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TRISTRAM DE PIRO

Abstract. We give an explanation of charge and current driven
radiation inside spherical magnetrons, using the equations found
in [10], and by verifying compatibility with the TM and TE modes
used in microwave engineering.

Lemma 0.1. There exist (ρ, J, E,B) satisfying;

(i). �2(ρ) = 0.

(ii). �2(J) = 0.

(iii). 5(ρ) + 1
c2
∂J
∂t

= 0.

(iv). ∂ρ
∂t

+5 � J = 0.

(v). �2(E) = 5× E = 0

(vi). B = 0

(vii). 5 � E = ρ
ε0

(viii) 1
c2
∂E
∂t

+ µ0J = 0

such that;

ρ(x, y, z, t) = p(x, y, z)e−iωt

J = j(x, y, z)e−iωt, j = (j1, j2, j3).

E = e(x, y, z)e−iωt, e = (e1, e2, e3).

B = b(x, y, z)e−iωt, b = (b1, b2, b3).
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2 TRISTRAM DE PIRO

In particularly, Maxwell’s equations are satisfied for (ρ, J, E,B).

Let (V ′, A
′
) be the global potentials defined by Jefimenko’s equations;

V ′(r, t) = 1
4πε0

∫ ρ(r′,tr)
r

dτ ′

A
′
(r, t) = µ0

4π

∫ J(r′,tr)
r

dτ ′

Then V ′ = v′(x, y, z)e−iωt, A
′
= a′(x, y, z)e−iωt, a′ = (a′1, a

′
2, a
′
3).

A similar claim holds for the causal fields {E ′, B′} of Jefimenko’s
equations.
We have that;

p(x, y, z) = P (r, θ, φ) = R(r)Θ(θ)Φ(φ)

where;

1
r2

d
dr

(r2 dR
dr

) + (ω
2

c2
− l(l+1)

r2 )R = 0

1
sin(θ)

d
dθ

(sin(θ)dΘ
dθ

) + (l(l + 1)− m2

sin2(θ)
)Θ = 0

d2Φ
dφ2 +m2Φ = 0 (C)

for constants {m, l} ⊂ N .

The components {jr, jθ, jφ, er, eθ, eφ, br, bθ, bφ} of {j(r, θ, φ), e(r, θ, φ), b(r, θ, φ)}
can be written in terms of {R,R′Θ,Θ′,Φ,Φ′, r, θ, φ}.

There exist (0, 0, E
′
, B
′
) satisfying Maxwell’s equations in vacuum;

(i). 5 � E
′
= 0

(ii). 5× E ′ = −∂B
′

∂t

(iii). 5 �B
′
= 0

(iv) 5×B′ = 1
c2
∂E
′

∂t

E
′
= e′(x, y, z)e−iωt, e′ = (e′1, e

′
2, e
′
3).
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B
′
= b

′
(x, y, z)e−iωt, b

′
= (b′1, b

′
2, b
′
3).

with B
′ 6= 0

We have that rb′re
−iωt =< B′, r > and re′re

−iωt =< E ′, r > satisfy
the wave equation and;

rb′r(x, y, z) = rb′r(r, θ, φ) = R1(r)Θ1(θ)Φ1(φ)

where;

1
r2

d
dr

(r2 dR1

dr
) + (ω

2

c2
− l′(l′+1)

r2 )R1 = 0

1
sin(θ)

d
dθ

(sin(θ)dΘ
dθ

) + (l′(l′ + 1)− m′2

sin2(θ)
)Θ1 = 0

d2Φ1

dφ2 +m′2Φ1 = 0 (C1)

for constants {m′, l′} ⊂ R.

A similar result holds for re′r.

The components {e′r, e′θ, e′φ, b′r, b′θ, b′φ} of {e′(r, θ, φ), b
′
(r, θ, φ)} can be

written in terms of {R,R′,Θ,Θ′,Φ,Φ′, r, θ, φ}.

In particularly, for the TE mode;

b′r = rb′r
r

b′θ = 1
l′(l′+1)

1
r
∂
∂θ

∂
∂r

(r2b′r)

b′φ = 1
l′(l′+1)

1
rsin(θ)

∂
∂φ

∂
∂r

(r2b′r)

e′r = 0

e′θ = iω
l′(l′+1)

1
rsin(θ)

∂
∂φ

(r2b′r)

e′φ = − iω
l′(l′+1)

1
r
∂
∂θ

(r2b′r) (X)

and for the TM mode;
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e′r = re′r
r

e′θ = 1
l′(l′+1)

1
r
∂
∂θ

∂
∂r

(r2e′r)

e′φ = 1
l′(l′+1)

1
rsin(θ)

∂
∂φ

∂
∂r

(r2e′r)

b′r = 0

b′θ = − iω
c2l′(l′+1)

1
rsin(θ)

∂
∂φ

(r2e′r)

b′φ = iω
c2l′(l′+1)

1
r
∂
∂θ

(r2e′r) (Y )

The continuity equation holds on the sphere S(0, w), for both the TE
and TM modes. Moreover, if we restrict to the cases where the current
J vanishes on the sphere S(0, w), the continuity equation holds and we
can calculate the surface impedance in particular cases.

Proof. The proof of the first part is similar to [10]. For (i), we have,
substituting p(x, y, z)e−iωt for ρ, that;

[pxx + pyy + pzz]e
−iωt = 1

c2
p(−ω2)e−iωt

so we require that pxx + pyy + pzz + ω2

c2
p = 0, (∗).

The proof that this can be solved in R3 is shown in [5], using spheri-
cal polar coordinates. For (iii), we have, substituting p(x, y, z)e−iωt for
ρ, and j(x, y, z)e−iωt for J , that;

(px, py, pz)e
−iωt = − 1

c2
(j1, j2, j3)(−iω)e−iωt

so that;

j1 = c2

iω
px = − ic2

ω
px

j2 = c2

iω
py = − ic2

ω
py

j3 = c2

iω
pz = − ic2

ω
pz (∗∗)

If p satisfies (∗), differentiating, so do px, py and pz, then, from (∗∗),
the components {j1, j2, j3} satisfy (∗) and (ii) is satisfied. For (iv), we
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have, substituting again, and using (∗∗), that;

−iωpe−iωt = −(j1x + j2x + j3x)e
−iωt

= −( c
2

iω
pxx + c2

iω
pyy + c2

iω
pzz)e

−iωt

so that;

− c2

iω
pxx − c2

iω
pyy − c2

iω
pzz + iωp = 0

and multiplying by − iω
c2

;

pxx + pyy + pzz + ω2

c2
p = 0

which is (∗). As all the steps are reversible, we obtain (iv). For
(viii), we require that;

− iω
c2
ee−iωt = −µ0je

−iωt

so that;

e1 = − iµ0c2

ω
j1

e2 = − iµ0c2

ω
j2

e3 = − iµ0c2

ω
j3

and, using (∗∗)

e1 = − iµ0c2

ω
−ic2
ω
px = −µ0c4

ω2 px

e2 = − iµ0c2

ω
−ic2
ω
py = −µ0c4

ω2 py

e3 = − iµ0c2

ω
−ic2
ω
pz = −µ0c4

ω2 pz (A)

For (vi), we just set b1 = b2 = b3 = 0. For (v), we have from (A),

that E = −µ0c4

ω2 5 (ρ), so that 5 × E = 0 and as {px, py, pz} satisfy

(∗), so do {e1, e2, e3}, so that �2E = 0, and (v) is satisfied. For (vii),
we have, using (A) and (∗), that;
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div(E) = (e1x + e2y + e3z)e
−iωt

= −µ0c4

ω2 (pxx + pyy + pzz)e
−iωt

= −µ0c4

ω2
−ω2

c2
pe−iωt

= µ0c
2pe−iωt

= 1
ε0c2

c2pe−iωt

= ρ
ε0

so that (vii) is satisfied. The second claim follows easily by rear-
ranging (v)− (viii).

For the potentials claim, it follows by differentiating under the inte-

gral sign, and using the fact that tr = t− |r
′−r|
c

, that;

∂V ′

∂t
= 1

4πε0

∫ ρ̇(r′,tr)
r

dτ ′

= − iω
4πε0

∫ ρ(r′,tr)
r

dτ ′

= −iωV ′

Using Peano’s theorem on the uniqueness of solutions of first order
differential equations, we then must have that;

V ′(x, y, z, t) = v′(x, y, z)e−iωt (AA)

and, similarly;

A
′
(x, y, z, t) = a′(x, y, z)e−iωt

The claim on {E ′, B′} is similar, using Jefimenko’s equations which
only depend on {ρ, J} and derivatives.

The formulae (C) can be found in [5], once we have (∗). When
R = jl(

ωr
c

), where jl is a Bessel function of the first kind of order l,
Θ = Pm

l (cos(θ)) where Pm
l is the associated Legendre polynomial, and
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Φ = sin(mφ) or cos(mφ), we denote by pm,l,s or pm,l,c the correspond-
ing fundamental solutions, see the discussion in [5].

Let {r̂, θ̂, φ̂} be the standard orthonormal spherical frame, then we
have that, using the above calculation;

< J, r̂ >=< j, r̂ > e−iωt

= −ic2
ω

< 5(p), r̂ > e−iωt

= −ic2
ω

(∂p
∂r

[r̂ � r̂] + ∂p
∂θ

[( ∂θ
∂x
, ∂θ
∂y
, ∂θ
∂z

) � r̂] + ∂p
∂φ

[(∂φ
∂x
, ∂φ
∂y
, ∂φ
∂z

) � r̂])e−iωt

so that;

jr = −ic2
ω

(∂p
∂r

[r̂ � r̂] + ∂p
∂θ

[( ∂θ
∂x
, ∂θ
∂y
, ∂θ
∂z

) � r̂] + ∂p
∂φ

[(∂φ
∂x
, ∂φ
∂y
, ∂φ
∂z

) � r̂])

= −ic2
ω

(∂p
∂r

+ ∂p
∂θ

[( ∂θ
∂x
, ∂θ
∂y
, ∂θ
∂z

) � r̂] + ∂p
∂φ

[(∂φ
∂x
, ∂φ
∂y
, ∂φ
∂z

) � r̂])

Similarly;

jθ = −ic2
ω

(∂p
∂r

[r̂ � θ̂] + ∂p
∂θ

[( ∂θ
∂x
, ∂θ
∂y
, ∂θ
∂z

) � θ̂] + ∂p
∂φ

[(∂φ
∂x
, ∂φ
∂y
, ∂φ
∂z

) � θ̂])

= −ic2
ω

(∂p
∂θ

[( ∂θ
∂x
, ∂θ
∂y
, ∂θ
∂z

) � θ̂] + ∂p
∂φ

[(∂φ
∂x
, ∂φ
∂y
, ∂φ
∂z

) � θ̂])

jφ = −ic2
ω

(∂p
∂r

[r̂ � φ̂] + ∂p
∂θ

[( ∂θ
∂x
, ∂θ
∂y
, ∂θ
∂z

) � φ̂] + ∂p
∂φ

[(∂φ
∂x
, ∂φ
∂y
, ∂φ
∂z

) � φ̂])

= −ic2
ω

(∂p
∂θ

[( ∂θ
∂x
, ∂θ
∂y
, ∂θ
∂z

) � φ̂] + ∂p
∂φ

[(∂φ
∂x
, ∂φ
∂y
, ∂φ
∂z

) � φ̂]) (F )

A similar calculation shows that;

er = −µ0c4

ω2 (∂p
∂r

[r̂ � r̂] + ∂p
∂θ

[( ∂θ
∂x
, ∂θ
∂y
, ∂θ
∂z

) � r̂] + ∂p
∂φ

[( ∂φ
∂ x
, ∂φ
∂y
, ∂φ
∂z

) � r̂])

= −µ0c4

ω2 (∂p
∂r

+ ∂p
∂θ

[( ∂θ
∂x
, ∂θ
∂y
, ∂θ
∂z

) � r̂] + ∂p
∂φ

[( ∂φ
∂ x
, ∂φ
∂y
, ∂φ
∂z

) � r̂])

eθ = −µ0c4

ω2 (∂p
∂r

[r̂ � θ̂] + ∂p
∂θ

[( ∂θ
∂x
, ∂θ
∂y
, ∂θ
∂z

) � θ̂] + ∂p
∂φ

[( ∂φ
∂ x
, ∂φ
∂y
, ∂φ
∂z

) � θ̂])

= −µ0c4

ω2 (∂p
∂θ

[( ∂θ
∂x
, ∂θ
∂y
, ∂θ
∂z

) � θ̂] + ∂p
∂φ

[( ∂φ
∂ x
, ∂φ
∂y
, ∂φ
∂z

) � θ̂])

eφ = −µ0c4

ω2 (∂p
∂r

[r̂ � φ̂] + ∂p
∂θ

[( ∂θ
∂x
, ∂θ
∂y
, ∂θ
∂z

) � φ̂] + ∂p
∂φ

[( ∂φ
∂ x
, ∂φ
∂y
, ∂φ
∂z

) � φ̂])
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= −µ0c4

ω2 (∂p
∂θ

[( ∂θ
∂x
, ∂θ
∂y
, ∂θ
∂z

) � φ̂] + ∂p
∂φ

[( ∂φ
∂ x
, ∂φ
∂y
, ∂φ
∂z

) � φ̂]) (E)

Clearly, we have that br = bθ = bφ = 0.

The next claim is then clear, calculating { ∂θ
∂x
, ∂θ
∂y
, ∂θ
∂z
, ∂φ
∂x
, ∂φ
∂y
, ∂φ
∂z
} and

the orthonormal frame in terms of {r, θ, φ}, as well as the terms {∂p
∂r
, ∂p
∂θ
, ∂p
∂r
}

in terms of {R,R′,Θ,Θ′,Φ,Φ′}.

For the boundary conditions at the boundary of the cavity magnetron
with radius we need {eθ, eφ, br} to vanish at the boundary, which we

can achieve with ∂p
∂θ

= ∂p
∂φ

= 0, as br = 0. By the explicit form of p in

(C), and the calculations in (E), if the magnetron has radius w, this is
achieved when R = jl(

ωr
c

)|δS(0,w) = 0, so that ωw
c
∈ Zl, ω ∈ cZl

w
, where

Zl = Zero(jl), the zero set of the corresponding Bessel function. In
this case, we also have by (E), (F ), that jθ = jφ = 0 at the boundary,
and;

er = −µ0c4

ω2
∂p
∂r
|S(0,w)

jr = −ic2
ω

∂p
∂r
|S(0,w)

where p is constant on the boundary, as ∂p
∂φ

= ∂p
∂ψ

= 0.

The next claim is a special case of the result proved in [10] and left
to the reader.

For the next claim, rb′re
−iωt =< B′, r > satisfies the wave equation,

as;

�2(< B′, r >)

=< �2B′, r > + < B′,�2r > +5 �B
′

= 0

The equations for the components in the TE and TM modes can be
found in [5], and we assume they hold on the exterior of the sphere
S(0, w). For the boundary conditions at the boundary of the cav-
ity magnetron, we need {eθ, eφ, br} to vanish at the boundary again.

In the TE mode case, from (X), we can achieve this with ∂r2br
∂θ

=
∂r2br
∂φ

= 0, and r2br = 0 at the boundary. By the explicit form of
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rbr in (C1), if the magnetron has radius w, this is again achieved

when R = jl′(
ωr
c

)|δS(0,w) = 0, so that ωw
c
∈ Zl′ , ω ∈ cZl′

w
, where

Zl′ = Zero(jl′), the zero set of the corresponding Bessel function. In

the TM mode case, from (Y ), we can achieve this with ∂r2er
∂r

= 0, as
br = 0 in the TM mode. By the explicit form of rer in (C1), if the mag-

netron has radius w, this is achieved when ∂rR
∂r

=
∂rjl′ (

ωr
c

)

∂r
|δS(0,w) = 0.

In the TE case, we have that the surface charge σf is given by;

σf
ε0

= E
′⊥ − E⊥

= e′re
−iωt − ere−iωt

= −ere−iωt

= µ0c4

ω2
∂p
∂r
|S(0,w)e

−iωt

while in the TM case, we have that;

σf
ε0

= E
′⊥ − E⊥

= e′re
−iωt − ere−iωt

= e′re
−iωt + µ0c4

ω2
∂p
∂r
|S(0,w)e

−iωt

where re′r satisfies the relations above.

In the TE case, we have that the surface current Kf is given by;

µ0(Kf × r̂) = B
′|| −B||

= B
′||

= (b′θθ̂ + b′φφ̂)e−iωt

= ( 1
l′(l′+1)

1
r
∂
∂θ

∂
∂r

(r2b′r)θ̂ + 1
l′(l′+1)

1
rsin(θ)

∂
∂φ

∂
∂r

(r2b′r)φ̂)e−iωt

where rb′r satisfies the relations above. It follows that;

µ0Kf = ( 1
l′(l′+1)

1
r
∂
∂θ

∂
∂r

(r2b′r)φ̂− 1
l′(l′+1)

1
rsin(θ)

∂
∂φ

∂
∂r

(r2b′r)θ̂)e
−iωt
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In the TM case, we have that;

µ0(Kf × r̂) = B
′|| −B||

= B
′||

= (− iω
c2l′(l′+1)

1
rsin(θ)

∂
∂φ

(r2e′r)θ̂ + iω
c2l′(l′+1)

1
r
∂
∂θ

(r2e′r)φ̂)e−iωt

where re′r satisfies the relations above. It follows that;

µ0Kf = (− iω
c2l′(l′+1)

1
rsin(θ)

∂
∂φ

(r2e′r)φ̂− iω
c2l′(l′+1)

1
r
∂
∂θ

(r2e′r)θ̂)e
−iωt

In the TE case, we have that;

5S(0,w) � µ0Kf

= ( 1
wsin(θ)

∂
∂φ
, 1
wsin(θ)

∂
∂θ
sin(θ))�( 1

l′(l′+1)
1
r
∂
∂θ

∂
∂r

(r2b′r),− 1
l′(l′+1)

1
rsin(θ)

∂
∂φ

∂
∂r

(r2b′r))e
−iωt

= ( 1
l′(l′+1)

1
w2sin(θ)

∂2

∂θ∂φ
∂
∂r

(r2b′r)− 1
l′(l′+1)

1
w2sin(θ)

∂2

∂θ∂φ
∂
∂r

(r2b′r))e
−iωt

= 0

In the TM case, we have that;

5S(0,w) � µ0Kf

= ( 1
wsin(θ)

∂
∂φ
, 1
wsin(θ)

∂
∂θ
sin(θ))�(− iω

c2l′(l′+1)
1

rsin(θ)
∂
∂φ

(r2e′r),− iω
c2l′(l′+1)

1
r
∂
∂θ

(r2e′r))e
−iωt

= − iω
c2l′(l′+1)

( 1
w2sin2(θ)

∂2

∂φ2 (r2e′r) + 1
w2sin(θ)

∂
∂θ

(sin(θ) ∂
∂θ

(r2e′r)))e
−iωt

In the TE and TM cases, we have that;

(J
′ − J) � n̂

= −J � n̂

= −jre−iωt

= ic2

ω
∂p
∂r
|S(0,w)e

−iωt
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In the TE case, we have that;

∂σf
∂t

= −iω ε0µ0c4

ω2
∂p
∂r
|S(0,w)e

−iωt

= − ic2

ω
∂p
∂r
|S(0,w)e

−iωt

while in the TM case, we have that;

∂σf
∂t

= (−iωε0e′r − ic2

ω
∂p
∂r
|S(0,w))e

−iωt

It follows that in the TE case;

5S(0,w) �Kf + (J
′ − J) � n̂

= 0 + ic2

ω
∂p
∂r
|S(0,w)e

−iωt

= −∂σf
∂t

so the continuity equation holds on the boundary. In the TM case,
we have that;

5S(0,w) �Kf + (J
′ − J) � n̂+

∂σf
∂t

= − iω
µ0c2l′(l′+1)

( 1
w2sin2(θ)

∂2

∂φ2 (r2e′r) + 1
w2sin(θ)

∂
∂θ

(sin(θ) ∂
∂θ

(r2e′r)))e
−iωt +

ic2

ω
∂p
∂r
|S(0,w)e

−iωt

+(−iωε0e′r − ic2

ω
∂p
∂r
|S(0,w))e

−iωt

= − iω
µ0c2l′(l′+1)

( 1
w2sin2(θ)

∂2

∂φ2 (r2e′r) + 1
w2sin(θ)

∂
∂θ

(sin(θ) ∂
∂θ

(r2e′r)))e
−iωt

−iωε0e′re−iωt

= − iωε0
l′(l′+1)

( 1
w2sin2(θ)

∂2

∂φ2 (r2e′r) + 1
w2sin(θ)

∂
∂θ

(sin(θ) ∂
∂θ

(r2e′r)))e
−iωt

− iωε0
l′(l′+1)

(1
r
∂
∂r

(r2 ∂(re′r)
∂r

) + ω2r2

c2
e′r)e

−iωt
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= 0

as;

1
r2

∂
∂r

(r2 ∂(re′r)
∂r

)+ 1
r2sin2(θ)

∂2

∂φ2 (re′r)+ 1
r2sin(θ)

∂
∂θ

(sin(θ) ∂
∂θ

(re′r))+ ω2

c2
re′r = 0

and we can multiply by r.

We follow the notation in [11], and denote by;

J l0,k0 =
∑
−l0≤m≤l0 U(l0,m, k0)γl0,m,k0e

−ik0ct

for l0 = 1, where;

U(l0,m0, k0) = ( 2
π
)

1
2
il0k2

0

4π
W (l0,m)∗

= i( 2
π
)

1
2
k2

0

4π
W (1,m)∗

and k0 ∈
Sl0
w

, for the zero set of jl0 . Then J vanishes on the sphere

S(0, w) and satisfies the radial transform condition, so we can find ρl0,k0

such that (ρl0,k0 , J l0,k0) satisfy (i) − (iv). To calculate ρl0,k0 , we have
that;

ρl0,k0(x, t) =
∫
S(0,k0)

f(k)ei(k�x−k0ct)dS(0, k0)

where f(k) = (k,F (k))

c|k| = |k|
c

so that, using the calculation in [12] or [4];

ρl0,k0(x, t) = k0

c
e−ik0ct

∫
S(0,k0)

eik�xdS(0, k0)(k)

=
k3

0

c
e−ik0ct

∫
S(0,1)

ei(l�k0xdS(0, 1)(l)

=
k3

0

c
e−ik0ct (2π)

3
2

|k0x|
1
2
J 1

2
(|k0x|)

=
4k3

0π

c
j0(k0|x|)

=
k3

0

c
e−ik0ct4π sin(|k0x|)

|k0x|

=
4πk3

0

c
e−iω0t sin(|k0x|)

|k0x| (PP )
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where ω0 = k0c

We can complete (ρk0,l0 , Jk0,l0) to a tuple (ρk0,l0 , Jk0,l0 , Ek0,l0 , Bk0,l0)
satisfying (i) − (viii) as follows. For (viii), we let Ek0,l0 = ek0,l0e

−iω0t

so that;

−iω0ek0,l0 = − 1
ε0
jk0,l0

ek0,l0 = − i
ε0ω0

jk0,l0

Ek0,l0 = − i
ε0ω0

Jk0,l0 . Then, as;

1
c2
∂Jk0,l0

∂t
= − iω0

c2
Jk0,l0 = −5 (ρk0,l0)

we have that 5× Ek0,l0 = 5× Jk0,l0 = 5×5(ρk0,l0) = 0

and, as �2Jk0,l0 = 0, �2Ek0,l0 = 0, so that (v) holds.

We have that;

5 � Ek0,l0 = 5 �− i
ε0ω0

Jk0,l0

= i
ε0ω0

∂ρk0,l0

∂t

= i
ε0ω0

(−iω0)ρk0,l0

=
ρk0,l0

ε0

so that (vii) is satisfied. Setting B = 0, we obtain (vi). Observe
that by the calculation (PP ), ρk0,l0 is a scalar multiple of the form con-
sidered before the introduction of J vanishing at the boundary with
the Bessel function defined by l = 0 and with m = 0. As the set of
relations (i)− (iv) hold for both Jk0,l0 and J , where J is defined from
ρk0,l0 using (∗∗) at the beginning of the paper, we must have that;

∂Jk0,l0
−J

∂t
= 0

�2(Jk0,l0 − J) = 0

so that;
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52(Jk0,l0 − J) = 0

and;

Jk0,l0 = J + c(t), by boundedness and the fact that the difference
is harmonic at a given time t. Using the relation (iv) again, we must
have that c′(t) = 0, so that c(t) = c is time independent. By the fact
that the difference Jk0,l0 − J is of the form j(x, y, z)e−ik0ct, we must
have that c = 0 so that Jk0,l0 = J . We can then use the calculation
above to verify the continuity equation at the boundary.

By construction Ek0,l0|S(0,w) = 0, in particular, the components {ek0,l0,θ, ek0,l0,φ}
vanish at the boundary of the magnetron, so that E

||
k0,l0

= 0 and clearly

B
⊥
k0,l0

= 0 as well. As above, in the TE mode case, from (X), we can

achieve compatibility of the boundaty condition with ∂r2br
∂θ

= ∂r2br
∂φ

= 0,

and r2br = 0 at the boundary. By the explicit form of rbr in (C1), if the
magnetron has radius w, we achieve this when R = jl0(ω0r

c
)|δS(0,w) = 0,

we consider the simplest solution pl0,m0,c, with l0 = 1, m0 = 0. In the

TM mode case, from (Y ), we can achieve this with ∂r2er
∂r

= 0, as br = 0
in the TM mode. By the explicit form of rer in (C1), if the magnetron

has radius w, this is achieved when ∂rR
∂r

=
∂rjl′0

(
ω′0r
c

)

∂r
|δS(0,w) = 0. Note

that we can achieve this condition with a single Bessel function by
Rolle’s theorem and the fact that the Bessel functions jl have infinitely
many zeros for l ≥ 0. We cannot, however achieve this condition with
jl′0 , for l0 = l′0 unless ω = 0, as all the non-zero roots are simple.

In the TE case, we have that the surface charge
σk0,l0

ε0
is given by;

E
′⊥
k0,l0
− E⊥k0,l0

= E
′⊥
k0,l0

= e′k0,l0,r
e−iω0t

= 0
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by definition of the TE mode and the fact that E = 0 at the bound-
ary S(0, w).

In the TM case, we have that the surface charge
σk0,l0,f

ε0
is given by;

E
′⊥
k0,l0
− E⊥k0,l0

= E
′⊥
k0,l0

= e′k0,l0,r
e−iω

′
0t

where re′k0,l0,r
satisfies the usual relations with R = jl′0(

ω′0r

c
).

In the TE case, we have that the surface current Kk0,l0,f is given by;

µ0(Kk0,l0,f × r̂) = B
′||
k0,l0
−B||k0,l0

= B
′||
k0,l0

= (b′k0,l0,θ
θ̂ + b′k0,l0,φ

φ̂)e−iω0t

= ( 1
l0(l0+1)

1
r
∂
∂θ

∂
∂r

(r2b′k0,l0,r
)θ̂ + 1

l0(l0+1)
1

rsin(θ)
∂
∂φ

∂
∂r

(r2b′k0,l0,r
)φ̂)e−iω0t

where rb′k0,l0,r
satisfies the relations above. It follows that;

µ0Kk0,l0,f = ( 1
l0(l0+1)

1
r
∂
∂θ

∂
∂r

(r2b′k0,l0,r
)φ̂− 1

l0(l0+1)
1

rsin(θ)
∂
∂φ

∂
∂r

(r2b′k0,l0,r
)θ̂)e−iω0t

In the TM case, we have that;

µ0(Kk0,l0,f × r̂) = B
′||
k0,l0
−B||k0,l0

= B
′||
k0,l0

= (− iω′0
c2l′0(l′0+1)

1
rsin(θ)

∂
∂φ

(r2e′k0,l0,r
)θ̂ +

iω′0
c2l′0(l′0+1)

1
r
∂
∂θ

(r2e′r)φ̂)e−iω
′
0t

where re′k0,l0,r
satisfies the relations above. It follows that;

µ0Kk0,l0,f = (− iω′0
c2l′0(l′0+1)

1
rsin(θ)

∂
∂φ

(r2e′k0,l0,r
)φ̂− iω′0

c2l′0(l′0+1)
1
r
∂
∂θ

(r2e′k0,l0,r
)θ̂)e−iω

′
0t

It follows that in the TE case, if we fix a circle Sθ0 on the sphere
given by θ = θ0, we have that the current along Sθ0 in the direction of
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φ̂ is given by, when m0 = 0, l0 = 1;

µ0Kk0,l0,f |Sθ0 = 1
2w

∂2

∂θ∂r
(rRk0,l0(r)Θk0,l0(θ)Φk0,l0(φ))|w,θ0,φφ̂e−iω0t

= 1
2w

(Rk0,l0(r)Θ′k0,l0
(θ)Φk0,l0(φ)+R′k0,l0

(r)Θ′k0,l0
(θ)Φk0,l0(φ))|w,θ0,φφ̂e−iω0t

= 1
2w

(R′k0,l0
(r)Θ′k0,l0

(θ)Φk0,l0(φ))|w,θ0,φφ̂e−iω0t, (Rk0,l0(w) = 0)

= 1
2w
j′1(ω0r

c
)(P 0

1 (cos(θ)))′|w,θ0,φe−iω0tφ̂

= 1
2w
j′1(ω0r

c
)(cos(θ))′|w,θ0,φe−iω0tφ̂

= − sin(θ0)ω0

2wc
j′1(ω0w

c
)e−iω0tφ̂

which is alternating current of amplitude sin(θ0)ω0

2wc
j′1(ω0w

c
) and fre-

quency ω0

2π
.

By the above, we have that the surface charge in the TE mode is zero,
so the potential due to the surface charge on the sphere S(0, k0) is also
zero, by Jefimenko’s equations. As ρ = 0 outside the magnetron, again
by Jefimenko’s equations, the causal potential on the sphere S(0, w),
due to the TE mode, is again zero. The potential due to the charge
inside the magnetron is found using the method of [10]. We have that,
using the calculation above;

Vk0,l0(x, t) =
c2ε0ρk0,l0

(x,t)

ω2

=
4πk3

0c
2ε0

cω2
0

e−iω0t sin(|k0x|)
|k0x|

=
4πk3

0cε0
ω2

0
e−iω0t sin(|k0x|)

|k0x|

so the surface S(0, w) is an equipotential
4πk3

0cε0
ω2

0
e−iω0t sin(k0w)

k0w

In particularly, if we ground φ = 0 and take real parts, the impedance
Zθ0 along Sθ0 is given by;

Zθ0 =

4πk3
0cε0µ0

ω2
0

e−iω0t
sin(k0w)
k0w

sin(θ0)ω0
2wc

j′1(
ω0w
c

)e−iω0t
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=

4πk3
0

cω2
0

sin(k0w)
k0w

− sin(θ0)ω0
2wc

j′1(
ω0w
c

)

= 8π
c2ω0

sin(k0w)

sin(θ0)j′1(
ω0w
c

)

The cases when l0 6= 1 mean changing the frequency ω0 to a new ω′0,
but the cases can be computed using the formula for the derivative of
an associated Legendre polynomial, when −l0 ≤ m0 ≤ l0, l0 ≥ 1, see
[14], with the convention that Pm

l = 0 for |m| > l. The quoted formula
assumes the Condon-Shortley phase factor (−1)m0 which is not used
here, but the formula is not effected;

(x2 − 1) d
dx

(Pm0
l0

(x)) = l0xP
m0
l0

(x)− (l0 +m0)Pm0
l0−1(x)

which gives that;

Pm0
l0

(cos(θ))′ = sin(θ)
sin2(θ)

(l0cos(θ)P
m0
l0

(cos(θ))− (l0 +m0)Pm0
l0−1(cos(θ)))

= l0cot(θ)P
m0
l0

(cos(θ))− (l0 +m0)cosec(θ)Pm0
l0−1(cos(θ))

It follows that in the TE case, if we fix a circle Sθ0 on the sphere given

by θ = θ0, we have that the current along Sθ0 in the direction of φ̂ is
given in general for the basic solutions pl′0,m′0,c, for l′0 ≥ 2, −l′0 ≤ m′0 ≤ l′0
by;

µ0Kk0,l0,f |Sθ0 = 1
l′0(l′0+1)w

∂2

∂θ∂r
(rRk0,l0(r)Θk0,l0(θ)Φk0,l0(φ))|w,θ0,φφ̂e−iω

′
0t

= 1
l′0(l′0+1)w

(Rk0,l0(r)Θ′k0,l0
(θ)Φk0,l0(φ)+R′k0,l0

(r)Θ′k0,l0
(θ)Φk0,l0(φ))|w,θ0,φφ̂e−iω

′
0t

= 1
l′0(l′0+1)w

(R′k0,l0
(r)Θ′k0,l0

(θ)Φk0,l0(φ))|w,θ0,φφ̂e−iω
′
0t

= 1
l′0(l′0+1)w

j′l′0
(
ω′0r

c
)(Pm0

l0
(cos(θ0)))′cos(m0φ)|w,θ0,φe−iω

′
0tφ̂

= 1
l′0(l′0+1)w

j′l′0
(
ω′0r

c
)cos(m′0φ)(l′0cot(θ0)P

m′0
l′0

(cos(θ0))−(l′0+m′0)cosec(θ0)P
m′0
l′0−1(cos(θ0)))e−iω

′
0tφ̂

= j′l′0
(
ω′0r

c
)e−iω

′
0tcos(m′0φ)φ̂( 1

(l′0+1)w
cot(θ0)P

m′0
l′0

(cos(θ0))− (l′0+m′0)

l′0(l′0+1)w
cosec(θ0)P

m′0
l′0−1(cos(θ0)))

We leave it as an exercise to compute the impedance following the
method below.
..... Similarly, in the TM case, if we fix the circle Sθ0 on the sphere
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given by θ = θ0, we have that the current µ0Iθ0 along Sθ0 in the direc-

tion of φ̂ is given by;

− iω′0
c2l′0(l′0+1)

w
wsin(θ)

∂
∂φ

(Rk0,l0(r)Θk0,l0(θ)Φk0,l0(φ))|w,θ0,φφ̂)e−iω
′
0t

= − iω′0
c2l′0(l′0+1)

1
sin(θ)

(Rk0,l0(r)Θk0,l0(θ)Φ′k0,l0
(φ))|w,θ0,φφ̂)e−iω

′
0t

We consider the case l′0 6= 1, −l′0 ≤ m′0 ≤ l′0 remembering that we

require ∂
∂r

(rjl′0(
ω′0r

c
))|δS(0,w) = 0, which we cannot achieve with l′0 = 1.

We consider the basic solutions pl′0,m′0,c.

µ0Iθ0 = − iω′0
l′0(l′0+1)c2

1
sin(θ0)

jl′0(
ω′0w

c
)((P

m′0
l′0

)(cos(θ0)))cos(m′0φ)′φ̂e−iω
′
0t

=
im′0ω

′
0

l′0(l′0+1)c2
1

sin(θ0)
jl′0(

ω′0w

c
)((P

m′0
l′0

)(cos(θ0)))sin(m′0φ)φ̂e−iω
′
0t

As ρ = 0 outside the magnetron, again by Jefimenko’s equations, the
causal potential on the sphere S(0, w), due to the TM mode, is again
zero. We can ignore the potential due to the surface charge in the TM
mode, by Jefimenko’s equations. As before, S(0, w) is an equipotential;

Vk0,l0 =
4πk3

0cε0
ω2

0
e−iω0t sin(k0w)

k0w

due to the configuration inside the magnetron. We consider the 2m′0
points φ ∈ { kπ

m′0
: −m′0 ≤ k ≤ m′0 − 1} on the circle defined by θ = θ0.

Then the average current between the points φ = jπ
m′0
, φ = (j+1)π

m′0
,

−m′0 ≤ j ≤ m′0 − 1 mod m′0 is;

m′0
µ0π

∫ (j+1)π

m′0
jπ

m′0

im′0ω
′
0

l′0(l′0+1)c2
jl′0(

ω′0w

c
)((P

m′0
l′0

)(cos(θ0)))sin(m′0φ)φ̂e−iω
′
0tdφ

=
m′0
µ0π

im′0ω
′
0

l′0(l′0+1)c2
jl′0(

ω′0w

c
)e−iω

′
0t((P

m′0
l′0

)(cos(θ0)))φ̂
∫ (j+1)π

m′0
jπ

m′0

sin(m′0φ)dφ

=
2(−1)jm′20

µ0π

iω′0
l′0(l′0+1)c2

jl′0(
ω′0w

c
)e−iω

′
0t((P

m′0
l′0

)(cos(θ0)))φ̂

whereas if we ground the m0 points corresponding to φ ∈ { (2s−m0)π
m0

:

0 ≤ s ≤ m0 − 1}, the potential difference across the 2m0 regions is
4πk3

0cε0
ω2

0
e−iω0t sin(k0w)

k0w
.

Taking real parts, we have that the average current is given by;
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2(−1)jm′20
µ0π

ω′0
l′0(l′0+1)c2

jl′0(
ω′0w

c
)sin(ω′0t)((P

m′0
l′0

)(cos(θ0)))

whereas the potential is;

4πk3
0cε0
ω2

0

sin(k0w)
k0w

cos(ω0t)

We have that;

cos(ω′0t)− cos(ω0t) = −2sin(
(ω0+ω′0)

2
t)sin(

(ω0−ω′0)

2
t)

so that if we apply a voltage;

V ′(t) = −8πk3
0cε0
ω2

0

sin(k0w)
k0w

sin(
(ω0+ω′0)

2
t)sin(

(ω0−ω′0)

2
t)

to the sphere boundary, the total sphere potential is;

4πk3
0cε0
ω2

0

sin(k0w)
k0w

cos(ω′0t)

and the impedance in the 2m0 regions is;

Zj,θ0 = i

4πk3
0cε0µ0

ω2
0

sin(k0w)
k0w

2(−1)jm′20
π

ω′0
l′0(l′0+1)c2

jl′0
(
ω′0w
c

)((P
m′0
l′0

)(cos(θ0)))

= i
2π2(−1)j l′0(l′0+1)sin(

ω0w
c

)

m′20 cwω
′
0jl′0

(
ω′0w
c

)((P
m′0
l′0

)(cos(θ0)))

V ′ can be generated from an AC potential of frequency
(ω0+ω′0)

4π
, with

a variable transformer, in which the sliding contact determining the

turns ratio varies as sin(
(ω0−ω′0)

2
t). Alternatively, the potentials;

4πk3
0cε0
ω2

0

sin(k0w)
k0w

cos(ω′0t)

4πk3
0cε0
ω2

0

sin(k0w)
k0w

cos(ω0t)

can be generated directly using an RL or RC circuit, tuned to the
correct resonant frequency, and then combined using a mixer. Notice
that the approximation to the current becomes better with large m′0.

�

Lemma 0.2. Let (ρ, J, E,B) be the configuration found in Lemma

0.1, and let (E
′
, B
′
) be the causal fields generated by Jefimenko’s equa-

tions for the current and charge (ρ, J) restricted to B(0, w). Then
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on B◦(0, w), E
′

= E + E0, B
′

= B0 where (E0, B0) is a solution to

Maxwell’s equation in vacuum, and on B(0, w)c, (E
′
, B
′
) is a solution

to Maxwell’s equation in vacuum.

Proof. By the proof in [11], we have that (ρ, J, E
′
, B
′
) satisfy Maxwell’s

equations on B◦(0, w) and (0, 0, E
′
, B
′
) satisfy Maxwell’s equations on

B(0, w)c. By the proof in [11], we can find (E0, B0) satisfying Maxwell’s
equations in vacuum on B◦(0, w), such that;

5× (E
′ − E0) = 0

We then have that ∂(B
′−B0)
∂t

= 5× (E
′ − E0) = 0

so that (B
′ −B0) is magnetostatic. By the proof of Lemma 0.1 and

a careful examination of the proof in [11], we have that;

B
′ −B0

is of the form b
′′
(x, y, z)e−iωt, so that −iωb′′ = 0, b

′′
= 0 and B

′
= B0.

We have that;

(E
′ − E0 − E,B

′ −B0 −B) = (E
′ − E0 − E, 0− 0)

= (E
′ − E0 − E, 0)

is a solution to Maxwell’s equation in vacuum, on the ball B(0, w),
so that, by Maxwell’s fourth equation;

∂(E
′−E0−E)
∂t

= 5× 0− 0 = 0

Again, using the explicit form e′′(x, y, z)e−iωt for E
′ − E0 − E, it

follows that E
′ − E0 = E.

�

Lemma 0.3. Let E be a field, of the form e(x, y, z)e−iωt with the prop-

erty that �2(E) = 0 and 5 �E = 0, or equivalently 52(e) = −ω2

c2
e and

5 � e = 0, then there exists a unique field B of the form be−iωt such
that the pair (E,B) satisfies Maxwell’s equations in free space.

Proof. Clearly (i) of Maxwell’s equations is satisfied. Let B = be−iωt,
where b = − i

ω
5×e. For (ii), we have that;
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5× E = (5× e)e−iωt

= iω(−i
ω

)5×ee−iωt

= iωbe−iωt

= −∂B
∂t

For (iii), we have that;

5 �B = 5 � (be−iωt)

= (5 � (− i
ω
5×e))e−iωt)

= 0

For (iv), we have, by the properties of e that;

5×B = 5× (be−iωt)

= (5× (− i
ω
5×e))e−iωt)

= − i
ω

(5×5× e)e−iωt)

= − i
ω

(5(5 � e)−52(e))e−iωt

− i
ω

(−52 (e))e−iωt

= i
ω
−ω2

c2
ee−iωt

− iω
c2
ee−iωt

= 1
c2
∂E
∂t

For uniqueness, let (E,B1) and (E,B2) be two pairs of the above
form, so that, subtracting, (0, B1−B2) is a solution to Maxwell’s equa-
tion in vacuum. By (ii);

∂(B1−B2)
∂t

= −iω(B1 −B2)
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= −(5× 0)

= 0

so that B1 = B2.
�

Lemma 0.4. If V is a vector potential of the form v(x, y, z)e−iωt, with

the property that �2(V ) = 0, or equivalently 52(v) = −ω2

c2
v, then if

E = 5 × V , we have that E satisfies the properties in Lemma 0.3.
Given boundary conditions {f, g} on δS(0, w), if;

5× v|δS(0,w) = f

− i
ω

(5×5× v)|δS(0,w) = g

then the corresponding fields {E,B} are continuous with fields {fe−iωt, ge−iωt}
on B(0, w). These boundary conditions can be satisfied for v with

the above property, if g = 0 and f
r

= f
2

= 0. In particular, these
boundary conditions are satisfied for the configuration from Lemma
0.1, when J

r|δB(0,w) = 0 or when J |δB(0,w), in which case we obtain
a 2-dimensional family of solutions.

Proof. The first claim follows easily, noting that;

5 � E = 5 � (5× V )

= 0

�2(E) = �2(5× V ) = 5×�2(V )

= 5× 0

= 0

We can write v in the form;

v(r, θ, φ) =
∑∞

l=0

∑l
m=−l(v

r
lm(r)Y lm(r, θ, φ)+v1

lm(r)Ψlm(r, θ, φ)+v2
lm(r)Φlm(r, θ, φ))

where {Y lm,Ψlm,Φlm} are vector spherical harmonics, see [2].
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Then;

52(v) =
∑∞

l=0

∑l
m=−l(

1
r2

d
dr
r2 dv

r
lm

dr
)Y lm+( 1

r2
d
dr
r2 dv

1
lm

dr
)Ψlm+( 1

r2
d
dr
r2 dv

2
lm

dr
)Φlm

+vrlm(− 1
r2 (2+l(l+1))Y lm+ 2

r2 Ψlm)+v1
lm( 2

r2 l(l+1)Y lm− 1
r2 l(l+1)Ψlm)

+v2
lm(− 1

r2 l(l + 1)Φlm)

=
∑∞

l=0

∑l
m=−l(

1
r2

d
dr
r2 dv

r
lm

dr
+vrlm(− 1

r2 (2+l(l+1)))+v1
lm( 2

r2 l(l+1)))Y lm

+( 1
r2

d
dr
r2 dv

1
lm

dr
+ vrlm

2
r2 − v1

lm
1
r2 l(l + 1))Ψlm

+( 1
r2

d
dr
r2 dv

2
lm

dr
− v2

lm
1
r2 l(l + 1))Φlm

so that equating coefficients, the condition 52(v) = −ω2

c2
v, becomes;

(i). 1
r2

d
dr
r2 dv

r
lm

dr
+ vrlm(− 1

r2 (2 + l(l + 1))) + v1
lm( 2

r2 l(l + 1)) = −ω2

c2
vrlm

(ii). 1
r2

d
dr
r2 dv

1
lm

dr
+ vrlm

2
r2 − v1

lm
1
r2 l(l + 1) = −ω2

c2
v1
lm

(iii). 1
r2

d
dr
r2 dv

2
lm

dr
− v2

lm
1
r2 l(l + 1) = −ω2

c2
v2
lm

or equivalently;

(i). (vrlm)′′ + 2
r
(vrlm)′ + (ω

2

c2
− 2+l(l+1)

r2 )vrlm + 2l(l+1)
r2 v1

lm = 0

(ii). (v1
lm)′′ + 2

r
(v1
lm)′ + (ω

2

c2
− l(l+1)

r2 )v1
lm + 2

r2v
r
lm = 0

(iii). (v2
lm)′′ + 2

r
(v2
lm)′ + (ω

2

c2
− l(l+1)

r2 )v2
lm = 0 (P )

Letting w = (vrlm, (v
r
lm)′, v1

lm, (v
1
lm)′, v2

lm, (v
2
lm)′), we can write these

conditions in the form;

w′ = Mw

where M is a matrix, with;

M12 = 1, M1j = 0, j = 1 or 3 ≤ j ≤ 6

M34 = 1, M3j = 0, 1 ≤ j ≤ 2, 4 ≤ j ≤ 6
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M56 = 1, M5j = 0, 1 ≤ j ≤ 5

M21 = −(ω
2

c2
− 2+l(l+1)

r2 ), M22 = −2
r
, M23 = −2l(l+1)

r2

M2j = 0, 4 ≤ j ≤ 6

M43 = −(ω
2

c2
− l(l+1)

r2 ), M44 = −2
r
, M41 = − 2

r2

M4j = 0, j = 2, 5 ≤ j ≤ 6

M65 = −(ω
2

c2
− l(l+1)

r2 ), M66 = −2
r
, M6j = 0, 1 ≤ j ≤ 4

By the vector valued version of Peano’s existence and uniqueness
theorem, this has a unique solution given the initial values of w at w.
We have that;

5×v =
∑∞

l=0

∑l
m=−l(5× (vrlmY lm)+5× (v1

lmΨlm)+5× (v2
lmΦlm))

=
∑∞

l=0

∑l
m=−l(−

1
r
vrlmΦlm + (

dv1
lm

dr
+ 1

r
v1
lm)Φlm + ((− l(l+1)

r
)v2
lmY lm

−(
dv2
lm

dr
+ 1

r
v2
lm)Ψlm)

=
∑∞

l=0

∑l
m=−l(−

l(l+1)
r

)v2
lmY lm − (

dv2
lm

dr
+ 1

r
v2
lm)Ψlm

+(
dv1
lm

dr
+ 1

r
v1
lm − 1

r
vrlm)Φlm

so the first boundary condition becomes;

(a). − l(l+1)
w

)v2
lm(w) = f

r

lm(w)

(b) −(
dv2
lm

dr
(w) + 1

w
v2
lm(w)) = f

1

lm(w)

(c) (
dv1
lm

dr
(w) + 1

w
v1
lm(w)− 1

w
vrlm(w)) = f

2

lm(w)

We have that, using (P );

5×5× v =
∑∞

l=0

∑l
m=−l5× ((− l(l+1)

r
)v2
lmY lm)

−5×((
dv2
lm

dr
+ 1

r
v2
lm)Ψlm) +5× ((

dv1
lm

dr
+ 1

r
v1
lm − 1

r
vrlm)Φlm)
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=
∑∞

l=0

∑l
m=−l−

1
r
(− l(l+1)

r
v2
lm)Φlm−( d

dr
(
dv2
lm

dr
+1
r
v2
lm)+1

r
(
dv2
lm

dr
+1
r
v2
lm))Φlm

+(− l(l+1)
r

(
dv1
lm

dr
+ 1

r
v1
lm − 1

r
vrlm))Y lm − ( d

dr
(
dv1
lm

dr
+ 1

r
v1
lm − 1

r
vrlm)

+1
r
(
dv1
lm

dr
+ 1

r
v1
lm − 1

r
vrlm))Ψlm

=
∑∞

l=0

∑l
m=−l([−l(l + 1)(1

r
(v1
lm)′ + 1

r2v
1
lm − 1

r2v
r
lm)]Y lm

+[−(v1
lm)′′ + 1

r2v
1
lm − 1

r
(v1
lm)′ − 1

r2v
r
lm + 1

r
(vrlm)′ + 1

r
(v1
lm)′ + 1

r2v
1
lm

− 1
r2v

r
lm]Ψlm+[ l(l+1)

r2 v2
lm−(v2

lm)′′+ 1
r2v

2
lm− 1

r
(v2
lm)′− 1

r
(v2
lm)′− 1

r2v
2
lm]Φlm)

=
∑∞

l=0

∑l
m=−l([−l(l + 1)(1

r
(v1
lm)′ + 1

r2v
1
lm − 1

r2v
r
lm)]Y lm

+[−(v1
lm)′′+1

r
(vrlm)′+ 2

r2v
1
lm− 2

r2v
r
lm]Ψlm+[−(v2

lm)′′−2
r
(v2
lm)′+ l(l+1)

r2 v2
lm]Φlm)

=
∑∞

l=0

∑l
m=−l([−l(l + 1)(1

r
(v1
lm)′ + 1

r2v
1
lm − 1

r2v
r
lm)]Y lm

+[2
r
(v1
lm)′ + (ω

2

c2
− l(l+1)

r2 )v1
lm + 2

r2v
r
lm + 1

r
(vrlm)′ + 2

r2v
1
lm − 2

r2v
r
lm]Ψlm

+[2
r
(v2
lm)′ + (ω

2

c2
− l(l+1)

r2 )v2
lm − 2

r
(v2
lm)′ + l(l+1)

r2 v2
lm]Φlm)

=
∑∞

l=0

∑l
m=−l([−l(l + 1)(1

r
(v1
lm)′ + 1

r2v
1
lm − 1

r2v
r
lm)]Y lm

+[2
r
(v1
lm)′ + 1

r
(vrlm)′ + (ω

2

c2
+ 2−l(l+1)

r2 )v1
lm]Ψlm

+[ω
2

c2
v2
lm]Φlm)

so the second boundary condition becomes;

(d). il(l+1)
ω

( 1
w

(v1
lm)′(w) + 1

w2v
1
lm(w)− 1

w2v
r
lm(w)) = grlm(w)

(e). − 2i
wω

(v1
lm)′(w)− i

wω
(vrlm)′(w)− i

ω
(ω

2

c2
+ 2−l(l+1)

w2 )v1
lm(w) = g1

lm(w)

(f). − i
ω
ω2

c2
v2
lm(w) = g2

lm(w)

We can write the two boundary conditions in the form;

Nw|w = s
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where w is as above, and;

s = (f
r

lm(w), f
1

lm(w), f
2

lm(w), grlm(w), g1
lm(w), g2

lm(w))

and N is a matrix, with;

N15 = − l(l+1)
w

, N1j = 0, j = 6 or 1 ≤ j ≤ 4

N25 = − 1
w

, N26 = −1, N2j = 0, 1 ≤ j ≤ 4

N65 = − i
ω
ω2

c2
, N6j = 0, j = 6 or 1 ≤ j ≤ 4

N31 = − 1
w

, N33 = 1
w

, N34 = 1, N3j = 0, j = 2 or 5 ≤ j ≤ 6

N41 = − i(l+1)
ω

1
w2 , N43 = i(l+1)

ω
1
w2 , N44 = i(l+1)

ω
1
w
N4j = 0, j = 2

or 5 ≤ j ≤ 6

N52 = − i
ω

1
w

, N53 = − i
ω

(ω
2

c2
+ 2−l(l+1)

w2 ), N54 = − i
ω

2
w

, N5j = 0, j = 1

or 5 ≤ j ≤ 6

If g = 0 and f
r

= f
2

= 0, then;

s = (0, f
1

lm(w), 0, 0, 0, 0)

and we obtain a solution by setting;

v2
lm = 0

(v2
lm)′ = −f 1

lm(w)

−vrlm + v1
lm + w(v1

lm)′ = 0

(vrlm)′ + w(ω
2

c2
+ 2−l(l+1)

w2 )v1
lm + 2(v1

lm)′ = 0

which is a 2 dimensional family, as we are free to choose v1
lm and

(v1
lm)′. Using the fact that, for the configuration (ρ, J, E,B) inside the

magnetron;
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5× E = −∂B
∂t

= 0

5×B = µ0J + 1
c2
∂E
∂t

= 0

we obtain, at the boundary;

(5× E)rlm = − l(l+1)
w

(E)2
lm = 0

so that (E)2
lm(w) = 0, and;

µ0(J)rlm − iω
c2

(E)rlm

so that, with the hypothesis that J
r|δB(0,w) = 0 or J |δB(0,w) = 0, we

obtain that (E)rlm(w) = 0, as required.

�

Lemma 0.5. If V and A are potentials of the form v(x, y, z)e−iωt

and a(x, y, z)e−iωt, with the property that and 5 � A = − 1
c2
∂V
∂t

and

�2(A) = 0, or equivalently 5 � a = iω
c2
v and 52(a) = −ω2

c2
a, then if;

E = −5 (V )− ∂A
∂t

= −5 (V ) + iωA

B = 5× A

we have that {E,B} satisfy Maxwell’s equations in free space on
B(0, w)c. Given boundary conditions {f, g} on δS(0, w), if;

−5 (v) + iωa|δS(0,w) = f

5× a|δS(0,w) = g

then the corresponding fields {E,B} are continuous with fields {fe−iωt, ge−iωt}
on B(0, w). These boundary conditions can be satisfied for {v, a} with

the above property, if g = 0 and f
r

= f
2

= 0. In particular, these
boundary conditions are satisfied for the configuration from Lemma 0.1,
with J |δB(0,w) = 0, in which case we obtain a 2-dimensional family of
solutions in the TM mode.
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Proof. First observe that if V is of the form v(x, y, z)e−iωt, then as
�2A = 0 and ∂V

∂t
= −iωV , we obtain, using the Lorentz gauge condi-

tion, that 5 � A = − 1
c2
∂V
∂t

;

�2(V ) = i
ω
�2(∂V

∂t
)

= i
ω
�2(−c25 �A)

= − c2i
ω
5 �(�2A)

= − c2i
ω
5 �(0)

= 0

The first claim then follows from the result in [11], as the Lorentz
gauge condition and wave equations for (V,A) are satisfied. We can
write v in the form;

v(r, θ, φ) =
∑∞

l=0

∑l
m=−l(vlm(r)Ylm(r, θ, φ)

where the {Ylm : l ≥ 0,−l ≤ m ≤ l} are the spherical harmonics.
Then;

52(v) =
∑∞

l=0

∑l
m=−l(

1
r2

d
dr

(r2 dvlm
dr

)− l(l+1)
r2 vlm)Ylm

so that equating coefficients, the condition 52(v) = −ω2

c2
v, becomes;

(i). 1
r2

d
dr

(r2 dvlm
dr

)− l(l+1)
r2 vlm = −ω2

c2
vlm

or equivalently;

(i). (vlm)′′ + 2
r
(vlm)′ + (ω

2

c2
− l(l+1)

r2 )vlm = 0 (P )

We can write a in the form;

a(r, θ, φ) =
∑∞

l=0

∑l
m=−l(a

r
lm(r)Y lm(r, θ, φ)+a1

lm(r)Ψlm(r, θ, φ)+a2
lm(r)Φlm(r, θ, φ))

where {Y lm,Ψlm,Φlm} are vector spherical harmonics, see [2].

Then;
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5 � a =
∑∞

l=0

∑l
m=−l(

darlm
dr

+ 2
r
arlm −

l(l+1)
r
a1
lm)Ylm

so that equating coefficients, the Lorentz gauge condition;

v = − ic2

ω
5 �a

becomes;

(ii). vlm = − ic2

ω
(
darlm
dr

+ 2
r
arlm −

l(l+1)
r
a1
lm)

or equivalently;

(ii). vlm = − ic2

ω
((arlm)′ + 2

r
arlm −

l(l+1)
r
a1
lm) (P2)

Moreover;

52(a) =
∑∞

l=0

∑l
m=−l(

1
r2

d
dr
r2 da

r
lm

dr
)Y lm+( 1

r2
d
dr
r2 da

1
lm

dr
)Ψlm+( 1

r2
d
dr
r2 da

2
lm

dr
)Φlm

+arlm(− 1
r2 (2+l(l+1))Y lm+ 2

r2 Ψlm)+a1
lm( 2

r2 l(l+1)Y lm− 1
r2 l(l+1)Ψlm)

+a2
lm(− 1

r2 l(l + 1)Φlm)

=
∑∞

l=0

∑l
m=−l(

1
r2

d
dr
r2 da

r
lm

dr
+arlm(− 1

r2 (2+l(l+1)))+a1
lm( 2

r2 l(l+1)))Y lm

+( 1
r2

d
dr
r2 da

1
lm

dr
+ arlm

2
r2 − a1

lm
1
r2 l(l + 1))Ψlm

+( 1
r2

d
dr
r2 da

2
lm

dr
− a2

lm
1
r2 l(l + 1))Φlm

so that equating coefficients again, the condition 52(a) = −ω2

c2
a, be-

comes;

(iii). 1
r2

d
dr
r2 da

r
lm

dr
+ arlm(− 1

r2 (2 + l(l+ 1))) + a1
lm( 2

r2 l(l+ 1)) = −ω2

c2
arlm

(iv). 1
r2

d
dr
r2 da

1
lm

dr
+ arlm

2
r2 − a1

lm
1
r2 l(l + 1) = −ω2

c2
a1
lm

(v). 1
r2

d
dr
r2 da

2
lm

dr
− a2

lm
1
r2 l(l + 1) = −ω2

c2
a2
lm

or equivalently;

(iii). (arlm)′′ + 2
r
(arlm)′ + (ω

2

c2
− 2+l(l+1)

r2 )arlm + 2l(l+1)
r2 a1

lm = 0



30 TRISTRAM DE PIRO

(iv). (a1
lm)′′ + 2

r
(a1
lm)′ + (ω

2

c2
− l(l+1)

r2 )a1
lm + 2

r2a
r
lm = 0

(v). (a2
lm)′′ + 2

r
(a2
lm)′ + (ω

2

c2
− l(l+1)

r2 )a2
lm = 0 (Q)

Letting w = (arlm, (a
r
lm)′, a1

lm, (a
1
lm)′, a2

lm, (a
2
lm)′), we can write condi-

tions (iii), (iv), (v) in the form;

w′ = Mw

where M is a 6× 6 matrix, with;

M12 = 1, M1j = 0, j = 1 or 3 ≤ j ≤ 6

M34 = 1, M3j = 0, 1 ≤ j ≤ 3, 5 ≤ j ≤ 6

M56 = 1, M5j = 0, 1 ≤ j ≤ 5

M21 = −(ω
2

c2
− 2+l(l+1)

r2 ), M22 = −2
r
, M23 = −2l(l+1)

r2 , M2j = 0

4 ≤ j ≤ 6

M43 = −(ω
2

c2
− l(l+1)

r2 ), M44 = −2
r
, M41 = − 2

r2 , M4j = 0, j = 2

or 5 ≤ j ≤ 6

M66 = −2
r
, M65 − (ω

2

c2
− l(l+1)

r2 ), M6j = 0, 1 ≤ j ≤ 4

By the vector valued version of Peano’s existence and uniqueness
theorem, this has a unique solution given the initial values of w at w.
We have that;

−5 (v) = −
∑∞

l=0

∑l
m=−l

dvlm
dr
Y lm + vlm

r
Ψlm

iωa = iω
∑∞

l=0

∑l
m=−l(a

r
lmY lm + a1

lmΨlm + a2
lmΦlm)

5×a =
∑∞

l=0

∑l
m=−l(5× (arlmY lm)+5× (a1

lmΨlm)+5× (a2
lmΦlm))

=
∑∞

l=0

∑l
m=−l(−

1
r
arlmΦlm + (

da1
lm

dr
+ 1

r
a1
lm)Φlm + ((− l(l+1)

r
)a2
lmY lm

−(
da2
lm

dr
+ 1

r
a2
lm)Ψlm)
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=
∑∞

l=0

∑l
m=−l(−

l(l+1)
r

)a2
lmY lm − (

da2
lm

dr
+ 1

r
a2
lm)Ψlm

+(
da1
lm

dr
+ 1

r
a1
lm − 1

r
arlm)Φlm

so the boundary conditions become;

(a). −dvlm
dr

(w) + iωarlm(w) = f
r

lm(w)

(b). −vlm(w)
w

+ iωa1
lm(w) = f

1

lm(w)

(c). iωa2
lm(w) = f

2

lm(w)

(d). (− l(l+1)
w

)a2
lm(w) = grlm(w)

(e). −(
da2
lm

dr
(w) + 1

w
a2
lm(w)) = g1

lm(w)

(f). (
da1
lm

dr
(w) + 1

w
a1
lm(w)− 1

w
arlm(w)) = g2

lm(w)

and using the two relation (ii), (P2) and (iii);

vlm = − ic2

ω
((arlm)′ + 2

r
arlm −

l(l+1)
r
a1
lm)

(arlm)′′ + 2
r
(arlm)′ + (ω

2

c2
− 2+l(l+1)

r2 )arlm + 2l(l+1)
r2 a1

lm = 0

we have that;

dvrlm
dr

= − ic2

ω
((arlm)′′ − 2

r2a
r
lm + 2

r
(arlm)′ + l(l+1)

r2 a1
lm −

l(l+1)
r

(a1
lm)′)

= − ic2

ω
(−2

r
(arlm)′ − (ω

2

c2
− 2+l(l+1)

r2 )arlm −
2l(l+1)
r2 a1

lm − 2
r2a

r
lm + 2

r
(arlm)′

+ l(l+1)
r2 a1

lm −
l(l+1)
r

(a1
lm)′)

= − ic2

ω
(−(ω

2

c2
− l(l+1)

r2 )arlm −
l(l+1)
r2 a1

lm −
l(l+1)
r

(a1
lm)′)

so we can rewrite (a), (b) as;

(a)′. ic
2

ω
(−(ω

2

c2
− l(l+1)

w2 )arlm(w)− l(l+1)
w2 a1

lm(w)− l(l+1)
w

(a1
lm)′(w))+iωarlm(w)

= f
r

lm(w)
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(b)′. ic2

wω
((arlm)′(w) + 2

w
arlm(w)− l(l+1)

w
a1
lm(w)) + iωa1

lm(w) = f
1

lm(w)

or equivalently;

(a)′ il(l+1)c2

w2 arlm(w)− ic2l(l+1)
w2ω

a1
lm(w)− ic2l(l+1)

wω
(a1
lm)′(w)

= f
r

lm(w)

(b)′ 2ic2

w2ω
arlm(w) + ic2

wω
(arlm)′(w) + (iω − ic2l(l+1)

w2ω
)a1
lm(w) = f

1

lm(w)

We can write the boundary conditions (a′), (b)′, (c), (d), (e), (f) in the
form;

Nw|w = s

where w is as above, and;

s = (f
r

lm(w), f
1

lm(w), f
2

lm(w), grlm(w), g1
lm(w), g2

lm(w))

and N is a matrix, with;

N11 = il(l+1)c2

w2ω
, N13 = − ic2l(l+1)

w2ω
, N14 = − ic2l(l+1)

wω
, N1j = 0

j = 2 or 5 ≤ j ≤ 6

N21 = 2ic2

w2ω
, N22 = ic2

wω
, N23 = iω − ic2l(l+1)

w2ω
, N2j = 0, 4 ≤ j ≤ 6

N35 = iω, N3j = 0, 1 ≤ j ≤ 4, j = 6

N45 = − l(l+1)
w

, N4j = 0, 1 ≤ j ≤ 4, j = 6

N55 = − 1
w

, N56 = −1, N5j = 0, 1 ≤ j ≤ 4

N61 = − 1
w

, N63 = 1
w

, N64 = 1, N6j = 0, j = 2, 5 ≤ j ≤ 6

If g = 0 and f
r

= f
2

= 0, then;

s = (0, f
1

lm(w), 0, 0, 0, 0)

and we obtain a solution by setting;
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a2
lm(w) = 0

(a2
lm)′(w) = 0

(arlm)′ = − iwω
c2

(− 2ic2

w2ω
arlm(w) + ( ic

2l(l+1)
w2ω

− iω)a1
lm(w) + f

1

lm(w))

= − 2
w
arlm(w) + ( l(l+1)

w
− wω2

c2
)a1
lm(w)− iwω

c2
f

1

lm(w)

il(l+1)c2

w2ω
arlm(w)− ic2l(l+1)

w2ω
a1
lm(w)− ic2l(l+1)

wω
(a1
lm)′(w) = 0

−arlm(w)

w
+

a1
lm(w)

w
+ (a1

lm)′(w) = 0

which is a 2-dimensional family, as we are free to choose a1
lm(w), (a1

lm)′(w).
Using the fact that, for the configuration (ρ, J, E,B) inside the mag-
netron;

5× E = −∂B
∂t

= 0

we obtain, at the boundary;

(5× E)rlm = − l(l+1)
w

(E)2
lm = 0

so that (E)2
lm(w) = 0

and B = 0 by properties of the configuration. By equation (v) of (Q)
and the fact that a2

lm(w) = 0, (a2
lm)′(w) = 0, we obtain that a2

lm(r) = 0,
for r ≥ w, so that;

(B)rlm = (5× A)rlm = − l(l+1)
r

(A)2
lm = 0

and we obtain solutions in the TM mode, with no surface charge or
current. Using the fact that;

5×B = µ0J + 1
c2
∂E
∂t

= 0

we obtain, at the boundary;

µ0(J)rlm − iω
c2

(E)rlm = 0
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so that, with the hypothesis that J
r|δB(0,w) = 0 or J |δB(0,w) = 0, we

obtain that (E)rlm(w) = 0, as required.

�

Lemma 0.6. If (E,B) are fields of the form e(x, y, z)e−iωt and b(x, y, z)e−iωt

satisfying Maxwell’s equations in free space, in the region B(0, w)c,
then there exists potentials V and A of the form v(x, y, z)e−iωt and
a(x, y, z)e−iωt, with the property that �2(V ) = 0, �2(A) = 0 5 � A =

− 1
c2
∂V
∂t

, or equivalently 52(v) = −ω2

c2
v ,52(a) = −ω2

c2
a, 5 � a = iω

c2
v,

such that;

E = −5 (V )− ∂A
∂t

= −5 (V ) + iωA

B = 5× A

In particularly, the causal field generated by Jefimenko’s equations
for the charge and current configuration found in Lemma 0.2 is not in
the 2-dimensional family found in Lemma 0.5, unless J

r|δB(0,w) = 0.

Proof. As 5 � B = 0, or equivalently 5 � b = 0, we can find A
′

of the

form a′e−iωt such that 5× A′ = B (A), by requiring that 5× a′ = b.
Then, as (E,B) satisfy Maxwell’s equations, we have that;

5× E = (5× e)e−iωt

= −∂B
∂t

= −∂(5×A′)
∂t

= iω(5× a′)e−iωt

so that;

5(e− iωa′) = 0

and we can find a scalar v′ such that;

−5 (v′) = e− iωa′
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in which case, setting V ′ = v′e−iωt, we have that;

E = −5 (V ′)− ∂A
′

∂t
(B)

Using the proof in [6], p417, as (E,B) satisfy Maxwell’s equations
in free space, we have that;

52(V ′) + ∂(5�A
′
)

∂t
= 0

(52(A
′
)− 1

c2
∂2A
∂t2

)−5(5 � A
′
+ 1

c2
∂V ′

∂t
) = 0 (C)

We claim that we can find potentials (V,A) satisfying (A), (B), of the
form v(x, y, z)e−iωt and a(x, y, z)e−iωt such that the additional Lorentz
gauge condition;

5 � A = − 1
c2
∂V
∂t

(D)

holds, in which case, substituting into (C), we obtain the relations;

�2(V ) = 0

�2(A) = 0

as required. As in the proof of [6], for a scalar Λ, if A = A
′
+5(Λ)

and V = V ′ − ∂Λ
∂t

, then (V,A) satisfy (A), (B), so to obtain (D), we
require that;

5 � A = 5 � (A
′
+5(Λ))

= − 1
c2
∂V
∂t

= − 1
c2
∂(V ′− ∂Λ

∂t
)

∂t

= − 1
c2
∂V ′

∂t
+ 1

c2
∂2Λ
∂t2

so that;

52(Λ)− 1
c2
∂2Λ
∂t2

= −5 �(A
′
)− 1

c2
∂V ′

∂t

Writing Λ in the form λe−iωt, we require a solution to;
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52(λ) + ω2

c2
λ = −5 �(a′) + iω

c2
v′

on B(0, w)c. Denoting the forcing term − 5 �(a′) + iω
c2
v′ by τ , and

letting;

τ =
∑∞

l=0

∑l
m=−l τlm(r)Ylm(θ, φ)

be its expansion in spherical harmonics, expanding;

λ =
∑∞

l=0

∑l
m=−l λlm(r)Ylm(θ, φ)

in spherical harmonics and equating coefficients, we require that, see
(P ) in the proof of Lemma 0.5, that;

(λlm)′′ + 2
r
(λlm)′ + (ω

2

c2
− l(l+1)

r2 )λlm = τlm (E)

in the region r > w. This is a second order differential equation, the
homogenous version;

(λlm)′′ + 2
r
(λlm)′ + (ω

2

c2
− l(l+1)

r2 )λlm = 0

having two independendent solutions jl(
ωr
c

) and nl(
ωr
c

), where jl and
nl are the spherical Bessel and Neumann functions of order l. By Abel’s
theorem, the Wronskian W (jl(

ωr
c

), nl(
ωr
c

)) is given by;

c0exp(−
∫

2
r
dr) = c0

r2

where c0 is a constant, and the general solution of (E), given by
variation of parameters, see [3], is;

λlm(r) = c1jl(
ωr
c

) + c2nl(
ωr
c

) + Zlm(r)

where c1 and c2 are constants and;

Zlm(r) = −jl(ωrc )
∫ nl(

ωr
c

)τlm(r)

W (jl(
ωr
c

),nl(
ωr
c

))
dr + nl(

ωr
c

)
∫ jl(

ωr
c

)τlm(r)

W (jl(
ωr
c

),nl(
ωr
c

))
dr

= − jl(
ωr
c

)

c0

∫
r2nl(

ωr
c

)τlm(r)dr +
nl(

ωr
c

)

c0

∫
r2jl(

ωr
c

)τlm(r)dr

The last claim is clear by Lemmas 0.5, 0.2 and 0.1.

�
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Lemma 0.7. When l = 0 or l = 1, the equations from Lemma 0.5;

(i). (vlm)′′ + 2
r
(vlm)′ + (ω

2

c2
− l(l+1)

r2 )vlm = 0 (P )

(ii). (arlm)′′ + 2
r
(arlm)′ + (ω

2

c2
− 2+l(l+1)

r2 )arlm + 2l(l+1)
r2 a1

lm = 0

(iii). (a1
lm)′′ + 2

r
(a1
lm)′ + (ω

2

c2
− l(l+1)

r2 )a1
lm + 2

r2a
r
lm = 0

(iv). (a2
lm)′′ + 2

r
(a2
lm)′ + (ω

2

c2
− l(l+1)

r2 )a2
lm = 0 (Q)

have an explicit general solution in terms of Bessel and Neumann
functions.

Proof. When l = 0, the equations;

(i). (vlm)′′ + 2
r
(vlm)′ + (ω

2

c2
− l(l+1)

r2 )vlm = 0

(ii). (arlm)′′ + 2
r
(arlm)′ + (ω

2

c2
− 2+l(l+1)

r2 )arlm + 2l(l+1)
r2 a1

lm = 0

(iii). (a1
lm)′′ + 2

r
(a1
lm)′ + (ω

2

c2
− l(l+1)

r2 )a1
lm + 2

r2a
r
lm = 0

(iv). (a2
lm)′′ + 2

r
(a2
lm)′ + (ω

2

c2
− l(l+1)

r2 )a2
lm = 0

simplify to;

(i). (v1m)′′ + 2
r
(v1m)′ + ω2

c2
v1m = 0

(ii). (ar1m)′′ + 2
r
(ar1m)′ + (ω

2

c2
− 2

r2 )ar1m = 0

(iii). (a1
1m)′′ + 2

r
(a1

1m)′ + ω2

c2
a1

1m + 2
r2a

r
1m = 0

(iv). (a2
1m)′′ + 2

r
(a2

1m)′ + ω2

c2
a2

1m = 0

By calculating (ii) + (iii), we obtain that;

(ar1m + 2a1
1m)′′ + 2

r
(ar1m + 2a1

1m)′ + ω2

c2
(ar1m + a1

1m) = 0

which has the general solution;

(ar1m + a1
1m)(r) = c1j0(ωr

c
) + c2n0(ωr

c
)
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where j0 and n0 are the spherical Bessel and Neumann functions of
order 0. It follows that;

arlm = c1j0(ωr
c

) + c2n0(ωr
c

)− a1
1m(r) (H)

and substituting into (iii), we obtain that;

(a1
1m)′′ + 2

r
(a1

1m)′ + ω2

c2
a1

1m + 2
r2 (c1j0(ωr

c
) + c2n0(ωr

c
)− a1

1m) = 0

(a1
1m)′′ + 2

r
(a1

1m)′ + (ω
2

c2
− 2

r2 )a1
1m = − 2

r2 (c1j0(ωr
c

) + c2n0(ωr
c

)) (K)

The homogenous version;

(a1
1m)′′ + 2

r
(a1

1m)′ + (ω
2

c2
− 2

r2 )a1
1m = 0 (I)

has a general solution;

a1
lm = c3j1(ωr

c
) + c4n1(ωr

c
)

where j1 and n1 are the spherical Bessel and Neumann functions of
order 1. By Abel’s theorem, the Wronskian W (j1(ωr

c
), n1(ωr

c
)) is given

by;

c5exp(−
∫

2
r
dr) = c5

r2

where c5 is a constant, and the general solution of (K), given by
variation of parameters again, is;

a1
lm(r) = c3j1(ωr

c
) + c4n1(ωr

c
) + Vlm(r)

where;

Vlm(r) = −j1(ωr
c

)
∫ n1(ωr

c
)[− 2

r2
(c1j0(ωr

c
)+c2n0(ωr

c
))]

W (jl(
ωr
c

),nl(
ωr
c

))
dr+n1(ωr

c
)
∫ j1(ωr

c
)[− 2

r2
(c1j0(ωr

c
)+c2n0(ωr

c
))]

W (j1(ωr
c

),n1(ωr
c

))
dr

= − j1(ωr
c

)

c5

∫
r2n1(ωr

c
)[− 2

r2 (c1j0(ωr
c

) + c2n0(ωr
c

))]dr

+
n1(ωr

c
)

c5

∫
r2j1(ωr

c
)[− 2

r2 (c1j0(ωr
c

) + c2n0(ωr
c

))]dr

=
2c1j1(ωr

c
)

c5

∫
n1j0(ωr

c
)dr +

2c2j1(ωr
c

)

c5

∫
n1n0(ωr

c
)dr
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−2c1n1(ωr
c

)

c5

∫
j1j0(ωr

c
)dr − 2c2n1(ωr

c
)

c5

∫
j1n0(ωr

c
)dr

so that, substituting into (H), we obtain;

arlm(r) = c1j0(ωr
c

) + c2n0(ωr
c

)− 2(c3j1(ωr
c

) + c4n1(ωr
c

) + Vlm(r))

as a general solution. The general solutions of (i) and (iv) are given
by;

v1m(r) = c6j0(ωr
c

) + c7n0(ωr
c

)

a2
lm(r) = c8j0(ωr

c
) + c9n0(ωr

c
)

where c6, c7, c8, c9 are constants and j0, n0 are Bessel and Neumann
functions of order 0.

When l = 1, the equations;

(i). (vlm)′′ + 2
r
(vlm)′ + (ω

2

c2
− l(l+1)

r2 )vlm = 0

(ii). (arlm)′′ + 2
r
(arlm)′ + (ω

2

c2
− 2+l(l+1)

r2 )arlm + 2l(l+1)
r2 a1

lm = 0

(iii). (a1
lm)′′ + 2

r
(a1
lm)′ + (ω

2

c2
− l(l+1)

r2 )a1
lm + 2

r2a
r
lm = 0

(iv). (a2
lm)′′ + 2

r
(a2
lm)′ + (ω

2

c2
− l(l+1)

r2 )a2
lm = 0

simplify to;

(i). (v1m)′′ + 2
r
(v1m)′ + (ω

2

c2
− 2

r2 )v1m = 0

(ii). (ar1m)′′ + 2
r
(ar1m)′ + (ω

2

c2
− 4

r2 )ar1m + 4
r2a

1
1m = 0

(iii). (a1
1m)′′ + 2

r
(a1

1m)′ + (ω
2

c2
− 2

r2 )a1
1m + 2

r2a
r
1m = 0

(iv). (a2
1m)′′ + 2

r
(a2

1m)′ + (ω
2

c2
− 2

r2 )a2
1m = 0

By calculating (ii) + 2(iii), we obtain that;

(ar1m + 2a1
1m)′′ + 2

r
(ar1m + 2a1

1m)′ + ω2

c2
(ar1m + 2a1

1m) = 0
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which has the general solution;

(ar1m + 2a1
1m)(r) = c1j0(ωr

c
) + c2n0(ωr

c
)

where j0 and n0 are the spherical Bessel and Neumann functions of
order 0. It follows that;

arlm = c1j0(ωr
c

) + c2n0(ωr
c

)− 2a1
1m(r) (G)

and substituting into (iii), we obtain that;

(a1
1m)′′+ 2

r
(a1

1m)′+ (ω
2

c2
− 2

r2 )a1
1m + 2

r2 (c1j0(ωr
c

) + c2n0(ωr
c

)− 2a1
1m) = 0

(a1
1m)′′ + 2

r
(a1

1m)′ + (ω
2

c2
− 6

r2 )a1
1m = − 2

r2 (c1j0(ωr
c

) + c2n0(ωr
c

))

The homogenous version;

(a1
1m)′′ + 2

r
(a1

1m)′ + (ω
2

c2
− 6

r2 )a1
1m = 0 (F )

has a general solution;

a1
lm = c3j2(ωr

c
) + c4n2(ωr

c
)

where j2 and n2 are the spherical Bessel and Neumann functions of
order 2. By Abel’s theorem, the Wronskian W (j2(ωr

c
), n2(ωr

c
)) is given

by;

c5exp(−
∫

2
r
dr) = c5

r2

where c5 is a constant, and the general solution of (F ), given by
variation of parameters again, is;

a1
lm(r) = c3j2(ωr

c
) + c4n2(ωr

c
) + Tlm(r)

where;

Tlm(r) = −j2(ωr
c

)
∫ n2(ωr

c
)[− 2

r2
(c1j0(ωr

c
)+c2n0(ωr

c
))]

W (jl(
ωr
c

),nl(
ωr
c

))
dr+n2(ωr

c
)
∫ j2(ωr

c
)[− 2

r2
(c1j0(ωr

c
)+c2n0(ωr

c
))]

W (j2(ωr
c

),n2(ωr
c

))
dr

= − j2(ωr
c

)

c5

∫
r2n2(ωr

c
)[− 2

r2 (c1j0(ωr
c

) + c2n0(ωr
c

))]dr
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+
n2(ωr

c
)

c5

∫
r2j2(ωr

c
)[− 2

r2 (c1j0(ωr
c

) + c2n0(ωr
c

))]dr

=
2c1j2(ωr

c
)

c5

∫
n2j0(ωr

c
)dr +

2c2j2(ωr
c

)

c5

∫
n2n0(ωr

c
)dr

−2c1n2(ωr
c

)

c5

∫
j2j0(ωr

c
)dr − 2c2n2(ωr

c
)

c5

∫
j2n0(ωr

c
)dr

so that, substituting into (G), we obtain;

arlm(r) = c1j0(ωr
c

) + c2n0(ωr
c

)− 2(c3j2(ωr
c

) + c4n2(ωr
c

) + Tlm(r))

as a general solution. The general solutions of (i) and (iv) are given
by;

v1m(r) = c6j1(ωr
c

) + c7n1(ωr
c

)

a2
lm(r) = c8j1(ωr

c
) + c9n1(ωr

c
)

where c6, c7, c8, c9 are constants and j1, n1 are Bessel and Neumann
functions of order 1.

�

Lemma 0.8. If (ρ, J, E,B) is the configuration from Lemma 0.1, ob-
tained as a limit of (ρδ, Jδ, Eδ, Bδ), where (ρδ, Jδ) admit the standard
wave equation representation in terms of Fourier transforms, then E
and J are radial. Moreover, E and J can be expanded in terms of
Bessel functions and spherical harmonica of order 1.

Proof. By (PP ) in the proof of Lemma 0.1, we have that;

ρ(x, t) = α 4πk3

c
e−iωt sin(|kx|)

|kx|

where α is a complex constant and ω = kc. Taking the gradient, and
using the fact that;

∂J
∂t

= −iωJ

= −c25 (ρ)

it is clear as ρ is constant on spheres S(0, r), for r > 0, that J is
radial. As E = 1

iωε0
J , by Maxwell’s fourth equation and B = 0, E is
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radial. We have that, by the proof of (PP ), that;

J = α
∑
−1≤m≤1 U(1,m, k)γ1,m,ke

−ikct

where;

U(1,m, k) = i( 2
π
)

1
2
k2

4π
W (1,m)∗

so that, by the calculations in [11], in particularly the spherical ex-
pansion of r̂ and using the fact that the coefficient vectors W (1,m),
−1 ≤ m ≤ 1, are real;

J = α
∑
−1≤m≤1 i(

2
π
)

1
2
k2

4π
W (1,m)∗k( 2

π
)

1
2 j1(kr)Y1,m(θ, φ)e−ikct

= αdj1(kr)e−ikct
∑
−1≤m≤1W (1,m)∗Y1,m(θ, φ)

= αdj1(ωr
c

)e−iωt
∑
−1≤m≤1W (1,m)∗Y1,m(θ, φ)

= αdj1(ωr
c

)e−iωt
∑
−1≤m≤1W (1,m)Y1,m(θ, φ)

= αdj1(ωr
c

)e−iωtr̂

where d = ik3

2π2 = iω3

2c3π2 and ω = kc.

It follows that;

E = 1
iωε0

J = 1
iωε0

αdj1(ωr
c

)e−iωtr̂

We have that;

E
r

lm(r) =
∫
S(0,1)

Elm � Y lmdS(0, 1)

= 1
iωε0

αdj1(ωr
c

)e−iωt
∫
S(0,1)

r̂ � r̂YlmdS(0, 1)

= 1
iωε0

αdj1(ωr
c

)e−iωt
∫
S(0,1)

YlmdS(0, 1)

= 2
√
π

iωε0
αdj1(ωr

c
)e−iωtδ0,lδ0,m

and, using the divergence theorem;
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E
1

lm(r) =
∫
S(0,1)

Elm � ΨlmdS(0, 1)∫
S(0,1)

Elm � r5 (Ylm)dS(0, 1)

= r
iωε0

αdj1(ωr
c

)e−iωt
∫
S(0,1)

r̂ �5(Ylm)dS(0, 1)

= r
iωε0

αdj1(ωr
c

)e−iωt
∫
S(0,1)

5(Ylm)dS(0, 1)

= r
iωε0

αdj1(ωr
c

)e−iωt
∫
B(0,1)

52(Ylm)dB(0, 1)

= r
iωε0

αdj1(ωr
c

)e−iωt
∫
B(0,1)

− l(l+1)
r2 YlmdB(0, 1)

= − l(l+1)r
iωε0

αdj1(ωr
c

)e−iωt
∫
S(0,1)

YlmdS(0, 1)

= − l(l+1)r
iωε0

αdj1(ωr
c

)e−iωtδ0,lδ0,m

= 0

E
2

lm(r) =
∫
S(0,1)

Elm � ΨlmdS(0, 1)

=
∫
S(0,1)

Elm � (r ×5(Ylm))dS(0, 1)

= 1
iωε0

αdj1(ωr
c

)e−iωt
∫
S(0,1)

r̂ � (r ×5(Ylm))dS(0, 1)

= 0

Using the boundary conditions from Lemma 0.5, if ω is chosen so
that j1(ωw

c
) = 0, we obtain a solution by setting;

a2
lm(w) = 0

(a2
lm)′(w) = 0

(arlm)′ = − 2
w
arlm(w) + ( l(l+1)

w
− wω2

c2
)a1
lm(w)

−arlm(w)

w
+

a1
lm(w)

w
+ (a1

lm)′(w) = 0 (X)

for (l,m) 6= (0, 0), and;

a2
00(w) = 0
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(a2
00)′(w) = 0

(ar00)′ = − 2
w
ar00(w) + ( l(l+1)

w
− wω

c2
)a1

00(w)

−ar00(w)

w
+

a1
00(w)

w
+ (a1

00)′(w) = 0 (Y )

In the 2-dimensional family of solutions, we can set;

a1
lm(w) = (a1

lm)′(w) = 0

for all (l,m). Then, for (l,m), by (X), (Y );

arlm(w) = (arlm)′(w) = a1
lm(w) = (a1

lm)′(w)

= a2
lm(w) = (a2

lm)′(w) = 0

and, by Peano’s existence and uniqueness theorem, using the condi-
tions (iii), (iv), (v) in Lemma 0.5;

arlm(r) = (arlm)′(r) = a1
lm(r) = (a1

lm)′(r)

= a2
lm(r) = (a2

lm)′(r) = 0

for r ≥ w. By the relation (ii), (P2) in Lemma 0.5, we obtain that
vlm(r) = 0, for r ≥ w as well, so that we obtain the trivial solution.

�

Lemma 0.9. If (E,B) are fields of the form e(x, y, z)e−iωt and b(x, y, z)e−iωt

satisfying Maxwell’s equations in free space, in the region B(0, w)c,
then there exists potentials V and A of the form v(x, y, z)e−iωt and
a(x, y, z)e−iωt, with the properties that;

52(V ) + ∂(5�A)
∂t

= 0

(52(A)− 1
c2
∂2A
∂t2

)−5(5 � A+ 1
c2
∂V ′

∂t
) = 0 (C)

or equivalently;

52(v)− iω5 �a = 0
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52(a) + ω2

c2
a−5(5 � a− iω

c2
v) = 0

such that;

E = −5 (V )− ∂A
∂t

= −5 (V ) + iωA

B = 5× A (D)

Conversely, if we have potentials (V,A) satisfying (C) and we define
the fields (E,B) by (D), then (E,B) satisfy Maxwell’s equations in free
space on B(0, w)c.

Given boundary conditions {f, g} on δS(0, w), if;

−5 (v) + iωa|δS(0,w) = f

5× a|δS(0,w) = g

then the corresponding fields {E,B} are continuous with fields {fe−iωt, ge−iωt}
on B(0, w). These boundary conditions cannot be satisfied for {v, a}
with the above property, for the configuration from Lemma 0.8, unless
J |δS(0,w) = 0.

Proof. The first claim is just the first part of Lemma 0.6, the converse
claim just amounts to checking the steps are reversible in the proof of
[6].

Again, we can write v in the form;

v(r, θ, φ) =
∑∞

l=0

∑l
m=−l(vlm(r)Ylm(r, θ, φ)

where the {Ylm : l ≥ 0,−l ≤ m ≤ l} are the spherical harmonics.
Then;

52(v) =
∑∞

l=0

∑l
m=−l(

1
r2

d
dr

(r2 dvlm
dr

)− l(l+1)
r2 vlm)Ylm

Similarly, we write a again in the form;

a(r, θ, φ) =
∑∞

l=0

∑l
m=−l(a

r
lm(r)Y lm(r, θ, φ)+a1

lm(r)Ψlm(r, θ, φ)+a2
lm(r)Φlm(r, θ, φ))

where {Y lm,Ψlm,Φlm} are vector spherical harmonics, see [2].
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Then;

5 � a =
∑∞

l=0

∑l
m=−l(

darlm
dr

+ 2
r
arlm −

l(l+1)
r
a1
lm)Ylm

so that equating coefficients, the condition;

52(v)− iω5 �a = 0

becomes;

(i). 1
r2

d
dr

(r2 dvlm
dr

)− l(l+1)
r2 vlm − iω(

darlm
dr

+ 2
r
arlm −

l(l+1)
r
a1
lm) = 0

or equivalently;

(i). (vlm)′′ + 2
r
(vlm)′ − l(l+1)

r2 vlm − iω(arlm)′ − 2iω
r
arlm + iωl(l+1)

r
a1
lm = 0

We have that;

5(v) =
∑∞

l=0

∑l
m=−l

dvlm
dr
Y lm + vlm

r
Ψlm

and by the proof of Lemma 0.4;

5×5× a =
∑∞

l=0

∑l
m=−l([−l(l + 1)(1

r
(a1
lm)′ + 1

r2a
1
lm − 1

r2a
r
lm)]Y lm

+[−(a1
lm)′′ + 1

r
(arlm)′ + 2

r2a
1
lm − 2

r2a
r
lm]Ψlm

+[−(a2
lm)′′ − 2

r
(a2
lm)′ + l(l+1)

r2 a2
lm]Φlm)

so that, equating coefficients again, the condition;

52(a) + ω2

c2
a−5(5 � a− iω

c2
v) = 0

or equivalently;

−5×5×a+ ω2

c2
a+ iω

c2
5 (v) = 0

becomes;

(ii). −[−l(l + 1)(1
r
(a1
lm)′ + 1

r2a
1
lm − 1

r2a
r
lm)] + ω2

c2
arlm + iω

c2
(vlm)′ = 0

(iii). −[−(a1
lm)′′ + 1

r
(arlm)′ + 2

r2a
1
lm − 2

r2a
r
lm] + ω2

c2
a1
lm + iω

c2
vlm
r

= 0
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(iv). −[−(a2
lm)′′ − 2

r
(a2
lm)′ + l(l+1)

r2 a2
lm] + ω2

c2
a2
lm = 0

or equivalently;

(ii). l(l+1)
r

(a1
lm)′ + l(l+1)

r2 a1
lm + (ω

2

c2
− l(l+1)

r2 )arlm + iω
c2

(vlm)′ = 0

(iii). (a1
lm)′′ − 1

r
(arlm)′ + (ω

2

c2
− 2

r2 )a1
lm + 2

r2a
r
lm + iω

c2
vlm
r

= 0

(iv). (a2
lm)′′ + 2

r
(a2
lm)′ + (ω

2

c2
− l(l+1)

r2 )a2
lm = 0

For l = 0, we obtain that;

(i)(0) (v00)′′ + 2
r
(v00)′ − iω(ar00)′ − 2iω

r
ar00 = 0

(ii)(0) ω2

c2
ar00 + iω

c2
(v00)′ = 0

(iii)(0) (a1
00)′′ − 1

r
(ar00)′ + (ω

2

c2
− 2

r2 )a1
00 + 2

r2a
r
00 + iω

c2
v00

r
= 0

(iv)(0) (a2
00)′′ + 2

r
(a2

00)′ + ω2

c2
a2

00 = 0

and from (ii)(0), we obtain that;

ar00 = − i
ω

(v00)′

and, differentiating;

(ar00)′ = − i
ω

(v00)′′ (A)

Substituting (A) into (i)(0), we see this equation is automatically
satisfied, and substituting (A) into (iii), we obtain;

(a1
00)′′ + i

rω
(v00)′′ + (ω

2

c2
− 2

r2 )a1
00 − 2i

r2ω
(v00)′ + iω

c2r
v00 = 0

which rearranging, gives;

(a1
00)′′ + (ω

2

c2
− 2

r2 )a1
00 = − i

rω
(v00)′′ + 2i

r2ω
(v00)′ − iω

c2r
v00 (B)

Given a smooth choice of v00, (A) has a unique solution for ar00, and,
by Peano’s theorem, (B) has a unique solution for a1

00, given a choice
of a1

00(w), (a1
00)′(w). Similarly, (iv) has a unique solution for a2

00, given
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a choice of a2
00(w), (a2

00)′(w).

We have that;

−5 (v) = −
∑∞

l=0

∑l
m=−l

dvlm
dr
Y lm + vlm

r
Ψlm

iωa = iω
∑∞

l=0

∑l
m=−l(a

r
lmY lm + a1

lmΨlm + a2
lmΦlm)

5×a =
∑∞

l=0

∑l
m=−l(5× (arlmY lm)+5× (a1

lmΨlm)+5× (a2
lmΦlm))

=
∑∞

l=0

∑l
m=−l(−

1
r
arlmΦlm + (

da1
lm

dr
+ 1

r
a1
lm)Φlm + ((− l(l+1)

r
)a2
lmY lm

−(
da2
lm

dr
+ 1

r
a2
lm)Ψlm)

=
∑∞

l=0

∑l
m=−l(−

l(l+1)
r

)a2
lmY lm − (

da2
lm

dr
+ 1

r
a2
lm)Ψlm

+(
da1
lm

dr
+ 1

r
a1
lm − 1

r
arlm)Φlm

so the boundary conditions become;

(a). −dvlm
dr

(w) + iωarlm(w) = f
r

lm(w)

(b). −vlm(w)
w

+ iωa1
lm(w) = f

1

lm(w)

(c). iωa2
lm(w) = f

2

lm(w)

(d). (− l(l+1)
w

)a2
lm(w) = grlm(w)

(e). −(
da2
lm

dr
(w) + 1

w
a2
lm(w)) = g1

lm(w)

(f). (
da1
lm

dr
(w) + 1

w
a1
lm(w)− 1

w
arlm(w)) = g2

lm(w)

and for l = 0,m = 0, using the result of Lemma 0.8, we obtain;

(a). −dv00

dr
(w) + iωar00(w) = f

r

lm(w)

(b). −v00(w)
w

+ iωa1
00(w) = 0

(c). iωa2
00(w) = 0
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(d). 0 = 0

(e). −(
da2

00

dr
(w) + 1

w
a2

00(w)) = 0

(f). (
da1

00

dr
(w) + 1

w
a1

00(w)− 1
w
ar00(w)) = 0

where f
r

lm(w) = 2
√
π

iωε0
αdj1(ωw

c
)e−iωt

From (A), we see that the boundary condition (a) cannot be satisfied
unless j1(ωw

c
) = 0, in which case J |δS(0,w) = 0.

�
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