SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 6: WAVES, CURRENT AND CHARGE

TRISTRAM DE PIRO

Abstract

We develop the theory of current and charge (ρ, \bar{J}), with compact support, satisfying the wave equations, the continuity equation and the connecting relation $\nabla(\rho)+\frac{1}{c^{2}} \frac{\partial \bar{J}}{\partial t}=\overline{0}$.

Abstract

Definition 0.1. We say that a scalar process $\rho \in C^{\infty}\left(\mathcal{R}^{4}\right)$ has compact support, if, for $t \in \mathcal{R}, \rho_{t}$ has compact support and the support varies continuously with t. We say that a field $\bar{J} \in C^{\infty}\left(\mathcal{R}^{4}\right)$ if the components $j_{i} \in C^{\infty}\left(\mathcal{R}^{4}\right)$, for $1 \leq i \leq 3$ and has compact support, if the components have compact support.

Lemma 0.2. If $\rho \in C^{\infty}\left(\mathcal{R}^{4}\right)$ satisfies the wave equation, $\square^{2}(\rho)=0$, with the property that ρ has compact support, then ρ has the representation;

For $t>0$;
$\rho(\bar{x}, t)=\frac{1}{4 \pi c^{2} t^{2}} \int_{\delta B(\bar{x}, c t)}\left(\operatorname{tg}(\bar{y})+\rho_{0}(\bar{y})+D \rho_{0}(\bar{y}) \cdot(\bar{y}-\bar{x})\right) d S(\bar{y})$
and, for $t<0$;
$\rho(\bar{x}, t)=\frac{1}{4 \pi c^{2} t^{2}} \int_{\delta B(\bar{x},-c t)}\left(t g(\bar{y})+\rho_{0}(\bar{y})+D \rho_{0}(\bar{y}) \cdot(\bar{y}-\bar{x})\right) d S(\bar{y})(V V)$
where $g(\bar{x})=\left(\frac{\partial \rho}{\partial t}\right)_{t=0}$ has compact support.
Conversely, given $\rho_{0}(\bar{x})$ and $g(\bar{x})$ with compact support, $\left\{\rho_{0}, g\right\} \subset$ $C^{\infty}\left(\mathcal{R}^{3}\right)$, the formula $(V V)$ defines a process $\rho \in C^{\infty}\left(\mathcal{R}^{4}\right)$ satisfying the wave equation $\square^{2}(\rho)=0$, with the property that ρ has compact support.

Proof. For the first claim, observe that the process $\rho(\bar{x}, t), t>0$ satisfies the wave equation $\square^{2}(\rho)=0, t>0$, with, by continuity;

$$
\lim _{t \rightarrow 0+} \rho_{t}=\rho_{0}
$$

and;

$$
\lim _{t \rightarrow 0+} \frac{\partial \rho}{\partial t}=g(\bar{x})=\left(\frac{\partial \rho}{\partial t}\right)_{t=0}
$$

where ρ_{0} and $g(\bar{x})$ have compact support and $\left\{\rho_{0}, g\right\} \subset C^{\infty}\left(\mathcal{R}^{3}\right)$. The representation for $t>0$ then comes from Kirchoff's formula, see [1]. The process $\rho_{1}(\bar{x}, t)=\rho(\bar{x},-t)$, for $t>0$, also satisfies the wave equation $\square^{2}\left(\rho_{1}\right)=0, t>0$, with, by continuity;

$$
\lim _{t \rightarrow 0+}\left(\rho_{1}\right)_{t}=\lim _{t \rightarrow 0-} \rho_{t}=\rho_{0}
$$

and;

$$
\lim _{t \rightarrow 0+}\left(\frac{\partial \rho_{1}}{\partial t}\right)_{t}=\lim _{t \rightarrow 0-}-\left(\frac{\partial \rho_{1}}{\partial t}\right)_{t}=-g(\bar{x})=-\left(\frac{\partial \rho}{\partial t}\right)_{t=0}
$$

The representation for $t<0$ then comes from Kirchoff's formula again, noting that we have reversed the sign of $g(\bar{x})$, when $t<0$.

For the converse claim, suppose the initial conditions $\rho_{0} \in S\left(\mathcal{R}^{3}\right),\left.\frac{\partial \rho}{\partial t}\right|_{t=0} \subset$ $C^{\infty}\left(\mathcal{R}^{3}\right)$, have compact support, with ρ defined on \mathcal{R}^{4} by Kirchoff's formula;

For $t>0$;
$\rho(\bar{x}, t)=\frac{1}{4 \pi c^{2} t^{2}} \int_{\delta B(\bar{x}, c t)}\left(\operatorname{tg}(\bar{y})+\rho_{0}(\bar{y})+D \rho_{0}(\bar{y}) \cdot(\bar{y}-\bar{x})\right) d S(\bar{y})$
and, for $t<0$;
$\rho(\bar{x}, t)=\frac{1}{4 \pi c^{2} t^{2}} \int_{\delta B(\bar{x},-c t)}\left(\operatorname{tg}(\bar{y})+\rho_{0}(\bar{y})+D \rho_{0}(\bar{y}) \cdot(\bar{y}-\bar{x})\right) d S(\bar{y})$
then, see [1] again, we have that, for $\bar{x} \in \mathcal{R}^{3}$;
$\lim _{t \rightarrow 0+} \rho(\bar{x}, t)=\rho(\bar{x}, 0)$
$\lim _{t \rightarrow 0+} \frac{\partial \rho}{\partial t}(\bar{x}, t)=g(\bar{x})$

$$
\begin{aligned}
& \lim _{t \rightarrow 0+} \rho(\bar{x},-t)=\rho(\bar{x}, 0) \\
& \lim _{t \rightarrow 0+} \frac{\partial \rho}{\partial t}(\bar{x},-t)=-g(\bar{x})
\end{aligned}
$$

where $g(\bar{x})=\left.\frac{\partial \rho}{\partial t}\right|_{t=0}$, so that;

$$
\begin{aligned}
& \lim _{t \rightarrow 0-} \rho(\bar{x}, t)=\rho(\bar{x}, 0) \\
& \lim _{t \rightarrow 0-} \frac{\partial \rho}{\partial t}(\bar{x}, t)=\lim _{t \rightarrow 0+}-\frac{\partial \rho}{\partial t}(\bar{x},-t) \\
& =--g(\bar{x}) \\
& =g(\bar{x})
\end{aligned}
$$

In particular;

$$
\begin{aligned}
& \lim _{t \rightarrow 0} \rho(\bar{x}, t)=\rho(\bar{x}, 0) \\
& \lim _{t \rightarrow 0} \frac{\partial \rho}{\partial t}(\bar{x}, t)=g(\bar{x})
\end{aligned}
$$

Moreover, for fixed $t_{0} \in \mathcal{R}, t_{0} \neq 0$, as ρ_{0} and g have compact support, we can see that $\delta B\left(\bar{x}, c\left|t_{0}\right|\right) \cap \operatorname{Supp}\left(\rho_{0}, g, D \rho_{0}\right)=\emptyset$, for $\left|\bar{x}_{0}\right|>$ $C_{t_{0}}$, where $C_{t_{0}} \in \mathcal{R}_{>0}$, so that $\rho_{t_{0}}$ has compact support as well. As $\left\{\rho_{0}, g\right\} \subset C^{\infty}\left(\mathcal{R}^{3}\right)$, we can show, by differentiating Kirchoff's formula, that, for $t_{0} \neq 0, \rho_{t_{0}} \in C^{\infty}\left(\mathcal{R}^{3}\right)$. We then have that $\rho_{t_{0}} \in S\left(\mathcal{R}^{3}\right)$ and we can then apply Lemma 0.5 to show that, for $t>0$;

$$
\begin{aligned}
& \rho(\bar{x}, t)=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{\mathcal{R}^{3}}\left(b(\bar{k}) e^{i k c t}+d(\bar{k}) e^{-i k c t}\right) e^{i \bar{k} . \bar{x}} d \bar{k} \\
& \rho(\bar{x},-t)=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{\mathcal{R}^{3}}\left(b^{-}(\bar{k}) e^{i k c t}+d^{-}(\bar{k}) e^{-i k c t}\right) e^{i \bar{k} \cdot \bar{x}} d \bar{k}(X)
\end{aligned}
$$

where;

$$
\begin{aligned}
& b(\bar{k})=\frac{1}{2}\left(\mathcal{F}\left(\rho_{0}\right)(\bar{k})+\frac{1}{i k c} \mathcal{F}(g)(\bar{k})\right) \\
& d(\bar{k})=\frac{1}{2}\left(\mathcal{F}\left(\rho_{0}\right)(\bar{k})-\frac{1}{i k c} \mathcal{F}(g)(\bar{k})\right) \\
& b^{-}(\bar{k})=\frac{1}{2}\left(\mathcal{F}\left(\rho_{0}\right)(\bar{k})+\frac{1}{i k c} \mathcal{F}(-g)(\bar{k})\right) \\
& =\frac{1}{2}\left(\mathcal{F}\left(\rho_{0}\right)(\bar{k})-\frac{1}{i k c} \mathcal{F}(g)(\bar{k})\right)
\end{aligned}
$$

$$
\begin{aligned}
& d^{-}(\bar{k})=\frac{1}{2}\left(\mathcal{F}\left(\rho_{0}\right)(\bar{k})-\frac{1}{i k c} \mathcal{F}(-g)(\bar{k})\right) \\
& =\frac{1}{2}\left(\mathcal{F}\left(\rho_{0}\right)(\bar{k})+\frac{1}{i k c} \mathcal{F}(g)(\bar{k})\right)
\end{aligned}
$$

see also earlier in the paper, so that, for $t<0$;
$\rho(\bar{x}, t)=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{\mathcal{R}^{3}}\left(b^{-}(\bar{k}) e^{-i k c t}+d^{-}(\bar{k}) e^{i k c t}\right) e^{i \bar{k} . \bar{x}} d \bar{k}(Y)$
Differentiating under the integral sign in (X), we have that, for $t>0$;

$$
\frac{\partial^{i+j+k} \rho}{\partial x^{i} \partial y^{j} \partial z^{k}}(\bar{x}, t)=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{\mathcal{R}^{3}}\left(\left(i k_{1}\right)^{i}\left(i k_{2}\right)^{j}\left(i k_{3}\right)^{k} b(\bar{k}) e^{i k c t}+\left(i k_{1}\right)^{i}\left(i k_{2}\right)^{j}\left(i k_{3}\right)^{k} d(\bar{k}) e^{-i k c t}\right) e^{i \bar{k} . \bar{x}} d \bar{k}
$$

where $\left(i k_{1}\right)^{i}\left(i k_{2}\right)^{j}\left(i k_{3}\right)^{k} b(\bar{k}) \in L^{1}\left(\mathcal{R}^{3}\right)$ and $\left(i k_{1}\right)^{i}\left(i k_{2}\right)^{j}\left(i k_{3}\right)^{k} d(\bar{k}) \in$ $L^{1}\left(\mathcal{R}^{3}\right)$, so that;

$$
\begin{aligned}
& \lim _{t \rightarrow 0+} \frac{\partial^{i+j+k_{\rho}}}{\partial x^{i} \partial y^{j} \partial z^{k}}(\bar{x}, t) \\
& =\lim _{t \rightarrow 0+} \frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{\mathcal{R}^{3}}\left(\left(i k_{1}\right)^{i}\left(i k_{2}\right)^{j}\left(i k_{3}\right)^{k} b(\bar{k}) e^{i k c t}+\left(i k_{1}\right)^{i}\left(i k_{2}\right)^{j}\left(i k_{3}\right)^{k} d(\bar{k}) e^{-i k c t}\right) e^{i \bar{k} . \bar{x}} d \bar{k} \\
& =\frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{\mathcal{R}^{3}}\left(\left(i k_{1}\right)^{i}\left(i k_{2}\right)^{j}\left(i k_{3}\right)^{k} b(\bar{k})+\left(i k_{1}\right)^{i}\left(i k_{2}\right)^{j}\left(i k_{3}\right)^{k} d(\bar{k})\right) e^{i \bar{k} . \bar{x}} d \bar{k} \\
& =\frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{\mathcal{R}^{3}}\left(i k_{1}\right)^{i}\left(i k_{2}\right)^{j}\left(i k_{3}\right)^{k} \mathcal{F}\left(\rho_{0}\right)(\bar{k}) e^{i \bar{k} . \bar{x}} d \bar{k} \\
& =\frac{\partial^{i+j+k_{\rho}}}{\partial x^{i} \partial y^{j} \partial z^{k}}(\bar{x}, 0)(X)^{\prime}
\end{aligned}
$$

Similarly, differentiating under the integral sign in (Y), using the fact that $b^{-}(\bar{k})+d^{-}(\bar{k})=\mathcal{F}\left(\rho_{0}\right)(\bar{k})$;

$$
\lim _{t \rightarrow 0-} \frac{\partial^{i+j+k} \rho}{\partial x^{i} \partial y^{j} \partial z^{k}}(\bar{x}, t)=\frac{\partial^{i+j+k} \rho}{\partial x^{i} \partial y^{j} \partial z^{k}}(\bar{x}, 0)\left(Y^{\prime}\right)
$$

and combining $(X)^{\prime},(Y)^{\prime}$, we obtain that;

$$
\lim _{t \rightarrow 0} \frac{\partial^{i+j+k} \rho}{\partial x^{i} \partial y^{j} \partial z^{k}}(\bar{x}, t)=\frac{\partial^{i+j+k} \rho}{\partial x^{i} \partial y^{j} \partial z^{k}}(\bar{x}, 0)
$$

By a similar argument, differentiating under the integral sign, and using the facts that $b(\bar{k}) i k c-d(\bar{k}) i k c=\mathcal{F}(g)(\bar{k})-i k c b^{-}(\bar{k})+i k c d^{-}(\bar{k})=$ $\mathcal{F}(g)(\bar{k}) ;$

$$
\lim _{t \rightarrow 0} \frac{\partial^{i+j+k+1} \rho}{\partial x^{i} \partial y^{j} \partial z^{k} \partial t}(\bar{x}, t)=\frac{\partial^{i+j+k} g}{\partial x^{i} \partial y^{j} \partial z^{k}}(\bar{x}, 0)
$$

Similarly, using the fact that $\rho_{0} \in S\left(\mathcal{R}^{3}\right),\{b(\bar{k}), d(\bar{k})\} \subset L^{1}\left(\mathcal{R}^{3}\right)$, so we can apply the inversion theorem, we have that;

$$
\begin{aligned}
& \lim _{t \rightarrow 0+} \frac{\partial^{i+j+k+2} \rho}{\partial x^{i} \partial y^{j} \partial z^{k} \partial t^{2}}(\bar{x}, t) \\
& =\lim _{t \rightarrow 0+} \frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{\mathcal{R}^{3}}\left(i k_{1}\right)^{i}\left(i k_{2}\right)^{j}\left(i k_{3}\right)^{k}\left(-k^{2} c^{2}\right) b(\bar{k}) e^{i k c t} \\
& \left.+\left(i k_{1}\right)^{i}\left(i k_{2}\right)^{j}\left(i k_{3}\right)^{k}\left(-k^{2} c^{2}\right) d(\bar{k}) e^{-i k c t}\right) e^{i \bar{k} . \bar{x}} d \bar{k} \\
& =\frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{\mathcal{R}^{3}}\left(i k_{1}\right)^{i}\left(i k_{2}\right)^{j}\left(i k_{3}\right)^{k}\left(-k^{2} c^{2}\right)(b(\bar{k})+d(\bar{k})) e^{i \bar{k} . \bar{x}} d \bar{k} \\
& =\frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{\mathcal{R}^{3}}\left(i k_{1}\right)^{i}\left(i k_{2}\right)^{j}\left(i k_{3}\right)^{k}\left(-k^{2} c^{2}\right)\left(\mathcal{F}\left(\rho_{0}\right)(\bar{k}) e^{i \bar{k} . \bar{x}} d \bar{k}\right. \\
& =\frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{\mathcal{R}^{3}} c^{2}\left(\mathcal{F}\left(\frac{\partial^{i+j+k} \nabla^{2}\left(\rho_{0}\right)}{\partial x^{i} \partial y^{j} \partial z^{k}}\right)(\bar{k}) e^{i \bar{k} . \bar{x}} d \bar{k}\right. \\
& =c^{2} \frac{\partial^{i+j+k} \nabla^{2}\left(\rho_{0}\right)}{\partial x^{i} \partial y^{j} \partial z^{k}}(\bar{x})
\end{aligned}
$$

and;

$$
\lim _{t \rightarrow 0-} \frac{\partial^{i+j+k+2} \rho}{\partial x^{i} \partial y^{j} \partial z^{k} \partial t^{2}}(\bar{x}, t)=\frac{\partial^{i+j+k} c^{2} \nabla^{2}\left(\rho_{0}\right)}{\partial x^{i} \partial y^{j} \partial z^{k}}(\bar{x})
$$

As $\left.\rho\right|_{t>0},\left.\rho\right|_{t<0}$ obey the wave equation, so do the partial derivatives $\left.\frac{\partial^{i+j+k+l}}{\partial x^{i} \partial y^{j} \partial z^{k} \partial t^{2}}\right|_{t>0}$, so that, for $l \geq 1, l$ even, $t \neq 0$;

$$
\left.\frac{\partial^{i+j+k+l} \rho}{\partial x^{i} \partial y^{j} \partial z^{k} \partial t^{l}}\right|_{t \neq 0}=\left.c^{l}\left(\nabla^{2}\right)^{\frac{l}{2}}\left(\frac{\partial^{i+j+k} \rho}{\partial x^{i} \partial y^{j} \partial z^{k}}\right)\right|_{t \neq 0}
$$

and, for $l \geq 1, l$ odd, $t \neq 0$;

$$
\left.\frac{\partial^{i+j+k+l} \rho}{\partial x^{i} \partial y^{j} \partial z^{k} \partial t^{l}}\right|_{t \neq 0}=\left.c^{l-1}\left(\nabla^{2}\right)^{\frac{l-1}{2}}\left(\frac{\partial^{i+j+k+1} \rho}{\partial x^{i} \partial y^{j} \partial z^{k} \partial t}\right)\right|_{t \neq 0}
$$

and, using the above, for l even;

$$
\lim _{t \rightarrow 0} \frac{\partial^{i+j+k+l} \rho(\bar{x}, t)}{\partial x^{i} \partial y^{j} \partial z^{k} \partial t^{l}}=c^{l}\left(\nabla^{2}\right)^{\frac{l}{2}}\left(\frac{\partial^{i+j+k} \rho_{0}}{\partial x^{i} \partial y^{j} \partial z^{k}}\right)
$$

and, for l odd;

$$
\lim _{t \rightarrow 0} \frac{\partial^{i+j+k+l} \rho(\bar{x}, t)}{\partial x^{i} \partial y^{j} \partial z^{k} \partial t^{l}}=c^{l-1}\left(\nabla^{2}\right)^{\frac{l-1}{2}}\left(\frac{\partial^{i+j+k} g}{\partial x^{i} \partial y^{j} \partial z^{k}}\right)
$$

In particularly, as all the partial derivatives of ρ extend continuously to the boundary $t=0$, we have that $\rho \in C^{\infty}\left(\mathcal{R}^{4}\right)$, and the wave equation is satisfied at $t=0, \frac{\partial^{2} \rho}{\partial t^{2}}=c^{2} \nabla^{2}(\rho),(N B)$. This last claim
follows from the fact that, using the integral representation of a solution to the wave equation, $\nabla^{2}(f)-\frac{1}{c^{2}} \frac{\partial^{2} f}{\partial t^{2}}=0$ in $\mathcal{R}^{3} \times[0, \infty)$, generated by the initial data (g, h), that $\lim _{t \rightarrow 0+} \frac{\partial^{i+j+k+l} f_{t}}{\partial x^{i} \partial x^{j} \partial z^{k} \partial t^{l}}=\left(c^{2} \nabla^{2}\right)^{\frac{l}{2}} \frac{\partial^{i+j+k+l} g}{x^{i} \partial x^{j} \partial z^{k}}$ for l even and that $\lim _{t \rightarrow 0+} \frac{\partial^{i+j+k+l} f_{t}}{\partial x^{i} \partial x^{j} \partial z^{k} \partial t^{l}}=\left(c^{2} \nabla^{2}\right)^{\frac{l-1}{2}} \frac{\partial^{i+j+k+l} h}{\partial x^{i} \partial x^{j} \partial z^{k}}$ for l odd. By uniqueness of the wave equation with specified initial conditions (g, h), the same must be true for Kirchoff's representation. The same result holds for the backward wave equation with initial data $(g,-h)$, so the limit of the partial derivatives is same for $t>0$ as $t<0$, and the limit, as $t \rightarrow 0$, of $\frac{\partial^{2} \rho}{\partial t^{2}}-c^{2} \nabla^{2}(\rho)$ is zero. Using Kirchoff's formula, as we noted above, for $t \in \mathcal{R}, \rho_{t}$ has compact support, and it is clear that the support varies continuously with t.

Lemma 0.3. If a solution to the wave equation for $t \in \mathcal{R}$ is generated by the data $\left\{\rho_{0}, g\right\} \subset C^{\infty}\left(\mathcal{R}^{3}\right)$ with compact support, and Kirchoff's formula, then we have that, for $t>0$;

$$
\begin{aligned}
& \rho(\bar{x}, t)=\rho(\bar{x},-t) \text { iff } g(\bar{x})=0 \\
& \rho(\bar{x}, t)=-\rho(\bar{x},-t) \text { iff } \rho_{0}(\bar{x})=0
\end{aligned}
$$

Proof. We have, if;

$$
\begin{aligned}
& \rho(\bar{x}, t)=\frac{1}{4 \pi c^{2} t^{2}} \int_{\delta B(\bar{x}, c t)}\left(t g(\bar{y})+\rho_{0}(\bar{y})+D \rho_{0}(\bar{y}) \cdot(\bar{y}-\bar{x})\right) d S(\bar{y})(t>0) \\
& \rho(\bar{x}, t)=\frac{1}{4 \pi c^{2} t^{2}} \int_{\delta B(\bar{x},-c t)}\left(t g(\bar{y})+\rho_{0}(\bar{y})+D \rho_{0}(\bar{y}) \cdot(\bar{y}-\bar{x})\right) d S(\bar{y})(t<0)
\end{aligned}
$$

Then, for $t>0, \rho(\bar{x}, t)=\rho(\bar{x},-t)$ iff;

$$
\begin{aligned}
& \frac{1}{4 \pi c^{2} t^{2}} \int_{\delta B(\bar{x}, c t)}\left(t g(\bar{y})+\rho_{0}(\bar{y})+D \rho_{0}(\bar{y}) \cdot(\bar{y}-\bar{x})\right) d S(\bar{y}) \\
& =\frac{1}{4 \pi c^{2} t^{2}} \int_{\delta B(\bar{x}, c t)}\left(-t g(\bar{y})+\rho_{0}(\bar{y})+D \rho_{0}(\bar{y}) \cdot(\bar{y}-\bar{x})\right) d S(\bar{y}) \\
& \text { iff } \frac{1}{4 \pi c^{2} t^{2}} \int_{\delta B(\bar{x}, c t)} 2 t g(\bar{y}) d S(\bar{y})=0 \\
& \text { iff } \int_{\delta B(\bar{x}, c t)} g(\bar{y}) d S(\bar{y})=0 \\
& \text { iff } g(\bar{y})=0
\end{aligned}
$$

as if $g\left(\bar{y}_{0}\right) \neq 0$, without loss of generality, by continuity, we can choose $t_{0}>0$ sufficiently small with $\left.g\right|_{\delta B\left(\bar{y}_{0}, c t\right)}>0$, so that $\int_{\delta B\left(\bar{y}_{0}, c t_{0}\right)} g(\bar{y}) d S(\bar{y})>$

0
and, for $t>0, \rho(\bar{x}, t)=-\rho(\bar{x},-t)$ iff;

$$
\begin{aligned}
& \frac{1}{4 \pi c^{2} t^{2}} \int_{\delta B(\bar{x}, c t)}\left(t g(\bar{y})+\rho_{0}(\bar{y})+D \rho_{0}(\bar{y}) \cdot(\bar{y}-\bar{x})\right) d S(\bar{y}) \\
& =\frac{1}{4 \pi c^{2} t^{2}} \int_{\delta B(\bar{x}, c t)}\left(t g(\bar{y})-\rho_{0}(\bar{y})-D \rho_{0}(\bar{y}) \cdot(\bar{y}-\bar{x})\right) d S(\bar{y}) \\
& \text { iff } \frac{1}{4 \pi c^{2} t^{2}} \int_{\delta B(\bar{x}, c t)} 2\left[\rho_{0}(\bar{y})+D \rho_{0}(\bar{y}) \cdot(\bar{y}-\bar{x})\right] d S(\bar{y})=0 \\
& \text { iff } \int_{\delta B(\bar{x}, c t)}\left[\rho_{0}(\bar{y})+D \rho_{0}(\bar{y}) \cdot(\bar{y}-\bar{x})\right] d S(\bar{y})=0 \\
& \text { iff } \int_{\delta B(\bar{x}, c t)} \rho_{0}(\bar{y}) d S(\bar{y})+c t \int_{\delta B(\bar{x}, c t)} \nabla\left(\rho_{0}\right) \cdot d \bar{S}=0 \\
& \text { iff } \int_{\delta B(\bar{x}, c t)} \rho_{0}(\bar{y}) d S(\bar{y})+c t \int_{B(\bar{x}, c t)} d i v\left(\nabla\left(\rho_{0}\right)\right) d V(\bar{y})=0 \\
& \text { iff } \int_{\delta B(\bar{x}, c t)} \rho_{0}(\bar{y}) d S(\bar{y})+c t \int_{B(\bar{x}, c t)} \nabla^{2}\left(\rho_{0}\right) d V(\bar{y})=0 \\
& \text { iff } \rho_{0}(\bar{y})=0
\end{aligned}
$$

as if $\rho_{0}\left(\bar{y}_{0}\right) \neq 0$, by continity, without loss of generality, there exists $\epsilon>0$, such that, for sufficiently small t_{0};

$$
\int_{\delta B\left(\bar{y}_{0}, c t_{0}\right)} \rho_{0}(\bar{y}) d S(\bar{y})>4 \pi \epsilon c^{2} t_{0}^{2}
$$

and, if M is a uniform bound on $\nabla^{2}\left(\rho_{0}\right)$
$\left|c t_{0} \int_{B\left(\bar{y}_{0}, c t_{0}\right)} \nabla^{2}\left(\rho_{0}\right) d V(\bar{y})\right|<\frac{4 M \pi c^{4} t_{0}^{4}}{3}$
so that, if $4 \pi \epsilon c^{2} t_{0}^{2}>\frac{4 M \pi c^{4} t_{0}^{4}}{3}$ iff $\frac{3 \epsilon}{M c^{2}}>t_{0}^{2}$, we can choose $0<t_{0}<$ $\frac{\left(3 \epsilon \epsilon^{\frac{1}{2}}\right.}{\sqrt{M c}}$, to obtain;

$$
\int_{\delta B\left(\bar{y}_{0}, c t_{0}\right)} \rho_{0}(\bar{y}) d S(\bar{y})+c t_{0} \int_{B\left(\bar{y}_{0}, c t_{0}\right)} \nabla^{2}\left(\rho_{0}\right) d V(\bar{y})>0
$$

Lemma 0.4. If $\rho \in C^{\infty}\left(\mathcal{R}^{4}\right)$ has compact support and satisfies the wave equation $\square^{2}(\rho)=0$, then if we define \bar{J} by;

$$
\bar{J}(\bar{x}, t)=-c^{2} \int_{-\infty}^{t} \nabla(\rho) d s
$$

then $\bar{J} \in C^{\infty}\left(\mathcal{R}^{4}\right)$ has compact support and satisfies the wave equation $\square^{2}(\bar{J}=0$. Moreover, the combination (ρ, \bar{J}) satisfies;
(i). $\frac{\partial \rho}{\partial t}=-\operatorname{div}(\bar{J})$
(ii). $\nabla(\rho)+\frac{1}{c^{2}} \frac{\partial \bar{J}}{\partial t}=\overline{0}$

Proof. Letting;

$$
\bar{J}(\bar{x}, t)=-c^{2} \int_{-\infty}^{t} \nabla(\rho) d s
$$

see [2] for the existence of the integral. We have, differentiating under the integral sign, and using the fundamental theorem of calculus, that, for $(i, j, k) \in \mathcal{Z}_{\geq 0}^{3}$;

$$
\begin{aligned}
& \frac{\partial^{i+j+k} j_{1}}{\partial x^{i} \partial y^{j} \partial z^{k}}=-c^{2} \int_{-\infty}^{t} \frac{\partial^{i+j+k+1} \rho}{\partial x^{i+1} \partial y^{j} \partial z^{k}} d s(Z) \\
& \frac{\partial^{i+j+k+1} j_{1}}{\partial x^{i} \partial y^{j} \partial z^{k} \partial t}=-c^{2} \frac{\partial^{i+j+k+1} \rho}{\partial x^{i+1} \partial y^{j} \partial z^{k}}
\end{aligned}
$$

and for $l \geq 2$;

$$
\frac{\partial^{i+j+k+l} j_{1}}{\partial x^{i} \partial y^{j} \partial z^{k} \partial t^{l}}=-c^{2} \frac{\partial^{i+j+k+1} \rho}{\partial x^{i+1} \partial y^{j} \partial z^{k} \partial t^{l-1}}
$$

As $\left(\frac{\partial^{i+j+k} \rho}{\partial x^{i} \partial y^{j} \partial z^{k}}\right)_{0} \in S\left(\mathcal{R}^{3}\right)$, and $\frac{\partial^{i+j+k} \rho}{\partial x^{i} \partial y^{j} \partial z^{k}}$ satisfies the wave equation on \mathcal{R}^{4}, by the proof in [2], we have that the integral (Z) is well defined. Then, as $\rho \in C^{\infty}\left(\mathcal{R}^{4}\right)$, we have that $j_{1} \in C^{\infty}\left(\mathcal{R}^{4}\right)$. A similar argument shows that the components $\left\{j_{2}, j_{3}\right\} \subset C^{\infty}\left(\mathcal{R}^{4}\right)$. By the fundamental theorem of calculus, we have that;

$$
\frac{\partial \bar{J}}{\partial t}=-c^{2} \nabla(\rho)
$$

By the previous claim, for $t_{0} \in \mathcal{R}, \rho_{t_{0}}$ has compact support, so that $(\nabla(\rho))_{t_{0}}$ has compact support and $\left(\frac{\partial \bar{J}}{\partial t}\right)_{t_{0}}$ has compact support. It is clear from the above that the compact support V_{t} of ρ_{t} and $(\nabla(\rho))_{t}$ varies continuously with t, so on the interval $\left(t_{0}-\epsilon, t_{0}+\epsilon\right),\left.\left(\frac{\partial \bar{J}}{\partial t}\right)\right|_{\left(t_{0}-\epsilon, t_{0}+\epsilon\right)}$ has compact support $W_{t_{0}, \epsilon}$ in \mathcal{R}^{4}.
\bar{J} satisfies the wave equation on \mathcal{R}^{4}, as, using the fundamental theorem of calculus and the fact that $\nabla(\rho)$ satisfies the wave equation;

$$
\square^{2}(\bar{J})=\nabla^{2}(\bar{J})-\frac{1}{c^{2}} \frac{\partial^{2} \bar{J}}{\partial t^{2}}
$$

$$
\begin{aligned}
& =-c^{2}\left(\int_{-\infty}^{t} \nabla^{2}(\nabla(\rho)) d s\right)-\frac{1}{c^{2}}\left(-c^{2} \frac{\partial \nabla(\rho)}{\partial t}\right) \\
& =-c^{2}\left(\int_{-\infty}^{t} \frac{1}{c^{2}} \frac{\partial^{2} \nabla(\rho)}{\partial t^{2}} d s\right)+\frac{\partial \nabla(\rho)}{\partial t} \\
& \left.=-\frac{\partial \nabla(\rho)}{\partial t}\right)+\frac{\partial \nabla(\rho)}{\partial t} \\
& =\overline{0}
\end{aligned}
$$

By the connecting relation;

$$
\nabla \rho+\frac{1}{c^{2}} \frac{\partial \bar{J}}{\partial t}=\overline{0}
$$

we have that $\frac{\partial \bar{J}}{\partial t}$ vanishes outside $\operatorname{Supp}\left(\rho_{t}\right)$, and for any $\bar{x} \in \mathcal{R}^{3}$, there exists two uniformly bounded intervals $\left[t_{1, \bar{x},-}, t_{2, \bar{x},-}\right]$, $\left[t_{1, \bar{x},+}, t_{2, \bar{x},+}\right]$, for which $\bar{x} \in \operatorname{Supp}\left(\rho_{t}\right)$, for $t \in\left[t_{1, \bar{x},-}, t_{2, \bar{x},-}\right] \cup\left[t_{1, \bar{x},+}, t_{2, \bar{x},+}\right]$. Using the fact that $\operatorname{Supp}\left(\rho_{t}\right)$ is moving and $\nabla(\rho)$ satisfies the wave equation, so uniformly bounded, we can define;

$$
\begin{aligned}
& \bar{J}_{0}(\bar{x})=\int_{t_{1, \bar{x}},-}^{t_{2, \bar{x}}-} \frac{\partial \bar{J}}{\partial t} d t+\int_{t_{1, \bar{x}},+}^{t_{2, \bar{x}}++} \frac{\partial \bar{J}}{\partial t} d t \\
& =\int_{-\infty}^{\infty} \frac{\partial \bar{J}}{\partial t} d t \text { (the ultimate value of } \bar{J}(\bar{x}, t) \text {) }
\end{aligned}
$$

with \bar{J}_{0} bounded. On any ball $B(\overline{0}, r)$, we have that $\bar{J}-\bar{J}_{0}$ eventually vanishes, and, as $\operatorname{div}(\bar{J})-\operatorname{div}\left(\bar{J}_{0}\right)=0$ ultimately on the ball, and $\operatorname{div}(\bar{J})=-\frac{\partial \rho}{\partial t}=0$, ultimately, otherwise charge would build up, we have that $\operatorname{div}\left(\bar{J}_{0}\right)=0$. It follows that $\left(\rho, \bar{J}-\bar{J}_{0}\right)$ satisfies the continuity equation, and the linkage relation;

$$
\nabla \rho+\frac{1}{c^{2}} \frac{\partial\left(\bar{J}-\bar{J}_{0}\right)}{\partial t}=\overline{0}
$$

is still satisfied, as \bar{J}_{0} is time independent. On any ball $B(\overline{0}, r)$, we have that ultimately $\bar{J}-\bar{J}_{0}=\overline{0}$, so that, as $\square^{2}(\bar{J})=\overline{0}$ and \bar{J}_{0} is time independent, ultimately;

$$
\nabla^{2}\left(\bar{J}_{0}\right)=\square^{2}\left(\bar{J}_{0}\right)=\square^{2}(\bar{J})=\overline{0}
$$

and \bar{J}_{0} is harmonic. As the components $\nabla(\rho)_{i}$, for $1 \leq i \leq 3$, satisfy the wave equation, we have that that there exists constants $C_{i} \in \mathcal{R}_{>0}$, for which $\left|\nabla(\rho)_{i}(\bar{x}, t)\right| \leq \frac{C_{i}}{|t|}$ for $1 \leq i \leq 3$, so that;

$$
|\nabla(\rho)(\bar{x}, t)| \leq \frac{\sqrt{C_{1}^{2}+C_{2}^{2}+C_{3}^{2}}}{|t|}
$$

and;

$$
\begin{aligned}
& \left|\bar{J}_{0}(\bar{x})\right|=\left|\int_{t_{1, \bar{x}},-}^{t_{2, \bar{x}}-}-c^{2} \nabla(\rho) d t+\int_{t_{1, \bar{x}},+}^{t_{2, \bar{x}}+}-c^{2} \nabla(\rho) d t\right| \\
& \leq c^{2}\left[\left(t_{2, \bar{x},-}-t_{1, \bar{x},-}\right)+\left(t_{2, \bar{x},+}-t_{1, \bar{x},+}\right)\right]|\nabla(\rho)|_{\left[t_{1, \bar{x},-,}, t_{2, \bar{x},-}\right] \cup\left[t_{1, \bar{x},-,} t_{2, \bar{x},-}\right]} \mid \\
& \leq c^{2}\left(t_{2, \bar{x},-}-t_{1, \bar{x},-}\right) \frac{\sqrt{C_{1}^{2}+C_{2}^{2}+C_{3}^{2}}}{\mid t_{1, \bar{x},-\mid}}+c^{2}\left(t_{2, \bar{x},+}-t_{1, \bar{x},+}\right) \frac{\sqrt{C_{1}^{2}+C_{2}^{2}+C_{3}^{2}}}{\left|t_{1, \bar{x},+}\right|} \\
& \leq \frac{C}{|\bar{x}|}
\end{aligned}
$$

as the intervals $\left[t_{1, \bar{x},-}, t_{2, \bar{x},-}\right],\left[t_{1, \bar{x},+}, t_{2, \bar{x},+}\right]$ are uniformly bounded, and the hitting times $\left\{t_{1, \bar{x},-}, t_{1, \bar{x},+}\right\}$ are proportional to the distance \bar{x}. It follows, as bounded harmonic functions are constant, that $\bar{J}_{0}=\overline{0}$, and \bar{J} has compact supports.

Lemma 0.5. For any $\{\rho, \bar{J}\} \subset C^{\infty}\left(\mathcal{R}^{3} \times \mathcal{R}_{>0}\right)$ with compact support satisfying the wave equations $\square^{2}(\rho)=0, \square^{2}(\bar{J})=\overline{0} \lim _{t \rightarrow 0} \rho_{t}=\rho_{0}$, $\lim _{t \rightarrow 0}\left(\frac{\partial \rho}{\partial t}\right)_{t}=g, \lim _{t \rightarrow 0} \bar{J}_{t}=\bar{J}_{0}, \lim _{t \rightarrow 0}\left(\frac{\partial \bar{J}}{\partial t}\right)_{t}=\bar{g}$, we have the explicit representation;

$$
\begin{aligned}
& \rho(\bar{x}, t)=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{\mathcal{R}^{3}}\left(b(\bar{k}) e^{i k c t}+d(\bar{k}) e^{-i k c t}\right) e^{i \bar{k} . \bar{x}} d \bar{k} \\
& \bar{J}(\bar{x}, t)=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{\mathcal{R}^{3}}\left(\bar{b}(\bar{l}) e^{i l c t}+\bar{d}(\bar{l}) e^{-i l c t}\right) e^{i \bar{l} \bar{x}} d \bar{l} \\
& \text { where }\{b, d, \bar{b}, \bar{d}\} \subset L^{1}\left(\mathcal{R}^{3}\right) .
\end{aligned}
$$

Proof. As;

$$
\square^{2}(\rho)=0, \square^{2}(\bar{J})=\overline{0},(*)
$$

We have that;

$$
\nabla^{2}(\rho)-\frac{1}{c^{2}} \frac{\partial^{2} \rho}{\partial t^{2}}=0, \nabla^{2}(\bar{J})-\frac{1}{c^{2}} \frac{\partial^{2} \bar{J}}{\partial t^{2}}=0
$$

We have that $\rho_{t} \in S\left(\mathcal{R}^{3}\right)$, as it is smooth and has compact support, so that, we can apply the three dimensional Fourier transform \mathcal{F}, and using integration by parts, differentiating under the integral sign, we have that, for $t>0$;

$$
\begin{aligned}
& \mathcal{F}\left(\nabla^{2}(\rho)(\bar{k}, t)\right)-\frac{1}{c^{2}} \mathcal{F}\left(\frac{\partial^{2} \rho}{\partial t^{2}}\right)(\bar{k}, t) \\
& =-k^{2} \mathcal{F}(\rho)(\bar{k}, t)-\frac{1}{c^{2}} \frac{\partial^{2}(\mathcal{F}(\rho)(\bar{k}, t))}{\partial t^{2}} \\
& =-k^{2} a(\bar{k}, t)-\frac{1}{c^{2}} \frac{\partial^{2} a(\bar{k}, t)}{\partial t^{2}} \\
& =0
\end{aligned}
$$

where $k^{2}=k_{1}^{2}+k_{2}^{2}+k_{3}^{2}, a=\mathcal{F}(\rho)$. For fixed \bar{k}, we obtain the ordinary differential equation;

$$
\frac{d^{2} a_{\bar{k}}}{d t^{2}}=-c^{2} k^{2} a_{\bar{k}}
$$

so that;
$a_{\bar{k}}(t)=C_{0}(\bar{k}) e^{i k c t}+D_{0}(\bar{k}) e^{-i k c t}$
with;
$a_{\bar{k}}(0)=\lim _{t \rightarrow 0} a_{\bar{k}}(t)=\mathcal{F}\left(\rho_{0}\right)=C_{0}(\bar{k})+D_{0}(\bar{k})$
$a_{\bar{k}}^{\prime}(0)=\lim _{t \rightarrow 0} a_{\bar{k}}^{\prime}(t)=\mathcal{F}(g)=i k c C_{0}(\bar{k})-i k c D_{0}(\bar{k})(\dagger \dagger)$
and, solving the simultaneous equations ($\dagger \dagger$), we obtain that;

$$
\begin{aligned}
& C_{0}(\bar{k})=\frac{1}{2}\left(a_{\bar{k}}(0)+\frac{1}{i k c} a_{\bar{k}}^{\prime}(0)\right) \\
& D_{0}(\bar{k})=\frac{1}{2}\left(a_{\bar{k}}(0)-\frac{1}{i k c} a_{\bar{k}}^{\prime}(0)\right)
\end{aligned}
$$

and;
$\mathcal{F}(\rho)(\bar{k}, t)=a(\bar{k}, t)$
$=\frac{1}{2}\left(a_{\bar{k}}(0)+\frac{1}{i k c} a_{\bar{k}}^{\prime}(0)\right) e^{i k c t}+\frac{1}{2}\left(a_{\bar{k}}(0)-\frac{1}{i k c} a_{\bar{k}}^{\prime}(0)\right) e^{-i k c t}$
$=b(\bar{k}) e^{i k c t}+d(\bar{k}) e^{-i k c t}$
where;
$b(\bar{k})=\frac{1}{2}\left(\left.\mathcal{F}\left(\left.\rho\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{k}, 0)}+\left.\frac{1}{i k c} \mathcal{F}\left(\left.\frac{\partial \rho}{\partial t}\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{k}, 0)}\right)$
$d(\bar{k})=\frac{1}{2}\left(\left.\mathcal{F}\left(\left.\rho\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{k}, 0)}-\left.\frac{1}{i k c} \mathcal{F}\left(\left.\frac{\partial \rho}{\partial t}\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{k}, 0)}\right)$
Similarly;
$\mathcal{F}(\bar{J})(\bar{l}, t)=\bar{a}(\bar{l}, t)=\bar{b}(\bar{l}) e^{i l c t}+\bar{d}(\bar{l}) e^{-i l c t}$
where;
$\bar{b}(\bar{l})=\frac{1}{2}\left(\left.\mathcal{F}\left(\left.(\bar{J})\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{l}, 0)}+\left.\frac{1}{i l c} \mathcal{F}\left(\left.\frac{\partial \bar{J}}{\partial t}\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{l}, 0)}\right)$
$\bar{d}(\bar{l})=\frac{1}{2}\left(\left.\mathcal{F}\left(\left.(\bar{J})\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{l}, 0)}-\left.\frac{1}{i l c} \mathcal{F}\left(\left.\frac{\partial \bar{J}}{\partial t}\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{l}, 0)}\right)$
and $l^{2}=l_{1}^{2}+l_{2}^{2}+l_{3}^{2}$. Observe that;
$\{b, d, \bar{b}, \bar{d}\} \subset L^{1}\left(\mathcal{R}^{3}\right),(F G)$
as by the classical theory;

$$
\left\{\mathcal{F}\left(\rho_{0}\right), \mathcal{F}\left(\left(\frac{\partial \rho}{\partial t}\right)_{0}\right), \mathcal{F}\left(\bar{J}_{0}\right), \mathcal{F}\left(\left(\frac{\partial \bar{J}}{\partial t}\right)_{0}\right)\right\} \subset S\left(\mathcal{R}^{3}\right) \subset L^{1}\left(\mathcal{R}^{3}\right)
$$

and, using the fact that;

$$
\left\{\mathcal{F}\left(\left(\frac{\partial \rho}{\partial t}\right)_{0}\right), \mathcal{F}\left(\left(\frac{\partial \bar{J}}{\partial t}\right)_{0}\right)\right\} \subset C^{\infty}(B(\overline{0}, 1)) \subset L^{2}(B(\overline{0}, 1))
$$

and, by a polar coordinates calculation, $\left\{\frac{1}{i k c}, \frac{1}{i l c}\right\} \subset L^{2}(B(\overline{0}, 1))$, by the Cauchy Schwarz inequality;

$$
\left\{\frac{\mathcal{F}\left(\left(\frac{\partial \rho}{\partial t}\right)_{0}\right)}{i k c}, \frac{\mathcal{F}\left(\left(\frac{\partial \bar{J}}{\partial t}\right)_{0}\right)}{i l c}\right\} \subset L^{1}(B(\overline{0}, 1))
$$

whereas, by the rapid decay of $S\left(\mathcal{R}^{3}\right)$ and a simple polar coordinate calculation;

$$
\left\{\frac{\mathcal{F}\left(\left(\frac{\partial \rho}{\partial t}\right)_{0}\right)}{i k c}, \frac{\mathcal{F}\left(\left(\frac{\partial \bar{J}}{\partial t}\right)_{0}\right)}{i l c}\right\} \subset L^{1}\left(\mathcal{R}^{3} \backslash B(\overline{0}, 1)\right)
$$

Using the fact that $\left\{b(\bar{k}) e^{i k c t}+d(\bar{k}) e^{-i k c t}, \bar{b}(\bar{l}) e^{i l c t}+\bar{d}(\bar{l}) e^{-i l c t}\right\} \subset$ $S\left(\mathcal{R}^{3}\right)$ for $t \in \mathcal{R}$, by the fact that the Fourier transform preserves the Schwartz class, see [3], we can apply the inversion theorem, to obtain;

$$
\begin{aligned}
& \rho(\bar{x}, t)=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{\mathcal{R}^{3}}\left(b(\bar{k}) e^{i k c t}+d(\bar{k}) e^{-i k c t}\right) e^{i \bar{k} \cdot \bar{x}} d \bar{k} \\
& \bar{J}(\bar{x}, t)=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{\mathcal{R}^{3}}\left(\bar{b}(\bar{l}) e^{i l c t}+\bar{d}(\bar{l}) e^{-i l c t}\right) e^{i \bar{l} \cdot \bar{x}} d \bar{l}
\end{aligned}
$$

By the observation $(F G)$, we can split the integral into two integrals.

Lemma 0.6. Let (ρ, \bar{J}) be defined as in Lemma 0.4, then if V_{t} defines the support of ρ_{t}, we have that;

$$
\begin{aligned}
& \frac{d}{d t}\left(\int_{V_{t}} \rho_{t} d V\right)=0 \\
& \int_{V_{t}} \nabla^{2}(\rho)=0
\end{aligned}
$$

We have that $\frac{\partial \bar{J}}{\partial t}$ has compact support, and \bar{J} is generated by Kirchoff's formula with initial data $\left(\bar{J}_{0},-c^{2} \nabla\left(\rho_{0}\right)\right)$ and the representation of Lemma 0.5 holds for \bar{J}.

Proof. If $t_{1}<t_{2}$, with $\left\{t_{1}, t_{2}\right\} \subset \mathcal{R}$, and $\left\{V_{t_{1}}, V_{t_{2}}\right\}$ denote the compact supports of $\left\{\rho_{t_{1}}, \rho_{t_{2}}\right\}$, then as the supports vary continuously, and \bar{J}_{t} and ρ_{t} are compactly supported for each $t \in\left[t_{1}, t_{2}\right], \bar{J}_{t}$ and ρ_{t} are uniformly compacted supported for $t \in\left[t_{1}, t_{2}\right]$ in a ball $B(\overline{0}, p)$, for some $p \in \mathcal{R}_{>0}$. In particularly;

$$
\begin{aligned}
& \int_{V_{t_{1}}} \rho_{t_{1}} d V=\int_{B(\overline{0}, p)} \rho_{t_{1}} d V \\
& \int_{V_{t_{2}}} \rho_{t_{2}} d V=\int_{B(\overline{0}, p)} \rho_{t_{2}} d V
\end{aligned}
$$

For $t \in\left[t_{1}, t_{2}\right]$, using the continuity equation, the divergence theorem and the fact \bar{J}_{t} is uniformly compacted supported for $t \in\left[t_{1}, t_{2}\right]$ in $B(\overline{0}, p)$, we have that;

$$
\begin{aligned}
& \frac{d}{d t}\left(\int_{B(\overline{0}, p)} \rho_{t} d V\right)=\int_{B(\overline{0}, p)} \frac{\partial \rho}{\partial t} d V \\
& =-\int_{B(\overline{0}, p)} d i v(\bar{J})_{t} d V \\
& =-\int_{\delta B(\overline{0}, p)} \bar{J}_{t} \cdot d \bar{S} d V \\
& =0
\end{aligned}
$$

so that;

$$
\begin{aligned}
& \int_{B(\overline{0}, p)} \rho_{t_{1}} d V=\int_{B(\overline{0}, p)} \rho_{t_{2}} d V \\
& \int_{V_{t_{1}}} \rho_{t_{1}} d V=\int_{V_{t_{2}}} \rho_{t_{2}} d V
\end{aligned}
$$

In particularly, $\frac{d}{d t}\left(\int_{V_{t}} \rho_{t} d V\right)=0$. For the second claim, we have that, by the divergence theorem and the fact that $\nabla\left(\rho_{t}\right)$ vanishes on the boundary δV_{t};

$$
\begin{aligned}
& \int_{V_{t}} \nabla^{2}\left(\rho_{t}\right) d V=\int_{\delta V_{t}} \nabla \cdot\left(\nabla\left(\rho_{t}\right)\right) d V \\
& =\int_{\delta V_{t}} \nabla\left(\rho_{t}\right) \cdot d \bar{S} \\
& =0
\end{aligned}
$$

By the connecting relation, we have that $\frac{\partial \bar{J}}{\partial t}=-c^{2} \nabla(\rho)$, which has compact support, because ρ does. As shown in Lemma $0.4, \square^{2}(\bar{J})=\overline{0}$, so, by Lemma 0.2 , applied to the components of \bar{J}, \bar{J} is generated by Kirchoff's formula with initial data $\left(\bar{J}_{0},\left(\frac{\partial \bar{J}}{\partial t}\right)_{0}\right)=\left(\bar{J}_{0},-c^{2} \nabla\left(\rho_{0}\right)\right)$. Similarly, we can apply Lemma 0.5 to obtain the representation there for \bar{J}.

Lemma 0.7. (ρ, \bar{J}) be defined as in Lemma 0.4, then we can define antiderivatives, by letting;

$$
\begin{aligned}
& \rho^{a}(\bar{x}, t)=\int_{-\infty}^{t} p(\bar{x}, s) d s \\
& \bar{J}^{a}(\bar{x}, t)=\int_{-\infty}^{t} \bar{J}(\bar{x}, s) d s
\end{aligned}
$$

$\left(\rho^{a}, \bar{J}^{a}\right) \subset C^{\infty}\left(\mathcal{R}^{4}\right)$ and satisfy the wave equations, the continuity equation and the connecting relation again. Moreover, if $\rho, \bar{J}, \bar{E}, \bar{B})$ is a solution to Maxwell's equations, then $\left(-\frac{\rho^{a}}{\epsilon_{0}}, \bar{E}\right)$ satisfy the continuity equation.

Proof. The definition follows from Lemma 0.6 as \bar{J} can be represented by Kirchoff's formula. As is easily checked, if $p \in C^{\infty}\left(\mathcal{R}^{4}\right)$ and the components $j_{i} \in C^{\infty}\left(\mathcal{R}^{4}\right), 1 \leq i \leq 3$, then $\rho^{a} \in C^{\infty}\left(\mathcal{R}^{4}\right)$ and the components $j_{i}^{a} \in C^{\infty}\left(\mathcal{R}^{4}\right)$, for $1 \leq i \leq 3$. The wave equation holds for ρ^{a} and \bar{J}^{a}, as, using the fundamental theorem of calculus, differentiating under the integral sign, the result about he left hand limit in [2], and
using the fact that ρ satisfies the wave equation;

$$
\begin{aligned}
& \square^{2}\left(\rho^{a}\right)=\int_{-\infty}^{t} \nabla^{2}(\rho) d s-\frac{1}{c^{2}} \frac{\partial \rho}{\partial t} \\
& =\int_{-\infty}^{t} \frac{1}{c^{2}} \frac{\partial^{2} \rho}{\partial t^{2}} d s-\frac{1}{c^{2}} \frac{\partial \rho}{\partial t} \\
& =\frac{1}{c^{2}} \frac{\partial \rho}{\partial t}-\frac{1}{c^{2}} \frac{\partial \rho}{\partial t} \\
& =0
\end{aligned}
$$

and;

$$
\begin{aligned}
& \square^{2}\left(\bar{J}^{a}\right)=\int_{-\infty}^{t} \nabla^{2}(\bar{J}) d s-\frac{1}{c^{2}} \frac{\partial \bar{J}}{\partial t} \\
& =\int_{-\infty}^{t} \frac{1}{c^{2}} \frac{\partial^{2} \bar{J}}{\partial t^{2}} d s-\frac{1}{c^{2}} \frac{\partial \bar{J}}{\partial t} \\
& =\frac{1}{c^{2}} \frac{\partial \bar{J}}{\partial t}-\frac{1}{c^{2}} \frac{\partial \bar{J}}{\partial t} \\
& =\overline{0}
\end{aligned}
$$

Differentiating under the integral sign and using the fundamental theorem of calculus, the fact that the continuity equation holds for (ρ, \bar{J}), the continuity equation holds as;

$$
\begin{aligned}
& \frac{\partial \rho^{a}}{\partial t}+\nabla \cdot \bar{J}^{a} \\
& =\rho+\int_{-\infty}^{t} \nabla \cdot \bar{J} d s \\
& =\rho+\int_{-\infty}^{t}+\int_{-\infty}^{t}-\frac{\partial \rho}{\partial s} d s \\
& =\rho-\rho=0
\end{aligned}
$$

and, differentiating under the integral sign, using the fundamental calculus of calculus and the connecting relation for (ρ, \bar{J}), the connecting relation holds;

$$
\begin{aligned}
& \nabla\left(\rho^{a}\right)+\frac{1}{c^{2}} \frac{\partial \bar{J}^{a}}{\partial t} \\
& =\int_{-\infty}^{t} \nabla(\rho) d s+\frac{1}{c^{2}} \bar{J} \\
& =\int_{-\infty}^{t}-\frac{1}{c^{2}} \frac{\partial \bar{J}}{\partial t} d s+\frac{1}{c^{2}} \bar{J}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{c^{2}} \bar{J}+\frac{1}{c^{2}} \bar{J} \\
& =\overline{0}
\end{aligned}
$$

The last claim follows, using the FTC and Maxwell's first equation, that;

$$
\begin{aligned}
& \frac{\partial\left(-\frac{\rho^{a}}{\epsilon_{0}}\right)}{\partial t}+\operatorname{div}(\bar{E})=-\frac{\rho}{\epsilon_{0}}+\frac{\rho}{\epsilon_{0}} \\
& =0
\end{aligned}
$$

References

[1] Partial Differential Equations, L. C. Evans, Graduate Studies in Mathematics, Volume 19, AMS, (1998).
[2] Some Arguments for the Wave Equation in Quantum Theory, Tristram de Piro, Open Journal of Mathematical Sciences, available at http://www.curvalinea.net (58), (2021)
[3] Fourier Analysis, An Introduction, E. Stein and R. Sakarchi, Princeton Lectures in Mathematics, (2003).

Flat 3, Redesdale House, 85 The Park, Cheltenham, GL50 2RP
E-mail address: t.depiro@curvalinea.net

