
SOME ARGUMENTS FOR THE WAVE EQUATION IN
QUANTUM THEORY 6: WAVES, CURRENT AND

CHARGE

TRISTRAM DE PIRO

Abstract. We develop the theory of current and charge (ρ, J),
with compact support, satisfying the wave equations, the continu-

ity equation and the connecting relation 5(ρ) + 1
c2

∂J
∂t = 0.

Definition 0.1. We say that a scalar process ρ ∈ C∞(R4) has compact
support, if, for t ∈ R, ρt has compact support and the support varies
continuously with t. We say that a field J ∈ C∞(R4) if the components
ji ∈ C∞(R4), for 1 ≤ i ≤ 3 and has compact support, if the compo-
nents have compact support.

Lemma 0.2. If ρ ∈ C∞(R4) satisfies the wave equation, �2(ρ) = 0,
with the property that ρ has compact support, then ρ has the represen-
tation;

For t > 0;

ρ(x, t) = 1
4πc2t2

∫
δB(x,ct)

(tg(y) + ρ0(y) +Dρ0(y) � (y − x))dS(y)

and, for t < 0;

ρ(x, t) = 1
4πc2t2

∫
δB(x,−ct)(tg(y) + ρ0(y) +Dρ0(y) � (y− x))dS(y) (V V )

where g(x) = (∂ρ
∂t

)t=0 has compact support.

Conversely, given ρ0(x) and g(x) with compact support, {ρ0, g} ⊂
C∞(R3), the formula (V V ) defines a process ρ ∈ C∞(R4) satisfying
the wave equation �2(ρ) = 0, with the property that ρ has compact
support.
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Proof. For the first claim, observe that the process ρ(x, t), t > 0 satis-
fies the wave equation �2(ρ) = 0, t > 0, with, by continuity;

limt→0+ρt = ρ0

and;

limt→0+
∂ρ
∂t

= g(x) = (∂ρ
∂t

)t=0

where ρ0 and g(x) have compact support and {ρ0, g} ⊂ C∞(R3).
The representation for t > 0 then comes from Kirchoff’s formula, see
[1]. The process ρ1(x, t) = ρ(x,−t), for t > 0, also satisfies the wave
equation �2(ρ1) = 0, t > 0, with, by continuity;

limt→0+(ρ1)t = limt→0−ρt = ρ0

and;

limt→0+(∂ρ1
∂t

)t = limt→0− − (∂ρ1
∂t

)t = −g(x) = −(∂ρ
∂t

)t=0

The representation for t < 0 then comes from Kirchoff’s formula
again, noting that we have reversed the sign of g(x), when t < 0.

For the converse claim, suppose the initial conditions ρ0 ∈ S(R3),∂ρ
∂t
|t=0 ⊂

C∞(R3), have compact support, with ρ defined onR4 by Kirchoff’s for-
mula;

For t > 0;

ρ(x, t) = 1
4πc2t2

∫
δB(x,ct)

(tg(y) + ρ0(y) +Dρ0(y) � (y − x))dS(y)

and, for t < 0;

ρ(x, t) = 1
4πc2t2

∫
δB(x,−ct)(tg(y) + ρ0(y) +Dρ0(y) � (y − x))dS(y)

then, see [1] again, we have that, for x ∈ R3;

limt→0+ρ(x, t) = ρ(x, 0)

limt→0+
∂ρ
∂t

(x, t) = g(x)
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limt→0+ρ(x,−t) = ρ(x, 0)

limt→0+
∂ρ
∂t

(x,−t) = −g(x)

where g(x) = ∂ρ
∂t
|t=0, so that;

limt→0−ρ(x, t) = ρ(x, 0)

limt→0−
∂ρ
∂t

(x, t) = limt→0+ − ∂ρ
∂t

(x,−t)

= −− g(x)

= g(x)

In particular;

limt→0ρ(x, t) = ρ(x, 0)

limt→0
∂ρ
∂t

(x, t) = g(x)

Moreover, for fixed t0 ∈ R, t0 6= 0, as ρ0 and g have compact sup-
port, we can see that δB(x, c|t0|) ∩ Supp(ρ0, g,Dρ0) = ∅, for |x0| >
Ct0 , where Ct0 ∈ R>0, so that ρt0 has compact support as well. As
{ρ0, g} ⊂ C∞(R3), we can show, by differentiating Kirchoff’s formula,
that, for t0 6= 0, ρt0 ∈ C∞(R3). We then have that ρt0 ∈ S(R3) and
we can then apply Lemma 0.5 to show that, for t > 0;

ρ(x, t) = 1

(2π)
3
2

∫
R3(b(k)eikct + d(k)e−ikct)eik�xdk

ρ(x,−t) = 1

(2π)
3
2

∫
R3(b

−(k)eikct + d−(k)e−ikct)eik�xdk (X)

where;

b(k) = 1
2
(F(ρ0)(k) + 1

ikc
F(g)(k))

d(k) = 1
2
(F(ρ0)(k)− 1

ikc
F(g)(k))

b−(k) = 1
2
(F(ρ0)(k) + 1

ikc
F(−g)(k))

= 1
2
(F(ρ0)(k)− 1

ikc
F(g)(k))
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d−(k) = 1
2
(F(ρ0)(k)− 1

ikc
F(−g)(k))

= 1
2
(F(ρ0)(k) + 1

ikc
F(g)(k))

see also earlier in the paper, so that, for t < 0;

ρ(x, t) = 1

(2π)
3
2

∫
R3(b

−(k)e−ikct + d−(k)eikct)eik�xdk (Y )

Differentiating under the integral sign in (X), we have that, for t > 0;

∂i+j+kρ
∂xi∂yj∂zk

(x, t) = 1

(2π)
3
2

∫
R3((ik1)

i(ik2)
j(ik3)

kb(k)eikct+(ik1)
i(ik2)

j(ik3)
kd(k)e−ikct)eik�xdk

where (ik1)
i(ik2)

j(ik3)
kb(k) ∈ L1(R3) and (ik1)

i(ik2)
j(ik3)

kd(k) ∈
L1(R3), so that;

limt→0+
∂i+j+kρ
∂xi∂yj∂zk

(x, t)

= limt→0+
1

(2π)
3
2

∫
R3((ik1)

i(ik2)
j(ik3)

kb(k)eikct+(ik1)
i(ik2)

j(ik3)
kd(k)e−ikct)eik�xdk

= 1

(2π)
3
2

∫
R3((ik1)

i(ik2)
j(ik3)

kb(k) + (ik1)
i(ik2)

j(ik3)
kd(k))eik�xdk

= 1

(2π)
3
2

∫
R3(ik1)

i(ik2)
j(ik3)

kF(ρ0)(k)eik�xdk

= ∂i+j+kρ
∂xi∂yj∂zk

(x, 0) (X)′

Similarly, differentiating under the integral sign in (Y ), using the
fact that b−(k) + d−(k) = F(ρ0)(k);

limt→0−
∂i+j+kρ
∂xi∂yj∂zk

(x, t) = ∂i+j+kρ
∂xi∂yj∂zk

(x, 0) (Y ′)

and combining (X)′, (Y )′, we obtain that;

limt→0
∂i+j+kρ
∂xi∂yj∂zk

(x, t) = ∂i+j+kρ
∂xi∂yj∂zk

(x, 0)

By a similar argument, differentiating under the integral sign, and
using the facts that b(k)ikc−d(k)ikc = F(g)(k)−ikcb−(k)+ikcd−(k) =
F(g)(k);

limt→0
∂i+j+k+1ρ
∂xi∂yj∂zk∂t

(x, t) = ∂i+j+kg
∂xi∂yj∂zk

(x, 0)
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Similarly, using the fact that ρ0 ∈ S(R3), {b(k), d(k)} ⊂ L1(R3), so
we can apply the inversion theorem, we have that;

limt→0+
∂i+j+k+2ρ

∂xi∂yj∂zk∂t2
(x, t)

= limt→0+
1

(2π)
3
2

∫
R3(ik1)

i(ik2)
j(ik3)

k(−k2c2)b(k)eikct

+(ik1)
i(ik2)

j(ik3)
k(−k2c2)d(k)e−ikct)eik�xdk

= 1

(2π)
3
2

∫
R3(ik1)

i(ik2)
j(ik3)

k(−k2c2)(b(k) + d(k))eik�xdk

= 1

(2π)
3
2

∫
R3(ik1)

i(ik2)
j(ik3)

k(−k2c2)(F(ρ0)(k)eik�xdk

= 1

(2π)
3
2

∫
R3 c

2(F(∂
i+j+k52(ρ0)
∂xi∂yj∂zk

)(k)eik�xdk

= c2 ∂
i+j+k52(ρ0)
∂xi∂yj∂zk

(x)

and;

limt→0−
∂i+j+k+2ρ

∂xi∂yj∂zk∂t2
(x, t) = ∂i+j+kc252(ρ0)

∂xi∂yj∂zk
(x)

As ρ|t>0, ρ|t<0 obey the wave equation, so do the partial derivatives
∂i+j+k+l

∂xi∂yj∂zk∂tl
|t>0, so that, for l ≥ 1, l even, t 6= 0;

∂i+j+k+lρ
∂xi∂yj∂zk∂tl

|t6=0 = cl(52)
l
2 ( ∂i+j+kρ

∂xi∂yj∂zk
)|t6=0

and, for l ≥ 1, l odd, t 6= 0;

∂i+j+k+lρ
∂xi∂yj∂zk∂tl

|t6=0 = cl−1(52)
l−1
2 ( ∂i+j+k+1ρ

∂xi∂yj∂zk∂t
)|t6=0

and, using the above, for l even;

limt→0
∂i+j+k+lρ(x,t)
∂xi∂yj∂zk∂tl

= cl(52)
l
2 ( ∂i+j+kρ0

∂xi∂yj∂zk
)

and, for l odd;

limt→0
∂i+j+k+lρ(x,t)
∂xi∂yj∂zk∂tl

= cl−1(52)
l−1
2 ( ∂i+j+kg

∂xi∂yj∂zk
)

In particularly, as all the partial derivatives of ρ extend continuously
to the boundary t = 0, we have that ρ ∈ C∞(R4), and the wave

equation is satisfied at t = 0, ∂2ρ
∂t2

= c2 52 (ρ), (NB). This last claim
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follows from the fact that, using the integral representation of a solution

to the wave equation, 52(f)− 1
c2
∂2f
∂t2

= 0 in R3 × [0,∞), generated by

the initial data (g, h), that limt→0+
∂i+j+k+lft
∂xi∂xj∂zk∂tl

= (c252)
l
2
∂i+j+k+lg
∂xi∂xj∂zk

for

l even and that limt→0+
∂i+j+k+lft
∂xi∂xj∂zk∂tl

= (c252)
l−1
2
∂i+j+k+lh
∂xi∂xj∂zk

for l odd. By
uniqueness of the wave equation with specified initial conditions (g, h),
the same must be true for Kirchoff’s representation. The same result
holds for the backward wave equation with initial data (g,−h), so the
limit of the partial derivatives is same for t > 0 as t < 0, and the limit,

as t → 0, of ∂2ρ
∂t2
− c2 52 (ρ) is zero. Using Kirchoff’s formula, as we

noted above, for t ∈ R, ρt has compact support, and it is clear that
the support varies continuously with t.

�

Lemma 0.3. If a solution to the wave equation for t ∈ R is generated
by the data {ρ0, g} ⊂ C∞(R3) with compact support, and Kirchoff’s
formula, then we have that, for t > 0;

ρ(x, t) = ρ(x,−t) iff g(x) = 0

ρ(x, t) = −ρ(x,−t) iff ρ0(x) = 0

Proof. We have, if;

ρ(x, t) = 1
4πc2t2

∫
δB(x,ct)

(tg(y) + ρ0(y) +Dρ0(y) � (y− x))dS(y) (t > 0)

ρ(x, t) = 1
4πc2t2

∫
δB(x,−ct)(tg(y)+ρ0(y)+Dρ0(y) �(y−x))dS(y) (t < 0)

Then, for t > 0, ρ(x, t) = ρ(x,−t) iff;

1
4πc2t2

∫
δB(x,ct)

(tg(y) + ρ0(y) +Dρ0(y) � (y − x))dS(y)

= 1
4πc2t2

∫
δB(x,ct)

(−tg(y) + ρ0(y) +Dρ0(y) � (y − x))dS(y)

iff 1
4πc2t2

∫
δB(x,ct)

2tg(y)dS(y) = 0

iff
∫
δB(x,ct)

g(y)dS(y) = 0

iff g(y) = 0

as if g(y0) 6= 0, without loss of generality, by continuity, we can
choose t0 > 0 sufficiently small with g|δB(y0,ct) > 0, so that

∫
δB(y0,ct0)

g(y)dS(y) >
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0

and, for t > 0, ρ(x, t) = −ρ(x,−t) iff;

1
4πc2t2

∫
δB(x,ct)

(tg(y) + ρ0(y) +Dρ0(y) � (y − x))dS(y)

= 1
4πc2t2

∫
δB(x,ct)

(tg(y)− ρ0(y)−Dρ0(y) � (y − x))dS(y)

iff 1
4πc2t2

∫
δB(x,ct)

2[ρ0(y) +Dρ0(y) � (y − x)]dS(y) = 0

iff
∫
δB(x,ct)

[ρ0(y) +Dρ0(y) � (y − x)]dS(y) = 0

iff
∫
δB(x,ct)

ρ0(y)dS(y) + ct
∫
δB(x,ct)

5(ρ0) � dS = 0

iff
∫
δB(x,ct)

ρ0(y)dS(y) + ct
∫
B(x,ct)

div(5(ρ0))dV (y) = 0

iff
∫
δB(x,ct)

ρ0(y)dS(y) + ct
∫
B(x,ct)

52(ρ0)dV (y) = 0

iff ρ0(y) = 0

as if ρ0(y0) 6= 0, by continity, without loss of generality, there exists
ε > 0, such that, for sufficiently small t0;∫

δB(y0,ct0)
ρ0(y)dS(y) > 4πεc2t20

and, if M is a uniform bound on 52(ρ0)

|ct0
∫
B(y0,ct0)

52(ρ0)dV (y)| < 4Mπc4t40
3

so that, if 4πεc2t20 >
4Mπc4t40

3
iff 3ε

Mc2
> t20, we can choose 0 < t0 <

(3ε)
1
2√

Mc
, to obtain;∫

δB(y0,ct0)
ρ0(y)dS(y) + ct0

∫
B(y0,ct0)

52(ρ0)dV (y) > 0

�

Lemma 0.4. If ρ ∈ C∞(R4) has compact support and satisfies the
wave equation �2(ρ) = 0, then if we define J by;

J(x, t) = −c2
∫ t
−∞5(ρ)ds
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then J ∈ C∞(R4) has compact support and satisfies the wave equa-
tion �2(J = 0. Moreover, the combination (ρ, J) satisfies;

(i). ∂ρ
∂t

= −div(J)

(ii). 5(ρ) + 1
c2
∂J
∂t

= 0

Proof. Letting;

J(x, t) = −c2
∫ t
−∞5(ρ)ds

see [2] for the existence of the integral. We have, differentiating un-
der the integral sign, and using the fundamental theorem of calculus,
that, for (i, j, k) ∈ Z3

≥0;

∂i+j+kj1
∂xi∂yj∂zk

= −c2
∫ t
−∞

∂i+j+k+1ρ
∂xi+1∂yj∂zk

ds (Z)

∂i+j+k+1j1
∂xi∂yj∂zk∂t

= −c2 ∂i+j+k+1ρ
∂xi+1∂yj∂zk

and for l ≥ 2;

∂i+j+k+lj1
∂xi∂yj∂zk∂tl

= −c2 ∂i+j+k+1ρ
∂xi+1∂yj∂zk∂tl−1

As ( ∂i+j+kρ
∂xi∂yj∂zk

)0 ∈ S(R3), and ∂i+j+kρ
∂xi∂yj∂zk

satisfies the wave equation on

R4, by the proof in [2], we have that the integral (Z) is well defined.
Then, as ρ ∈ C∞(R4), we have that j1 ∈ C∞(R4). A similar argument
shows that the components {j2, j3} ⊂ C∞(R4). By the fundamental
theorem of calculus, we have that;

∂J
∂t

= −c25 (ρ)

By the previous claim, for t0 ∈ R, ρt0 has compact support, so

that (5(ρ))t0 has compact support and (∂J
∂t

)t0 has compact support. It
is clear from the above that the compact support Vt of ρt and (5(ρ))t
varies continuously with t, so on the interval (t0−ε, t0+ε), (∂J

∂t
)|(t0−ε,t0+ε)

has compact support Wt0,ε in R4.
J satisfies the wave equation on R4, as, using the fundamental the-

orem of calculus and the fact that 5(ρ) satisfies the wave equation;

�2(J) = 52(J)− 1
c2
∂2J
∂t2
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= −c2(
∫ t
−∞5

2(5(ρ))ds)− 1
c2

(−c2 ∂5(ρ)
∂t

)

= −c2(
∫ t
−∞

1
c2
∂25(ρ)
∂t2

ds) + ∂5(ρ)
∂t

= −∂5(ρ)
∂t

) + ∂5(ρ)
∂t

= 0

By the connecting relation;

5ρ+ 1
c2
∂J
∂t

= 0

we have that ∂J
∂t

vanishes outside Supp(ρt), and for any x ∈ R3, there
exists two uniformly bounded intervals [t1,x,−, t2,x,−], [t1,x,+, t2,x,+], for
which x ∈ Supp(ρt), for t ∈ [t1,x,−, t2,x,−] ∪ [t1,x,+, t2,x,+]. Using the
fact that Supp(ρt) is moving and 5(ρ) satisfies the wave equation, so
uniformly bounded, we can define;

J0(x) =
∫ t2,x,−
t1,x,−

∂J
∂t
dt+

∫ t2,x,+
t1,x,+

∂J
∂t
dt

=
∫∞
−∞

∂J
∂t
dt (the ultimate value of J(x, t))

with J0 bounded. On any ball B(0, r), we have that J − J0 even-
tually vanishes, and, as div(J) − div(J0) = 0 ultimately on the ball,
and div(J) = −∂ρ

∂t
= 0, ultimately, otherwise charge would build up,

we have that div(J0) = 0. It follows that (ρ, J − J0) satisfies the con-
tinuity equation, and the linkage relation;

5ρ+ 1
c2
∂(J−J0)

∂t
= 0

is still satisfied, as J0 is time independent. On any ball B(0, r), we
have that ultimately J − J0 = 0, so that, as �2(J) = 0 and J0 is time
independent, ultimately;

52(J0) = �2(J0) = �2(J) = 0

and J0 is harmonic. As the components 5(ρ)i, for 1 ≤ i ≤ 3, satisfy
the wave equation, we have that that there exists constants Ci ∈ R>0,
for which | 5 (ρ)i(x, t)| ≤ Ci

|t| for 1 ≤ i ≤ 3, so that;
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| 5 (ρ)(x, t)| ≤
√
C2

1+C
2
2+C

2
3

|t|

and;

|J0(x)| = |
∫ t2,x,−
t1,x,− −c

25 (ρ)dt+
∫ t2,x,+
t1,x,+

−c25 (ρ)dt|

≤ c2[(t2,x,− − t1,x,−) + (t2,x,+ − t1,x,+)]| 5 (ρ)|[t1,x,−,t2,x,−]∪[t1,x,−,t2,x,−]|

≤ c2(t2,x,− − t1,x,−)

√
C2

1+C
2
2+C

2
3

|t1,x,−| + c2(t2,x,+ − t1,x,+)

√
C2

1+C
2
2+C

2
3

|t1,x,+|

≤ C
|x|

as the intervals [t1,x,−, t2,x,−], [t1,x,+, t2,x,+] are uniformly bounded,
and the hitting times {t1,x,−, t1,x,+} are proportional to the distance x.
It follows, as bounded harmonic functions are constant, that J0 = 0,
and J has compact supports.

�

Lemma 0.5. For any {ρ, J} ⊂ C∞(R3 ×R>0) with compact support
satisfying the wave equations �2(ρ) = 0, �2(J) = 0 limt→0ρt = ρ0,

limt→0(
∂ρ
∂t

)t = g, limt→0J t = J0, limt→0(
∂J
∂t

)t = g, we have the explicit
representation;

ρ(x, t) = 1

(2π)
3
2

∫
R3(b(k)eikct + d(k)e−ikct)eik�xdk

J(x, t) = 1

(2π)
3
2

∫
R3(b(l)e

ilct + d(l)e−ilct)eil�xdl

where {b, d, b, d} ⊂ L1(R3).

Proof. As;

�2(ρ) = 0, �2(J) = 0, (∗)

We have that;

52(ρ)− 1
c2
∂2ρ
∂t2

= 0, 52(J)− 1
c2
∂2J
∂t2

= 0

We have that ρt ∈ S(R3), as it is smooth and has compact support,
so that, we can apply the three dimensional Fourier transform F , and
using integration by parts, differentiating under the integral sign, we
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have that, for t > 0;

F(52(ρ)(k, t))− 1
c2
F(∂

2ρ
∂t2

)(k, t)

= −k2F(ρ)(k, t)− 1
c2
∂2(F(ρ)(k,t))

∂t2

= −k2a(k, t)− 1
c2
∂2a(k,t)
∂t2

= 0

where k2 = k21 + k22 + k23, a = F(ρ). For fixed k, we obtain the
ordinary differential equation;

d2ak
dt2

= −c2k2ak

so that;

ak(t) = C0(k)eikct +D0(k)e−ikct

with;

ak(0) = limt→0ak(t) = F(ρ0) = C0(k) +D0(k)

a′
k
(0) = limt→0a

′
k
(t) = F(g) = ikcC0(k)− ikcD0(k) (††)

and, solving the simultaneous equations (††), we obtain that;

C0(k) = 1
2
(ak(0) + 1

ikc
a′
k
(0))

D0(k) = 1
2
(ak(0)− 1

ikc
a′
k
(0))

and;

F(ρ)(k, t) = a(k, t)

= 1
2
(ak(0) + 1

ikc
a′
k
(0))eikct + 1

2
(ak(0)− 1

ikc
a′
k
(0))e−ikct

= b(k)eikct + d(k)e−ikct

where;
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b(k) = 1
2
(F(ρ|(x,0))|(k,0) + 1

ikc
F(∂ρ

∂t
|(x,0))|(k,0))

d(k) = 1
2
(F(ρ|(x,0))|(k,0) − 1

ikc
F(∂ρ

∂t
|(x,0))|(k,0))

Similarly;

F(J)(l, t) = a(l, t) = b(l)eilct + d(l)e−ilct

where;

b(l) = 1
2
(F((J)|(x,0))|(l,0) + 1

ilc
F(∂J

∂t
|(x,0))|(l,0))

d(l) = 1
2
(F((J)|(x,0))|(l,0) − 1

ilc
F(∂J

∂t
|(x,0))|(l,0))

and l2 = l21 + l22 + l23. Observe that;

{b, d, b, d} ⊂ L1(R3), (FG)

as by the classical theory;

{F(ρ0),F((∂ρ
∂t

)0),F(J0),F((∂J
∂t

)0)} ⊂ S(R3) ⊂ L1(R3)

and, using the fact that;

{F((∂ρ
∂t

)0),F((∂J
∂t

)0)} ⊂ C∞(B(0, 1)) ⊂ L2(B(0, 1))

and, by a polar coordinates calculation, { 1
ikc
, 1
ilc
} ⊂ L2(B(0, 1)), by

the Cauchy Schwarz inequality;

{F((
∂ρ
∂t

)0)

ikc
,
F(( ∂J

∂t
)0)

ilc
} ⊂ L1(B(0, 1))

whereas, by the rapid decay of S(R3) and a simple polar coordinate
calculation;

{F((
∂ρ
∂t

)0)

ikc
,
F(( ∂J

∂t
)0)

ilc
} ⊂ L1(R3 \B(0, 1))

Using the fact that {b(k)eikct + d(k)e−ikct, b(l)eilct + d(l)e−ilct} ⊂
S(R3) for t ∈ R, by the fact that the Fourier transform preserves
the Schwartz class, see [3], we can apply the inversion theorem, to ob-
tain;
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ρ(x, t) = 1

(2π)
3
2

∫
R3(b(k)eikct + d(k)e−ikct)eik�xdk

J(x, t) = 1

(2π)
3
2

∫
R3(b(l)e

ilct + d(l)e−ilct)eil�xdl

By the observation (FG), we can split the integral into two integrals.

�

Lemma 0.6. Let (ρ, J) be defined as in Lemma 0.4, then if Vt defines
the support of ρt, we have that;

d
dt

(
∫
Vt
ρtdV ) = 0∫

Vt
52(ρ) = 0

We have that ∂J
∂t

has compact support, and J is generated by Kir-

choff’s formula with initial data (J0,−c25(ρ0)) and the representation
of Lemma 0.5 holds for J .

Proof. If t1 < t2, with {t1, t2} ⊂ R, and {Vt1 , Vt2} denote the compact
supports of {ρt1 , ρt2}, then as the supports vary continuously, and J t
and ρt are compactly supported for each t ∈ [t1, t2], J t and ρt are uni-
formly compacted supported for t ∈ [t1, t2] in a ball B(0, p), for some
p ∈ R>0. In particularly;∫

Vt1
ρt1dV =

∫
B(0,p)

ρt1dV∫
Vt2
ρt2dV =

∫
B(0,p)

ρt2dV

For t ∈ [t1, t2], using the continuity equation, the divergence theo-
rem and the fact J t is uniformly compacted supported for t ∈ [t1, t2] in
B(0, p), we have that;

d
dt

(
∫
B(0,p)

ρtdV ) =
∫
B(0,p)

∂ρ
∂t
dV

= −
∫
B(0,p)

div(J)tdV

= −
∫
δB(0,p)

J t � dSdV

= 0
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so that;∫
B(0,p)

ρt1dV =
∫
B(0,p)

ρt2dV∫
Vt1
ρt1dV =

∫
Vt2
ρt2dV

In particularly, d
dt

(
∫
Vt
ρtdV ) = 0. For the second claim, we have

that, by the divergence theorem and the fact that 5(ρt) vanishes on
the boundary δVt;∫

Vt
52(ρt)dV =

∫
δVt
5 � (5(ρt))dV

=
∫
δVt
5(ρt) � dS

= 0

By the connecting relation, we have that ∂J
∂t

= −c25 (ρ), which has

compact support, because ρ does. As shown in Lemma 0.4, �2(J) = 0,
so, by Lemma 0.2, applied to the components of J , J is generated

by Kirchoff’s formula with initial data (J0, (
∂J
∂t

)0) = (J0,−c2 5 (ρ0)).
Similarly, we can apply Lemma 0.5 to obtain the representation there
for J .

�

Lemma 0.7. (ρ, J) be defined as in Lemma 0.4, then we can define
antiderivatives, by letting;

ρa(x, t) =
∫ t
−∞ p(x, s)ds

J
a
(x, t) =

∫ t
−∞ J(x, s)ds

(ρa, J
a
) ⊂ C∞(R4) and satisfy the wave equations, the continuity

equation and the connecting relation again. Moreover, if ρ, J, E,B) is
a solution to Maxwell’s equations, then (−ρa

ε0
, E) satisfy the continuity

equation.

Proof. The definition follows from Lemma 0.6 as J can be represented
by Kirchoff’s formula. As is easily checked, if p ∈ C∞(R4) and the
components ji ∈ C∞(R4), 1 ≤ i ≤ 3, then ρa ∈ C∞(R4) and the com-
ponents jai ∈ C∞(R4), for 1 ≤ i ≤ 3. The wave equation holds for ρa

and J
a
, as, using the fundamental theorem of calculus, differentiating

under the integral sign, the result about he left hand limit in [2], and
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using the fact that ρ satisfies the wave equation;

�2(ρa) =
∫ t
−∞5

2(ρ)ds− 1
c2
∂ρ
∂t

=
∫ t
−∞

1
c2
∂2ρ
∂t2
ds− 1

c2
∂ρ
∂t

= 1
c2
∂ρ
∂t
− 1

c2
∂ρ
∂t

= 0

and;

�2(J
a
) =

∫ t
−∞5

2(J)ds− 1
c2
∂J
∂t

=
∫ t
−∞

1
c2
∂2J
∂t2
ds− 1

c2
∂J
∂t

= 1
c2
∂J
∂t
− 1

c2
∂J
∂t

= 0

Differentiating under the integral sign and using the fundamental
theorem of calculus, the fact that the continuity equation holds for
(ρ, J), the continuity equation holds as;

∂ρa

∂t
+5 � J

a

= ρ+
∫ t
−∞5 � Jds

= ρ+
∫ t
−∞+

∫ t
−∞−

∂ρ
∂s
ds

= ρ− ρ = 0

and, differentiating under the integral sign, using the fundamental
calculus of calculus and the connecting relation for (ρ, J), the connect-
ing relation holds;

5(ρa) + 1
c2
∂J

a

∂t

=
∫ t
−∞5(ρ)ds+ 1

c2
J

=
∫ t
−∞−

1
c2
∂J
∂t
ds+ 1

c2
J
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= − 1
c2
J + 1

c2
J

= 0

The last claim follows, using the FTC and Maxwell’s first equation,
that;

∂(− ρ
a

ε0
)

∂t
+ div(E) = − ρ

ε0
+ ρ

ε0

= 0 �
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