MICROWAVE ENGINEERING 3

TRISTRAM DE PIRO

Abstract

We give an explanation of charge and current driven radiation inside spherical magnetrons, using the equations found in [10], and by verifying compatibility with the TM and TE modes used in microwave engineering.

Lemma 0.1. There exist $(\rho, \bar{J}, \bar{E}, \bar{B})$ satisfying;
$(i) . \square^{2}(\rho)=0$.
(ii). $\square^{2}(\bar{J})=\overline{0}$.
(iii). $\nabla(\rho)+\frac{1}{c^{2}} \frac{\partial \bar{J}}{\partial t}=\overline{0}$.
$(i v) \cdot \frac{\partial \rho}{\partial t}+\nabla \cdot \bar{J}=0$.
(v). $\square^{2}(\bar{E})=\nabla \times \bar{E}=\overline{0}$
$(v i) . \bar{B}=\overline{0}$
$(v i i) \cdot \nabla \cdot \bar{E}=\frac{\rho}{\epsilon_{0}}$
(viii) $\frac{1}{c^{2}} \frac{\partial \bar{E}}{\partial t}+\mu_{0} \bar{J}=\overline{0}$
such that;
$\rho(x, y, z, t)=p(x, y, z) e^{-i \omega t}$
$\bar{J}=\bar{j}(x, y, z) e^{-i \omega t}, \bar{j}=\left(j_{1}, j_{2}, j_{3}\right)$.
$\bar{E}=\bar{e}(x, y, z) e^{-i \omega t}, \bar{e}=\left(e_{1}, e_{2}, e_{3}\right)$.
$\bar{B}=\bar{b}(x, y, z) e^{-i \omega t}, \bar{b}=\left(b_{1}, b_{2}, b_{3}\right)$.

In particularly, Maxwell's equations are satisfied for $(\rho, \bar{J}, \bar{E}, \bar{B})$.
Let $\left(V^{\prime}, \bar{A}^{\prime}\right)$ be the global potentials defined by Jefimenko's equations;
$V^{\prime}(\bar{r}, t)=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho\left(\bar{r}^{\prime}, t_{r}\right)}{\mathrm{r}} d \tau^{\prime}$
$\bar{A}^{\prime}(\bar{r}, t)=\frac{\mu_{0}}{4 \pi} \int \frac{\bar{J}\left(\bar{r}^{\prime}, t_{r}\right)}{\mathrm{r}} d \tau^{\prime}$
Then $V^{\prime}=v^{\prime}(x, y, z) e^{-i \omega t}, \bar{A}^{\prime}=\bar{a}^{\prime}(x, y, z) e^{-i \omega t}, \bar{a}^{\prime}=\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right)$.
A similar claim holds for the causal fields $\left\{\bar{E}^{\prime}, \bar{B}^{\prime}\right\}$ of Jefimenko's equations.
We have that;

$$
p(x, y, z)=P(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi)
$$

where;

$$
\begin{aligned}
& \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right) R=0 \\
& \frac{1}{\sin (\theta)} \frac{d}{d \theta}\left(\sin (\theta) \frac{d \Theta}{d \theta}\right)+\left(l(l+1)-\frac{m^{2}}{\sin ^{2}(\theta)}\right) \Theta=0 \\
& \frac{d^{2} \Phi}{d \phi^{2}}+m^{2} \Phi=0(C) \\
& \text { for constants }\{m, l\} \subset \mathcal{N} .
\end{aligned}
$$

The components $\left\{j_{r}, j_{\theta}, j_{\phi}, e_{r}, e_{\theta}, e_{\phi}, b_{r}, b_{\theta}, b_{\phi}\right\}$ of $\{\bar{j}(r, \theta, \phi), \bar{e}(r, \theta, \phi), \bar{b}(r, \theta, \phi)\}$ can be written in terms of $\left\{R, R^{\prime} \Theta, \Theta^{\prime}, \Phi, \Phi^{\prime}, r, \theta, \phi\right\}$.

There exist $\left(0, \overline{0}, \bar{E}^{\prime}, \bar{B}^{\prime}\right)$ satisfying Maxwell's equations in vacuum;
(i). $\nabla \cdot \bar{E}^{\prime}=0$
(ii). $\nabla \times \bar{E}^{\prime}=-\frac{\partial \bar{B}^{\prime}}{\partial t}$
(iii). $\nabla \cdot \bar{B}^{\prime}=\overline{0}$
(iv) $\nabla \times \bar{B}^{\prime}=\frac{1}{c^{2}} \frac{\partial \bar{E}^{\prime}}{\partial t}$
$\bar{E}^{\prime}=\bar{e}^{\prime}(x, y, z) e^{-i \omega t}, \bar{e}^{\prime}=\left(e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right)$.
$\bar{B}^{\prime}=\bar{b}^{\prime}(x, y, z) e^{-i \omega t}, \bar{b}^{\prime}=\left(b_{1}^{\prime}, b_{2}^{\prime}, b_{3}^{\prime}\right)$.
with $\bar{B}^{\prime} \neq \overline{0}$
We have that $r b_{r}^{\prime} e^{-i \omega t}=<\overline{B^{\prime}}, \bar{r}>$ and $r e_{r}^{\prime} e^{-i \omega t}=<\overline{E^{\prime}}, \bar{r}>$ satisfy the wave equation and;

$$
r b_{r}^{\prime}(x, y, z)=r b_{r}^{\prime}(r, \theta, \phi)=R_{1}(r) \Theta_{1}(\theta) \Phi_{1}(\phi)
$$

where;

$$
\begin{aligned}
& \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R_{1}}{d r}\right)+\left(\frac{\omega^{2}}{c^{2}}-\frac{l^{\prime}\left(l^{\prime}+1\right)}{r^{2}}\right) R_{1}=0 \\
& \frac{1}{\sin (\theta)} \frac{d}{d \theta}\left(\sin (\theta) \frac{d \Theta}{d \theta}\right)+\left(l^{\prime}\left(l^{\prime}+1\right)-\frac{m^{\prime 2}}{\sin ^{2}(\theta)}\right) \Theta_{1}=0 \\
& \frac{d^{2} \Phi_{1}}{d \phi^{2}}+m^{\prime 2} \Phi_{1}=0(C 1) \\
& \text { for constants }\left\{m^{\prime}, l^{\prime}\right\} \subset \mathcal{R} .
\end{aligned}
$$

A similar result holds for re e_{r}^{\prime}.
The components $\left\{e_{r}^{\prime}, e_{\theta}^{\prime}, e_{\phi}^{\prime}, b_{r}^{\prime}, b_{\theta}^{\prime}, b_{\phi}^{\prime}\right\}$ of $\left\{\bar{e}^{\prime}(r, \theta, \phi), \bar{b}^{\prime}(r, \theta, \phi)\right\}$ can be written in terms of $\left\{R, R^{\prime}, \Theta, \Theta^{\prime}, \Phi, \Phi^{\prime}, r, \theta, \phi\right\}$.

In particularly, for the TE mode;
$b_{r}^{\prime}=\frac{r b_{r}^{\prime}}{r}$
$b_{\theta}^{\prime}=\frac{1}{l^{\prime}\left(l^{\prime}+1\right)} \frac{1}{r} \frac{\partial}{\partial \theta} \frac{\partial}{\partial r}\left(r^{2} b_{r}^{\prime}\right)$
$b_{\phi}^{\prime}=\frac{1}{l^{\prime}\left(l^{\prime}+1\right)} \frac{1}{r \sin (\theta)} \frac{\partial}{\partial \phi} \frac{\partial}{\partial r}\left(r^{2} b_{r}^{\prime}\right)$
$e_{r}^{\prime}=0$
$e_{\theta}^{\prime}=\frac{i \omega}{l^{\prime}\left(l^{\prime}+1\right)} \frac{1}{r \sin (\theta)} \frac{\partial}{\partial \phi}\left(r^{2} b_{r}^{\prime}\right)$
$e_{\phi}^{\prime}=-\frac{i \omega}{l^{\prime}\left(l^{\prime}+1\right)} \frac{1}{r} \frac{\partial}{\partial \theta}\left(r^{2} b_{r}^{\prime}\right)(X)$
and for the TM mode;

$$
\begin{aligned}
e_{r}^{\prime} & =\frac{r e_{r}^{\prime}}{r} \\
e_{\theta}^{\prime} & =\frac{1}{l^{\prime}\left(l^{\prime}+1\right)} \frac{1}{r} \frac{\partial}{\partial \theta} \frac{\partial}{\partial r}\left(r^{2} e_{r}^{\prime}\right) \\
e_{\phi}^{\prime} & =\frac{1}{l^{\prime}\left(l^{\prime}+1\right)} \frac{1}{r \sin (\theta)} \frac{\partial}{\partial \phi} \frac{\partial}{\partial r}\left(r^{2} e_{r}^{\prime}\right) \\
b_{r}^{\prime} & =0 \\
b_{\theta}^{\prime} & =-\frac{i \omega}{c^{2} l^{\prime}\left(l^{\prime}+1\right)} \frac{1}{r \sin (\theta)} \frac{\partial}{\partial \phi}\left(r^{2} e_{r}^{\prime}\right) \\
b_{\phi}^{\prime} & =\frac{i \omega}{c^{2} l^{\prime}\left(l^{\prime}+1\right)} \frac{1}{r} \frac{\partial}{\partial \theta}\left(r^{2} e_{r}^{\prime}\right)(Y)
\end{aligned}
$$

The continuity equation holds on the sphere $S(\overline{0}, w)$, for both the $T E$ and TM modes. Moreover, if we restrict to the cases where the current \bar{J} vanishes on the sphere $S(\overline{0}, w)$, the continuity equation holds and we can calculate the surface impedance in particular cases.

Proof. The proof of the first part is similar to [10]. For (i), we have, substituting $p(x, y, z) e^{-i \omega t}$ for ρ, that;

$$
\left[p_{x x}+p_{y y}+p_{z z}\right] e^{-i \omega t}=\frac{1}{c^{2}} p\left(-\omega^{2}\right) e^{-i \omega t}
$$

so we require that $p_{x x}+p_{y y}+p_{z z}+\frac{\omega^{2}}{c^{2}} p=0,(*)$.
The proof that this can be solved in \mathcal{R}^{3} is shown in [5], using spherical polar coordinates. For (iii), we have, substituting $p(x, y, z) e^{-i \omega t}$ for ρ, and $\bar{j}(x, y, z) e^{-i \omega t}$ for \bar{J}, that;

$$
\left(p_{x}, p_{y}, p_{z}\right) e^{-i \omega t}=-\frac{1}{c^{2}}\left(j_{1}, j_{2}, j_{3}\right)(-i \omega) e^{-i \omega t}
$$

so that;

$$
\begin{aligned}
& j_{1}=\frac{c^{2}}{i \omega} p_{x}=-\frac{i c^{2}}{\omega} p_{x} \\
& j_{2}=\frac{c^{2}}{i \omega} p_{y}=-\frac{i c^{2}}{\omega} p_{y} \\
& j_{3}=\frac{c^{2}}{i \omega} p_{z}=-\frac{i c^{2}}{\omega} p_{z}(* *)
\end{aligned}
$$

If p satisfies $(*)$, differentiating, so do p_{x}, p_{y} and p_{z}, then, from $(* *)$, the components $\left\{j_{1}, j_{2}, j_{3}\right\}$ satisfy $(*)$ and $(i i)$ is satisfied. For $(i v)$, we
have, substituting again, and using $(* *)$, that;

$$
\begin{aligned}
& -i \omega p e^{-i \omega t}=-\left(j_{1 x}+j_{2 x}+j_{3 x}\right) e^{-i \omega t} \\
& =-\left(\frac{c^{2}}{i \omega} p_{x x}+\frac{c^{2}}{i \omega} p_{y y}+\frac{c^{2}}{i \omega} p_{z z}\right) e^{-i \omega t}
\end{aligned}
$$

so that;

$$
-\frac{c^{2}}{i \omega} p_{x x}-\frac{c^{2}}{i \omega} p_{y y}-\frac{c^{2}}{i \omega} p_{z z}+i \omega p=0
$$

and multiplying by $-\frac{i \omega}{c^{2}}$;
$p_{x x}+p_{y y}+p_{z z}+\frac{\omega^{2}}{c^{2}} p=0$
which is $(*)$. As all the steps are reversible, we obtain (iv). For (viii), we require that;

$$
-\frac{i \omega}{c^{2}} \bar{e} e^{-i \omega t}=-\mu_{0} \bar{j} e^{-i \omega t}
$$

so that;

$$
\begin{aligned}
& e_{1}=-\frac{i \mu_{0} c^{2}}{\omega} j_{1} \\
& e_{2}=-\frac{i \mu_{0} c^{2}}{\omega} j_{2} \\
& e_{3}=-\frac{i \mu_{0} c^{2}}{\omega} j_{3}
\end{aligned}
$$

and, using ($* *$)

$$
\begin{aligned}
& e_{1}=-\frac{i \mu_{0} c^{2}}{\omega} \frac{-i c^{2}}{\omega} p_{x}=-\frac{\mu_{0} c^{4}}{\omega^{2}} p_{x} \\
& e_{2}=-\frac{i \mu_{0} c^{2}}{\omega} \frac{-i c^{2}}{\omega} p_{y}=-\frac{\mu_{0} c^{4}}{\omega^{2}} p_{y} \\
& e_{3}=-\frac{i \mu_{0} c^{2}}{\omega} \frac{-i c^{2}}{\omega} p_{z}=-\frac{\mu_{0} c^{4}}{\omega^{2}} p_{z}(A)
\end{aligned}
$$

For (vi), we just set $b_{1}=b_{2}=b_{3}=0$. For (v), we have from (A), that $\bar{E}=-\frac{\mu_{0} c^{4}}{\omega^{2}} \nabla(\rho)$, so that $\nabla \times \bar{E}=\overline{0}$ and as $\left\{p_{x}, p_{y}, p_{z}\right\}$ satisfy $(*)$, so do $\left\{e_{1}, e_{2}, e_{3}\right\}$, so that $\square^{2} \bar{E}=\overline{0}$, and (v) is satisfied. For (vii), we have, using (A) and $(*)$, that;

$$
\begin{aligned}
& \operatorname{div}(\bar{E})=\left(e_{1 x}+e_{2 y}+e_{3 z}\right) e^{-i \omega t} \\
& =-\frac{\mu_{0} c^{4}}{\omega^{2}}\left(p_{x x}+p_{y y}+p_{z z}\right) e^{-i \omega t} \\
& =-\frac{\mu_{0} c^{4}}{\omega^{2}} \frac{-\omega^{2}}{c^{2}} p e^{-i \omega t} \\
& =\mu_{0} c^{2} p e^{-i \omega t} \\
& =\frac{1}{\epsilon_{0} c^{2}} c^{2} p e^{-i \omega t} \\
& =\frac{\rho}{\epsilon_{0}}
\end{aligned}
$$

so that (vii) is satisfied. The second claim follows easily by rearranging $(v)-(v i i i)$.

For the potentials claim, it follows by differentiating under the integral sign, and using the fact that $t_{r}=t-\frac{\left|\bar{r}^{\prime}-\bar{r}\right|}{c}$, that;

$$
\begin{aligned}
& \frac{\partial V^{\prime}}{\partial t}=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\dot{\rho}\left(\bar{r}^{\prime}, t_{r}\right)}{\mathfrak{r}} d \tau^{\prime} \\
& =-\frac{i \omega}{4 \pi \epsilon_{0}} \int \frac{\rho\left(\bar{r}^{\prime}, t_{r}\right)}{\mathrm{r}} d \tau^{\prime} \\
& =-i \omega V^{\prime}
\end{aligned}
$$

Using Peano's theorem on the uniqueness of solutions of first order differential equations, we then must have that;

$$
V^{\prime}(x, y, z, t)=v^{\prime}(x, y, z) e^{-i \omega t}(A A)
$$

and, similarly;

$$
\bar{A}^{\prime}(x, y, z, t)=\bar{a}^{\prime}(x, y, z) e^{-i \omega t}
$$

The claim on $\left\{\bar{E}^{\prime}, \bar{B}^{\prime}\right\}$ is similar, using Jefimenko's equations which only depend on $\{\rho, \bar{J}\}$ and derivatives.

The formulae (C) can be found in [5], once we have $(*)$. When $R=j_{l}\left(\frac{\omega r}{c}\right)$, where j_{l} is a Bessel function of the first kind of order l, $\Theta=P_{l}^{m}(\cos (\theta))$ where P_{l}^{m} is the associated Legendre polynomial, and
$\Phi=\sin (m \phi)$ or $\cos (m \phi)$, we denote by $p_{m, l, s}$ or $p_{m, l, c}$ the corresponding fundamental solutions, see the discussion in [5].

Let $\{\hat{\bar{r}}, \hat{\bar{\theta}}, \hat{\bar{\phi}}\}$ be the standard orthonormal spherical frame, then we have that, using the above calculation;

$$
\begin{aligned}
& <\bar{J}, \hat{\bar{r}}>=<\bar{j}, \hat{\bar{r}}>e^{-i \omega t} \\
& =\frac{-i c^{2}}{\omega}<\nabla(p), \hat{\bar{r}}>e^{-i \omega t} \\
& =\frac{-i c^{2}}{\omega}\left(\frac{\partial p}{\partial r}[\hat{\bar{r}} \cdot \hat{\bar{r}}]+\frac{\partial p}{\partial \theta}\left[\left(\frac{\partial \theta}{\partial x}, \frac{\partial \theta}{\partial y}, \frac{\partial \theta}{\partial z}\right) \cdot \hat{\bar{r}}\right]+\frac{\partial p}{\partial \phi}\left[\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) \cdot \hat{\bar{r}}\right]\right) e^{-i \omega t}
\end{aligned}
$$

so that;

$$
\begin{aligned}
& j_{r}=\frac{-i c^{2}}{\omega}\left(\frac{\partial p}{\partial r}[\hat{\bar{r}} \cdot \hat{\bar{r}}]+\frac{\partial p}{\partial \theta}\left[\left(\frac{\partial \theta}{\partial x}, \frac{\partial \theta}{\partial y}, \frac{\partial \theta}{\partial z}\right) \cdot \hat{\bar{r}}\right]+\frac{\partial p}{\partial \phi}\left[\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) \cdot \hat{\bar{r}}\right]\right) \\
& =\frac{-i c^{2}}{\omega}\left(\frac{\partial p}{\partial r}+\frac{\partial p}{\partial \theta}\left[\left(\frac{\partial \theta}{\partial x}, \frac{\partial \theta}{\partial y}, \frac{\partial \theta}{\partial z}\right) \cdot \hat{\bar{r}}\right]+\frac{\partial p}{\partial \phi}\left[\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) \cdot \hat{\bar{r}}\right]\right)
\end{aligned}
$$

Similarly;

$$
\begin{aligned}
& j_{\theta}=\frac{-i c^{2}}{\omega}\left(\frac{\partial p}{\partial r}[\hat{\bar{r}} \cdot \hat{\bar{\theta}}]+\frac{\partial p}{\partial \theta}\left[\left(\frac{\partial \theta}{\partial x}, \frac{\partial \theta}{\partial y}, \frac{\partial \theta}{\partial z}\right) \cdot \hat{\bar{\theta}}\right]+\frac{\partial p}{\partial \phi}\left[\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) \cdot \hat{\bar{\theta}}\right]\right) \\
& =\frac{-i c^{2}}{\omega}\left(\frac{\partial p}{\partial \theta}\left[\left(\frac{\partial \theta}{\partial x}, \frac{\partial \theta}{\partial y}, \frac{\partial \theta}{\partial z}\right) \cdot \hat{\bar{\theta}}\right]+\frac{\partial p}{\partial \phi}\left[\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) \cdot \hat{\bar{\theta}}\right]\right) \\
& j_{\phi}=\frac{-i c^{2}}{\omega}\left(\frac{\partial p}{\partial r}[\hat{\bar{r}} \cdot \hat{\bar{\phi}}]+\frac{\partial p}{\partial \theta}\left[\left(\frac{\partial \theta}{\partial x}, \frac{\partial \theta}{\partial y}, \frac{\partial \theta}{\partial z}\right) \cdot \hat{\bar{\phi}}\right]+\frac{\partial p}{\partial \phi}\left[\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) \cdot \hat{\bar{\phi}}\right]\right) \\
& =\frac{-i c^{2}}{\omega}\left(\frac{\partial p}{\partial \theta}\left[\left(\frac{\partial \theta}{\partial x}, \frac{\partial \theta}{\partial y}, \frac{\partial \theta}{\partial z}\right) \cdot \hat{\bar{\phi}}\right]+\frac{\partial p}{\partial \phi}\left[\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) \cdot \hat{\bar{\phi}}\right]\right)(F)
\end{aligned}
$$

A similar calculation shows that;

$$
\begin{aligned}
& e_{r}=-\frac{\mu_{0} c^{4}}{\omega^{2}}\left(\frac{\partial p}{\partial r}[\hat{\bar{r}} \cdot \hat{\bar{r}}]+\frac{\partial p}{\partial \theta}\left[\left(\frac{\partial \theta}{\partial x}, \frac{\partial \theta}{\partial y}, \frac{\partial \theta}{\partial z}\right) \cdot \hat{\bar{r}}\right]+\frac{\partial p}{\partial \phi}\left[\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) \cdot \hat{\bar{r}}\right]\right) \\
& =-\frac{\mu_{0} c^{4}}{\omega^{2}}\left(\frac{\partial p}{\partial r}+\frac{\partial p}{\partial \theta}\left[\left(\frac{\partial \theta}{\partial x}, \frac{\partial \theta}{\partial y}, \frac{\partial \theta}{\partial z}\right) \cdot \hat{\bar{r}}\right]+\frac{\partial p}{\partial \phi}\left[\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) \cdot \hat{\bar{r}}\right]\right) \\
& e_{\theta}=-\frac{\mu_{0} c^{4}}{\omega^{2}}\left(\frac{\partial p}{\partial r}[\hat{\bar{r}} \cdot \hat{\bar{\theta}}]+\frac{\partial p}{\partial \theta}\left[\left(\frac{\partial \theta}{\partial x}, \frac{\partial \theta}{\partial y}, \frac{\partial \theta}{\partial z}\right) \cdot \hat{\bar{\theta}}\right]+\frac{\partial p}{\partial \phi}\left[\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) \cdot \hat{\bar{\theta}}\right]\right) \\
& =-\frac{\mu_{0} c^{4}}{\omega^{2}}\left(\frac{\partial p}{\partial \theta}\left[\left(\frac{\partial \theta}{\partial x}, \frac{\partial \theta}{\partial y}, \frac{\partial \theta}{\partial z}\right) \cdot \hat{\bar{\theta}}\right]+\frac{\partial p}{\partial \phi}\left[\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) \cdot \hat{\bar{\theta}}\right]\right) \\
& e_{\phi}=-\frac{\mu_{0} c^{4}}{\omega^{2}}\left(\frac{\partial p}{\partial r}[\hat{r} \cdot \hat{\bar{\phi}}]+\frac{\partial p}{\partial \theta}\left[\left(\frac{\partial \theta}{\partial x}, \frac{\partial \theta}{\partial y}, \frac{\partial \theta}{\partial z}\right) \cdot \hat{\bar{\phi}}\right]+\frac{\partial p}{\partial \phi}\left[\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) \cdot \hat{\bar{\phi}}\right]\right)
\end{aligned}
$$

$=-\frac{\mu_{0} c^{4}}{\omega^{2}}\left(\frac{\partial p}{\partial \theta}\left[\left(\frac{\partial \theta}{\partial x}, \frac{\partial \theta}{\partial y}, \frac{\partial \theta}{\partial z}\right) \cdot \hat{\bar{\phi}}\right]+\frac{\partial p}{\partial \phi}\left[\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) \cdot \hat{\bar{\phi}}\right]\right)(E)$
Clearly, we have that $b_{r}=b_{\theta}=b_{\phi}=0$.
The next claim is then clear, calculating $\left\{\frac{\partial \theta}{\partial x}, \frac{\partial \theta}{\partial y}, \frac{\partial \theta}{\partial z}, \frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right\}$ and the orthonormal frame in terms of $\{r, \theta, \phi\}$, as well as the terms $\left\{\frac{\partial p}{\partial r}, \frac{\partial p}{\partial \theta}, \frac{\partial p}{\partial r}\right\}$ in terms of $\left\{R, R^{\prime}, \Theta, \Theta^{\prime}, \Phi, \Phi^{\prime}\right\}$.

For the boundary conditions at the boundary of the cavity magnetron with radius we need $\left\{e_{\theta}, e_{\phi}, b_{r}\right\}$ to vanish at the boundary, which we can achieve with $\frac{\partial p}{\partial \theta}=\frac{\partial p}{\partial \phi}=0$, as $b_{r}=0$. By the explicit form of p in (C), and the calculations in (E), if the magnetron has radius w, this is achieved when $R=\left.j_{l}\left(\frac{\omega r}{c}\right)\right|_{\delta S(\overline{0}, w)}=0$, so that $\frac{\omega w}{c} \in Z_{l}, \omega \in \frac{c Z_{l}}{w}$, where $Z_{l}=\operatorname{Zero}\left(j_{l}\right)$, the zero set of the corresponding Bessel function. In this case, we also have by $(E),(F)$, that $j_{\theta}=j_{\phi}=0$ at the boundary, and;

$$
\begin{aligned}
& e_{r}=-\left.\frac{\mu_{0} c^{4}}{\omega^{2}} \frac{\partial p}{\partial r}\right|_{S(\overline{0}, w)} \\
& j_{r}=\left.\frac{-i c^{2}}{\omega} \frac{\partial p}{\partial r}\right|_{S(\overline{0}, w)}
\end{aligned}
$$

where p is constant on the boundary, as $\frac{\partial p}{\partial \phi}=\frac{\partial p}{\partial \psi}=0$.
The next claim is a special case of the result proved in [10] and left to the reader.

For the next claim, $r b_{r}^{\prime} e^{-i \omega t}=<\overline{B^{\prime}}, \bar{r}>$ satisfies the wave equation, as;

$$
\begin{aligned}
& \square^{2}\left(<\overline{B^{\prime}}, \bar{r}>\right) \\
& =<\square^{2} \overline{B^{\prime}}, \bar{r}>+<\overline{B^{\prime}}, \square^{2} \bar{r}>+\nabla \cdot \bar{B}^{\prime} \\
& =0
\end{aligned}
$$

The equations for the components in the TE and TM modes can be found in [5], and we assume they hold on the exterior of the sphere $S(\overline{0}, w)$. For the boundary conditions at the boundary of the cavity magnetron, we need $\left\{e_{\theta}, e_{\phi}, b_{r}\right\}$ to vanish at the boundary again. In the TE mode case, from (X), we can achieve this with $\frac{\partial r^{2} b_{r}}{\partial \theta}=$ $\frac{\partial r^{2} b_{r}}{\partial \phi}=0$, and $r^{2} b_{r}=0$ at the boundary. By the explicit form of
$r b_{r}$ in (C1), if the magnetron has radius w, this is again achieved when $R=\left.j_{l^{\prime}}\left(\frac{\omega r}{c}\right)\right|_{\delta S(\overline{0}, w)}=0$, so that $\frac{\omega w}{c} \in Z_{l^{\prime}}, \omega \in \frac{c Z_{l^{\prime}}}{w}$, where $Z_{l^{\prime}}=\operatorname{Zero}\left(j_{l^{\prime}}\right)$, the zero set of the corresponding Bessel function. In the TM mode case, from (Y), we can achieve this with $\frac{\partial r^{2} e_{r}}{\partial r}=0$, as $b_{r}=0$ in the TM mode. By the explicit form of $r e_{r}$ in ($C 1$), if the magnetron has radius w, this is achieved when $\frac{\partial r R}{\partial r}=\left.\frac{\partial r j_{\iota^{\prime}}\left(\frac{\omega r}{c}\right)}{\partial r}\right|_{\delta S(\overline{0}, w)}=0$.

In the TE case, we have that the surface charge σ_{f} is given by;

$$
\begin{aligned}
& \frac{\sigma_{f}}{\epsilon_{0}}=\bar{E}^{\prime \perp}-\bar{E}^{\perp} \\
& =e_{r}^{\prime} e^{-i \omega t}-e_{r} e^{-i \omega t} \\
& =-e_{r} e^{-i \omega t} \\
& =\left.\frac{\mu_{0} c^{4}}{\omega^{2}} \frac{\partial p}{\partial r}\right|_{S(\overline{0}, w)} e^{-i \omega t}
\end{aligned}
$$

while in the TM case, we have that;

$$
\begin{aligned}
& \frac{\sigma_{f}}{\epsilon_{0}}=\bar{E}^{\prime \perp}-\bar{E}^{\perp} \\
& =e_{r}^{\prime} e^{-i \omega t}-e_{r} e^{-i \omega t} \\
& =e_{r}^{\prime} e^{-i \omega t}+\left.\frac{\mu_{0} c^{4}}{\omega^{2}} \frac{\partial p}{\partial r}\right|_{S(\overline{0}, w)} e^{-i \omega t}
\end{aligned}
$$

where $r e_{r}^{\prime}$ satisfies the relations above.
In the TE case, we have that the surface current \bar{K}_{f} is given by;

$$
\begin{aligned}
& \mu_{0}\left(\bar{K}_{f} \times \hat{r}\right)=\bar{B}^{\prime \|}-\bar{B}^{\|} \\
& =\bar{B}^{\prime \|} \\
& =\left(b_{\theta}^{\prime} \hat{\bar{\theta}}+b_{\phi}^{\prime} \hat{\bar{\phi}}\right) e^{-i \omega t} \\
& =\left(\frac{1}{l^{\prime}\left(l^{\prime}+1\right)} \frac{1}{r} \frac{\partial}{\partial \theta} \frac{\partial}{\partial r}\left(r^{2} b_{r}^{\prime}\right) \hat{\bar{\theta}}+\frac{1}{l^{\prime}\left(l^{\prime}+1\right)} \frac{1}{r \sin (\theta)} \frac{\partial}{\partial \phi} \frac{\partial}{\partial r}\left(r^{2} b_{r}^{\prime}\right) \hat{\bar{\phi}}\right) e^{-i \omega t}
\end{aligned}
$$

where $r b_{r}^{\prime}$ satisfies the relations above. It follows that;

$$
\mu_{0} \bar{K}_{f}=\left(\frac{1}{l^{\prime}\left(l^{\prime}+1\right)} \frac{1}{r} \frac{\partial}{\partial \theta} \frac{\partial}{\partial r}\left(r^{2} b_{r}^{\prime}\right) \hat{\bar{\phi}}-\frac{1}{l^{\prime}\left(l^{\prime}+1\right)} \frac{1}{r \sin (\theta)} \frac{\partial}{\partial \phi} \frac{\partial}{\partial r}\left(r^{2} b_{r}^{\prime}\right) \hat{\bar{\theta}}\right) e^{-i \omega t}
$$

In the TM case, we have that;

$$
\begin{aligned}
& \mu_{0}\left(\bar{K}_{f} \times \hat{r}\right)=\bar{B}^{\prime \|}-\bar{B}^{\|} \\
& =\bar{B}^{\prime \|} \\
& =\left(-\frac{i \omega}{c^{2} l^{\prime}\left(l^{\prime}+1\right)} \frac{1}{r \sin (\theta)} \frac{\partial}{\partial \phi}\left(r^{2} e_{r}^{\prime}\right) \hat{\bar{\theta}}+\frac{i \omega}{c^{2} l^{\prime}\left(l^{\prime}+1\right)} \frac{1}{r} \frac{\partial}{\partial \theta}\left(r^{2} e_{r}^{\prime}\right) \hat{\bar{\phi}}\right) e^{-i \omega t}
\end{aligned}
$$

where $r e_{r}^{\prime}$ satisfies the relations above. It follows that;

$$
\mu_{0} \bar{K}_{f}=\left(-\frac{i \omega}{c^{2} l^{\prime}\left(l^{\prime}+1\right)} \frac{1}{r \sin (\theta)} \frac{\partial}{\partial \phi}\left(r^{2} e_{r}^{\prime}\right) \hat{\bar{\phi}}-\frac{i \omega}{c^{2} l^{\prime}\left(l^{\prime}+1\right)} \frac{1}{r} \frac{\partial}{\partial \theta}\left(r^{2} e_{r}^{\prime}\right) \hat{\bar{\theta}}\right) e^{-i \omega t}
$$

In the TE case, we have that;

$$
\begin{aligned}
& \nabla_{S(\overline{0}, w)} \cdot \mu_{0} \bar{K}_{f} \\
& =\left(\frac{1}{w \sin (\theta)} \frac{\partial}{\partial \phi}, \frac{1}{w \sin (\theta)} \frac{\partial}{\partial \theta} \sin (\theta)\right) \cdot\left(\frac{1}{l^{\prime}\left(l^{\prime}+1\right)} \frac{1}{r} \frac{\partial}{\partial \theta} \frac{\partial}{\partial r}\left(r^{2} b_{r}^{\prime}\right),-\frac{1}{l^{\prime}\left(l^{\prime}+1\right)} \frac{1}{r \sin (\theta)} \frac{\partial}{\partial \phi} \frac{\partial}{\partial r}\left(r^{2} b_{r}^{\prime}\right)\right) e^{-i \omega t} \\
& =\left(\frac{1}{l^{\prime}\left(l^{\prime}+1\right)} \frac{1}{w^{2} \sin (\theta)} \frac{\partial^{2}}{\partial \theta \partial \phi} \frac{\partial}{\partial r}\left(r^{2} b_{r}^{\prime}\right)-\frac{1}{l^{\prime}\left(l^{\prime}+1\right)} \frac{1}{w^{2} \sin (\theta)} \frac{\partial^{2}}{\partial \theta \partial \phi} \frac{\partial}{\partial r}\left(r^{2} b_{r}^{\prime}\right)\right) e^{-i \omega t} \\
& =0
\end{aligned}
$$

In the TM case, we have that;

$$
\begin{aligned}
& \nabla S(\overline{0}, w) \cdot \mu_{0} \bar{K}_{f} \\
& =\left(\frac{1}{w \sin (\theta)} \frac{\partial}{\partial \phi}, \frac{1}{w \sin (\theta)} \frac{\partial}{\partial \theta} \sin (\theta)\right) \cdot\left(-\frac{i \omega}{c^{2} l^{\prime}\left(l^{\prime}+1\right)} \frac{1}{r \sin (\theta)} \frac{\partial}{\partial \phi}\left(r^{2} e_{r}^{\prime}\right),-\frac{i \omega}{c^{2} l^{\prime}\left(l^{\prime}+1\right)} \frac{1}{r} \frac{\partial}{\partial \theta}\left(r^{2} e_{r}^{\prime}\right)\right) e^{-i \omega t} \\
& =-\frac{i \omega}{c^{2} l^{\prime}\left(l^{\prime}+1\right)}\left(\frac{1}{w^{2} \sin ^{2}(\theta)} \frac{\partial^{2}}{\partial \phi^{2}}\left(r^{2} e_{r}^{\prime}\right)+\frac{1}{w^{2} \sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial}{\partial \theta}\left(r^{2} e_{r}^{\prime}\right)\right)\right) e^{-i \omega t}
\end{aligned}
$$

In the TE and TM cases, we have that;

$$
\begin{aligned}
& \left(\bar{J}^{\prime}-\bar{J}\right) \cdot \hat{n} \\
& =-\bar{J} \cdot \hat{n} \\
& =-j_{r} e^{-i \omega t} \\
& =\left.\frac{i c^{2}}{\omega} \frac{\partial p}{\partial r}\right|_{S(\overline{0}, w)} e^{-i \omega t}
\end{aligned}
$$

In the TE case, we have that;

$$
\begin{aligned}
& \frac{\partial \sigma_{f}}{\partial t} \\
& =-\left.i \omega \frac{\epsilon_{0} \mu_{0} c^{4}}{\omega^{2}} \frac{\partial p}{\partial r}\right|_{S(\overline{0}, w)} e^{-i \omega t} \\
& =-\left.\frac{i c^{2}}{\omega} \frac{\partial p}{\partial r}\right|_{S(\overline{0}, w)} e^{-i \omega t}
\end{aligned}
$$

while in the TM case, we have that;

$$
\begin{aligned}
& \frac{\partial \sigma_{f}}{\partial t} \\
& =\left(-i \omega \epsilon_{0} e_{r}^{\prime}-\left.\frac{i c^{2}}{\omega} \frac{\partial p}{\partial r}\right|_{S(\overline{0}, w)}\right) e^{-i \omega t}
\end{aligned}
$$

It follows that in the TE case;

$$
\begin{aligned}
& \nabla_{S(\overline{0}, w)} \cdot \bar{K}_{f}+\left(\bar{J}^{\prime}-\bar{J}\right) \cdot \hat{n} \\
& =0+\left.\frac{i c^{2}}{\omega} \frac{\partial p}{\partial r}\right|_{S(\overline{0}, w)} e^{-i \omega t} \\
& =-\frac{\partial \sigma_{f}}{\partial t}
\end{aligned}
$$

so the continuity equation holds on the boundary. In the TM case, we have that;

$$
\begin{aligned}
& \nabla_{S(\overline{0}, w)} \cdot \bar{K}_{f}+\left(\bar{J}^{\prime}-\bar{J}\right) \cdot \hat{n}+\frac{\partial \sigma_{f}}{\partial t} \\
& \quad=-\frac{i \omega}{\mu_{0} c^{2} l^{\prime}\left(l^{\prime}+1\right)}\left(\frac{1}{w^{2} \sin ^{2}(\theta)} \frac{\partial^{2}}{\partial \phi^{2}}\left(r^{2} e_{r}^{\prime}\right)+\frac{1}{w^{2} \sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial}{\partial \theta}\left(r^{2} e_{r}^{\prime}\right)\right)\right) e^{-i \omega t}+ \\
& \quad+\left(-i \omega \epsilon_{0} e_{r}^{\prime}-\left.\frac{i c^{2}}{\omega} \frac{\partial p}{\partial r}\right|_{S(\overline{0}, w)}\right) e^{-i \omega t} \\
& \quad=-\frac{i \omega}{\mu_{0} c^{2} l^{\prime}\left(l^{\prime}+1\right)}\left(\frac{1}{w^{2} \sin ^{2}(\theta)} \frac{\partial^{2}}{\partial \phi^{2}}\left(r^{2} e_{r}^{\prime}\right)+\frac{1}{w^{2} \sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial}{\partial \theta}\left(r^{2} e_{r}^{\prime}\right)\right)\right) e^{-i \omega t} \\
& \quad-i \omega \epsilon_{0} e_{r}^{\prime} e^{-i \omega t} \\
& \quad=-\frac{i \omega \epsilon_{0}}{l^{\prime}\left(l^{\prime}+1\right)}\left(\frac{1}{w^{2} \sin ^{2}(\theta)} \frac{\partial^{2}}{\partial \phi^{2}}\left(r^{2} e_{r}^{\prime}\right)+\frac{1}{w^{2} \sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial}{\partial \theta}\left(r^{2} e_{r}^{\prime}\right)\right)\right) e^{-i \omega t} \\
& -\frac{i \omega \epsilon_{0}}{l^{\prime}\left(l^{\prime}+1\right)}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial\left(r e_{r}^{\prime}\right)}{\partial r}\right)+\frac{\omega^{2} r^{2}}{c^{2}} e_{r}^{\prime}\right) e^{-i \omega t}
\end{aligned}
$$

$$
=0
$$

as;

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial\left(r e_{r}^{\prime}\right)}{\partial r}\right)+\frac{1}{r^{2} \sin ^{2}(\theta)} \frac{\partial^{2}}{\partial \phi^{2}}\left(r e_{r}^{\prime}\right)+\frac{1}{r^{2} \sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial}{\partial \theta}\left(r e_{r}^{\prime}\right)\right)+\frac{\omega^{2}}{c^{2}} r e_{r}^{\prime}=0
$$

and we can multiply by r.
We follow the notation in [11], and denote by;

$$
\bar{J}_{l_{0}, k_{0}}=\sum_{-l_{0} \leq m \leq l_{0}} \bar{U}\left(l_{0}, m, k_{0}\right) \gamma_{l_{0}, m, k_{0}} e^{-i k_{0} c t}
$$

for $l_{0}=1$, where;
$\bar{U}\left(l_{0}, m_{0}, k_{0}\right)=\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \frac{i_{0} k_{0}^{2}}{4 \pi} \bar{W}\left(l_{0}, m\right)^{*}$
$=i\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \frac{k_{0}^{2}}{4 \pi} \bar{W}(1, m)^{*}$
and $k_{0} \in \frac{S_{l_{0}}}{w}$, for the zero set of $j_{l_{0}}$. Then \bar{J} vanishes on the sphere $S(\overline{0}, w)$ and satisfies the radial transform condition, so we can find $\rho_{l_{0}, k_{0}}$ such that $\left(\rho_{l_{0}, k_{0}}, \bar{J}_{l_{0}, k_{0}}\right)$ satisfy $(i)-(i v)$. To calculate $\rho_{l_{0}, k_{0}}$, we have that;

$$
\begin{aligned}
& \rho_{l_{0}, k_{0}}(\bar{x}, t)=\int_{S\left(\overline{0}, k_{0}\right)} f(\bar{k}) e^{i\left(\bar{k} . \bar{x}-k_{0} c t\right)} d S\left(\overline{0}, k_{0}\right) \\
& \text { where } f(\bar{k})=\frac{(\bar{k}, F(\bar{k}))}{c|\bar{k}|}=\frac{|\bar{k}|}{c}
\end{aligned}
$$

so that, using the calculation in [12] or [4];

$$
\begin{aligned}
& \rho_{l_{0}, k_{0}}(\bar{x}, t)=\frac{k_{0}}{c} e^{-i k_{0} c t} \int_{S\left(\overline{0}, k_{0}\right)} e^{i \bar{k}, \bar{x}} d S\left(\overline{0}, k_{0}\right)(\bar{k}) \\
& =\frac{k_{0}^{3}}{c} e^{-i k_{0} c t} \int_{S(\overline{0}, 1)} e^{i\left(\bar{l} k_{0} \bar{x}\right.} d S(\overline{0}, 1)(\bar{l}) \\
& =\frac{k_{0}^{3}}{c} e^{-i k_{0} c t} \frac{(2 \pi)^{\frac{3}{2}}}{\left|k_{0} \bar{x}\right|^{\frac{1}{2}} J_{\frac{1}{2}}\left(\left|k_{0} \bar{x}\right|\right)} \\
& =\frac{4 k_{0}^{3} \pi}{c} j_{0}\left(k_{0}|\bar{x}|\right) \\
& =\frac{k_{0}^{3}}{c} e^{-i k_{0} c t} 4 \pi \frac{\sin \left(\left|k_{0} \bar{x}\right|\right)}{\left|k_{0} \bar{x}\right|} \\
& =\frac{4 \pi k_{0}^{3}}{c} e^{-i \omega_{0} t} \frac{\sin \left(\left|k_{0} \bar{x}\right|\right)}{\left|k_{0} \bar{x}\right|}(P P)
\end{aligned}
$$

where $\omega_{0}=k_{0} c$
We can complete $\left(\rho_{k_{0}, l_{0}}, \bar{J}_{k_{0}, l_{0}}\right)$ to a tuple $\left(\rho_{k_{0}, l_{0}}, \bar{J}_{k_{0}, l_{0}}, \bar{E}_{k_{0}, l_{0}}, \bar{B}_{k_{0}, l_{0}}\right)$ satisfying $(i)-(v i i i)$ as follows. For (viii), we let $\bar{E}_{k_{0}, l_{0}}=e_{k_{0}, l_{0}} e^{-i \omega_{0} t}$ so that;

$$
\begin{aligned}
& -i \omega_{0} e_{k_{0}, l_{0}}=-\frac{1}{\epsilon_{0}} j_{k_{0}, l_{0}} \\
& e_{k_{0}, l_{0}}=-\frac{i}{\epsilon_{0} \omega_{0}} j_{k_{0}, l_{0}} \\
& \bar{E}_{k_{0}, l_{0}}=-\frac{i}{\epsilon_{0} \omega_{0}} \bar{J}_{k_{0}, l_{0} .} . \text { Then, as; } \\
& \frac{1}{c^{2}} \frac{\partial \bar{J}_{k_{0}, l_{0}}}{\partial t}=-\frac{i \omega_{0}}{c^{2}} \bar{J}_{k_{0}, l_{0}}=-\nabla\left(\rho_{k_{0}, l_{0}}\right)
\end{aligned}
$$

we have that $\nabla \times \bar{E}_{k_{0}, l_{0}}=\nabla \times \bar{J}_{k_{0}, l_{0}}=\nabla \times \nabla\left(\rho_{k_{0}, l_{0}}\right)=\overline{0}$
and, as $\square^{2} \bar{J}_{k_{0}, l_{0}}=\overline{0}, \square^{2} \bar{E}_{k_{0}, l_{0}}=\overline{0}$, so that (v) holds.
We have that;

$$
\begin{aligned}
& \nabla \cdot \bar{E}_{k_{0}, l_{0}}=\nabla \cdot-\frac{i}{\epsilon_{0} \omega_{0}} \bar{J}_{k_{0}, l_{0}} \\
& =\frac{i}{\epsilon_{0} \omega_{0}} \frac{\partial \rho_{k_{0}, l_{0}}}{\partial t} \\
& =\frac{i}{\epsilon_{0} \omega_{0}}\left(-i \omega_{0}\right) \rho_{k_{0}, l_{0}} \\
& =\frac{\rho_{k_{0}, l_{0}}}{\epsilon_{0}}
\end{aligned}
$$

so that (vii) is satisfied. Setting $\bar{B}=\overline{0}$, we obtain (vi). Observe that by the calculation $(P P), \rho_{k_{0}, l_{0}}$ is a scalar multiple of the form considered before the introduction of \bar{J} vanishing at the boundary with the Bessel function defined by $l=0$ and with $m=0$. As the set of relations $(i)-(i v)$ hold for both $\bar{J}_{k_{0}, l_{0}}$ and \bar{J}, where \bar{J} is defined from $\rho_{k_{0}, l_{0}}$ using (**) at the beginning of the paper, we must have that;

$$
\begin{aligned}
& \frac{\partial \bar{J}_{k_{0}, l_{0}}-\bar{J}}{\partial t}=\overline{0} \\
& \square^{2}\left(\bar{J}_{k_{0}, l_{0}}-\bar{J}\right)=\overline{0}
\end{aligned}
$$

so that;

$$
\nabla^{2}\left(\bar{J}_{k_{0}, l_{0}}-\bar{J}\right)=\overline{0}
$$

and;
$\bar{J}_{k_{0}, l_{0}}=\bar{J}+\bar{c}(t)$, by boundedness and the fact that the difference is harmonic at a given time t. Using the relation (iv) again, we must have that $\bar{c}^{\prime}(t)=\overline{0}$, so that $\bar{c}(t)=\bar{c}$ is time independent. By the fact that the difference $\bar{J}_{k_{0}, l_{0}}-\bar{J}$ is of the form $\bar{j}(x, y, z) e^{-i k_{0} c t}$, we must have that $\bar{c}=\overline{0}$ so that $\bar{J}_{k_{0}, l_{0}}=\bar{J}$. We can then use the calculation above to verify the continuity equation at the boundary.

By construction $\left.\bar{E}_{k_{0}, l_{0}}\right|_{S(\overline{0}, w)}=\overline{0}$, in particular, the components $\left\{e_{k_{0}, l_{0}, \theta}, e_{k_{0}, l_{0}, \phi}\right\}$ vanish at the boundary of the magnetron, so that $\bar{E}_{k_{0}, l_{0}}^{\|}=\overline{0}$ and clearly $\bar{B}_{k_{0}, l_{0}}^{\perp}=0$ as well. As above, in the TE mode case, from (X), we can achieve compatibility of the boundaty condition with $\frac{\partial r^{2} b_{r}}{\partial \theta}=\frac{\partial r^{2} b_{r}}{\partial \phi}=0$, and $r^{2} b_{r}=0$ at the boundary. By the explicit form of $r b_{r}$ in (C1), if the magnetron has radius w, we achieve this when $R=\left.j_{l_{0}}\left(\frac{\omega_{0} r}{c}\right)\right|_{\delta S(\overline{0}, w)}=0$, we consider the simplest solution $p_{l_{0}, m_{0}, c}$, with $l_{0}=1, m_{0}=0$. In the TM mode case, from (Y), we can achieve this with $\frac{\partial r^{2} e_{r}}{\partial r}=0$, as $b_{r}=0$ in the TM mode. By the explicit form of $r e_{r}$ in (C1), if the magnetron has radius w, this is achieved when $\frac{\partial r R}{\partial r}=\left.\frac{\partial r j_{l_{0}^{\prime}}\left(\frac{\omega_{0}^{\prime} r}{c}\right)}{\partial r}\right|_{\delta S(\overline{0}, w)}=0$. Note that we can achieve this condition with a single Bessel function by Rolle's theorem and the fact that the Bessel functions j_{l} have infinitely many zeros for $l \geq 0$. We cannot, however achieve this condition with $j_{l_{0}^{\prime}}$, for $l_{0}=l_{0}^{\prime}$ unless $\omega=0$, as all the non-zero roots are simple.

In the TE case, we have that the surface charge $\frac{\sigma_{k_{0}, l_{0}}}{\epsilon_{0}}$ is given by;

$$
\begin{aligned}
& \bar{E}_{k_{0}, l_{0}}^{\prime \perp}-\bar{E}_{k_{0}, l_{0}}^{\perp} \\
& =\bar{E}_{k_{0}, l_{0}}^{\perp \perp} \\
& =e_{k_{0}, l_{0}, r}^{\prime} e^{-i \omega_{0} t} \\
& =0
\end{aligned}
$$

by definition of the TE mode and the fact that $\bar{E}=\overline{0}$ at the boundary $S(\overline{0}, w)$.

In the TM case, we have that the surface charge $\frac{\sigma_{k_{0}, l_{0}, f}}{\epsilon_{0}}$ is given by;

$$
\begin{aligned}
& \bar{E}_{k_{0}, l_{0}}^{\perp}-\bar{E}_{k_{0}, l_{0}}^{\perp} \\
& =\bar{E}_{k_{0}, l_{0}}^{\perp} \\
& =e_{k_{0}, l_{0}, r}^{\prime} e^{-i \omega_{0}^{\prime} t}
\end{aligned}
$$

where $r e_{k_{0}, l_{0}, r}^{\prime}$ satisfies the usual relations with $R=j_{l_{0}^{\prime}}\left(\frac{\omega_{0}^{\prime} r}{c}\right)$.
In the TE case, we have that the surface current $\bar{K}_{k_{0}, l_{0}, f}$ is given by;

$$
\begin{aligned}
& \mu_{0}\left(\bar{K}_{k_{0}, l_{0}, f} \times \hat{r}\right)=\bar{B}_{k_{0}, l_{0}}^{\prime \|}-\bar{B}_{k_{0}, l_{0}}^{\|} \\
& =\bar{B}_{k_{0}, l_{0}}^{\prime \|} \\
& =\left(b_{k_{0}, l_{0}, \theta}^{\prime} \dot{\bar{\theta}}+b_{k_{0}, l_{0}, \phi}^{\prime} \hat{\bar{\phi}}\right) e^{-i \omega_{0} t} \\
& =\left(\frac{1}{l_{0}\left(l_{0}+1\right)} \frac{1}{r} \frac{\partial}{\partial \theta} \frac{\partial}{\partial r}\left(r^{2} b_{k_{0}, l_{0}, r}^{\prime}\right) \hat{\bar{\theta}}+\frac{1}{l_{0}\left(l_{0}+1\right)} \frac{1}{r \sin (\theta)} \frac{\partial}{\partial \phi} \frac{\partial}{\partial r}\left(r^{2} b_{k_{0}, l_{0}, r}^{\prime}\right) \hat{\bar{\phi}}\right) e^{-i \omega_{0} t}
\end{aligned}
$$

where $r b_{k_{0}, l_{0}, r}^{\prime}$ satisfies the relations above. It follows that;

$$
\mu_{0} \bar{K}_{k_{0}, l_{0}, f}=\left(\frac{1}{l_{0}\left(l_{0}+1\right)} \frac{1}{r} \frac{\partial}{\partial \theta} \frac{\partial}{\partial r}\left(r^{2} b_{k_{0}, l_{0}, r}^{\prime}\right) \hat{\bar{\phi}}-\frac{1}{l_{0}\left(l_{0}+1\right)} \frac{1}{r \sin (\theta)} \frac{\partial}{\partial \phi} \frac{\partial}{\partial r}\left(r^{2} b_{k_{0}, l_{0}, r}^{\prime}\right) \hat{\bar{\theta}}\right) e^{-i \omega_{0} t}
$$

In the TM case, we have that;

$$
\begin{aligned}
& \mu_{0}\left(\bar{K}_{k_{0}, l_{0}, f} \times \hat{r}\right)=\bar{B}_{k_{0}, l_{0}}^{\prime \|}-\bar{B}_{k_{0}, l_{0}}^{\|} \\
& =\bar{B}_{k_{0}, l_{0}}^{\prime \|} \\
& =\left(-\frac{i \omega_{0}^{\prime}}{c^{2} l_{0}^{\prime}\left(l_{0}^{\prime}+1\right)} \frac{1}{r \sin (\theta)} \frac{\partial}{\partial \phi}\left(r^{2} e_{k_{0}, l_{0}, r}^{\prime}\right) \hat{\bar{\theta}}+\frac{i \omega_{0}^{\prime}}{c^{2} l_{0}^{\prime}\left(l_{0}^{\prime}+1\right)} \frac{1}{r} \frac{\partial}{\partial \theta}\left(r^{2} e_{r}^{\prime}\right) \hat{\bar{\phi}}\right) e^{-i \omega_{0}^{\prime} t}
\end{aligned}
$$

where $r e_{k_{0}, l_{0}, r}^{\prime}$ satisfies the relations above. It follows that;

$$
\mu_{0} \bar{K}_{k_{0}, l_{0}, f}=\left(-\frac{i \omega_{0}^{\prime}}{c^{2} l_{0}\left(l_{0}^{\prime}+1\right)} \frac{1}{r \sin (\theta)} \frac{\partial}{\partial \phi}\left(r^{2} e_{k_{0}, l_{0}, r}^{\prime}\right) \hat{\bar{\phi}}-\frac{i \omega_{0}^{\prime}}{c^{2} l_{0}^{\prime}\left(l_{0}^{\prime}+1\right)} \frac{1}{r} \frac{\partial}{\partial \theta}\left(r^{2} e_{k_{0}, l_{0}, r}^{\prime}\right) \hat{\bar{\theta}}\right) e^{-i \omega_{0}^{\prime} t}
$$

It follows that in the TE case, if we fix a circle $S_{\theta_{0}}$ on the sphere given by $\theta=\theta_{0}$, we have that the current along $S_{\theta_{0}}$ in the direction of
$\hat{\bar{\phi}}$ is given by, when $m_{0}=0, l_{0}=1$;

$$
\begin{aligned}
& \left.\mu_{0} \bar{K}_{k_{0}, l_{0}, f}\right|_{S_{\theta_{0}}}=\left.\frac{1}{2 w} \frac{\partial^{2}}{\partial \theta \partial r}\left(r R_{k_{0}, l_{0}}(r) \Theta_{k_{0}, l_{0}}(\theta) \Phi_{k_{0}, l_{0}}(\phi)\right)\right|_{w, \theta_{0}, \phi} \hat{\bar{\phi}} e^{-i \omega_{0} t} \\
& =\left.\frac{1}{2 w}\left(R_{k_{0}, l_{0}}(r) \Theta_{k_{0}, l_{0}}^{\prime}(\theta) \Phi_{k_{0}, l_{0}}(\phi)+R_{k_{0}, l_{0}}^{\prime}(r) \Theta_{k_{0}, l_{0}}^{\prime}(\theta) \Phi_{k_{0}, l_{0}}(\phi)\right)\right|_{w, \theta_{0}, \phi} \hat{\bar{\phi}} e^{-i \omega_{0} t} \\
& =\left.\frac{1}{2 w}\left(R_{k_{0}, l_{0}}^{\prime}(r) \Theta_{k_{0}, l_{0}}^{\prime}(\theta) \Phi_{k_{0}, l_{0}}(\phi)\right)\right|_{w, \theta_{0}, \phi} \hat{\bar{\phi}} e^{-i \omega_{0} t},\left(R_{k_{0}, l_{0}}(w)=0\right) \\
& =\left.\frac{1}{2 w} j_{1}^{\prime}\left(\frac{\omega_{0} r}{c}\right)\left(P_{1}^{0}(\cos (\theta))\right)^{\prime}\right|_{w, \theta_{0}, \phi} e^{-i \omega_{0} t} \hat{\bar{\phi}} \\
& =\left.\frac{1}{2 w} j_{1}^{\prime}\left(\frac{\omega_{0} r}{c}\right)(\cos (\theta))^{\prime}\right|_{w, \theta_{0}, \phi} e^{-i \omega_{0} t} \hat{\bar{\phi}} \\
& =-\frac{\sin \left(\theta_{0}\right) \omega_{0}}{2 w c} j_{1}^{\prime}\left(\frac{\omega_{0} w}{c}\right) e^{-i \omega_{0} t} \hat{\bar{\phi}}
\end{aligned}
$$

which is alternating current of amplitude $\frac{\sin \left(\theta_{0}\right) \omega_{0}}{2 w c} j_{1}^{\prime}\left(\frac{\omega_{0} w}{c}\right)$ and frequency $\frac{\omega_{0}}{2 \pi}$.

By the above, we have that the surface charge in the TE mode is zero, so the potential due to the surface charge on the sphere $S\left(\overline{0}, k_{0}\right)$ is also zero, by Jefimenko's equations. As $\rho=0$ outside the magnetron, again by Jefimenko's equations, the causal potential on the sphere $S(\overline{0}, w)$, due to the TE mode, is again zero. The potential due to the charge inside the magnetron is found using the method of [10]. We have that, using the calculation above;

$$
\begin{aligned}
& V_{k_{0}, l_{0}}(\bar{x}, t)=\frac{c^{2} \epsilon_{0} \rho_{k_{0}, l_{0}}(\bar{x}, t)}{\omega^{2}} \\
& =\frac{4 \pi k_{0}^{3} c^{2} \epsilon_{0}}{c \omega_{0}^{2}} e^{-i \omega_{0} t \frac{\sin \left(\left|k_{0} \bar{x}\right|\right)}{\left|k_{0} \bar{x}\right|}} \\
& =\frac{4 \pi k_{0}^{3} c \epsilon_{0}}{\omega_{0}^{2}} e^{-i \omega_{0} t} \frac{\sin \left(\left|k_{0} \bar{x}\right|\right)}{\left|k_{0} \bar{x}\right|}
\end{aligned}
$$

so the surface $S(\overline{0}, w)$ is an equipotential $\frac{4 \pi k_{0}^{3} c \epsilon_{0}}{\omega_{0}^{2}} e^{-i \omega_{0} t \frac{\sin \left(k_{0} w\right)}{k_{0} w}}$
In particularly, if we ground $\phi=0$ and take real parts, the impedance $Z_{\theta_{0}}$ along $S_{\theta_{0}}$ is given by;

$$
Z_{\theta_{0}}=\frac{\frac{4 \pi k_{0}^{3} c c_{0} \mu_{0}}{\omega_{0}^{0}} e^{-i \omega_{0} t \frac{\sin \left(k_{0} w\right)}{k_{0} w}}}{\frac{\sin \left(\theta_{0}\right) \omega_{0}}{2 w_{c}} j_{1}^{\prime}\left(\frac{\omega_{0} w}{c}\right) e^{-i \omega_{0} t}}
$$

$$
\begin{aligned}
& =\frac{\frac{4 \pi k_{0}^{3}}{c \omega_{0}^{2}} \frac{\sin \left(k_{0} w\right)}{k_{0} w}}{-\frac{\sin \left(\theta_{0}\right) \omega_{0} w}{2 w c} j_{1}^{\prime}\left(\frac{\omega_{0} w}{c}\right)} \\
& =\frac{8 \pi}{c^{2} \omega_{0}} \frac{\sin \left(k_{0} w\right)}{\sin \left(\theta_{0}\right) j_{1}^{\prime}\left(\frac{\omega_{0} w}{c}\right)}
\end{aligned}
$$

The cases when $l_{0} \neq 1$ mean changing the frequency ω_{0} to a new ω_{0}^{\prime}, but the cases can be computed using the formula for the derivative of an associated Legendre polynomial, when $-l_{0} \leq m_{0} \leq l_{0}, l_{0} \geq 1$, see [14], with the convention that $P_{l}^{m}=0$ for $|m|>l$. The quoted formula assumes the Condon-Shortley phase factor $(-1)^{m_{0}}$ which is not used here, but the formula is not effected;

$$
\left(x^{2}-1\right) \frac{d}{d x}\left(P_{l_{0}}^{m_{0}}(x)\right)=l_{0} x P_{l_{0}}^{m_{0}}(x)-\left(l_{0}+m_{0}\right) P_{l_{0}-1}^{m_{0}}(x)
$$

which gives that;

$$
\begin{aligned}
& P_{l_{0}}^{m_{0}}(\cos (\theta))^{\prime}=\frac{\sin (\theta)}{\sin ^{2}(\theta)}\left(l_{0} \cos (\theta) P_{l_{0}}^{m_{0}}(\cos (\theta))-\left(l_{0}+m_{0}\right) P_{l_{0}-1}^{m_{0}}(\cos (\theta))\right) \\
& =l_{0} \cot (\theta) P_{l_{0}}^{m_{0}}(\cos (\theta))-\left(l_{0}+m_{0}\right) \operatorname{cosec}(\theta) P_{l_{0}-1}^{m_{0}}(\cos (\theta))
\end{aligned}
$$

It follows that in the TE case, if we fix a circle $S_{\theta_{0}}$ on the sphere given by $\theta=\theta_{0}$, we have that the current along $S_{\theta_{0}}$ in the direction of $\hat{\bar{\phi}}$ is given in general for the basic solutions $p_{l_{0}^{\prime}, m_{0}^{\prime}, c}$, for $l_{0}^{\prime} \geq 2,-l_{0}^{\prime} \leq m_{0}^{\prime} \leq l_{0}^{\prime}$ by;

$$
\begin{aligned}
& \left.\mu_{0} \bar{K}_{k_{0}, l_{0}, f}\right|_{S_{\theta_{0}}}=\left.\frac{1}{l_{0}^{\prime}\left(l_{0}^{\prime}+1\right) w} \frac{\partial^{2}}{\partial \theta \partial r}\left(r R_{k_{0}, l_{0}}(r) \Theta_{k_{0}, l_{0}}(\theta) \Phi_{k_{0}, l_{0}}(\phi)\right)\right|_{w, \theta_{0}, \phi} \hat{\bar{\phi}} e^{-i \omega_{0}^{\prime} t} \\
& =\left.\frac{1}{l_{0}^{\prime}\left(l_{0}^{\prime}+1\right) w}\left(R_{k_{0}, l_{0}}(r) \Theta_{k_{0}, l_{0}}^{\prime}(\theta) \Phi_{k_{0}, l_{0}}(\phi)+R_{k_{0}, l_{0}}^{\prime}(r) \Theta_{k_{0}, l_{0}}^{\prime}(\theta) \Phi_{k_{0}, l_{0}}(\phi)\right)\right|_{w, \theta_{0}, \phi} \hat{\bar{\phi}} e^{-i \omega_{0}^{\prime} t} \\
& =\left.\frac{1}{l_{0}^{\prime}\left(l_{0}^{\prime}+1\right) w}\left(R_{k_{0}, l_{0}}^{\prime}(r) \Theta_{k_{0}, l_{0}}^{\prime}(\theta) \Phi_{k_{0}, l_{0}}(\phi)\right)\right|_{w, \theta_{0}, \phi} \hat{\bar{\phi}} e^{-i \omega_{0}^{\prime} t} \\
& =\left.\frac{1}{l_{0}^{\prime}\left(l_{0}^{\prime}+1\right) w} j_{l_{0}^{\prime}}^{\prime}\left(\frac{\omega_{0}^{\prime} r}{c}\right)\left(P_{l_{0}}^{m_{0}}\left(\cos \left(\theta_{0}\right)\right)\right)^{\prime} \cos \left(m_{0} \phi\right)\right|_{w, \theta_{0}, \phi} e^{-i \omega_{0}^{\prime} t \hat{\bar{\phi}}} \\
& =\frac{1}{l_{0}^{\prime}\left(l_{0}^{\prime}+1\right) w} j_{l_{0}^{\prime}}^{\prime}\left(\frac{\omega_{0}^{\prime} r}{c}\right) \cos \left(m_{0}^{\prime} \phi\right)\left(l_{0}^{\prime} \cot \left(\theta_{0}\right) P_{l_{0}^{\prime}}^{m_{0}^{\prime}}\left(\cos \left(\theta_{0}\right)\right)-\left(l_{0}^{\prime}+m_{0}^{\prime}\right) \operatorname{cosec}\left(\theta_{0}\right) P_{l_{0}^{\prime}-1}^{m_{0}^{\prime}}\left(\cos \left(\theta_{0}\right)\right)\right) e^{-i \omega_{0}^{\prime} t} \hat{\bar{\phi}} \\
& \left.=j_{l_{0}^{\prime}}^{\prime} \frac{\omega_{0}^{\prime} r}{c}\right) e^{-i \omega_{0}^{\prime} t} \cos \left(m_{0}^{\prime} \phi\right) \hat{\bar{\phi}}\left(\frac{1}{\left(l_{0}^{\prime}+1\right) w} \cot \left(\theta_{0}\right) P_{l_{0}^{\prime}}^{m_{0}^{\prime}}\left(\cos \left(\theta_{0}\right)\right)-\frac{\left(l_{\left.l_{0}^{\prime}+m_{0}^{\prime}\right)}^{l_{0}^{\prime}\left(l_{0}^{\prime}+1\right) w} \operatorname{cosec}\left(\theta_{0}\right) P_{l_{0}^{\prime}-1}^{m_{0}^{\prime}}\left(\cos \left(\theta_{0}\right)\right)\right)}{}\right.
\end{aligned}
$$

We leave it as an exercise to compute the impedance following the method below.
..... Similarly, in the TM case, if we fix the circle $S_{\theta_{0}}$ on the sphere
given by $\theta=\theta_{0}$, we have that the current $\mu_{0} I_{\theta_{0}}$ along $S_{\theta_{0}}$ in the direction of $\hat{\bar{\phi}}$ is given by;

$$
\begin{aligned}
& \left.-\left.\frac{i \omega_{0}^{\prime}}{c^{2} l_{0}^{\prime}\left(l_{0}^{\prime}+1\right)} \frac{w}{w \sin (\theta)} \frac{\partial}{\partial \phi}\left(R_{k_{0}, l_{0}}(r) \Theta_{k_{0}, l_{0}}(\theta) \Phi_{k_{0}, l_{0}}(\phi)\right)\right|_{w, \theta_{0}, \phi} \hat{\bar{\phi}}\right) e^{-i \omega_{0}^{\prime} t} \\
& \left.=-\left.\frac{i \omega_{0}^{\prime}}{c^{2} l_{0}^{\prime}\left(l_{0}^{\prime}+1\right)} \frac{1}{\sin (\theta)}\left(R_{k_{0}, l_{0}}(r) \Theta_{k_{0}, l_{0}}(\theta) \Phi_{k_{0}, l_{0}}^{\prime}(\phi)\right)\right|_{w, \theta_{0}, \phi} \hat{\bar{\phi}}\right) e^{-i \omega_{0}^{\prime} t}
\end{aligned}
$$

We consider the case $l_{0}^{\prime} \neq 1,-l_{0}^{\prime} \leq m_{0}^{\prime} \leq l_{0}^{\prime}$ remembering that we require $\left.\frac{\partial}{\partial r}\left(r j_{l_{0}^{\prime}}\left(\frac{\omega_{0}^{\prime} r}{c}\right)\right)\right|_{\delta S(\overline{0}, w)}=0$, which we cannot achieve with $l_{0}^{\prime}=1$. We consider the basic solutions $p_{l_{0}^{\prime}, m_{0}^{\prime}, c}$.

$$
\begin{aligned}
& \mu_{0} I_{\theta_{0}}=-\frac{i \omega_{0}^{\prime}}{l_{0}^{\prime}\left(l_{0}^{\left.l_{0}+1\right) c^{2}}\right.} \frac{1}{\sin \left(\theta_{0}\right)} j_{l_{0}^{\prime}}^{\prime}\left(\frac{\omega_{0}^{\prime} w}{c}\right)\left(\left(P_{l_{0}^{l_{0}^{\prime}}}^{\prime_{0}^{\prime}}\right)\left(\cos \left(\theta_{0}\right)\right)\right) \cos \left(m_{0}^{\prime} \phi\right)^{\prime} \hat{\bar{\phi}} e^{-i \omega_{0}^{\prime} t} \\
& =\frac{i m_{0}^{\prime} \omega_{0}^{\prime}}{l_{0}^{\prime}\left(l_{0}^{\prime}+1\right) c^{2}} \frac{1}{\sin \left(\theta_{0}\right)} j_{l_{0}^{\prime}}\left(\frac{\omega_{0}^{\prime} w}{c}\right)\left(\left(P_{l_{0}^{\prime}}^{m_{0}^{\prime}}\right)\left(\cos \left(\theta_{0}\right)\right)\right) \sin \left(m_{0}^{\prime} \phi\right) \hat{\bar{\phi}} e^{-i \omega_{0}^{\prime} t}
\end{aligned}
$$

As $\rho=0$ outside the magnetron, again by Jefimenko's equations, the causal potential on the sphere $S(\overline{0}, w)$, due to the TM mode, is again zero. We can ignore the potential due to the surface charge in the TM mode, by Jefimenko's equations. As before, $S(\overline{0}, w)$ is an equipotential;

$$
V_{k_{0}, l_{0}}=\frac{4 \pi k_{0}^{3} c \epsilon_{0}}{\omega_{0}^{2}} e^{-i \omega_{0} t \frac{\sin \left(k_{0} w\right)}{k_{0} w}}
$$

due to the configuration inside the magnetron. We consider the $2 m_{0}^{\prime}$ points $\phi \in\left\{\frac{k \pi}{m_{0}^{\prime}}:-m_{0}^{\prime} \leq k \leq m_{0}^{\prime}-1\right\}$ on the circle defined by $\theta=\theta_{0}$. Then the average current between the points $\phi=\frac{j \pi}{m_{0}^{\prime}}, \phi=\frac{(j+1) \pi}{m_{0}^{\prime}}$, $-m_{0}^{\prime} \leq j \leq m_{0}^{\prime}-1 \bmod m_{0}^{\prime}$ is;

$$
\begin{aligned}
& \frac{m_{0}^{\prime}}{\mu_{0} \pi} \int_{\frac{j \pi}{m_{0}^{\prime}}}^{\frac{(j+1) \pi}{m_{0}^{\prime}}} \frac{i m_{0}^{\prime} \omega_{0}^{\prime}}{l_{0}^{\prime}\left(l_{0}^{0}+1\right) c^{2}} j_{l_{0}^{\prime}}\left(\frac{\omega_{0}^{\prime} w}{c}\right)\left(\left(P_{l_{0}^{\prime}}^{m_{0}^{\prime}}\right)\left(\cos \left(\theta_{0}\right)\right)\right) \sin \left(m_{0}^{\prime} \phi\right) \hat{\bar{\phi}} e^{-i \omega_{0}^{\prime} t} d \phi \\
& =\frac{m_{0}^{\prime}}{\mu_{0} \pi} \frac{i m_{0}^{\prime} \omega_{0}^{\prime}}{l_{0}^{\prime}\left(l_{0}^{\prime}+1\right) c^{2}} j_{l_{0}^{\prime}}\left(\frac{\omega_{0}^{\prime} w}{c}\right) e^{-i \omega_{0}^{\prime} t}\left(\left(P_{l_{0}^{\prime}}^{m_{0}^{\prime}}\right)\left(\cos \left(\theta_{0}\right)\right)\right) \hat{\bar{\phi}} \int_{\frac{j \pi}{m_{0}^{\prime}}}^{\frac{(j+1) \pi}{m_{0}^{\prime}}} \sin \left(m_{0}^{\prime} \phi\right) d \phi \\
& =\frac{2(-1)^{j} m_{0}^{\prime 2}}{\mu_{0} \pi} \frac{i \omega_{0}^{\prime}}{l_{0}^{\prime}\left(l_{0}^{\prime}+1\right) c^{2}} j_{l_{0}^{\prime}}\left(\frac{\omega_{0}^{\prime} w}{c}\right) e^{-i \omega_{0}^{\prime} t}\left(\left(P_{l_{0}^{\prime}}^{m_{0}^{\prime}}\right)\left(\cos \left(\theta_{0}\right)\right) \hat{\bar{\phi}}\right.
\end{aligned}
$$

whereas if we ground the m_{0} points corresponding to $\phi \in\left\{\frac{\left(2 s-m_{0}\right) \pi}{m_{0}}\right.$: $\left.0 \leq s \leq m_{0}-1\right\}$, the potential difference across the $2 m_{0}$ regions is $\frac{4 \pi k_{0}^{3} c \epsilon_{0}}{\omega_{0}^{2}} e^{-i \omega_{0} t \frac{\sin \left(k_{0} w\right)}{k_{0} w} \text {. }}$

Taking real parts, we have that the average current is given by;

$$
\frac{2(-1)^{j} m_{0}^{\prime 2}}{\mu_{0} \pi} \frac{\omega_{0}^{\prime}}{l_{0}^{\prime}\left(l_{0}^{\prime}+1\right) c^{2}} j_{l_{0}^{\prime}}\left(\frac{\omega_{0}^{\prime} w}{c}\right) \sin \left(\omega_{0}^{\prime} t\right)\left(\left(P_{l_{0}^{\prime}}^{m_{0}^{\prime}}\right)\left(\cos \left(\theta_{0}\right)\right)\right)
$$

whereas the potential is;

$$
\frac{4 \pi k_{0}^{3} c \epsilon_{0}}{\omega_{0}^{2}} \frac{\sin \left(k_{0} w\right)}{k_{0} w} \cos \left(\omega_{0} t\right)
$$

We have that;

$$
\cos \left(\omega_{0}^{\prime} t\right)-\cos \left(\omega_{0} t\right)=-2 \sin \left(\frac{\left(\omega_{0}+\omega_{0}^{\prime}\right)}{2} t\right) \sin \left(\frac{\left(\omega_{0}-\omega_{0}^{\prime}\right)}{2} t\right)
$$

so that if we apply a voltage;
$V^{\prime}(t)=-\frac{8 \pi k_{0}^{3} c \epsilon_{0}}{\omega_{0}^{2}} \frac{\sin \left(k_{0} w\right)}{k_{0} w} \sin \left(\frac{\left(\omega_{0}+\omega_{0}^{\prime}\right)}{2} t\right) \sin \left(\frac{\left(\omega_{0}-\omega_{0}^{\prime}\right)}{2} t\right)$
to the sphere boundary, the total sphere potential is;

$$
\frac{4 \pi k_{0}^{3} c \epsilon_{0}}{\omega_{0}^{2}} \frac{\sin \left(k_{0} w\right)}{k_{0} w} \cos \left(\omega_{0}^{\prime} t\right)
$$

and the impedance in the $2 m_{0}$ regions is;

$$
\begin{aligned}
& Z_{j, \theta_{0}}=i \frac{\frac{4 \pi k_{0}^{3} c \epsilon_{0} \mu_{0}}{\omega_{0}^{2}} \frac{\sin \left(k_{0} w\right)}{k_{0} w}}{\frac{2(-1)^{j} m_{0}^{\prime 2}}{\pi} \frac{\omega_{0}^{\prime}}{l_{0}^{\prime}\left(l_{0}^{\prime}+1\right) c^{2}} j_{l_{0}^{\prime}}\left(\frac{\omega_{0}^{\prime} w}{c}\right)\left(\left(P_{l_{0}^{\prime}}^{m_{0}^{\prime}}\right)\left(\cos \left(\theta_{0}\right)\right)\right)} \\
& =i \frac{2 \pi^{2}(-1)^{j} l_{0}^{\prime}\left(l_{0}^{\prime}+1\right) \sin \left(\frac{\omega_{0} w}{c}\right)}{\left.m_{0}^{\prime 2} c w \omega_{0}^{\prime} j_{l_{0}^{\prime}}^{\omega_{0}^{\prime} w} \frac{c}{c}\right)\left(\left(P_{l_{0}^{\prime}}^{m_{0}^{\prime}}\right)\left(\cos \left(\theta_{0}\right)\right)\right)}
\end{aligned}
$$

V^{\prime} can be generated from an AC potential of frequency $\frac{\left(\omega_{0}+\omega_{0}^{\prime}\right)}{4 \pi}$, with a variable transformer, in which the sliding contact determining the turns ratio varies as $\sin \left(\frac{\left(\omega_{0}-\omega_{0}^{\prime}\right)}{2} t\right)$. Alternatively, the potentials;

$$
\begin{aligned}
& \frac{4 \pi k_{0}^{3} c \epsilon_{0}}{\omega_{0}^{2}} \frac{\sin \left(k_{0} w\right)}{k_{0} w} \cos \left(\omega_{0}^{\prime} t\right) \\
& \frac{4 \pi k_{0}^{3} c \epsilon_{0}}{\omega_{0}^{2}} \frac{\sin \left(k_{0} w\right)}{k_{0} w} \cos \left(\omega_{0} t\right)
\end{aligned}
$$

can be generated directly using an $R L$ or $R C$ circuit, tuned to the correct resonant frequency, and then combined using a mixer. Notice that the approximation to the current becomes better with large m_{0}^{\prime}.

Lemma 0.2. Let $(\rho, \bar{J}, \bar{E}, \bar{B})$ be the configuration found in Lemma 0.1, and let $\left(\bar{E}^{\prime}, \bar{B}^{\prime}\right)$ be the causal fields generated by Jefimenko's equations for the current and charge (ρ, \bar{J}) restricted to $B(\overline{0}, w)$. Then
on $B^{\circ}(\overline{0}, w), \bar{E}^{\prime}=\bar{E}+\bar{E}_{0}, \bar{B}^{\prime}=\bar{B}_{0}$ where $\left(\bar{E}_{0}, \bar{B}_{0}\right)$ is a solution to Maxwell's equation in vacuum, and on $B(\overline{0}, w)^{c},\left(\bar{E}^{\prime}, \bar{B}^{\prime}\right)$ is a solution to Maxwell's equation in vacuum.

Proof. By the proof in [11], we have that ($\rho, \bar{J}, \bar{E}^{\prime}, \bar{B}^{\prime}$) satisfy Maxwell's equations on $B^{\circ}(\overline{0}, w)$ and $\left(0, \overline{0}, \bar{E}^{\prime}, \bar{B}^{\prime}\right)$ satisfy Maxwell's equations on $B(\overline{0}, w)^{c}$. By the proof in [11], we can find $\left(\bar{E}_{0}, \bar{B}_{0}\right)$ satisfying Maxwell's equations in vacuum on $B^{\circ}(\overline{0}, w)$, such that;

$$
\nabla \times\left(\bar{E}^{\prime}-\bar{E}_{0}\right)=\overline{0}
$$

We then have that $\frac{\partial\left(\bar{B}^{\prime}-\bar{B}_{0}\right)}{\partial t}=\nabla \times\left(\bar{E}^{\prime}-\bar{E}_{0}\right)=\overline{0}$
so that $\left(\bar{B}^{\prime}-\bar{B}_{0}\right)$ is magnetostatic. By the proof of Lemma 0.1 and a careful examination of the proof in [11], we have that;

$$
\bar{B}^{\prime}-\bar{B}_{0}
$$

is of the form $\bar{b}^{\prime \prime}(x, y, z) e^{-i \omega t}$, so that $-i \omega \bar{b}^{\prime \prime}=\overline{0}, \bar{b}^{\prime \prime}=\overline{0}$ and $\bar{B}^{\prime}=\bar{B}_{0}$. We have that;

$$
\begin{aligned}
& \left(\bar{E}^{\prime}-\bar{E}_{0}-\bar{E}, \bar{B}^{\prime}-\bar{B}_{0}-\bar{B}\right)=\left(\bar{E}^{\prime}-\bar{E}_{0}-\bar{E}, \overline{0}-\overline{0}\right) \\
& =\left(\bar{E}^{\prime}-\bar{E}_{0}-\bar{E}, \overline{0}\right)
\end{aligned}
$$

is a solution to Maxwell's equation in vacuum, on the ball $B(\overline{0}, w)$, so that, by Maxwell's fourth equation;

$$
\frac{\partial\left(\bar{E}^{\prime}-\bar{E}_{0}-\bar{E}\right)}{\partial t}=\nabla \times \overline{0}-\overline{0}=\overline{0}
$$

Again, using the explicit form $\bar{e}^{\prime \prime}(x, y, z) e^{-i \omega t}$ for $\bar{E}^{\prime}-\bar{E}_{0}-\bar{E}$, it follows that $\bar{E}^{\prime}-\bar{E}_{0}=\bar{E}$.

Lemma 0.3. Let \bar{E} be a field, of the form $\bar{e}(x, y, z) e^{-i \omega t}$ with the property that $\square^{2}(\bar{E})=\overline{0}$ and $\nabla \cdot \bar{E}=0$, or equivalently $\nabla^{2}(\bar{e})=-\frac{\omega^{2}}{c^{2}} \bar{e}$ and $\nabla \cdot \bar{e}=0$, then there exists a unique field \bar{B} of the form $\bar{b} e^{-i \omega t}$ such that the pair (\bar{E}, \bar{B}) satisfies Maxwell's equations in free space.
Proof. Clearly (i) of Maxwell's equations is satisfied. Let $\bar{B}=\bar{b} e^{-i \omega t}$, where $\bar{b}=-\frac{i}{\omega} \nabla \times \bar{e}$. For (ii), we have that;

$$
\begin{aligned}
& \nabla \times \bar{E}=(\nabla \times \bar{e}) e^{-i \omega t} \\
& =i \omega\left(\frac{-i}{\omega}\right) \nabla \times \bar{e} e^{-i \omega t} \\
& =i \omega \bar{b} e^{-i \omega t} \\
& =-\frac{\partial \bar{B}}{\partial t}
\end{aligned}
$$

For (iii), we have that;

$$
\begin{aligned}
& \nabla \cdot \bar{B}=\nabla \cdot\left(\bar{b} e^{-i \omega t}\right) \\
& \left.=\left(\nabla \cdot\left(-\frac{i}{\omega} \nabla \times \bar{e}\right)\right) e^{-i \omega t}\right) \\
& =0
\end{aligned}
$$

For (iv), we have, by the properties of \bar{e} that;

$$
\begin{aligned}
& \nabla \times \bar{B}=\nabla \times\left(\bar{b} e^{-i \omega t}\right) \\
& \left.=\left(\nabla \times\left(-\frac{i}{\omega} \nabla \times \bar{e}\right)\right) e^{-i \omega t}\right) \\
& \left.=-\frac{i}{\omega}(\nabla \times \nabla \times \bar{e}) e^{-i \omega t}\right) \\
& =-\frac{i}{\omega}\left(\nabla(\nabla \cdot \bar{e})-\nabla^{2}(\bar{e})\right) e^{-i \omega t} \\
& -\frac{i}{\omega}\left(-\nabla^{2}(\bar{e})\right) e^{-i \omega t} \\
& =\frac{i}{\omega} \frac{-\omega^{2}}{c^{2}} \bar{e} e^{-i \omega t} \\
& -\frac{i \omega}{c^{2}} \bar{e} e^{-i \omega t} \\
& =\frac{1}{c^{2}} \frac{\partial \bar{E}}{\partial t}
\end{aligned}
$$

For uniqueness, let $\left(\bar{E}, \bar{B}_{1}\right)$ and $\left(\bar{E}, \bar{B}_{2}\right)$ be two pairs of the above form, so that, subtracting, $\left(\overline{0}, \bar{B}_{1}-\bar{B}_{2}\right)$ is a solution to Maxwell's equation in vacuum. By (ii);

$$
\frac{\partial\left(\bar{B}_{1}-\bar{B}_{2}\right)}{\partial t}=-i \omega\left(\bar{B}_{1}-\bar{B}_{2}\right)
$$

$$
\begin{aligned}
& =-(\nabla \times \overline{0}) \\
& =\overline{0}
\end{aligned}
$$

so that $\bar{B}_{1}=\bar{B}_{2}$.

Lemma 0.4. If \bar{V} is a vector potential of the form $\bar{v}(x, y, z) e^{-i \omega t}$, with the property that $\square^{2}(\bar{V})=0$, or equivalently $\nabla^{2}(\bar{v})=-\frac{\omega^{2}}{c^{2}} \bar{v}$, then if $\bar{E}=\nabla \times \bar{V}$, we have that \bar{E} satisfies the properties in Lemma 0.3. Given boundary conditions $\{\bar{f}, \bar{g}\}$ on $\delta S(\overline{0}, w)$, if;

$$
\begin{aligned}
& \nabla \times\left.\bar{v}\right|_{\delta S(\overline{0}, w)}=\bar{f} \\
& -\left.\frac{i}{\omega}(\nabla \times \nabla \times \bar{v})\right|_{\delta S(\overline{0}, w)}=\bar{g}
\end{aligned}
$$

then the corresponding fields $\{\bar{E}, \bar{B}\}$ are continuous with fields $\left\{\bar{f} e^{-i \omega t}, \bar{g} e^{-i \omega t}\right\}$ on $B(\overline{0}, w)$. These boundary conditions can be satisfied for \bar{v} with the above property, if $\bar{g}=\overline{0}$ and $\bar{f}^{r}=\bar{f}^{2}=0$. In particular, these boundary conditions are satisfied for the configuration from Lemma 0.1, when $\left.\bar{J}^{r}\right|_{\delta B(\overline{0}, w)}=0$ or when $\left.\bar{J}\right|_{\delta B(\overline{0}, w)}$, in which case we obtain a 2-dimensional family of solutions.

Proof. The first claim follows easily, noting that;

$$
\begin{aligned}
& \nabla \cdot \bar{E}=\nabla \cdot(\nabla \times \bar{V}) \\
& =0 \\
& \square^{2}(\bar{E})=\square^{2}(\nabla \times \bar{V})=\nabla \times \square^{2}(\bar{V}) \\
& =\nabla \times \overline{0} \\
& =\overline{0}
\end{aligned}
$$

We can write \bar{v} in the form;

$$
\bar{v}(r, \theta, \phi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(v_{l m}^{r}(r) \bar{Y}_{l m}(r, \theta, \phi)+v_{l m}^{1}(r) \bar{\Psi}_{l m}(r, \theta, \phi)+v_{l m}^{2}(r) \bar{\Phi}_{l m}(r, \theta, \phi)\right)
$$

where $\left\{\bar{Y}_{l m}, \bar{\Psi}_{l m}, \bar{\Phi}_{l m}\right\}$ are vector spherical harmonics, see [2].

Then;

$$
\begin{aligned}
& \nabla^{2}(\bar{v})=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(\frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d v_{l m}^{r}}{d r}\right) \bar{Y}_{l m}+\left(\frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d v_{l m}^{1}}{d r}\right) \bar{\Psi}_{l m}+\left(\frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d v_{l m}^{2}}{d r}\right) \bar{\Phi}_{l m} \\
& +v_{l m}^{r}\left(-\frac{1}{r^{2}}(2+l(l+1)) \bar{Y}_{l m}+\frac{2}{r^{2}} \bar{\Psi}_{l m}\right)+v_{l m}^{1}\left(\frac{2}{r^{2}} l(l+1) \bar{Y}_{l m}-\frac{1}{r^{2}} l(l+1) \bar{\Psi}_{l m}\right) \\
& +v_{l m}^{2}\left(-\frac{1}{r^{2}} l(l+1) \bar{\Phi}_{l m}\right) \\
& =\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(\frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d v_{l m}^{r}}{d r}+v_{l m}^{r}\left(-\frac{1}{r^{2}}(2+l(l+1))\right)+v_{l m}^{1}\left(\frac{2}{r^{2}} l(l+1)\right)\right) \bar{Y}_{l m} \\
& +\left(\frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d v_{l m}^{1}}{d r}+v_{l m}^{r} \frac{2}{r^{2}}-v_{l m}^{1} \frac{1}{r^{2}} l(l+1)\right) \bar{\Psi}_{l m} \\
& +\left(\frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d v_{l m}^{2}}{d r}-v_{l m}^{2} \frac{1}{r^{2}} l(l+1)\right) \bar{\Phi}_{l m}
\end{aligned}
$$

so that equating coefficients, the condition $\nabla^{2}(\bar{v})=-\frac{\omega^{2}}{c^{2}} \bar{v}$, becomes;
(i). $\frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d v_{l m}^{r}}{d r}+v_{l m}^{r}\left(-\frac{1}{r^{2}}(2+l(l+1))\right)+v_{l m}^{1}\left(\frac{2}{r^{2}} l(l+1)\right)=-\frac{\omega^{2}}{c^{2}} v_{l m}^{r}$
(ii). $\frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d v_{l m}^{1}}{d r}+v_{l m}^{r} \frac{2}{r^{2}}-v_{l m}^{1} \frac{1}{r^{2}} l(l+1)=-\frac{\omega^{2}}{c^{2}} v_{l m}^{1}$
(iii). $\frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d v_{l m}^{2}}{d r}-v_{l m}^{2} \frac{1}{r^{2}} l(l+1)=-\frac{\omega^{2}}{c^{2}} v_{l m}^{2}$
or equivalently;
(i). $\left(v_{l m}^{r}\right)^{\prime \prime}+\frac{2}{r}\left(v_{l m}^{r}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{2+l(l+1)}{r^{2}}\right) v_{l m}^{r}+\frac{2 l(l+1)}{r^{2}} v_{l m}^{1}=0$
(ii). $\left(v_{l m}^{1}\right)^{\prime \prime}+\frac{2}{r}\left(v_{l m}^{1}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right) v_{l m}^{1}+\frac{2}{r^{2}} v_{l m}^{r}=0$
$(i i i) .\left(v_{l m}^{2}\right)^{\prime \prime}+\frac{2}{r}\left(v_{l m}^{2}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right) v_{l m}^{2}=0(P)$
Letting $\bar{w}=\left(v_{l m}^{r},\left(v_{l m}^{r}\right)^{\prime}, v_{l m}^{1},\left(v_{l m}^{1}\right)^{\prime}, v_{l m}^{2},\left(v_{l m}^{2}\right)^{\prime}\right)$, we can write these conditions in the form;

$$
\bar{w}^{\prime}=M \bar{w}
$$

where M is a matrix, with;
$M_{12}=1, M_{1 j}=0, j=1$ or $3 \leq j \leq 6$
$M_{34}=1, M_{3 j}=0,1 \leq j \leq 2,4 \leq j \leq 6$

$$
\begin{aligned}
& M_{56}=1, M_{5 j}=0,1 \leq j \leq 5 \\
& M_{21}=-\left(\frac{\omega^{2}}{c^{2}}-\frac{2+l(l+1)}{r^{2}}\right), M_{22}=-\frac{2}{r}, M_{23}=-\frac{2 l(l+1)}{r^{2}} \\
& M_{2 j}=0,4 \leq j \leq 6 \\
& M_{43}=-\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right), M_{44}=-\frac{2}{r}, M_{41}=-\frac{2}{r^{2}} \\
& M_{4 j}=0, j=2,5 \leq j \leq 6 \\
& M_{65}=-\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right), M_{66}=-\frac{2}{r}, M_{6 j}=0,1 \leq j \leq 4
\end{aligned}
$$

By the vector valued version of Peano's existence and uniqueness theorem, this has a unique solution given the initial values of \bar{w} at w. We have that;

$$
\begin{aligned}
& \nabla \times \bar{v}=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(\nabla \times\left(v_{l m}^{r} \bar{Y}_{l m}\right)+\nabla \times\left(v_{l m}^{1} \bar{\Psi}_{l m}\right)+\nabla \times\left(v_{l m}^{2} \bar{\Phi}_{l m}\right)\right) \\
& =\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(-\frac{1}{r} v_{l m}^{r} \bar{\Phi}_{l m}+\left(\frac{d v_{l m}^{1}}{d r}+\frac{1}{r} v_{l m}^{1}\right) \bar{\Phi}_{l m}+\left(\left(-\frac{l(l+1)}{r}\right) v_{l m}^{2} \bar{Y}_{l m}\right.\right. \\
& \left.-\left(\frac{d v_{l m}^{2}}{d r}+\frac{1}{r} v_{l m}^{2}\right) \bar{\Psi}_{l m}\right) \\
& =\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(-\frac{l(l+1)}{r}\right) v_{l m}^{2} \bar{Y}_{l m}-\left(\frac{d v_{l m}^{2}}{d r}+\frac{1}{r} v_{l m}^{2}\right) \bar{\Psi}_{l m} \\
& +\left(\frac{d v_{l m}^{1}}{d r}+\frac{1}{r} v_{l m}^{1}-\frac{1}{r} v_{l m}^{r}\right) \bar{\Phi}_{l m}
\end{aligned}
$$

so the first boundary condition becomes;
(a). $\left.-\frac{l(l+1)}{w}\right) v_{l m}^{2}(w)=\bar{f}_{l m}^{r}(w)$
(b) $-\left(\frac{d v_{l m}^{2}}{d r}(w)+\frac{1}{w} v_{l m}^{2}(w)\right)=\bar{f}_{l m}^{1}(w)$
(c) $\left(\frac{d v_{m}^{1}}{d r}(w)+\frac{1}{w} v_{l m}^{1}(w)-\frac{1}{w} v_{l m}^{r}(w)\right)=\bar{f}_{l m}^{2}(w)$

We have that, using (P);

$$
\begin{aligned}
& \nabla \times \nabla \times \bar{v}=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} \nabla \times\left(\left(-\frac{l(l+1)}{r}\right) v_{l m}^{2} \bar{Y}_{l m}\right) \\
& -\nabla \times\left(\left(\frac{d v_{l m}^{2}}{d r}+\frac{1}{r} v_{l m}^{2}\right) \bar{\Psi}_{l m}\right)+\nabla \times\left(\left(\frac{d v_{l m}^{1}}{d r}+\frac{1}{r} v_{l m}^{1}-\frac{1}{r} v_{l m}^{r}\right) \bar{\Phi}_{l m}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{l=0}^{\infty} \sum_{m=-l}^{l}-\frac{1}{r}\left(-\frac{l(l+1)}{r} v_{l m}^{2}\right) \bar{\Phi}_{l m}-\left(\frac{d}{d r}\left(\frac{d v_{l m}^{2}}{d r}+\frac{1}{r} v_{l m}^{2}\right)+\frac{1}{r}\left(\frac{d v_{l m}^{2}}{d r}+\frac{1}{r} v_{l m}^{2}\right)\right) \bar{\Phi}_{l m} \\
& +\left(-\frac{l(l+1)}{r}\left(\frac{d v_{l m}^{1}}{d r}+\frac{1}{r} v_{l m}^{1}-\frac{1}{r} v_{l m}^{r}\right)\right) \bar{Y}_{l m}-\left(\frac{d}{d r}\left(\frac{d v_{l m}^{1}}{d r}+\frac{1}{r} v_{l m}^{1}-\frac{1}{r} v_{l m}^{r}\right)\right. \\
& \left.+\frac{1}{r}\left(\frac{d v_{l m}^{1}}{d r}+\frac{1}{r} v_{l m}^{1}-\frac{1}{r} v_{l m}^{r}\right)\right) \bar{\Psi}_{l m} \\
& =\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(\left[-l(l+1)\left(\frac{1}{r}\left(v_{l m}^{1}\right)^{\prime}+\frac{1}{r^{2}} v_{l m}^{1}-\frac{1}{r^{2}} v_{l m}^{r}\right)\right] \bar{Y}_{l m}\right. \\
& +\left[-\left(v_{l m}^{1}\right)^{\prime \prime}+\frac{1}{r^{2}} v_{l m}^{1}-\frac{1}{r}\left(v_{l m}^{1}\right)^{\prime}-\frac{1}{r^{2}} v_{l m}^{r}+\frac{1}{r}\left(v_{l m}^{r}\right)^{\prime}+\frac{1}{r}\left(v_{l m}^{1}\right)^{\prime}+\frac{1}{r^{2}} v_{l m}^{1}\right. \\
& \left.\left.-\frac{1}{r^{2}} v_{l m}^{r}\right] \bar{\Psi}_{l m}+\left[\frac{l(l+1)}{r^{2}} v_{l m}^{2}-\left(v_{l m}^{2}\right)^{\prime \prime}+\frac{1}{r^{2}} v_{l m}^{2}-\frac{1}{r}\left(v_{l m}^{2}\right)^{\prime}-\frac{1}{r}\left(v_{l m}^{2}\right)^{\prime}-\frac{1}{r^{2}} v_{l m}^{2}\right] \bar{\Phi}_{l m}\right) \\
& =\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(\left[-l(l+1)\left(\frac{1}{r}\left(v_{l m}^{1}\right)^{\prime}+\frac{1}{r^{2}} v_{l m}^{1}-\frac{1}{r^{2}} v_{l m}^{r}\right)\right] \bar{Y}_{l m}\right. \\
& \left.+\left[-\left(v_{l m}^{1}\right)^{\prime \prime}+\frac{1}{r}\left(v_{l m}^{r}\right)^{\prime}+\frac{2}{r^{2}} v_{l m}^{1}-\frac{2}{r^{2}} v_{l m}^{r}\right] \bar{\Psi}_{l m}+\left[-\left(v_{l m}^{2}\right)^{\prime \prime}-\frac{2}{r}\left(v_{l m}^{2}\right)^{\prime}+\frac{l(l+1)}{r^{2}} v_{l m}^{2}\right] \bar{\Phi}_{l m}\right) \\
& =\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(\left[-l(l+1)\left(\frac{1}{r}\left(v_{l m}^{1}\right)^{\prime}+\frac{1}{r^{2}} v_{l m}^{1}-\frac{1}{r^{2}} v_{l m}^{r}\right)\right] \bar{Y}_{l m}\right. \\
& +\left[\frac{2}{r}\left(v_{l m}^{1}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right) v_{l m}^{1}+\frac{2}{r^{2}} v_{l m}^{r}+\frac{1}{r}\left(v_{l m}^{r}\right)^{\prime}+\frac{2}{r^{2}} v_{l m}^{1}-\frac{2}{r^{2}} v_{l m}^{r}\right] \bar{\Psi}_{l m} \\
& \left.+\left[\frac{2}{r}\left(v_{l m}^{2}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right) v_{l m}^{2}-\frac{2}{r}\left(v_{l m}^{2}\right)^{\prime}+\frac{l(l+1)}{r^{2}} v_{l m}^{2}\right] \bar{\Phi}_{l m}\right) \\
& =\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(\left[-l(l+1)\left(\frac{1}{r}\left(v_{l m}^{1}\right)^{\prime}+\frac{1}{r^{2}} v_{l m}^{1}-\frac{1}{r^{2}} v_{l m}^{r}\right)\right] \bar{Y}_{l m}\right. \\
& +\left[\frac{2}{r}\left(v_{l m}^{1}\right)^{\prime}+\frac{1}{r}\left(v_{l m}^{r}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}+\frac{2-l(l+1)}{r^{2}}\right) v_{l m}^{1}\right] \bar{\Psi}_{l m} \\
& \left.+\left[\frac{\omega^{2}}{c^{2}} v_{l m}^{2}\right] \bar{\Phi}_{l m}\right)
\end{aligned}
$$

so the second boundary condition becomes;
$(d) \cdot \frac{i l(l+1)}{\omega}\left(\frac{1}{w}\left(v_{l m}^{1}\right)^{\prime}(w)+\frac{1}{w^{2}} v_{l m}^{1}(w)-\frac{1}{w^{2}} v_{l m}^{r}(w)\right)=\bar{g}_{l m}^{r}(w)$
(e). $-\frac{2 i}{w \omega}\left(v_{l m}^{1}\right)^{\prime}(w)-\frac{i}{w \omega}\left(v_{l m}^{r}\right)^{\prime}(w)-\frac{i}{\omega}\left(\frac{\omega^{2}}{c^{2}}+\frac{2-l(l+1)}{w^{2}}\right) v_{l m}^{1}(w)=\bar{g}_{l m}^{1}(w)$
$(f) .-\frac{i}{\omega} \frac{\omega^{2}}{c^{2}} v_{l m}^{2}(w)=\bar{g}_{l m}^{2}(w)$
We can write the two boundary conditions in the form;
$\left.N \bar{w}\right|_{w}=\bar{s}$
where \bar{w} is as above, and;
$\bar{s}=\left(\bar{f}_{l m}^{r}(w), \bar{f}_{l m}^{1}(w), \bar{f}_{l m}^{2}(w), \bar{g}_{l m}^{r}(w), \bar{g}_{l m}^{1}(w), \bar{g}_{l m}^{2}(w)\right)$
and N is a matrix, with;
$N_{15}=-\frac{l(l+1)}{w}, N_{1 j}=0, j=6$ or $1 \leq j \leq 4$
$N_{25}=-\frac{1}{w}, N_{26}=-1, N_{2 j}=0,1 \leq j \leq 4$
$N_{65}=-\frac{i}{\omega} \frac{\omega^{2}}{c^{2}}, N_{6 j}=0, j=6$ or $1 \leq j \leq 4$
$N_{31}=-\frac{1}{w}, N_{33}=\frac{1}{w}, N_{34}=1, N_{3 j}=0, j=2$ or $5 \leq j \leq 6$
$N_{41}=-\frac{i(l+1)}{\omega} \frac{1}{w^{2}}, N_{43}=\frac{i(l+1)}{\omega} \frac{1}{w^{2}}, N_{44}=\frac{i(l+1)}{\omega} \frac{1}{w} N_{4 j}=0, j=2$
or $5 \leq j \leq 6$
$N_{52}=-\frac{i}{\omega} \frac{1}{w}, N_{53}=-\frac{i}{\omega}\left(\frac{\omega^{2}}{c^{2}}+\frac{2-l(l+1)}{w^{2}}\right), N_{54}=-\frac{i}{\omega} \frac{2}{w}, N_{5 j}=0, j=1$
or $5 \leq j \leq 6$
If $\bar{g}=\overline{0}$ and $\bar{f}^{r}=\bar{f}^{2}=0$, then;
$\bar{s}=\left(0, \bar{f}_{l m}^{1}(w), 0,0,0,0\right)$
and we obtain a solution by setting;

$$
\begin{aligned}
& v_{l m}^{2}=0 \\
& \left(v_{l m}^{2}\right)^{\prime}=-\bar{f}_{l m}^{1}(w) \\
& -v_{l m}^{r}+v_{l m}^{1}+w\left(v_{l m}^{1}\right)^{\prime}=0 \\
& \left(v_{l m}^{r}\right)^{\prime}+w\left(\frac{\omega^{2}}{c^{2}}+\frac{2-l(l+1)}{w^{2}}\right) v_{l m}^{1}+2\left(v_{l m}^{1}\right)^{\prime}=0
\end{aligned}
$$

which is a 2 dimensional family, as we are free to choose $v_{l m}^{1}$ and $\left(v_{l m}^{1}\right)^{\prime}$. Using the fact that, for the configuration $(\rho, \bar{J}, \bar{E}, \bar{B})$ inside the magnetron;
$\nabla \times \bar{E}=-\frac{\partial \bar{B}}{\partial t}=\overline{0}$
$\nabla \times \bar{B}=\mu_{0} \bar{J}+\frac{1}{c^{2}} \frac{\partial \bar{E}}{\partial t}=\overline{0}$
we obtain, at the boundary;
$(\nabla \times \bar{E})_{l m}^{r}=-\frac{l(l+1)}{w}(\bar{E})_{l m}^{2}=0$
so that $(\bar{E})_{l m}^{2}(w)=0$, and;
$\mu_{0}(\bar{J})_{l m}^{r}-\frac{i \omega}{c^{2}}(\bar{E})_{l m}^{r}$
so that, with the hypothesis that $\left.\bar{J}^{r}\right|_{\delta B(\overline{0}, w)}=0$ or $\left.\bar{J}\right|_{\delta B(\overline{0}, w)}=\overline{0}$, we obtain that $(\bar{E})_{l m}^{r}(w)=0$, as required.

Lemma 0.5. If V and \bar{A} are potentials of the form $v(x, y, z) e^{-i \omega t}$ and $\bar{a}(x, y, z) e^{-i \omega t}$, with the property that and $\nabla \cdot \bar{A}=-\frac{1}{c^{2}} \frac{\partial V}{\partial t}$ and $\square^{2}(\bar{A})=\overline{0}$, or equivalently $\nabla \cdot \bar{a}=\frac{i \omega}{c^{2}} v$ and $\nabla^{2}(\bar{a})=-\frac{\omega^{2}}{c^{2}} \bar{a}$, then if;

$$
\begin{aligned}
& \bar{E}=-\nabla(V)-\frac{\partial \bar{A}}{\partial t}=-\nabla(V)+i \omega \bar{A} \\
& \bar{B}=\nabla \times \bar{A}
\end{aligned}
$$

we have that $\{\bar{E}, \bar{B}\}$ satisfy Maxwell's equations in free space on $B(\overline{0}, w)^{c}$. Given boundary conditions $\{\bar{f}, \bar{g}\}$ on $\delta S(\overline{0}, w)$, if;

$$
\begin{aligned}
& -\nabla(v)+\left.i \omega \bar{a}\right|_{\delta S(\overline{0}, w)}=\bar{f} \\
& \nabla \times\left.\bar{a}\right|_{\delta S(\overline{0}, w)}=\bar{g}
\end{aligned}
$$

then the corresponding fields $\{\bar{E}, \bar{B}\}$ are continuous with fields $\left\{\bar{f} e^{-i \omega t}, \bar{g} e^{-i \omega t}\right\}$ on $B(\overline{0}, w)$. These boundary conditions can be satisfied for $\{v, \bar{a}\}$ with the above property, if $\bar{g}=\overline{0}$ and $\bar{f}^{r}=\bar{f}^{2}=0$. In particular, these boundary conditions are satisfied for the configuration from Lemma 0.1, with $\left.\bar{J}\right|_{\delta B(\overline{0}, w)}=\overline{0}$, in which case we obtain a 2-dimensional family of solutions in the TM mode.

Proof. First observe that if V is of the form $v(x, y, z) e^{-i \omega t}$, then as $\square^{2} \bar{A}=0$ and $\frac{\partial V}{\partial t}=-i \omega V$, we obtain, using the Lorentz gauge condition, that $\nabla \cdot \bar{A}=-\frac{1}{c^{2}} \frac{\partial V}{\partial t}$;

$$
\begin{aligned}
& \square^{2}(V)=\frac{i}{\omega} \square^{2}\left(\frac{\partial V}{\partial t}\right) \\
& =\frac{i}{\omega} \square^{2}\left(-c^{2} \nabla \cdot \bar{A}\right) \\
& =-\frac{c^{2} i}{\omega} \nabla \cdot\left(\square^{2} \bar{A}\right) \\
& =-\frac{c^{2} i}{\omega} \nabla \cdot(\overline{0}) \\
& =0
\end{aligned}
$$

The first claim then follows from the result in [11], as the Lorentz gauge condition and wave equations for (V, \bar{A}) are satisfied. We can write v in the form;

$$
v(r, \theta, \phi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(v_{l m}(r) Y_{l m}(r, \theta, \phi)\right.
$$

where the $\left\{Y_{l m}: l \geq 0,-l \leq m \leq l\right\}$ are the spherical harmonics.
Then;
$\nabla^{2}(v)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d v_{l m}}{d r}\right)-\frac{l(l+1)}{r^{2}} v_{l m}\right) Y_{l m}$
so that equating coefficients, the condition $\nabla^{2}(\bar{v})=-\frac{\omega^{2}}{c^{2}} \bar{v}$, becomes;
(i). $\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d v_{l m}}{d r}\right)-\frac{l(l+1)}{r^{2}} v_{l m}=\frac{-\omega^{2}}{c^{2}} v_{l m}$
or equivalently;
(i). $\left(v_{l m}\right)^{\prime \prime}+\frac{2}{r}\left(v_{l m}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right) v_{l m}=0(P)$

We can write \bar{a} in the form;

$$
\bar{a}(r, \theta, \phi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(a_{l m}^{r}(r) \bar{Y}_{l m}(r, \theta, \phi)+a_{l m}^{1}(r) \bar{\Psi}_{l m}(r, \theta, \phi)+a_{l m}^{2}(r) \bar{\Phi}_{l m}(r, \theta, \phi)\right)
$$

where $\left\{\bar{Y}_{l m}, \bar{\Psi}_{l m}, \bar{\Phi}_{l m}\right\}$ are vector spherical harmonics, see [2].
Then;
$\nabla \cdot \bar{a}=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(\frac{d a_{l m}^{r}}{d r}+\frac{2}{r} a_{l m}^{r}-\frac{l(l+1)}{r} a_{l m}^{1}\right) Y_{l m}$
so that equating coefficients, the Lorentz gauge condition;
$v=-\frac{i c^{2}}{\omega} \nabla \cdot \bar{a}$
becomes;
(ii). $v_{l m}=-\frac{i c^{2}}{\omega}\left(\frac{d a_{m}^{r}}{d r}+\frac{2}{r} a_{l m}^{r}-\frac{l(l+1)}{r} a_{l m}^{1}\right)$
or equivalently;
(ii). $v_{l m}=-\frac{i c^{2}}{\omega}\left(\left(a_{l m}^{r}\right)^{\prime}+\frac{2}{r} a_{l m}^{r}-\frac{l(l+1)}{r} a_{l m}^{1}\right)$

Moreover;

$$
\begin{aligned}
& \nabla^{2}(\bar{a})=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(\frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d a_{l m}^{r}}{d r}\right) \bar{Y}_{l m}+\left(\frac{1}{r^{2}} \frac{d}{d r} 2^{2} \frac{d a_{l m}^{1}}{d r}\right) \bar{\Psi}_{l m}+\left(\frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d a_{l m}^{2}}{d r}\right) \bar{\Phi}_{l m} \\
& +a_{l m}^{r}\left(-\frac{1}{r^{2}}(2+l(l+1)) \bar{Y}_{l m}+\frac{2}{r^{2}} \bar{\Psi}_{l m}\right)+a_{l m}^{1}\left(\frac{2}{r^{2}} l(l+1) \bar{Y}_{l m}-\frac{1}{r^{2}} l(l+1) \bar{\Psi}_{l m}\right) \\
& +a_{l m}^{2}\left(-\frac{1}{r^{2}} l(l+1) \bar{\Phi}_{l m}\right) \\
& =\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(\frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d a_{l m}^{r}}{d r}+a_{l m}^{r}\left(-\frac{1}{r^{2}}(2+l(l+1))\right)+a_{l m}^{1}\left(\frac{2}{r^{2}} l(l+1)\right)\right) \bar{Y}_{l m} \\
& +\left(\frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d a_{l m}^{1}}{d r}+a_{l m}^{r} \frac{2}{r^{2}}-a_{l m}^{1} \frac{1}{r^{2}} l(l+1)\right) \bar{\Psi}_{l m} \\
& +\left(\frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d a_{l m}^{2}}{d r}-a_{l m}^{2} \frac{1}{r^{2}} l(l+1)\right) \bar{\Phi}_{l m}
\end{aligned}
$$

so that equating coefficients again, the condition $\nabla^{2}(\bar{a})=-\frac{\omega^{2}}{c^{2}} \bar{a}$, becomes;
(iii). $\frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d a_{l m}^{r}}{d r}+a_{l m}^{r}\left(-\frac{1}{r^{2}}(2+l(l+1))\right)+a_{l m}^{1}\left(\frac{2}{r^{2}} l(l+1)\right)=-\frac{\omega^{2}}{c^{2}} a_{l m}^{r}$
(iv). $\frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d a_{m}^{1}}{d r}+a_{l m}^{r} \frac{2}{r^{2}}-a_{l m}^{1} \frac{1}{r^{2}} l(l+1)=-\frac{\omega^{2}}{c^{2}} a_{l m}^{1}$
$(v) \cdot \frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d a_{l m}^{2}}{d r}-a_{l m}^{2} \frac{1}{r^{2}} l(l+1)=-\frac{\omega^{2}}{c^{2}} a_{l m}^{2}$
or equivalently;
(iii). $\left(a_{l m}^{r}\right)^{\prime \prime}+\frac{2}{r}\left(a_{l m}^{r}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{2+l(l+1)}{r^{2}}\right) a_{l m}^{r}+\frac{2 l(l+1)}{r^{2}} a_{l m}^{1}=0$
(iv). $\left(a_{l m}^{1}\right)^{\prime \prime}+\frac{2}{r}\left(a_{l m}^{1}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right) a_{l m}^{1}+\frac{2}{r^{2}} a_{l m}^{r}=0$
(v). $\left(a_{l m}^{2}\right)^{\prime \prime}+\frac{2}{r}\left(a_{l m}^{2}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right) a_{l m}^{2}=0(Q)$

Letting $\bar{w}=\left(a_{l m}^{r},\left(a_{l m}^{r}\right)^{\prime}, a_{l m}^{1},\left(a_{l m}^{1}\right)^{\prime}, a_{l m}^{2},\left(a_{l m}^{2}\right)^{\prime}\right)$, we can write conditions (iii), (iv), (v) in the form;

$$
\bar{w}^{\prime}=M \bar{w}
$$

where M is a 6×6 matrix, with;

$$
\begin{aligned}
& M_{12}=1, M_{1 j}=0, j=1 \text { or } 3 \leq j \leq 6 \\
& M_{34}=1, M_{3 j}=0,1 \leq j \leq 3,5 \leq j \leq 6 \\
& M_{56}=1, M_{5 j}=0,1 \leq j \leq 5 \\
& M_{21}=-\left(\frac{\omega^{2}}{c^{2}}-\frac{2+l(l+1)}{r^{2}}\right), M_{22}=-\frac{2}{r}, M_{23}=-\frac{2 l(l+1)}{r^{2}}, M_{2 j}=0 \\
& 4 \leq j \leq 6 \\
& M_{43}=-\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right), M_{44}=-\frac{2}{r}, M_{41}=-\frac{2}{r^{2}}, M_{4 j}=0, j=2 \\
& \text { or } 5 \leq j \leq 6 \\
& M_{66}=-\frac{2}{r}, M_{65}-\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right), M_{6 j}=0,1 \leq j \leq 4
\end{aligned}
$$

By the vector valued version of Peano's existence and uniqueness theorem, this has a unique solution given the initial values of \bar{w} at w. We have that;

$$
\begin{aligned}
& -\nabla(v)=-\sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{d v_{l m}}{d r} \bar{Y}_{l m}+\frac{v_{l m}}{r} \bar{\Psi}_{l m} \\
& i \omega \bar{a}=i \omega \sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(a_{l m}^{r} \bar{Y}_{l m}+a_{l m}^{1} \bar{\Psi}_{l m}+a_{l m}^{2} \bar{\Phi}_{l m}\right) \\
& \nabla \times \bar{a}=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(\nabla \times\left(a_{l m}^{r} \bar{Y}_{l m}\right)+\nabla \times\left(a_{l m}^{1} \bar{\Psi}_{l m}\right)+\nabla \times\left(a_{l m}^{2} \bar{\Phi}_{l m}\right)\right) \\
& =\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(-\frac{1}{r} a_{l m}^{r} \bar{\Phi}_{l m}+\left(\frac{d a_{l m}^{1}}{d r}+\frac{1}{r} a_{l m}^{1}\right) \bar{\Phi}_{l m}+\left(\left(-\frac{l(l+1)}{r}\right) a_{l m}^{2} \bar{Y}_{l m}\right.\right. \\
& \left.-\left(\frac{d a_{l m}^{2}}{d r}+\frac{1}{r} a_{l m}^{2}\right) \bar{\Psi}_{l m}\right)
\end{aligned}
$$

$=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(-\frac{l(l+1)}{r}\right) a_{l m}^{2} \bar{Y}_{l m}-\left(\frac{d a_{l m}^{2}}{d r}+\frac{1}{r} a_{l m}^{2}\right) \bar{\Psi}_{l m}$
$+\left(\frac{d a_{l m}^{1}}{d r}+\frac{1}{r} a_{l m}^{1}-\frac{1}{r} a_{l m}^{r}\right) \bar{\Phi}_{l m}$
so the boundary conditions become;
$(a) .-\frac{d v_{l m}}{d r}(w)+i \omega a_{l m}^{r}(w)=\bar{f}_{l m}^{r}(w)$
(b). $-\frac{v_{l m}(w)}{w}+i \omega a_{l m}^{1}(w)=\bar{f}_{l m}^{1}(w)$
(c). $i \omega a_{l m}^{2}(w)=\bar{f}_{l m}^{2}(w)$
$(d) \cdot\left(-\frac{l(l+1)}{w}\right) a_{l m}^{2}(w)=\bar{g}_{l m}^{r}(w)$
$(e) .-\left(\frac{d a_{l m}^{2}}{d r}(w)+\frac{1}{w} a_{l m}^{2}(w)\right)=\bar{g}_{l m}^{1}(w)$
$(f) .\left(\frac{d a_{l m}^{1}}{d r}(w)+\frac{1}{w} a_{l m}^{1}(w)-\frac{1}{w} a_{l m}^{r}(w)\right)=\bar{g}_{l m}^{2}(w)$
and using the two relation $(i i),(P 2)$ and $(i i i)$;
$v_{l m}=-\frac{i c^{2}}{\omega}\left(\left(a_{l m}^{r}\right)^{\prime}+\frac{2}{r} a_{l m}^{r}-\frac{l(l+1)}{r} a_{l m}^{1}\right)$
$\left(a_{l m}^{r}\right)^{\prime \prime}+\frac{2}{r}\left(a_{l m}^{r}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{2+l(l+1)}{r^{2}}\right) a_{l m}^{r}+\frac{2 l(l+1)}{r^{2}} a_{l m}^{1}=0$
we have that;

$$
\begin{aligned}
& \frac{d v_{l m}^{r}}{d r}=-\frac{i c^{2}}{\omega}\left(\left(a_{l m}^{r}\right)^{\prime \prime}-\frac{2}{r^{2}} a_{l m}^{r}+\frac{2}{r}\left(a_{l m}^{r}\right)^{\prime}+\frac{l(l+1)}{r^{2}} a_{l m}^{1}-\frac{l(l+1)}{r}\left(a_{l m}^{1}\right)^{\prime}\right) \\
& =-\frac{i c^{2}}{\omega}\left(-\frac{2}{r}\left(a_{l m}^{r}\right)^{\prime}-\left(\frac{\omega^{2}}{c^{2}}-\frac{2+l(l+1)}{r^{2}}\right) a_{l m}^{r}-\frac{2 l(l+1)}{r^{2}} a_{l m}^{1}-\frac{2}{r^{2}} a_{l m}^{r}+\frac{2}{r}\left(a_{l m}^{r}\right)^{\prime}\right. \\
& \left.+\frac{l(l+1)}{r^{2}} a_{l m}^{1}-\frac{l(l+1)}{r}\left(a_{l m}^{1}\right)^{\prime}\right) \\
& =-\frac{i c^{2}}{\omega}\left(-\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right) a_{l m}^{r}-\frac{l(l+1)}{r^{2}} a_{l m}^{1}-\frac{l(l+1)}{r}\left(a_{l m}^{1}\right)^{\prime}\right)
\end{aligned}
$$

so we can rewrite $(a),(b)$ as;

$$
\begin{aligned}
& (a)^{\prime} \cdot \frac{i c^{2}}{\omega}\left(-\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{w^{2}}\right) a_{l m}^{r}(w)-\frac{l(l+1)}{w^{2}} a_{l m}^{1}(w)-\frac{l(l+1)}{w}\left(a_{l m}^{1}\right)^{\prime}(w)\right)+i \omega a_{l m}^{r}(w) \\
& =\bar{f}_{l m}^{r}(w)
\end{aligned}
$$

$(b)^{\prime} \cdot \frac{i c^{2}}{w \omega}\left(\left(a_{l m}^{r}\right)^{\prime}(w)+\frac{2}{w} a_{l m}^{r}(w)-\frac{l(l+1)}{w} a_{l m}^{1}(w)\right)+i w a_{l m}^{1}(w)=\bar{f}_{l m}^{1}(w)$
or equivalently;

$$
\begin{aligned}
& (a)^{\prime} \frac{i l(l+1) c^{2}}{w^{2}} a_{l m}^{r}(w)-\frac{i c^{2} l(l+1)}{w^{2} \omega} a_{l m}^{1}(w)-\frac{i c^{2} l(l+1)}{w \omega}\left(a_{l m}^{1}\right)^{\prime}(w) \\
& =\bar{f}_{l m}^{r}(w) \\
& (b)^{\prime} \frac{2 i c^{2}}{w^{2} \omega} a_{l m}^{r}(w)+\frac{i c^{2}}{w \omega}\left(a_{l m}^{r}\right)^{\prime}(w)+\left(i \omega-\frac{i c^{2} l(l+1)}{w^{2} \omega}\right) a_{l m}^{1}(w)=\bar{f}_{l m}^{1}(w)
\end{aligned}
$$

We can write the boundary conditions $\left(a^{\prime}\right),(b)^{\prime},(c),(d),(e),(f)$ in the form;
$\left.N \bar{w}\right|_{w}=\bar{s}$
where \bar{w} is as above, and;
$\bar{s}=\left(\bar{f}_{l m}^{r}(w), \bar{f}_{l m}^{1}(w), \bar{f}_{l m}^{2}(w), \bar{g}_{l m}^{r}(w), \bar{g}_{l m}^{1}(w), \bar{g}_{l m}^{2}(w)\right)$
and N is a matrix, with;
$N_{11}=\frac{i l(l+1) c^{2}}{w^{2} \omega}, N_{13}=-\frac{i c^{2} l(l+1)}{w^{2} \omega}, N_{14}=-\frac{i c^{2} l(l+1)}{w \omega}, N_{1 j}=0$
$j=2$ or $5 \leq j \leq 6$
$N_{21}=\frac{2 i c^{2}}{w^{2} \omega}, N_{22}=\frac{i c^{2}}{w \omega}, N_{23}=i \omega-\frac{i c^{2} l(l+1)}{w^{2} \omega}, N_{2 j}=0,4 \leq j \leq 6$
$N_{35}=i \omega, N_{3 j}=0,1 \leq j \leq 4, j=6$
$N_{45}=-\frac{l(l+1)}{w}, N_{4 j}=0,1 \leq j \leq 4, j=6$
$N_{55}=-\frac{1}{w}, N_{56}=-1, N_{5 j}=0,1 \leq j \leq 4$
$N_{61}=-\frac{1}{w}, N_{63}=\frac{1}{w}, N_{64}=1, N_{6 j}=0, j=2,5 \leq j \leq 6$
If $\bar{g}=\overline{0}$ and $\bar{f}^{r}=\bar{f}^{2}=0$, then;
$\bar{s}=\left(0, \bar{f}_{l m}^{1}(w), 0,0,0,0\right)$
and we obtain a solution by setting;

$$
\begin{aligned}
& a_{l m}^{2}(w)=0 \\
& \left(a_{l m}^{2}\right)^{\prime}(w)=0 \\
& \left(a_{l m}^{r}\right)^{\prime}=-\frac{i w \omega}{c^{2}}\left(-\frac{2 i c^{2}}{w^{2} \omega} a_{l m}^{r}(w)+\left(\frac{i c^{2} l(l+1)}{w^{2} \omega}-i \omega\right) a_{l m}^{1}(w)+\bar{f}_{l m}^{1}(w)\right) \\
& =-\frac{2}{w} a_{l m}^{r}(w)+\left(\frac{l(l+1)}{w}-\frac{w \omega^{2}}{c^{2}}\right) a_{l m}^{1}(w)-\frac{i w \omega}{c^{2}} \bar{f}_{l m}^{1}(w) \\
& \frac{i l(l+1) c^{2}}{w^{2} \omega} a_{l m}^{r}(w)-\frac{i c^{2} l(l+1)}{w^{2} \omega} a_{l m}^{1}(w)-\frac{i c^{2} l(l+1)}{w \omega}\left(a_{l m}^{1}\right)^{\prime}(w)=0 \\
& -\frac{a_{l m}^{r}(w)}{w}+\frac{a_{l m}^{1}(w)}{w}+\left(a_{l m}^{1}\right)^{\prime}(w)=0
\end{aligned}
$$

which is a 2-dimensional family, as we are free to choose $a_{l m}^{1}(w),\left(a_{l m}^{1}\right)^{\prime}(w)$. Using the fact that, for the configuration $(\rho, \bar{J}, \bar{E}, \bar{B})$ inside the magnetron;

$$
\nabla \times \bar{E}=-\frac{\partial \bar{B}}{\partial t}=\overline{0}
$$

we obtain, at the boundary;

$$
(\nabla \times \bar{E})_{l m}^{r}=-\frac{l(l+1)}{w}(\bar{E})_{l m}^{2}=0
$$

so that $(\bar{E})_{l m}^{2}(w)=0$
and $\bar{B}=\overline{0}$ by properties of the configuration. By equation (v) of (Q) and the fact that $a_{l m}^{2}(w)=0,\left(a_{l m}^{2}\right)^{\prime}(w)=0$, we obtain that $a_{l m}^{2}(r)=0$, for $r \geq w$, so that;

$$
(\bar{B})_{l m}^{r}=(\nabla \times \bar{A})_{l m}^{r}=-\frac{l(l+1)}{r}(\bar{A})_{l m}^{2}=0
$$

and we obtain solutions in the TM mode, with no surface charge or current. Using the fact that;

$$
\nabla \times \bar{B}=\mu_{0} \bar{J}+\frac{1}{c^{2}} \frac{\partial \bar{E}}{\partial t}=\overline{0}
$$

we obtain, at the boundary;

$$
\mu_{0}(\bar{J})_{l m}^{r}-\frac{i \omega}{c^{2}}(\bar{E})_{l m}^{r}=0
$$

so that, with the hypothesis that $\left.\bar{J}^{r}\right|_{\delta B(\overline{0}, w)}=0$ or $\left.\bar{J}\right|_{\delta B(\overline{0}, w)}=\overline{0}$, we obtain that $(\bar{E})_{l m}^{r}(w)=0$, as required.

Lemma 0.6. If (\bar{E}, \bar{B}) are fields of the form $e(x, y, z) e^{-i \omega t}$ and $b(x, y, z) e^{-i \omega t}$ satisfying Maxwell's equations in free space, in the region $B(\overline{0}, w)^{c}$, then there exists potentials V and \bar{A} of the form $v(x, y, z) e^{-i \omega t}$ and $\bar{a}(x, y, z) e^{-i \omega t}$, with the property that $\square^{2}(V)=0, \square^{2}(\bar{A})=\overline{0} \nabla \cdot \bar{A}=$ $-\frac{1}{c^{2}} \frac{\partial V}{\partial t}$, or equivalently $\nabla^{2}(v)=-\frac{\omega^{2}}{c^{2}} v, \nabla^{2}(\bar{a})=-\frac{\omega^{2}}{c^{2}} \bar{a}, \nabla \cdot \bar{a}=\frac{i \omega}{c^{2}} v$, such that;

$$
\begin{aligned}
& \bar{E}=-\nabla(V)-\frac{\partial \bar{A}}{\partial t}=-\nabla(V)+i \omega \bar{A} \\
& \bar{B}=\nabla \times \bar{A}
\end{aligned}
$$

In particularly, the causal field generated by Jefimenko's equations for the charge and current configuration found in Lemma 0.2 is not in the 2-dimensional family found in Lemma 0.5, unless $\left.\bar{J}^{r}\right|_{\delta B(\overline{0}, w)}=0$.

Proof. As $\nabla \cdot \bar{B}=0$, or equivalently $\nabla \cdot \bar{b}=\overline{0}$, we can find \bar{A}^{\prime} of the form $\bar{a}^{\prime} e^{-i \omega t}$ such that $\nabla \times \bar{A}^{\prime}=\bar{B}(A)$, by requiring that $\nabla \times \bar{a}^{\prime}=\bar{b}$. Then, as (\bar{E}, \bar{B}) satisfy Maxwell's equations, we have that;

$$
\begin{aligned}
& \nabla \times \bar{E}=(\nabla \times \bar{e}) e^{-i \omega t} \\
& =-\frac{\partial \bar{B}}{\partial t} \\
& =-\frac{\partial\left(\nabla \times \bar{A}^{\prime}\right)}{\partial t} \\
& =i \omega\left(\nabla \times \bar{a}^{\prime}\right) e^{-i \omega t}
\end{aligned}
$$

so that;

$$
\nabla\left(\bar{e}-i \omega \bar{a}^{\prime}\right)=0
$$

and we can find a scalar v^{\prime} such that;
$-\nabla\left(v^{\prime}\right)=\bar{e}-i \omega \bar{a}^{\prime}$
in which case, setting $V^{\prime}=v^{\prime} e^{-i \omega t}$, we have that;

$$
\bar{E}=-\nabla\left(V^{\prime}\right)-\frac{\partial \bar{A}^{\prime}}{\partial t}(\mathrm{~B})
$$

Using the proof in [6], p417, as (\bar{E}, \bar{B}) satisfy Maxwell's equations in free space, we have that;

$$
\begin{aligned}
& \nabla^{2}\left(V^{\prime}\right)+\frac{\partial\left(\nabla \cdot \bar{A}^{\prime}\right)}{\partial t}=0 \\
& \left(\nabla^{2}\left(\bar{A}^{\prime}\right)-\frac{1}{c^{2}} \frac{\partial^{2} \bar{A}}{\partial t^{2}}\right)-\nabla\left(\nabla \cdot \bar{A}^{\prime}+\frac{1}{c^{2}} \frac{\partial V^{\prime}}{\partial t}\right)=\overline{0}(C)
\end{aligned}
$$

We claim that we can find potentials (V, \bar{A}) satisfying $(A),(B)$, of the form $v(x, y, z) e^{-i \omega t}$ and $\bar{a}(x, y, z) e^{-i \omega t}$ such that the additional Lorentz gauge condition;

$$
\nabla \cdot \bar{A}=-\frac{1}{c^{2}} \frac{\partial V}{\partial t}(D)
$$

holds, in which case, substituting into (C), we obtain the relations;

$$
\begin{aligned}
& \square^{2}(V)=0 \\
& \square^{2}(\bar{A})=\overline{0}
\end{aligned}
$$

as required. As in the proof of [6], for a scalar Λ, if $\bar{A}=\bar{A}^{\prime}+\nabla(\Lambda)$ and $V=V^{\prime}-\frac{\partial \Lambda}{\partial t}$, then (V, \bar{A}) satisfy $(A),(B)$, so to obtain (D), we require that;

$$
\begin{aligned}
& \nabla \cdot \bar{A}=\nabla \cdot\left(\bar{A}^{\prime}+\nabla(\Lambda)\right) \\
& =-\frac{1}{c^{2}} \frac{\partial V}{\partial t} \\
& =-\frac{1}{c^{2}} \frac{\partial\left(V^{\prime}-\frac{\partial \Lambda}{\partial t}\right)}{\partial t} \\
& =-\frac{1}{c^{2}} \frac{\partial V^{\prime}}{\partial t}+\frac{1}{c^{2}} \frac{\partial^{2} \Lambda}{\partial t^{2}}
\end{aligned}
$$

so that;

$$
\nabla^{2}(\Lambda)-\frac{1}{c^{2}} \frac{\partial^{2} \Lambda}{\partial t^{2}}=-\nabla \cdot\left(\bar{A}^{\prime}\right)-\frac{1}{c^{2}} \frac{\partial V^{\prime}}{\partial t}
$$

Writing Λ in the form $\lambda e^{-i \omega t}$, we require a solution to;

$$
\nabla^{2}(\lambda)+\frac{\omega^{2}}{c^{2}} \lambda=-\nabla \cdot\left(\bar{a}^{\prime}\right)+\frac{i \omega}{c^{2}} v^{\prime}
$$

on $B(\overline{0}, w)^{c}$. Denoting the forcing term $-\nabla \cdot\left(\bar{a}^{\prime}\right)+\frac{i \omega}{c^{2}} v^{\prime}$ by τ, and letting;

$$
\tau=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} \tau_{l m}(r) Y_{l m}(\theta, \phi)
$$

be its expansion in spherical harmonics, expanding;

$$
\lambda=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} \lambda_{l m}(r) Y_{l m}(\theta, \phi)
$$

in spherical harmonics and equating coefficients, we require that, see (P) in the proof of Lemma 0.5, that;

$$
\left(\lambda_{l m}\right)^{\prime \prime}+\frac{2}{r}\left(\lambda_{l m}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right) \lambda_{l m}=\tau_{l m}(E)
$$

in the region $r>w$. This is a second order differential equation, the homogenous version;

$$
\left(\lambda_{l m}\right)^{\prime \prime}+\frac{2}{r}\left(\lambda_{l m}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right) \lambda_{l m}=0
$$

having two independendent solutions $j_{l}\left(\frac{\omega r}{c}\right)$ and $n_{l}\left(\frac{\omega r}{c}\right)$, where j_{l} and n_{l} are the spherical Bessel and Neumann functions of order l. By Abel's theorem, the Wronskian $W\left(j_{l}\left(\frac{\omega r}{c}\right), n_{l}\left(\frac{\omega r}{c}\right)\right)$ is given by;

$$
c_{0} \exp \left(-\int \frac{2}{r} d r\right)=\frac{c_{0}}{r^{2}}
$$

where c_{0} is a constant, and the general solution of (E), given by variation of parameters, see [3], is;

$$
\lambda_{l m}(r)=c_{1} j_{l}\left(\frac{\omega r}{c}\right)+c_{2} n_{l}\left(\frac{\omega r}{c}\right)+Z_{l m}(r)
$$

where c_{1} and c_{2} are constants and;

$$
\begin{aligned}
& Z_{l m}(r)=-j_{l}\left(\frac{\omega r}{c}\right) \int \frac{n_{l}\left(\frac{\omega r}{c}\right) \tau_{l m}(r)}{W\left(j_{l}\left(\frac{\omega r}{c}\right), n_{l}\left(\frac{\omega r}{c}\right)\right)} d r+n_{l}\left(\frac{\omega r}{c}\right) \int \frac{j_{l}\left(\frac{\omega r}{c}\right) \tau_{l m}(r)}{W\left(j_{l}\left(\frac{\omega r}{c}\right) n_{l}\left(\frac{\omega r}{c}\right)\right)} d r \\
& =-\frac{j_{l}\left(\frac{\omega r}{c}\right)}{c_{0}} \int r^{2} n_{l}\left(\frac{\omega r}{c}\right) \tau_{l m}(r) d r+\frac{n_{l}\left(\frac{\omega r}{c}\right)}{c_{0}} \int r^{2} j_{l}\left(\frac{\omega r}{c}\right) \tau_{l m}(r) d r
\end{aligned}
$$

The last claim is clear by Lemmas $0.5,0.2$ and 0.1 .

Lemma 0.7. When $l=0$ or $l=1$, the equations from Lemma 0.5;
$(i) .\left(v_{l m}\right)^{\prime \prime}+\frac{2}{r}\left(v_{l m}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right) v_{l m}=0(P)$
(ii). $\left(a_{l m}^{r}\right)^{\prime \prime}+\frac{2}{r}\left(a_{l m}^{r}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{2+l(l+1)}{r^{2}}\right) a_{l m}^{r}+\frac{2 l(l+1)}{r^{2}} a_{l m}^{1}=0$
(iii). $\left(a_{l m}^{1}\right)^{\prime \prime}+\frac{2}{r}\left(a_{l m}^{1}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right) a_{l m}^{1}+\frac{2}{r^{2}} a_{l m}^{r}=0$
(iv). $\left(a_{l m}^{2}\right)^{\prime \prime}+\frac{2}{r}\left(a_{l m}^{2}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right) a_{l m}^{2}=0(Q)$
have an explicit general solution in terms of Bessel and Neumann functions.

Proof. When $l=0$, the equations;
$(i) .\left(v_{l m}\right)^{\prime \prime}+\frac{2}{r}\left(v_{l m}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right) v_{l m}=0$
(ii). $\left(a_{l m}^{r}\right)^{\prime \prime}+\frac{2}{r}\left(a_{l m}^{r}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{2+l(l+1)}{r^{2}}\right) a_{l m}^{r}+\frac{2 l(l+1)}{r^{2}} a_{l m}^{1}=0$
(iii). $\left(a_{l m}^{1}\right)^{\prime \prime}+\frac{2}{r}\left(a_{l m}^{1}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right) a_{l m}^{1}+\frac{2}{r^{2}} a_{l m}^{r}=0$
(iv). $\left(a_{l m}^{2}\right)^{\prime \prime}+\frac{2}{r}\left(a_{l m}^{2}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right) a_{l m}^{2}=0$
simplify to;
(i). $\left(v_{1 m}\right)^{\prime \prime}+\frac{2}{r}\left(v_{1 m}\right)^{\prime}+\frac{\omega^{2}}{c^{2}} v_{1 m}=0$
(ii). $\left(a_{1 m}^{r}\right)^{\prime \prime}+\frac{2}{r}\left(a_{1 m}^{r}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{2}{r^{2}}\right) a_{1 m}^{r}=0$
(iii). $\left(a_{1 m}^{1}\right)^{\prime \prime}+\frac{2}{r}\left(a_{1 m}^{1}\right)^{\prime}+\frac{\omega^{2}}{c^{2}} a_{1 m}^{1}+\frac{2}{r^{2}} a_{1 m}^{r}=0$
(iv). $\left(a_{1 m}^{2}\right)^{\prime \prime}+\frac{2}{r}\left(a_{1 m}^{2}\right)^{\prime}+\frac{\omega^{2}}{c^{2}} a_{1 m}^{2}=0$

By calculating $(i i)+(i i i)$, we obtain that;

$$
\left(a_{1 m}^{r}+2 a_{1 m}^{1}\right)^{\prime \prime}+\frac{2}{r}\left(a_{1 m}^{r}+2 a_{1 m}^{1}\right)^{\prime}+\frac{\omega^{2}}{c^{2}}\left(a_{1 m}^{r}+a_{1 m}^{1}\right)=0
$$

which has the general solution;

$$
\left(a_{1 m}^{r}+a_{1 m}^{1}\right)(r)=c_{1} j_{0}\left(\frac{\omega r}{c}\right)+c_{2} n_{0}\left(\frac{\omega r}{c}\right)
$$

where j_{0} and n_{0} are the spherical Bessel and Neumann functions of order 0. It follows that;

$$
a_{l m}^{r}=c_{1} j_{0}\left(\frac{\omega r}{c}\right)+c_{2} n_{0}\left(\frac{\omega r}{c}\right)-a_{1 m}^{1}(r)(H)
$$

and substituting into (iii), we obtain that;

$$
\begin{aligned}
& \left(a_{1 m}^{1}\right)^{\prime \prime}+\frac{2}{r}\left(a_{1 m}^{1}\right)^{\prime}+\frac{\omega^{2}}{c^{2}} a_{1 m}^{1}+\frac{2}{r^{2}}\left(c_{1} j_{0}\left(\frac{\omega r}{c}\right)+c_{2} n_{0}\left(\frac{\omega r}{c}\right)-a_{1 m}^{1}\right)=0 \\
& \left(a_{1 m}^{1}\right)^{\prime \prime}+\frac{2}{r}\left(a_{1 m}^{1}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{2}{r^{2}}\right) a_{1 m}^{1}=-\frac{2}{r^{2}}\left(c_{1} j_{0}\left(\frac{\omega r}{c}\right)+c_{2} n_{0}\left(\frac{\omega r}{c}\right)\right)(K)
\end{aligned}
$$

The homogenous version;

$$
\left(a_{1 m}^{1}\right)^{\prime \prime}+\frac{2}{r}\left(a_{1 m}^{1}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{2}{r^{2}}\right) a_{1 m}^{1}=0(I)
$$

has a general solution;

$$
a_{l m}^{1}=c_{3} j_{1}\left(\frac{\omega r}{c}\right)+c_{4} n_{1}\left(\frac{\omega r}{c}\right)
$$

where j_{1} and n_{1} are the spherical Bessel and Neumann functions of order 1. By Abel's theorem, the Wronskian $W\left(j_{1}\left(\frac{\omega r}{c}\right), n_{1}\left(\frac{\omega r}{c}\right)\right)$ is given by;

$$
c_{5} \exp \left(-\int \frac{2}{r} d r\right)=\frac{c_{5}}{r^{2}}
$$

where c_{5} is a constant, and the general solution of (K), given by variation of parameters again, is;

$$
a_{l m}^{1}(r)=c_{3} j_{1}\left(\frac{\omega r}{c}\right)+c_{4} n_{1}\left(\frac{\omega r}{c}\right)+V_{l m}(r)
$$

where;

$$
\begin{aligned}
& V_{l m}(r)=-j_{1}\left(\frac{\omega r}{c}\right) \int \frac{n_{1}\left(\frac{\omega r}{c}\right)\left[-\frac{2}{r^{2}}\left(c_{1} j_{0}\left(\frac{\omega r}{c}\right)+c_{2} n_{0}\left(\frac{\omega r}{c}\right)\right)\right]}{W\left(j_{l}\left(\frac{\omega r}{c}\right), n_{l}\left(\frac{\omega r}{c}\right)\right)} d r+n_{1}\left(\frac{\omega r}{c}\right) \int \frac{j_{1}\left(\frac{\omega r}{c}\right)\left[-\frac{2}{r^{2}}\left(c_{1} j_{0}\left(\frac{\omega r}{c}\right)+c_{2} n_{0}\left(\frac{\omega r}{c}\right)\right)\right]}{W\left(j_{1}\left(\frac{\omega r}{c}\right), n_{1}\left(\frac{\omega r}{c}\right)\right)} d r \\
& =-\frac{j_{1}\left(\frac{\omega r}{c}\right)}{c_{5}} \int r^{2} n_{1}\left(\frac{\omega r}{c}\right)\left[-\frac{2}{r^{2}}\left(c_{1} j_{0}\left(\frac{\omega r}{c}\right)+c_{2} n_{0}\left(\frac{\omega r}{c}\right)\right)\right] d r \\
& +\frac{n_{1}\left(\frac{\omega r}{c}\right)}{c_{5}} \int r^{2} j_{1}\left(\frac{\omega r}{c}\right)\left[-\frac{2}{r^{2}}\left(c_{1} j_{0}\left(\frac{\omega r}{c}\right)+c_{2} n_{0}\left(\frac{\omega r}{c}\right)\right)\right] d r \\
& =\frac{2 c_{1} j_{1}\left(\frac{\omega r}{c}\right)}{c_{5}} \int n_{1} j_{0}\left(\frac{\omega r}{c}\right) d r+\frac{2 c_{2} j_{1}\left(\frac{\omega r}{c}\right)}{c_{5}} \int n_{1} n_{0}\left(\frac{\omega r}{c}\right) d r
\end{aligned}
$$

$-\frac{2 c_{1} n_{1}\left(\frac{\omega r}{c}\right)}{c_{5}} \int j_{1} j_{0}\left(\frac{\omega r}{c}\right) d r-\frac{2 c_{2} n_{1}\left(\frac{\omega r}{c}\right)}{c_{5}} \int j_{1} n_{0}\left(\frac{\omega r}{c}\right) d r$
so that, substituting into (H), we obtain;
$a_{l m}^{r}(r)=c_{1} j_{0}\left(\frac{\omega r}{c}\right)+c_{2} n_{0}\left(\frac{\omega r}{c}\right)-2\left(c_{3} j_{1}\left(\frac{\omega r}{c}\right)+c_{4} n_{1}\left(\frac{\omega r}{c}\right)+V_{l m}(r)\right)$
as a general solution. The general solutions of (i) and $(i v)$ are given by;

$$
\begin{aligned}
& v_{1 m}(r)=c_{6} j_{0}\left(\frac{\omega r}{c}\right)+c_{7} n_{0}\left(\frac{\omega r}{c}\right) \\
& a_{l m}^{2}(r)=c_{8} j_{0}\left(\frac{\omega r}{c}\right)+c_{9} n_{0}\left(\frac{\omega r}{c}\right)
\end{aligned}
$$

where $c_{6}, c_{7}, c_{8}, c_{9}$ are constants and j_{0}, n_{0} are Bessel and Neumann functions of order 0 .

When $l=1$, the equations;
$(i) .\left(v_{l m}\right)^{\prime \prime}+\frac{2}{r}\left(v_{l m}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right) v_{l m}=0$
(ii). $\left(a_{l m}^{r}\right)^{\prime \prime}+\frac{2}{r}\left(a_{l m}^{r}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{2+l(l+1)}{r^{2}}\right) a_{l m}^{r}+\frac{2 l(l+1)}{r^{2}} a_{l m}^{1}=0$
(iii). $\left(a_{l m}^{1}\right)^{\prime \prime}+\frac{2}{r}\left(a_{l m}^{1}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right) a_{l m}^{1}+\frac{2}{r^{2}} a_{l m}^{r}=0$
(iv). $\left(a_{l m}^{2}\right)^{\prime \prime}+\frac{2}{r}\left(a_{l m}^{2}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right) a_{l m}^{2}=0$
simplify to;
(i). $\left(v_{1 m}\right)^{\prime \prime}+\frac{2}{r}\left(v_{1 m}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{2}{r^{2}}\right) v_{1 m}=0$
(ii). $\left(a_{1 m}^{r}\right)^{\prime \prime}+\frac{2}{r}\left(a_{1 m}^{r}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{4}{r^{2}}\right) a_{1 m}^{r}+\frac{4}{r^{2}} a_{1 m}^{1}=0$
(iii). $\left(a_{1 m}^{1}\right)^{\prime \prime}+\frac{2}{r}\left(a_{1 m}^{1}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{2}{r^{2}}\right) a_{1 m}^{1}+\frac{2}{r^{2}} a_{1 m}^{r}=0$
(iv). $\left(a_{1 m}^{2}\right)^{\prime \prime}+\frac{2}{r}\left(a_{1 m}^{2}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{2}{r^{2}}\right) a_{1 m}^{2}=0$

By calculating $(i i)+2(i i i)$, we obtain that;

$$
\left(a_{1 m}^{r}+2 a_{1 m}^{1}\right)^{\prime \prime}+\frac{2}{r}\left(a_{1 m}^{r}+2 a_{1 m}^{1}\right)^{\prime}+\frac{\omega^{2}}{c^{2}}\left(a_{1 m}^{r}+2 a_{1 m}^{1}\right)=0
$$

which has the general solution;

$$
\left(a_{1 m}^{r}+2 a_{1 m}^{1}\right)(r)=c_{1} j_{0}\left(\frac{\omega r}{c}\right)+c_{2} n_{0}\left(\frac{\omega r}{c}\right)
$$

where j_{0} and n_{0} are the spherical Bessel and Neumann functions of order 0. It follows that;

$$
a_{l m}^{r}=c_{1} j_{0}\left(\frac{\omega r}{c}\right)+c_{2} n_{0}\left(\frac{\omega r}{c}\right)-2 a_{1 m}^{1}(r)(G)
$$

and substituting into (iii), we obtain that;

$$
\begin{aligned}
& \left(a_{1 m}^{1}\right)^{\prime \prime}+\frac{2}{r}\left(a_{1 m}^{1}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{2}{r^{2}}\right) a_{1 m}^{1}+\frac{2}{r^{2}}\left(c_{1} j_{0}\left(\frac{\omega r}{c}\right)+c_{2} n_{0}\left(\frac{\omega r}{c}\right)-2 a_{1 m}^{1}\right)=0 \\
& \left(a_{1 m}^{1}\right)^{\prime \prime}+\frac{2}{r}\left(a_{1 m}^{1}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{6}{r^{2}}\right) a_{1 m}^{1}=-\frac{2}{r^{2}}\left(c_{1} j_{0}\left(\frac{\omega r}{c}\right)+c_{2} n_{0}\left(\frac{\omega r}{c}\right)\right)
\end{aligned}
$$

The homogenous version;

$$
\left(a_{1 m}^{1}\right)^{\prime \prime}+\frac{2}{r}\left(a_{1 m}^{1}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{6}{r^{2}}\right) a_{1 m}^{1}=0(F)
$$

has a general solution;

$$
a_{l m}^{1}=c_{3} j_{2}\left(\frac{\omega r}{c}\right)+c_{4} n_{2}\left(\frac{\omega r}{c}\right)
$$

where j_{2} and n_{2} are the spherical Bessel and Neumann functions of order 2. By Abel's theorem, the Wronskian $W\left(j_{2}\left(\frac{\omega r}{c}\right), n_{2}\left(\frac{\omega r}{c}\right)\right)$ is given by;

$$
c_{5} \exp \left(-\int \frac{2}{r} d r\right)=\frac{c_{5}}{r^{2}}
$$

where c_{5} is a constant, and the general solution of (F), given by variation of parameters again, is;

$$
a_{l m}^{1}(r)=c_{3} j_{2}\left(\frac{\omega r}{c}\right)+c_{4} n_{2}\left(\frac{\omega r}{c}\right)+T_{l m}(r)
$$

where;

$$
\begin{aligned}
& T_{l m}(r)=-j_{2}\left(\frac{\omega r}{c}\right) \int \frac{n_{2}\left(\frac{\omega r}{c}\right)\left[-\frac{2}{r^{2}}\left(c_{1} j_{0}\left(\frac{\omega r}{c}\right)+c_{2} n_{0}\left(\frac{\omega r}{c}\right)\right)\right]}{W\left(j_{l}\left(\frac{\omega 匕}{c}\right), n_{l}\left(\frac{\omega r}{c}\right)\right)} d r+n_{2}\left(\frac{\omega r}{c}\right) \int \frac{j_{2}\left(\frac{\omega r}{c}\right)\left[-\frac{2}{r^{2}}\left(c_{1} j_{0}\left(\frac{\omega r}{c}\right)+c_{2} n_{0}\left(\frac{\omega r}{c}\right)\right)\right]}{W\left(j_{2}\left(\frac{\omega r}{c}\right), n_{2}\left(\frac{\omega r}{c}\right)\right)} d r \\
& =-\frac{j_{2}\left(\frac{\omega r}{c}\right)}{c_{5}} \int r^{2} n_{2}\left(\frac{\omega r}{c}\right)\left[-\frac{2}{r^{2}}\left(c_{1} j_{0}\left(\frac{\omega r}{c}\right)+c_{2} n_{0}\left(\frac{\omega r}{c}\right)\right)\right] d r
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{n_{2}\left(\frac{\omega r}{c}\right)}{c_{5}} \int r^{2} j_{2}\left(\frac{\omega r}{c}\right)\left[-\frac{2}{r^{2}}\left(c_{1} j_{0}\left(\frac{\omega r}{c}\right)+c_{2} n_{0}\left(\frac{\omega r}{c}\right)\right)\right] d r \\
& =\frac{2 c_{1} j_{2}\left(\frac{\omega r}{c}\right)}{c_{5}} \int n_{2} j_{0}\left(\frac{\omega r}{c}\right) d r+\frac{2 c_{2} j_{2}\left(\frac{\omega r}{c}\right)}{c_{5}} \int n_{2} n_{0}\left(\frac{\omega r}{c}\right) d r \\
& -\frac{2 c_{1} n_{2}\left(\frac{\omega r}{c}\right)}{c_{5}} \int j_{2} j_{0}\left(\frac{\omega r}{c}\right) d r-\frac{2 c_{2} n_{2}\left(\frac{\omega r}{c}\right)}{c_{5}} \int j_{2} n_{0}\left(\frac{\omega r}{c}\right) d r
\end{aligned}
$$

so that, substituting into (G), we obtain;
$a_{l m}^{r}(r)=c_{1} j_{0}\left(\frac{\omega r}{c}\right)+c_{2} n_{0}\left(\frac{\omega r}{c}\right)-2\left(c_{3} j_{2}\left(\frac{\omega r}{c}\right)+c_{4} n_{2}\left(\frac{\omega r}{c}\right)+T_{l m}(r)\right)$
as a general solution. The general solutions of (i) and (iv) are given by;

$$
\begin{aligned}
& v_{1 m}(r)=c_{6} j_{1}\left(\frac{\omega r}{c}\right)+c_{7} n_{1}\left(\frac{\omega r}{c}\right) \\
& a_{l m}^{2}(r)=c_{8} j_{1}\left(\frac{\omega r}{c}\right)+c_{9} n_{1}\left(\frac{\omega r}{c}\right)
\end{aligned}
$$

where $c_{6}, c_{7}, c_{8}, c_{9}$ are constants and j_{1}, n_{1} are Bessel and Neumann functions of order 1 .

Lemma 0.8. If $(\rho, \bar{J}, \bar{E}, \bar{B})$ is the configuration from Lemma 0.1, obtained as a limit of $\left(\rho_{\delta}, \bar{J}_{\delta}, \bar{E}_{\delta}, \bar{B}_{\delta}\right)$, where $\left(\rho_{\delta}, \bar{J}_{\delta}\right)$ admit the standard wave equation representation in terms of Fourier transforms, then \bar{E} and \bar{J} are radial. Moreover, \bar{E} and \bar{J} can be expanded in terms of Bessel functions and spherical harmonica of order 1.

Proof. By $(P P)$ in the proof of Lemma 0.1, we have that;

$$
\rho(\bar{x}, t)=\alpha \frac{4 \pi k^{3}}{c} e^{-i \omega t \frac{\sin (|k \bar{x}|)}{|k \bar{x}|}}
$$

where α is a complex constant and $\omega=k c$. Taking the gradient, and using the fact that;

$$
\begin{aligned}
& \frac{\partial \bar{J}}{\partial t}=-i \omega \bar{J} \\
& =-c^{2} \nabla(\rho)
\end{aligned}
$$

it is clear as ρ is constant on spheres $S(\overline{0}, r)$, for $r>0$, that \bar{J} is radial. As $\bar{E}=\frac{1}{i \omega \epsilon_{0}} \bar{J}$, by Maxwell's fourth equation and $\bar{B}=\overline{0}, \bar{E}$ is
radial. We have that, by the proof of $(P P)$, that;

$$
\bar{J}=\alpha \sum_{-1 \leq m \leq 1} \bar{U}(1, m, k) \gamma_{1, m, k} e^{-i k c t}
$$

where;

$$
\bar{U}(1, m, k)=i\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \frac{k^{2}}{4 \pi} \bar{W}(1, m)^{*}
$$

so that, by the calculations in [11], in particularly the spherical expansion of $\hat{\bar{r}}$ and using the fact that the coefficient vectors $\bar{W}(1, m)$, $-1 \leq m \leq 1$, are real;

$$
\begin{aligned}
& \bar{J}=\alpha \sum_{-1 \leq m \leq 1} i\left(\frac{2}{\pi}\right)^{\frac{1}{2} \frac{k^{2}}{4 \pi} \bar{W}(1, m)^{*} k\left(\frac{2}{\pi}\right)^{\frac{1}{2}} j_{1}(k r) Y_{1, m}(\theta, \phi) e^{-i k c t}} \begin{array}{l}
=\alpha d j_{1}(k r) e^{-i k c t} \sum_{-1 \leq m \leq 1} \bar{W}(1, m)^{*} Y_{1, m}(\theta, \phi) \\
=\alpha d j_{1}\left(\frac{\omega r}{c}\right) e^{-i \omega t} \sum_{-1 \leq m \leq 1} \bar{W}(1, m)^{*} Y_{1, m}(\theta, \phi) \\
=\alpha d j_{1}\left(\frac{\omega r}{c}\right) e^{-i \omega t} \sum_{-1 \leq m \leq 1} \bar{W}(1, m) Y_{1, m}(\theta, \phi) \\
=\alpha d j_{1}\left(\frac{\omega r}{c}\right) e^{-i \omega t} \overline{\bar{r}}
\end{array}
\end{aligned}
$$

where $d=\frac{i k^{3}}{2 \pi^{2}}=\frac{i \omega^{3}}{2 c^{3} \pi^{2}}$ and $\omega=k c$.
It follows that;

$$
\bar{E}=\frac{1}{i \omega \epsilon_{0}} \bar{J}=\frac{1}{i \omega \epsilon_{0}} \alpha d j_{1}\left(\frac{\omega r}{c}\right) e^{-i \omega t} \hat{\bar{r}}
$$

We have that;

$$
\begin{aligned}
& \bar{E}_{l m}^{r}(r)=\int_{S(\overline{0}, 1)} \bar{E}_{l m} \cdot \bar{Y}_{l m} d S(\overline{0}, 1) \\
& =\frac{1}{i \omega \epsilon_{0}} \alpha d j_{1}\left(\frac{\omega r}{c}\right) e^{-i \omega t} \int_{S(\overline{0}, 1)} \hat{\bar{r}} \cdot \hat{\bar{r}} Y_{l m} d S(\overline{0}, 1) \\
& =\frac{1}{i \omega \epsilon_{0}} \alpha d j_{1}\left(\frac{\omega r}{c}\right) e^{-i \omega t} \int_{S(\overline{0}, 1)} Y_{l m} d S(\overline{0}, 1) \\
& =\frac{2 \sqrt{\pi}}{i \omega \epsilon_{0}} \alpha d j_{1}\left(\frac{\omega r}{c}\right) e^{-i \omega t} \delta_{0, l} \delta_{0, m}
\end{aligned}
$$

and, using the divergence theorem;

$$
\begin{aligned}
& \bar{E}_{l m}^{1}(r)=\int_{S(\overline{0}, 1)} \bar{E}_{l m} \cdot \bar{\Psi}_{l m} d S(\overline{0}, 1) \\
& \int_{S(\overline{0}, 1)} \bar{E}_{l m} \cdot r \nabla\left(Y_{l m}\right) d S(\overline{0}, 1) \\
& =\frac{r}{i \omega \epsilon_{0}} \alpha d j_{1}\left(\frac{\omega r}{c}\right) e^{-i \omega t} \int_{S(\overline{0}, 1)} \hat{\bar{r}} \cdot \nabla\left(Y_{l m}\right) d S(\overline{0}, 1) \\
& =\frac{r}{i \omega \epsilon_{0}} \alpha d j_{1}\left(\frac{\omega r}{c}\right) e^{-i \omega t} \int_{S(\overline{0}, 1)} \nabla\left(Y_{l m}\right) d \bar{S}(\overline{0}, 1) \\
& =\frac{r}{i \omega \epsilon_{0}} \alpha d j_{1}\left(\frac{\omega r}{c}\right) e^{-i \omega t} \int_{B(\overline{0}, 1)} \nabla^{2}\left(Y_{l m}\right) d B(\overline{0}, 1) \\
& =\frac{r}{i \omega \epsilon_{0}} \alpha d j_{1}\left(\frac{\omega r}{c}\right) e^{-i \omega t} \int_{B(\overline{0}, 1)}-\frac{l(l+1)}{r^{2}} Y_{l m} d B(\overline{0}, 1) \\
& =-\frac{l(l+1) r}{i \omega \epsilon_{0}} \alpha d j_{1}\left(\frac{\omega r}{c}\right) e^{-i \omega t} \int_{S(\overline{0}, 1)} Y_{l m} d S(\overline{0}, 1) \\
& =-\frac{l(l+1) r}{i \omega \epsilon_{0}} \alpha d j_{1}\left(\frac{\omega r}{c}\right) e^{-i \omega t} \delta_{0, l} \delta_{0, m} \\
& =0 \\
& \bar{E}_{l m}^{2}(r)=\int_{S(\overline{0}, 1)} \bar{E}_{l m} \cdot \bar{\Psi}_{l m} d S(\overline{0}, 1) \\
& =\int_{S(\overline{0}, 1)} \bar{E}_{l m} \cdot\left(\bar{r} \times \nabla\left(Y_{l m}\right)\right) d S(\overline{0}, 1) \\
& =\frac{1}{i \omega \epsilon_{0}} \alpha d j_{1}\left(\frac{\omega r}{c}\right) e^{-i \omega t} \int_{S(\overline{0}, 1)} \hat{\bar{r}} \cdot\left(\bar{r} \times \nabla\left(Y_{l m}\right)\right) d S(\overline{0}, 1) \\
& =0
\end{aligned}
$$

Using the boundary conditions from Lemma 0.5 , if ω is chosen so that $j_{1}\left(\frac{\omega w}{c}\right)=0$, we obtain a solution by setting;

$$
\begin{aligned}
& a_{l m}^{2}(w)=0 \\
& \left(a_{l m}^{2}\right)^{\prime}(w)=0 \\
& \left(a_{l m}^{r}\right)^{\prime}=-\frac{2}{w} a_{l m}^{r}(w)+\left(\frac{l(l+1)}{w}-\frac{w \omega^{2}}{c^{2}}\right) a_{l m}^{1}(w) \\
& -\frac{a_{l m}^{r}(w)}{w}+\frac{a_{l m}^{1}(w)}{w}+\left(a_{l m}^{1}\right)^{\prime}(w)=0(X)
\end{aligned}
$$

for $(l, m) \neq(0,0)$, and;
$a_{00}^{2}(w)=0$

$$
\begin{aligned}
& \left(a_{00}^{2}\right)^{\prime}(w)=0 \\
& \left(a_{00}^{r}\right)^{\prime}=-\frac{2}{w} a_{00}^{r}(w)+\left(\frac{l(l+1)}{w}-\frac{w \omega}{c^{2}}\right) a_{00}^{1}(w) \\
& -\frac{a_{00}^{r}(w)}{w}+\frac{a_{00}^{1}(w)}{w}+\left(a_{00}^{1}\right)^{\prime}(w)=0(Y)
\end{aligned}
$$

In the 2-dimensional family of solutions, we can set;

$$
a_{l m}^{1}(w)=\left(a_{l m}^{1}\right)^{\prime}(w)=0
$$

for all (l, m). Then, for (l, m), by $(X),(Y)$;

$$
\begin{aligned}
& a_{l m}^{r}(w)=\left(a_{l m}^{r}\right)^{\prime}(w)=a_{l m}^{1}(w)=\left(a_{l m}^{1}\right)^{\prime}(w) \\
& =a_{l m}^{2}(w)=\left(a_{l m}^{2}\right)^{\prime}(w)=0
\end{aligned}
$$

and, by Peano's existence and uniqueness theorem, using the conditions (iii), (iv), (v) in Lemma 0.5;

$$
\begin{aligned}
& a_{l m}^{r}(r)=\left(a_{l m}^{r}\right)^{\prime}(r)=a_{l m}^{1}(r)=\left(a_{l m}^{1}\right)^{\prime}(r) \\
& =a_{l m}^{2}(r)=\left(a_{l m}^{2}\right)^{\prime}(r)=0
\end{aligned}
$$

for $r \geq w$. By the relation (ii), (P2) in Lemma 0.5, we obtain that $v_{l m}(r)=0$, for $r \geq w$ as well, so that we obtain the trivial solution.

Lemma 0.9. If (\bar{E}, \bar{B}) are fields of the form $e(x, y, z) e^{-i \omega t}$ and $b(x, y, z) e^{-i \omega t}$ satisfying Maxwell's equations in free space, in the region $B(\overline{0}, w)^{c}$, then there exists potentials V and \bar{A} of the form $v(x, y, z) e^{-i \omega t}$ and $\bar{a}(x, y, z) e^{-i \omega t}$, with the properties that;

$$
\begin{aligned}
& \nabla^{2}(V)+\frac{\partial(\nabla \cdot \bar{A})}{\partial t}=0 \\
& \left(\nabla^{2}(\bar{A})-\frac{1}{c^{2}} \frac{\partial^{2} \bar{A}}{\partial t^{2}}\right)-\nabla\left(\nabla \cdot \bar{A}+\frac{1}{c^{2}} \frac{\partial V^{\prime}}{\partial t}\right)=\overline{0}(C)
\end{aligned}
$$

or equivalently;

$$
\nabla^{2}(v)-i \omega \nabla \cdot \bar{a}=0
$$

$$
\nabla^{2}(\bar{a})+\frac{\omega^{2}}{c^{2}} \bar{a}-\nabla\left(\nabla \cdot \bar{a}-\frac{i \omega}{c^{2}} v\right)=\overline{0}
$$

such that;

$$
\bar{E}=-\nabla(V)-\frac{\partial \bar{A}}{\partial t}=-\nabla(V)+i \omega \bar{A}
$$

$$
\bar{B}=\nabla \times \bar{A}(D)
$$

Conversely, if we have potentials (V, \bar{A}) satisfying (C) and we define the fields (\bar{E}, \bar{B}) by (D), then (\bar{E}, \bar{B}) satisfy Maxwell's equations in free space on $B(\overline{0}, w)^{c}$.

Given boundary conditions $\{\bar{f}, \bar{g}\}$ on $\delta S(\overline{0}, w)$, if;
$-\nabla(v)+\left.i \omega \bar{a}\right|_{\delta S(\overline{0}, w)}=\bar{f}$
$\nabla \times\left.\bar{a}\right|_{\delta S(\overline{0}, w)}=\bar{g}$
then the corresponding fields $\{\bar{E}, \bar{B}\}$ are continuous with fields $\left\{\bar{f} e^{-i \omega t}, \bar{g} e^{-i \omega t}\right\}$ on $B(\overline{0}, w)$. These boundary conditions cannot be satisfied for $\{v, \bar{a}\}$ with the above property, for the configuration from Lemma 0.8, unless $\left.\bar{J}\right|_{\delta S(\overline{0}, w)}=\overline{0}$.

Proof. The first claim is just the first part of Lemma 0.6, the converse claim just amounts to checking the steps are reversible in the proof of [6].

Again, we can write v in the form;

$$
v(r, \theta, \phi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(v_{l m}(r) Y_{l m}(r, \theta, \phi)\right.
$$

where the $\left\{Y_{l m}: l \geq 0,-l \leq m \leq l\right\}$ are the spherical harmonics.
Then;

$$
\nabla^{2}(v)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d v_{l m}}{d r}\right)-\frac{l(l+1)}{r^{2}} v_{l m}\right) Y_{l m}
$$

Similarly, we write \bar{a} again in the form;

$$
\bar{a}(r, \theta, \phi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(a_{l m}^{r}(r) \bar{Y}_{l m}(r, \theta, \phi)+a_{l m}^{1}(r) \bar{\Psi}_{l m}(r, \theta, \phi)+a_{l m}^{2}(r) \bar{\Phi}_{l m}(r, \theta, \phi)\right)
$$

where $\left\{\bar{Y}_{l m}, \bar{\Psi}_{l m}, \bar{\Phi}_{l m}\right\}$ are vector spherical harmonics, see [2].

Then;
$\nabla \cdot \bar{a}=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(\frac{d a_{l m}^{r}}{d r}+\frac{2}{r} a_{l m}^{r}-\frac{l(l+1)}{r} a_{l m}^{1}\right) Y_{l m}$
so that equating coefficients, the condition;
$\nabla^{2}(v)-i \omega \nabla \cdot \bar{a}=0$
becomes;
(i). $\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d v_{l m}}{d r}\right)-\frac{l(l+1)}{r^{2}} v_{l m}-i \omega\left(\frac{d a_{l m}^{r}}{d r}+\frac{2}{r} a_{l m}^{r}-\frac{l(l+1)}{r} a_{l m}^{1}\right)=0$
or equivalently;
$(i) .\left(v_{l m}\right)^{\prime \prime}+\frac{2}{r}\left(v_{l m}\right)^{\prime}-\frac{l(l+1)}{r^{2}} v_{l m}-i \omega\left(a_{l m}^{r}\right)^{\prime}-\frac{2 i \omega}{r} a_{l m}^{r}+\frac{i \omega l(l+1)}{r} a_{l m}^{1}=0$
We have that;
$\nabla(v)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{d v_{l m}}{d r} \bar{Y}_{l m}+\frac{v_{l m}}{r} \bar{\Psi}_{l m}$
and by the proof of Lemma 0.4 ;
$\nabla \times \nabla \times \bar{a}=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(\left[-l(l+1)\left(\frac{1}{r}\left(a_{l m}^{1}\right)^{\prime}+\frac{1}{r^{2}} a_{l m}^{1}-\frac{1}{r^{2}} a_{l m}^{r}\right)\right] \bar{Y}_{l m}\right.$
$+\left[-\left(a_{l m}^{1}\right)^{\prime \prime}+\frac{1}{r}\left(a_{l m}^{r}\right)^{\prime}+\frac{2}{r^{2}} a_{l m}^{1}-\frac{2}{r^{2}} a_{l m}^{r}\right] \bar{\Psi}_{l m}$
$\left.+\left[-\left(a_{l m}^{2}\right)^{\prime \prime}-\frac{2}{r}\left(a_{l m}^{2}\right)^{\prime}+\frac{l(l+1)}{r^{2}} a_{l m}^{2}\right] \bar{\Phi}_{l m}\right)$
so that, equating coefficients again, the condition;
$\nabla^{2}(\bar{a})+\frac{\omega^{2}}{c^{2}} \bar{a}-\nabla\left(\nabla \cdot \bar{a}-\frac{i \omega}{c^{2}} v\right)=\overline{0}$
or equivalently;
$-\nabla \times \nabla \times \bar{a}+\frac{\omega^{2}}{c^{2}} \bar{a}+\frac{i \omega}{c^{2}} \nabla(v)=\overline{0}$
becomes;
(ii). $-\left[-l(l+1)\left(\frac{1}{r}\left(a_{l m}^{1}\right)^{\prime}+\frac{1}{r^{2}} a_{l m}^{1}-\frac{1}{r^{2}} a_{l m}^{r}\right)\right]+\frac{\omega^{2}}{c^{2}} a_{l m}^{r}+\frac{i \omega}{c^{2}}\left(v_{l m}\right)^{\prime}=0$
(iii). $-\left[-\left(a_{l m}^{1}\right)^{\prime \prime}+\frac{1}{r}\left(a_{l m}^{r}\right)^{\prime}+\frac{2}{r^{2}} a_{l m}^{1}-\frac{2}{r^{2}} a_{l m}^{r}\right]+\frac{\omega^{2}}{c^{2}} a_{l m}^{1}+\frac{i \omega}{c^{2}} \frac{v_{l m}}{r}=0$
(iv). $-\left[-\left(a_{l m}^{2}\right)^{\prime \prime}-\frac{2}{r}\left(a_{l m}^{2}\right)^{\prime}+\frac{l(l+1)}{r^{2}} a_{l m}^{2}\right]+\frac{\omega^{2}}{c^{2}} a_{l m}^{2}=0$
or equivalently;
(ii). $\frac{l(l+1)}{r}\left(a_{l m}^{1}\right)^{\prime}+\frac{l(l+1)}{r^{2}} a_{l m}^{1}+\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right) a_{l m}^{r}+\frac{i \omega}{c^{2}}\left(v_{l m}\right)^{\prime}=0$
(iii). $\left(a_{l m}^{1}\right)^{\prime \prime}-\frac{1}{r}\left(a_{l m}^{r}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{2}{r^{2}}\right) a_{l m}^{1}+\frac{2}{r^{2}} a_{l m}^{r}+\frac{i \omega}{c^{2}} \frac{v_{l m}}{r}=0$
(iv). $\left(a_{l m}^{2}\right)^{\prime \prime}+\frac{2}{r}\left(a_{l m}^{2}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{l(l+1)}{r^{2}}\right) a_{l m}^{2}=0$

For $l=0$, we obtain that;
$(i)(0)\left(v_{00}\right)^{\prime \prime}+\frac{2}{r}\left(v_{00}\right)^{\prime}-i \omega\left(a_{00}^{r}\right)^{\prime}-\frac{2 i \omega}{r} a_{00}^{r}=0$
$(i i)(0) \frac{\omega^{2}}{c^{2}} a_{00}^{r}+\frac{i \omega}{c^{2}}\left(v_{00}\right)^{\prime}=0$
$(i i i)(0)\left(a_{00}^{1}\right)^{\prime \prime}-\frac{1}{r}\left(a_{00}^{r}\right)^{\prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{2}{r^{2}}\right) a_{00}^{1}+\frac{2}{r^{2}} a_{00}^{r}+\frac{i \omega}{c^{2}} \frac{v_{00}}{r}=0$
$(i v)(0)\left(a_{00}^{2}\right)^{\prime \prime}+\frac{2}{r}\left(a_{00}^{2}\right)^{\prime}+\frac{\omega^{2}}{c^{2}} a_{00}^{2}=0$
and from $(i i)(0)$, we obtain that;
$a_{00}^{r}=-\frac{i}{\omega}\left(v_{00}\right)^{\prime}$
and, differentiating;

$$
\begin{equation*}
\left(a_{00}^{r}\right)^{\prime}=-\frac{i}{\omega}\left(v_{00}\right)^{\prime \prime} \tag{A}
\end{equation*}
$$

Substituting (A) into $(i)(0)$, we see this equation is automatically satisfied, and substituting (A) into (iii), we obtain;

$$
\left(a_{00}^{1}\right)^{\prime \prime}+\frac{i}{r \omega}\left(v_{00}\right)^{\prime \prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{2}{r^{2}}\right) a_{00}^{1}-\frac{2 i}{r^{2} \omega}\left(v_{00}\right)^{\prime}+\frac{i \omega}{c^{2} r} v_{00}=0
$$

which rearranging, gives;

$$
\left(a_{00}^{1}\right)^{\prime \prime}+\left(\frac{\omega^{2}}{c^{2}}-\frac{2}{r^{2}}\right) a_{00}^{1}=-\frac{i}{r \omega}\left(v_{00}\right)^{\prime \prime}+\frac{2 i}{r^{2} \omega}\left(v_{00}\right)^{\prime}-\frac{i \omega}{c^{2} r} v_{00}(B)
$$

Given a smooth choice of $v_{00},(A)$ has a unique solution for a_{00}^{r}, and, by Peano's theorem, (B) has a unique solution for a_{00}^{1}, given a choice of $a_{00}^{1}(w),\left(a_{00}^{1}\right)^{\prime}(w)$. Similarly, (iv) has a unique solution for a_{00}^{2}, given
a choice of $a_{00}^{2}(w),\left(a_{00}^{2}\right)^{\prime}(w)$.
We have that;

$$
\begin{aligned}
& -\nabla(v)=-\sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{d v_{l m}}{d r} \bar{Y}_{l m}+\frac{v_{l m}}{r} \bar{\Psi}_{l m} \\
& i \omega \bar{a}=i \omega \sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(a_{l m}^{r} \bar{Y}_{l m}+a_{l m}^{1} \bar{\Psi}_{l m}+a_{l m}^{2} \bar{\Phi}_{l m}\right) \\
& \nabla \times \bar{a}=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(\nabla \times\left(a_{l m}^{r} \bar{Y}_{l m}\right)+\nabla \times\left(a_{l m}^{1} \bar{\Psi}_{l m}\right)+\nabla \times\left(a_{l m}^{2} \bar{\Phi}_{l m}\right)\right) \\
& =\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(-\frac{1}{r} a_{l m}^{r} \bar{\Phi}_{l m}+\left(\frac{d a_{l m}^{1}}{d r}+\frac{1}{r} a_{l m}^{1}\right) \bar{\Phi}_{l m}+\left(\left(-\frac{l(l+1)}{r}\right) a_{l m}^{2} \bar{Y}_{l m}\right.\right. \\
& \left.-\left(\frac{d a_{l m}^{2}}{d r}+\frac{1}{r} a_{l m}^{2}\right) \bar{\Psi}_{l m}\right) \\
& =\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(-\frac{l(l+1)}{r}\right) a_{l m}^{2} \bar{Y}_{l m}-\left(\frac{d a_{l m}^{2}}{d r}+\frac{1}{r} a_{l m}^{2}\right) \bar{\Psi}_{l m} \\
& +\left(\frac{d a_{l m}^{1}}{d r}+\frac{1}{r} a_{l m}^{1}-\frac{1}{r} a_{l m}^{r}\right) \bar{\Phi}_{l m}
\end{aligned}
$$

so the boundary conditions become;
$(a) .-\frac{d v_{l m}}{d r}(w)+i w a_{l m}^{r}(w)=\bar{f}_{l m}^{r}(w)$
(b). $-\frac{v_{l m}(w)}{w}+i \omega a_{l m}^{1}(w)=\bar{f}_{l m}^{1}(w)$
$(c) . i \omega a_{l m}^{2}(w)=\bar{f}_{l m}^{2}(w)$
(d). $\left(-\frac{l(l+1)}{w}\right) a_{l m}^{2}(w)=\bar{g}_{l m}^{r}(w)$
(e). $-\left(\frac{d a_{l m}^{2}}{d r}(w)+\frac{1}{w} a_{l m}^{2}(w)\right)=\bar{g}_{l m}^{1}(w)$
$(f) \cdot\left(\frac{d a_{l m}^{1}}{d r}(w)+\frac{1}{w} a_{l m}^{1}(w)-\frac{1}{w} a_{l m}^{r}(w)\right)=\bar{g}_{l m}^{2}(w)$
and for $l=0, m=0$, using the result of Lemma 0.8 , we obtain;
$(a) .-\frac{d v_{00}}{d r}(w)+i w a_{00}^{r}(w)=\bar{f}_{l m}^{r}(w)$
(b). $-\frac{v_{00}(w)}{w}+i \omega a_{00}^{1}(w)=0$
(c). $i \omega a_{00}^{2}(w)=0$
(d). $0=0$
(e). $-\left(\frac{d a_{00}^{2}}{d r}(w)+\frac{1}{w} a_{00}^{2}(w)\right)=0$
$(f) .\left(\frac{d a_{00}^{1}}{d r}(w)+\frac{1}{w} a_{00}^{1}(w)-\frac{1}{w} a_{00}^{r}(w)\right)=0$
where $\bar{f}_{l m}^{r}(w)=\frac{2 \sqrt{\pi}}{i \omega \epsilon_{0}} \alpha d j_{1}\left(\frac{\omega w}{c}\right) e^{-i \omega t}$
From (A), we see that the boundary condition (a) cannot be satisfied unless $j_{1}\left(\frac{\omega w}{c}\right)=0$, in which case $\left.\bar{J}\right|_{\delta S(\overline{0}, w)}=\overline{0}$.

References

[1] Conservation of Charge at an Interface, H. Arnoldus, Optics Communications, Elsevier, (2006).
[2] Vector spherical harmonics and their application to magnetostatics, Barrera, R G; Estevez, G A; Giraldo, J, European Journal of Physics. IOP Publishing. 6 (4): 287294, (1985).
[3] Elementary Differential Equations and Boundary Value Problems, Seventh Editions, W. Boyce, R. DiPrima, Wiley, (2001).
[4] Fourier Transforms, Bochner, Princeton UP, (1949).
[5] Electromagnetism, N. Frank and J. Slater, Dover Publications, (1947).
[6] Introduction to Electrodynamics, Third Edition, D. Griffiths, Pearson, (2008).
[7] Electrical Engineering, Principles and Applications, Seventh Edition, A. Hambley, Pearson, (2019).
[8] Engineering Circuit Analysis, Third Edition, W. Hayt, J. Kemmerly, McGrawHill, (1978).
[9] Quantum Mechanics, Volume 1, A. Messiah, North-Holland Publishing Company, (1972).
[10] Microwave Engineering, Tristram de Piro, available at http://www.curvalinea.net/papers (2023)
[11] Some Arguments for the Wave Equation in Quantum Theory, Tristram de Piro, Open Journal of Mathematical Sciences, available at http://www.curvalinea.net (58), (2021)
[12] Some Results in Biochemistry and Biophysics, Tristram de Piro, available at http://www.curvalinea.net (71), (2023)
[13] Microwave Engineering, Theory and Techniques, Fourth Edition, D. Pozar, Wiley, (2021).
[14] Associated Legendre Polynomials, Wikipedia, see also Associated Legendre Functions, online notes, available on request.

Flat 3, Redesdale House, 85 The Park, Cheltenham, GL50 2RP
E-mail address: t.depiro@curvalinea.net

