazwell’s equations in free space, in the region B(0,w)e,
then there exists potentials V. and A of the form v(x,y,z)e " and
a(x,y, z)e ™ with the properties that;

VAV) + 25 =0
(V2A) - L2 —g(v. A+ L9 =0 (0)

or equivalently;

Vi) —iwsy.a=0
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V(@) +%a—(v.a— %) =0
such that;
E=—-v(V)-% =g (V)+iwA
B=vyx A (D)

Conversely, if we have potentials (V, A) satisfying (C) and we define
the fields (E, B) by (D), then (E, B) satisfy Mazwell’s equations in free
space on B(0,w)°.

Given boundary conditions {f,g} on 6S(0,w), if;
=V (v) + 1wl 555,0) = f
V X @lss@w) =7

then the corresponding fields {E, B} are continuous with fields { fe=*, ge='}
on B(0,w). These boundary conditions cannot be satisfied for {v,a}
with the above property, for the configuration from Lemma 0.8, unless

Jlss@uw) = 0.

Proof. The first claim is just the first part of Lemma 0.6, the converse
claim just amounts to checking the steps are reversible in the proof of

[6].
Again, we can write v in the form,;

U(Tv 67 (b) = E?ZO ern:—l(vlﬂ”L(r)Km(Tv 67 (b)

where the {Y},, : { > 0, -1 < m <} are the spherical harmonics.
Then,;

(S l Vim I(l+1
VZ(U) = Zl:o Zm:—l(r%dir(r2cz_lr) - (:; )Ulm)Yim

Similarly, we write @ again in the form;
a<r7 97 ¢) = 220 Zlmz—l(alrm(r)?lm<ra ‘97 (b)—i_allm('r)@lm(rv 07 ¢)+al2m(r)§lm<r7 97 (b))

where {Y jn, Wi, @1} are vector spherical harmonics, see [2].
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Then;

_ l day 1(I+1
Vea= Z?ZO Zmzfl( ((lilr + %alrm ~ X r )allm)Y;m
so that equating coefficients, the condition;
Vi) —iw v a=0

becomes;

T

. .od
(0): e (24 = 5 om — (e + Faf,, — 5 al,) =0

or equivalently:;

(l) (Ulm>// + %(Ulm), - l(l;gl) Ulm — iw(afm)l - 22Twa’?m + wallm - 0

We have that;

vv) =35 an:fl %Vlm + Uy,

and by the proof of Lemma 0.4;

— 0o l r
VXV Xa=37003 ([l + 1)(%<allm)/ + rizallm - r%alm)]ylm
+[_(al1m)” + %(a’;ﬂm)/ + r%allm - lafm]qjlm

(@) = 2ad,) + a7, i)

r r2 Im

so that, equating coefficients again, the condition;

0

VA@) + % - (VT %)
or equivalently;

~ VXV XA+ Sa+ Yy (v) =0

becomes;

(i). —[-1(1+1)(+(ap,) + at, — =ap,)] + “C’—ja}"m + % (vm) =0

(Z”) _[_(allm)” + %(a{m)/ + r%allm - r%a;m] + (;}_jallm + Zc_u;UZT =0
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. 1(1+1 2
(“})' _[_(a%m)” - %(a?m)/ + %afm] + (g—?a%m =0

or equivalently;

(7). WD (] Y+ Wl 4 (5 — g 4 () =0

r2 r2 2
(i), (aly)" = Hap,) + (4 = F)aly, + Faj, + 5% =0

For [ = 0, we obtain that;

(1)(0) (vo0)" + 2(voo)" — iw(agy) — %2agy = 0

(i1)(0) “zapy + % (von) =0

(i) (0) (ado)” — +(afo) + (4 — Z)agy + Zapy + 52 =0
(iv)(0) (ado)" + 2(ady)’ + 2 ad, = 0

and from (27)(0), we obtain that;

agy = —=(voo)’

and, differentiating;

(a50) = =2 (vo0)” (A)

Substituting (A) into (#)(0), we see this equation is automatically
satisfied, and substituting (A) into (i), we obtain;

(a50)” + 75 (v00)" + (% — %)ago — 735 (voo)’ + Zrvoo = 0

which rearranging, gives;

2

(age)” + (45 — F)agy = —=(v00)” + 35 (voo)' — H=ve0 (B)

Given a smooth choice of vgg, (A) has a unique solution for afy,, and,
by Peano’s theorem, (B) has a unique solution for aj,, given a choice
of aby(w), (ady) (w). Similarly, (iv) has a unique solution for a2,, given
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a choice of a2 (w), (a3,) (w).
We have that;
—V (0) = = X% e G Vi + 22 U

wa = 1w Z?io an:—l(a}nm?lm + CLllmﬁlm + alzmalm)

VX = Y Y (7 % (0], Y i) 7 % (0, T + 7 X (0, Bi)

00 r = dal = >
= ZZ:O Zlm:—l(_%almq)lm + (# + %allm)q)lm + ((_l(l—:l))a%mylm
da?
— (g + 2a7,,) Vim)
v da?
= Zl 0 Zm——l( l;’_l))a%mylm - ( — = + alm)qjlm

+(dalm + a’lm - _alm)q)lm

so the boundary conditions become;

(a). == (w) + iway,, (w) = fi,(w)
(b). =220 gl (w) = T (w)

lm

(¢). iwal, (w) = Fo(w)

and for [ = 0, m = 0, using the result of Lemma 0.8, we obtain;
(a). =92 (w) +iwagy(w) = fi,(w)
(b). =) 4 jaly(w) =0

(). iwady(w) =0
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From (A), we see that the boundary condition (a) cannot be satisfied

unless j1(%2) = 0, in which case 7|5S(57w) =0.

L]
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