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TRISTRAM DE PIRO

ABSTRACT. We classify particle paths for systems in thermal equi-
librium satisfying the usual relations and prove that the only so-
lutions are given by straight line parallel paths with speed c.

In this short paper, we consider the notion of thermal equilibrium

. . .. . dp
for charge and current (p,.J) satisfying the continuity equation, 3% =

—div(J), in conjunction with the set of relations;

. o .. — Y . 1 aj A
()T (p) = 0. (ii). T(F) = 0. (). V(o) + 5% =0
where [J? is the d’Alembertian operator /2 — C%g—;

The significance of the relations (i) — (i47) is that they are invariant
under the Lorentz transformation of frames defined by special rela-

tivity, and characterise systems in which there exists electromagnetic
fields (£, B) in every frame such that (p,J, E, B) satisfy Maxwell’s

equations, B = 0 and (1*F = 0. Such configurations have the charac-
teristic that the Poynting vector E'x B = 0 and the flux div(Ex B) = 0,
so that there is no energy loss of the signal at any distance, in any in-
ertial frame. The fields (E, B) may not be the causal fields defined by
Jefimenko’s equations, or related by Lorentz transformations in differ-

ent frames. These ideas are developed in detail in the papers [5] and [6].

In order to define thermal equilibrium in this paper, we need that
the charge p > 0, in which case we require that |%| = d, where d € R>.

The significance of % is that it defines the velocities of particles which

make up the charge. More precisely, one can start with (p, J) satisfy-
ing the continuity equation, and use pg to define the initial position of
the particles which make up the charge. The particle paths are then
defined by Z(t + €) — T(t) = e§|§,t, where € is an infinitesimal, with
Z(0) given and p' defined step by step using the new particle configu-
ration. It is the aim of the paper [4] to prove that p’ is S-continuous as

a nonstandard process, has a well defined standard part °p’ and that
1
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(J,°p') satisfies the continuity equation. It then follows, by taking the
difference of the processes, that;

%20 — div(T) — div(T) = 0

and po = °pg

so that p, = °p/,, for t > 0, and the processes coincide. Physicists,
as in [1], use this relation J = pv intuitively.

In Definition 0.1, we define the notion of a simple system in which
all the particles travel with constant velocity. This notion is stronger
than that of thermal equilibrium. In Lemma 0.2, we prove that simple
systems have the important property that they are classically non-
radiating in every inertial frame, but the property of thermal equilib-
rium is in general not preserved between frames. The result relies on
the work of Larmor, see [3], who characterises radiation fields for mov-
ing particles, although it is still to be shown that the radiation field
defined by Jefimenko’s equations, see [1], coincides with the radiation
field of the sum of its constituents. We isolate simple systems as par-
allel and divergent, the idea being that in any other system, straight
line paths would intersect transversely and the current would not be
well defined at the intersection point. We show that there are systems
(p, J) satisfying the continuity equation with p > 0 which are parallel
but, using the main result of [6], there are none which are divergent.
We did, however, find a divergent system in [4] and [8], which satisfies
the additional relations, but is not simple or in thermal equilibrium.
In Lemma 0.3, we exclude the possibility that d # ¢ for parallel sys-
tems, when the additional relations outlined above are in place and,
in Lemma 0.4, we show that the condition of parallel with d = ¢ is
non vacuous, that is parallel systems with d = ¢ and satisfying the
additional relations exist. In the final Definition 0.5, we define trajec-
tories and flow lines, and, in Lemma 0.6, we exclude the possibility of
(p, J) satisfying the continuity equation and the additional relations,
with circular flow lines centred at the origin. We did manage to find a
system in thermal equilibrium with these properties in [7] but it does
not have the property that p > 0 and it does not satisfy the additional
relations, though we present an argument that it is classically non-
radiating in all inertial frames. If thermal equilibrium holds, we use
an important result in model theory due to Wilkie, see [10], that real
fields with Pfaffian functions are O-minimal, to show that the flowlines



SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 83

are unbounded. This allows us to prove that, if the additional relations
are in place as well, that the system must be parallel, with d = ¢, by
the above.

Definition 0.1. Suppose that (p,J) satisfy the continuity equation,
with p > 0, so that we can use the results of [4], in defining constituent
particles and their velocities. We assume this throughout the paper. We
say that the system is simple if the velocities of the individual particles
are equal, with zero acceleration. We say the system is parallel, if the
particles travel in parallel straight lines at constant velocity. We say
the system is divergent, if all the particles travel in straight lines with
constant velocity and the paths can only intersect at one point. We say

the system is in thermal equilibrium if \%| =d, for some d € Ry.

Lemma 0.2. A simple system has the property that it is classically non
radiating in the sense of [6], in every inertial frame, and is in thermal
equiltbrium in the base frame. The parallel systems are given by the
prescription that the charge p satisfies the transport equation;

o5}

p

% = —X-V(P)

for the velocity vector X, and the current J satisfies;

-

In particular parallel systems exists. Without loss of generality, the
divergent systems are given by the prescription that p satisfies the equa-
tion;

|

SIS

(V(p) .7~ 2p), (D)

where d € R.

=l

and the current satisfies;

T =dpZ

T =dp

However, no non trivial divergent systems satisfying the continuity
equation erist.

Proof. As all the particles in a simple system have zero acceleration,
using the calculation of the Lienard-Wiechert potentials for a single
particle, and the fact that all the acceleration fields vanish, we have
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that;
limrﬁoo fB(O,?") dZ'U(Et X Et)df =0

for the causal fields (E, B). When we transform between frames, the
particles still move with constant but differing velocities and again all
the acceleration fields vanish, so the result holds for the causal fields
in all frames. Thermal equilibrium in the base frame follows from the

fact that ]%| = d, as all the particles have the same constant speed.
For the second claim, as the velocity X is constant, and the paths are

parallel, we must have that, J = \p. In order to satisfy the continuity
equation, we must have that;

% = —div(J)
= —div(\p)
=-A.v(p)

This is a transport equation with solution p(Z,t) = g(T — At), where
g € C>®(R3).

For the third claim, in a divergent system, with the intersection point
centred at the origin, we must have that;

%§ = —div(J)

= —div(dp%)

=—dv (p)« & — dpdiv(s)
=—dv(p). 5 -2



SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 85

If (E,J) = 0 for the causal fields such that (p,J, E, B) satisfies
Maxwell’s equations, then, for any volume V C R3, we would have
that % = 0, for the total mechanical energy W of the charge distri-
bution in V. In particular, as all the particles are travelling with equal
speed, we must have that;

daQ _ d —

i Efvpdx
op 3=

fv Eda;

=0

so that, as the volume V' was arbitrary, % = and p is time indepen-
dent. From (A), we then obtain that <7(p) . T = 2p. However;

if p = 3(pat + pyy + p22)

then py, = $(pao + o + Payy + Pa27)

and /(pz) « T = p,. Similarly, it follows that;
V(py) T = py

V(p:) T = p.

Repeating the argument, we obtain that;
V(paa) T = (pay) « T = V(puz) « T = (pyy) + T
V(pyz) T =(p:2) : T=0

It follows that;

Praz = Pray = Praz = Pryy = Pryz = Przz =0
prz = C1 Pry = Cy pr. = Cf

pr = Cix + Coy + Csz
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By the divergence theorem and the continuity equation, we have
that;

fB(Ort __fB dzv )dz

=— fs@ﬂ)j. ds

so that | () pdS = 0. It follows, by the Reynolds transport theo-
rem, that;

i S0 PAT =[5, oedz + Js@n pAS
= fB(ﬁ,r)6 Tdv

=0

and;

fB(G,r) pdT =0 for r € R (E)

As p > 0, the condition (E) then implies that p = 0, so that J = 0 as
well. We can therefore assume that for the causal fields (F, B) in the
based frame, that (E,J) # 0. As the set of causal fields in the frames
Sz, where [v] < ¢ is definable, and the condition (E J) = 0 defines a
closed set, we can assume that generically in Sy, (Eg causal; J5) 7 0. We
can then apply the arguments in [6], together with the classically non-
radiating property proved above, to conclude that there is a transfer of
mechanical energy between two volumes {5, S, }. As this occurs over a
finite time interval (o = €,ty + €) we can construct corresponding vol-
umes {7, T, } in the base frame. Generically, either the energy change
in T is positive and the energy change in 7, is negative ot the energy
change in T is negative and the energy change in 7T}, is positive, both of
which contradict thermal equilibrium in the base frame. Alternatively,
the energy change in {7, T,} is of the same sign, in which case, as the
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process is reversible, we can assume that both energy changes are neg-
ative. In this case, we can assume that energy is transferred into the
field, again a contradiction. By the main result of [6], we can conclude
that (p,J) must satisfy the wave equations [(12p = 0, (0?J = 0 in the
base frame, as well as the connecting relation vip) + 5% =0. We
have, by the definition of J, that;

In particularly, (p) is parallel to T, so that p is constant on spheres
S(0,r), for r € Rso. We have that [1*(p) = 0, so writing the Laplacian
/2 in polar form, we obtain that;

1.2 10% _
corz(rp) — 25k =0

so that 7p(r, t) satisfies the 1-dimensional wave equation [(J?(rp) = 0,
(K), with speed c. Similarly, Df(r%) = 0. From (A), we have that;

_ 9 _ 2dp
- d&r r
so that;

2(—dr22 — 2dp) = 0, (F).

Also;

a2l = qre 4 dp

so that as dJ2(272)) = 0, we have that;

C2(dr2e + dp) = 0 (G)



8 TRISTRAM DE PIRO

Combining (F), (G) gives that [?(p) = 0. It follows from this and
(K) that;

orz or

g 1%
_26T+T62T_62 2t
so that;

Letting ¢ = 22, we have that;
(1-r)5 =29

so that g = A(t)e_ﬂn(l_r) =AMt —r)7? = (114—(?)2

and p = (A(t)) + B(t)

It follows from [J%(p) = 0, that;

A" 2A
L(#S + (1) = 22

so that A”(t) = B"(t) = A(t) =0, and p = B(t) = at + 5. It follows
that J = d(at + 3)Z and clearly, we cannot have that (12 = 0.

&l

O

Lemma 0.3. Suppose that (p,J) satisfy the wave equations 0%p = 0,

0?J =0, the continuity equation 8p = —div(J) and the connecting re-
lation ~7(p)+ 12 %‘t] =0, such that the system is parallel, then, if |\ # c,

where X is the velocity, {p, J} are time independent and harmonic. In
particularly, if fort € R, p; € S(R?), J; € S(R?), then p =0, J =0.
In the remaining case, when |\| = ¢, we obtain the additional relation
p= c% .J. With the same hypotheses as the first claim, if thermal equi-
librium holds instead of parallel, we obtain that p is time independent
and harmonic, and if |\ = ¢, div(¢) = 0.
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Proof. As the acceleration is zero, the velocity A is constant, so that,
J = Ap, (A). By the continuity equation and the connecting relation,
we have that;

9 — _div(J)

t

I
Q|1
|

Il
Pl
—~
2|1
<
S~—

so that either p is time independent or |A| = ¢ and d(Z) = 0. In
the first case, as [0?p = 0, we have that \y%(p) = 0 and p is harmonic.
Then, as J = \p, we have that, as J*J = 0, and the components of .J
are time independent, that the components of J are harmonic. In the
second case, we obtain that p = C% . J, (B). The penultimate claim is
clear.

For the final claim concerning thermal equilibrium, we have that,
J = \p, with || = d, so that %—i‘ . A = 0. As above, we have that;

9 — _div(J)

t

= —div(p))

= —X.v(p) — pdiv()) (U)
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ot c? ot
_ 0dp (Y
= 5 — pdiv(A)

If d = ¢, we obtain pdiv(\) = 0, so that with analyticity assump-
tions, p # 0, we obtain that div(A\) = 0. If d # ¢, letting e = 1 — i—j,
we have that;

ea—f = —pdiv(\)

iff e(div(J)) = pdiv(\)

Again, we have that;

div(J) = 7(p) « X + pdiv(\)

which implies that;

Ldiv(X) = 7(p) « A+ pdiv(X)

so that;

I
-
S
()
S
|
Q=
o))
SN
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- _ﬂ%(cp)@

e—1 ¢ ot
so that;
1+ F (@) g =0
iff;
2
2(1- £)% =0

so that p is time independent. The conclusion that p is harmonic
follows again from [J?(p) = 0.

0

Lemma 0.4. Parallel systems with |X\ = ¢, which satisfy the additional
connecting relation;

Vi) + &5 =0

are characterised by;

p(T,t) = h(2tw + 22y + 222 — ct)
J=X

where h € C*(R).

In particular, we have that the addition relations 0%p =0, 02J =0
15 satisfied and there is a solution with this requirement.

Proof. As the system is parallel, by the proof of Lemma 0.2, we have

The connecting relation implies that;

= v(p) + F%2
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so that 7(p) = —012@ (B)

t

Conversely, if p satisfies (A), (B), with J = \p, then we obtain a
parallel system with the additional connecting relation. By (A), we
have that p(Z,t) = g(T — At), (C). In the case that A\ = (c,0,0), we
have from (B), (C), that we require;

(ga:7 Gy, gz) = _C%(Ca 07 0)%
so that, in particular, g, = g. = 0, g(Z) = h(z) and then;
p(@. 1) = 9T — M) = h(z — ct)

Observe that if 7(p) = A§(T, 1), then, as |\ = ¢;

We have that py = 9o, Poz = Gazs Py = Gy = 0, pPyy = Gyy = 0,
Pz = G = 0, Pzz = Gzz = 07 Pt = hm<_c>7 Pt = h:ta:027 so that
Vi(p) — C%% = Nz — haw = 0 and O0%(p) = 0, so that 0%(J) = 0.
In the case of an arbitrary A with [A| = ¢, choose an orthogonal matrix
U with U(1,0,0) = 2. We have found p(Z, t) such that;

V(p)(@,t) = _c%(17 0,0)m(z.t)

so that, applying U to both sides, we have that;

Uv(p)(@,t) =v(p) (U (T),1)
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o>l

—52m(z.t)

We have that;

= (U1 (T); — ct)
=h(2z 4 2y + 22— )

Observe that if ¢(T) = h(2x + 22y + 222), then;

S Y

g(T — Xt) = h(2x + 22y 4 Ay - 227Ny
=h(Xz 4 2y + 282 — )

so that (A) is still satisfied, and, by the above remark (x), (B) is
satisfied as well, as \7(po U™!) is parallel to A\. Again po U~! satisfies

the wave equation [(1?(poU 1) = 7?(po U~ 1) — LU — ). Defining

c?2  Ot?

J = ApoU~! we have that [0?(J) = 0 as well.

0

Definition 0.5. Given (p,J) satisfying the continuity equation with
p >0, we define a trajectory 7y to be an integral curve for the velocity
field %. We define a flow line ¥ : (0,00) — R? to be a solution of the
differential equation;

F(s) = 5(v(s),to + s)

We define a system to be circular if all the flow lines are circular
orbits centred at the origin. We define a system to be closed if all the
flow lines define closed curves. We define a system to be open if none
of the flow lines are closed or bounded. We define thermal equilibrium

by the condition gp’# = d?, where d € R+p.

Lemma 0.6. Suppose that (p,J) satisfy the wave equations (0%p = 0,
0%J = 0, the continuity equation % = —div(J) and the connecting
relation <7(p) + c%%—z = 0. Then, if the system is circular, p is time
independent and harmonic, and, for t € R, the components of J, are
harmonic. If the system is in thermal equilibrium, then every closed

trajectory intersects the locus %\t =0, for all t € R. If the system
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is in thermal equilibrium, and p is not time independent, p(7(s), s) is
constant along the flowline. Moreover, every flowline is open and if
pr — 2z € S(R3) fort € R some z € R, the system must be parallel.

Proof. For the first claim, we have that %.f =0, in particular J.Z = 0.

As %(J) =0, and the continuity equations holds, we have that;
DT %) = (&2 + 22 + 2 — & 52) (e + oy + Js2)
= £ (1) + Zr (o) + 5 (s2) + (B + £ — B 8m)i)e
(g + 8 — o))y + (5 + g7 — Bap)is)z
=28 4 2%2 +228 4 (f—;jﬂx + (53—;2j2)y + (5%]5)2

2
H(Zz+ 2 — Edmie+ (Bs + 2= — 52)i)y

so that p is time independent and, as [J?(p) = 0, that p is harmonic.
107 _

és /(p) is time independent, by the connecting relation \7(p) + % 55 =

0, we have that %‘t] is time independent and %tg = 0, so that, as

[0?J = 0, the the components of J, are harmonic for ¢t € R. For
the second claim, we have that, if 7 is a trajectory;

W7 (s),t) = V() 5s) - 7 (5)

=~z b5 (T ).
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_ﬁ‘v s)tatd P?|s).

2 2]
- ccé—p [5(5).P |75, B2 1)t

d? dp |
T2 ot 1v(s)t

If a closed trajectory 7 is disjoint from the locus of 22 8“ , with 7(a) =

7(b), for some ty € R, then either E|W > (0 or ElW < 0. We have that;

= [V de(5(s), t)ds

which is a contradiction.

For the next claim, we calculate, if 7 is a flowline;
L(7(5),5) = V()l5(sys « 7 (5) + Lls(s).s

~s)s + Fl(s),s

= — 5%« Dlo)s + Llrte).s

= — 55 7 s 2 (T« Dlts).s + Flats).s

2 12

1 op
— 3075 15,5 5 PP Irs).s T Fel(s).

d? 13)
= — & l5(0) 5Plrs).s B ()0 F Pl s

d? dp

0,
25 l(s)s T aplA(s).s
—0

as d = ¢, by Lemma 0.3. If 7 is a flowline, then it cannot intersect the
locus of .J; = 0 at any time ¢, as we have thermal equilibrium ¢, with
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|¢| = c. It follows that the flowline cannot have any equilibrium points
in its closure, and if it is bounded, must be a closed loop or spirals into
a closed loop. The first case can be excluded, by O-minimality of the
real closed field with Pfaffian functions, using the fact that for a point
T on the loop Range(7), we can define;

{t e Ro0:7(t) =7}

which cannot be a finite union of points and intervals, as the set is un-
bounded and discrete, see [10] and [2]. More specifically, we can approx-

imate % by a polynomial vector field W, using the Stone-Weierstrass

approximation theorem, on an open ball B (0,79) containing the loop,
in such a way that a flowline 7, for W is still a bounded closed loop.
This follows as the cycle maps 6, ; for %, defined by;

O1,,4(T) = (o + 1)

where 7(ty) = T are invertible, by reversing the flow, letting;

TEev

SEAN

(T,s) = —%(E,to—i-t—s), 0<s<t

and using the cycle map 67% for the corresponding flowline. Tt fol-
lows, by continuity, that the cycle maps 60,,, are proper and the devi-
ation map ¢, +(T) = 04, +(T) — T is proper. As 7 forms a closed loop,
we have that 0 € ¢y, (B°(0,70)) and not a boundary point. By con-
tinuity, when we construct W, we can still obtain a closed loop. In
the second case, we could find a limit point T € Range(7), which is
not an equilibrium point and which, wlog, is not on the trajectory, (x).
This follows as if it lies on the trajectory twice, we would form a closed
loop. By the argument (X) below, we can exclude the case that T is
an endpoint of 7. It follows that it must be part of a compact w-limit
set with no fixed points. By the Poincare-Bendixson Theorem, applied
to planar projections of the system in R3, we would obtain a periodic
orbit again, and we can repeat the argument to obtain a contradiction.
We can, therefore assume that the system is open.

If the system is not parallel or divergent, then there exists a ball
B(®,r);

B(z,r) = UpeT0®t) : 0 <t < tw)}
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where [ is a closed interval and {%, : w € I} is a set of flowlines,
with the properties that;

(i). %,(0) and 7, (t,) are the unique points of 7,,([0, t,,]) lying
on 0B(z,r).
(43). We have that —¢(5,,(0)) 7 > ¢(7,(tw)) « 70

The property (i) follows from the fact that the flowlines are un-
bounded and the existence of flowlines through a given point, the last
property being a consequence of Peano’s existence theorem. The prop-
erty (i7) follows from the asymmetry of a path which is not straight and
continuity. By the above, we have that p is constant along the flow-
line in the sense that p(¥,(s),s) = f(w) for some smooth function f,
(S). By the continuity equation and divergence theorem, we have that;

F) - =~
fB(E,T) 5B = — de(E,r) J.ndS
= — [sp@m PC- ndS (T)

so that by (5),(T") and the properties (i), (i), the charge p would
monotonically increase or decrease inside the ball B(z,r). We can
then either use the fact that p > 0 or the fact that (0%(p) = 0, together
with Kirchoff’s formula for p, with initial conditions in S(R?), so that
| < %, where M is independent of ¢, to get a contradiction. The
addition of a constant doesn’t effect the argument.

We show that every trajectory 7 : [0, 00) — R doesn’t have an end-
point, (X). Suppose that a trajectory has an endpoint Z. Then, by
thermal equilibrium, we may suppose that %(f) =7 # 0. Without
loss of generality, assume that v, = v3 = 0. By continuity, we may
suppose that ]%| > |4, for T € B(7,r), with r < %, and, there exists
to € R-o, with |[5(t) —Z| < r < ‘0—2” (A), for t > to. By the intermediate
value theorem, we have that;
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with sg € (0, s), so that if s > 3, we obtain a contradiction with (A),
as;

|(y(to + 5)) — (a(to))] = [(3(to + )1 — (vw(to))1]
> U1

and, by (A);

| (v (to + 8)) = (w(to))| < |(w(to + 5)) = Z[ + [(vw(to)) — 7|

<ou
= (X)

which is a contradiction.
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