SOME ARGUMENTS FOR THE WAVE EQUATION IN
QUANTUM THEORY 5: NO RADIATION OF LIGHT

TRISTRAM DE PIRO

ABSTRACT.

Definition 0.1. We call (Ey, By), a solution to Mazwell’s equation in
vacuum, good, if (E 4+ Ey) x By = 0, for some fundamental solution
(E,0) corresponding to {p, J} satisfying the conditions from Lemma
4.1 in [9], with {p, J} not vacuum and {p, J} C S(R® x Rq). We call

(Eo, By) static i 38% = % -0

Definition 0.2. We say that a field C(z,t) is simple if all the com-
ponents ¢;, 1 < 1 < 3 are continuously fourth differentiable in the
coordinates (1, %2, x3) and continuously twice differentiable in the co-
ordinate t, such that the partial derivatives all belong to L'(R3) for
fized t > 0, and, the L'-norm of the partial derivatives is uniformly
bounded for 0 <t < 1.

Definition 0.3. We say that a real pair (E, B), satisfying Mazwell’s
equations for some {p, J}, satisfies the strong no radiation condition if;

P(r.t) = [y (E x B)dS =0

forallr > 0 and t € R. We say that it satisfies the no radiation
condition if;

limy oo P(r,t) =0

forallt e R

Lemma 0.4. For any {p,J} satisfying the conditions from Lemma

4.1 in [9], if (E,0) denotes a fundamental solution, then a solution

{E + Ey, By}, with (p,J,E + Ey, By) satisfying Mazwell’s equations,

satisfies the no radiating condition, if E,Ey and By are simple and

{(E + Ep)o, 2E-E)| 0 (By)o, 2Be|o} < S(R?), (). Moreover, we have
1
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that explicit representation;
(E + Eo)(z,1) = ﬁ s (b(k)eiret 4+ d(k)eiket) R g1
By(T,t) = ﬁ fRS W (D)eitet + d(1)eilet)eilbad]

where {b,d,b'd } C S(R?).

Proof. By Lemma 4.1 in [9], and the argument in [1], we have that;

Then,;

limy oo P(1) = lim, o0 fs(r)((E + Ey) x (B + By))dS(r)

= 1imy o0 [g,) (B % B)dS(r) + lim, o [, ((E + Eo) x Bo)dS(r)
+lim, oo fS(T) (Ey x B)dS(r)

= liMm, 00 fs(r)((E + Eo) x Bo)dS(r)

and, by (x), we have that 0?(E + Ey) = 0 as well, ().

Assume that E.E, and By are simple, then, E+ F, and By, are sim-
ple, and we have that;

V2(E - Eo) - c%a (g;EO) =0

so that, applying the three dimensional Fourier transform F to the
components, and using integration by parts, we have that;

F(V(E = Fo))(F. 1)) — AT

— _I2F(E - Bo)(F,t) — & EEET)E

c? ot?

= — k() (k1) — Z 250
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=0
where k? = k? + k2 + k%, @ = F(E — E,). For fixed k, we obtain the

ordinary differential equation;

d?ar- _
@ = _C2k2aE

so that;

Gz (t) = Co(k)e™ + Do (k)e e
with;

@;(0) = Co(k) + Do(k)

a(0) = ikcCo(k) — ikeDo(k) (11)

and, solving the simultaneous equations (11), we obtain that;

E(E) = %(-ﬂ(ﬁ + FO)|(E,O))|(E,0) + ﬁ}—(a(E;tEO) |(E,O)>|(E,O)>

T . 1

d(k) = 3(F((E + Eo)lz0)| 70 — %ﬂ@l(m))mo))
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where
v(l) = %(}—((EO)’(EO))‘(Z,O) + if(ag?) l@o)l@0)
d(D) = 3F(Bo)lmo)lgo) — =F (520l q0)

and 12 = [2++12+12. Using the fact that {b(k)e™*“+d(k)e=* b/ (I)elt+
d' (e~} ¢ S(R? for t € R, we can apply the inversion theorem, to
obtain;

Bo(7,t) = %fw( (Deilet + d'(1)e~ilet)eila ]

(2m)3

As we noted above, {be’*t + de=* Vit + dle=lt} c S(R? for
t € R, so that, by the fact that the Fourier transform preserves the
Schwartz class, see [14], we must have that {(E + Ey)¢, (Bo):} C S(R?)
for t € R. Then, for n > 3 and the definition of the Schwartz class;

= | fs) (B +Fo)s x (Bo),)dS|
< fsm (B +Bo): x (Bo)) - nldS(r)]

< Jyy B+ Bo)ull Bo)lds(r)

Cin Din
< Aqpr?=in —7}7;
. 47rCl,nD1,n
= —mnz
so clearly;
lim, oo P(r,t) =0
O

Definition 0.5. Fiz a real propagation vector ko and a real vector d
with /{0 . do = 0. Let;
EO (f, t) — Eoe—ikocteiEO.E

_ - —
Bg(x,t) — doe zkgctezko.:r;
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where Ei) = L(ko x doy). Then, see [1], the pair (EO,EO) solves
Mazwell’s equation in vacuum, and so does (Re(Ey), Re(Bo)). We
call (Re(Ey), Re(By)) a monochromatic solution.

Lemma 0.6. For a monochromatic solution (Re(Ey), Re(By)) to Mazwell’s
equation in vacuum, we have that P(r,t) = O(r). In particularly,
(Re(Ey), Re(Bo)) doesn’t satisfy satisfy the no radiation condition un-
less By = dy and By = 0, or Ey = By = 0, in which cases (Re(Ey), Re(By))
is constant. Any constant real solution (E1, B,) satisfies the strong no
radiation and no radiation conditions

Proof. We have, for a monochromatic solution, that;

R@ (EO) (f’ t) — %l (eikOCteiEO'f—i-@ikOCt€_iEO'§+e_ikOCteiEO'E—Fe_ikOCte_iEO'E>
— = . 27 -_— . 7 p— . 7 p— . 7 p—
Re(Bo) (E, t) — CfTo (ezkoctezkzo.x +ezkocte—zk0.x +e—zkoctezko.x +€—zkocte—zk0.w>

so that Re(Ey) x Re(By)

— (dolxt}do)( 2ikoct ,2iko-T o 2ikoct o—2iko-T y o—2ikoct p2ikoT y o—2ikoct o —2iko.T

+262ikgct + 9~ 2ikoct + 2621E0.5+ 26—22‘E0.f+ 4)

By the divergence theorem, we have that;

P(r,t) = [, (Re(Eo) x Re(Bo))dS(r)
_ fB GV do 1X6do)( 2ikoct o2ikoT o 2ikoct o—2iko-T e 2ikoct e2ikoT o —2ikoct ,—2iko.T

+262ikgct + 9~ 2ikoct + 2621‘E0.§+ 26*2iEO'E+4))dB(r)
_ fB dOXdo) QZk: ( 2zko.§(€2ikoct + e 2ikoct +2) _ e—QiEO.E(em'koct

+e2koct 1 9))dB(r)

= (o) | oy (ehoet 4 2ot 1 9)(2( )3, (r{2Fo]))

= o) iy (e2ihoet 4 =20t 1 9)((Z2)3.3 (2r[Fo])

= L (2ot + o720 - 2) ()3 () 3 (P sim (2o

ko wr|ko|
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~Qulk)eos(2r[Fa))

doxdy) T (9 2 3 (£
= ) (et 4 oot +9) ) (A (L3 sin(2r

—Qo,0c08(2r|ko|))

doxd, 7 ikoc —2ikoc T \3 Lo 1 L
_ OZ o) . Z/{JO(62 koct y o—2ikoct | 2)(E_0|)2(ﬁ)z((m%ol‘)SZn(QT’koD

—Q07orcos(2r|E0 1)

Clearly, P(r,t) = O(r) unless dy x 3/ ko = 0, in which case either
ko =0or dy=0. In the first case, we obtain that E, = dy and By = 0,
in the second case, we obtain that £, = By = 0. The last claim is clear
by the divergence theorem and the fact that 7. (E; x B;) = 0. O

Lemma 0.7. For any {p, J} satisfying the conditions from Lemma 4.1
in [9], if (E,0) denotes a fundamental solution, then a solution {E +
By, Bo}, with (p,J, E + Ey, By) satisfying Mazwell’s equations such
that {E, Eq, By} are simple and {(E + Ey)o, 2 E+E°)|0, (Bo)o, at0| }C
S(R3), satisfies the strong no-radiation condition, using the integral
representation in Lemma 0.4, when;

a(k,t) x a'(1,t) =0 (1)

or when By is parallel to E + Ey. In either of these cases, the no
radiation condition holds as well.

If{E, Ey, By} are simple, then { E+Ey, Bo} satisfies the no-radiation
condition when...?

Proof. Using the result of Lemma 0.4, we can use the integral repre-
sentations of ' 4+ Fy and By to compute;

((E + Eo) x Bo)(z. 1)
_ 1 fnﬁ (5@) % /(Z)) ez‘(E+Z).fez'(k+l)ct dkdl

(Z) ) ei(E-ﬁ-i).Eei(k—l)ctdEdz

_I_
©
R
5
gt
&
(=2}
—
S
—
oy
S~—
X

(Z)>6i(E+f).Eei(l—k)ctdEdz

+
S
3 |~
=
gt
S|
(=2}
—
l
—
o
S~—
X
Z|
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1 T s (I i (F+DE p—ilk+)ct T 77
gty S (A(R) x @ (1)) FHDTei0et ] (1)

Clearly, if (1) is satisfied, then we obtain that (E + Eg) x By = 0,
so that 7. ((E + Ey) x By) = 0, and using the divergence theorem,
P(r,t) =0 for all r > 0 and t € R>¢, and lim,_,P(r,t) = 0, for all
t € R>o, so that the strong no radiation and no radiation conditions
hold. Similarly, if By is parallel to E + Ey, then (E + Egy) x By = 0,
so that ((E + Ey), By) satisfies the strong no radiation and the no ra-
diation conditions again.

If {E, Ey, By} are simple, then, we have that;
F((Zz + &z + &) (E+Eo)) (k. t) = (k + k3 + k3)*F(E + Eo) (K, 1)
so that, for |E| >1,<i<3;

FE+TBoilF 0| £ g Jro (5 + & + 2)(E + Fo)ldz

C,
<
= [k

and, similarly;

| F(Bo)i(k,t)| < %Z

where {C;;, D;;} C R

Similarly:;
| F(E + Eo)(k, t)|

< Z?:l | F(E + Eo);(k,t)|
fen

— [k

where C; = 2?21 Cis

and |F(Bo)(k,t)|

<&@
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Clearly, we have that F(E + Ey)(k,t) and F(By)(k,t) are differen-

tiable and therefore bounded on B(0, 1), so that, using polar coordi-
nates, with ky = Rsin(0)cos(¢), ko = Rsin(6)sin(¢), ks = Rcos(0)

| [os F(E + Eq); 1dk|
= ‘ fB(G’l) ‘F(E + Fo)i,tdE + fRS\B(ﬁ,l) .F(E + Eo)i7tdE|
< Cipr+ | [oor Jo /7. F(E+ Eg)is(R, 0, ) R*sin(0)dRdOd¢p

< Gt + [roy Jo [T R2GidR

S Ci,t,l + 27T2Ci,t floo %dR
— Yl + 27T C’Lt

so that, for 1 < i < 3, F(E + Ey)i; € LY(R?), and, similarly,
F(By)i; € LY(R?). Following the proof of Lemma 0.4, we can still
use the inversion theorem integral and the integral representations for
((E + Ey), Bo), and the computation (1) holds again. We have, using
polar coordinates, that;

1 f’ 8E+E0’L

| fB (0,1) ike” \" 8t E())(E)dE|

< o Sy ST F (SR ) (R, 6, 6)| & R2dRdOphi

L F(2EtEos | ) (R) for 1 <i < 3, are inte-
grable on B(0, 1), and, therefore, so are the components of {b, 5/, d, El}.
Applying the result (#), we obtain that, for k| > 1;

so that the components,

[B(k) + d(F)| < &
|ez‘kct5<E) —i—ei’“td(kﬂ < Co.
|eikctl_)<E) _i_e—ikctc_i(E” < Cr

|(6ikct . e—z’kct)a(%”
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= 2|sin(ket)d(k)|

Co+Cy
iy ‘k‘ﬁl

so that at time ¢ = we have that;

2k )
- = Co+C =«
AR <
Co+FE
< g

where E' € R is the uniform bound for ¢ € [0,1], and, similarly,
for |k| > 1;

R
maz([bl, (0], |dl, |d ) (k) < 5

for some F' € R~o. In particularly, we have that the components
{b, v.d, 3/} belong to Ll(ﬁg) and we can apply the calculation in ({1).
By the divergence theorem, we have that;

Js@.n (0(R) x d(D))e'*DTeiE=Det g5 (1)

= [ 7 - (B(F) x T(D)eEDTeit-0t) a5 ()

= Ly (B(F) x T(D))  i(E + 1))l FHDT Vet g B(r)
= ((B(F) x (D)) - ik + D) (Z5) 3 Iy (r [k + 10

= (B(F) x (1)) i w+wx%ﬁﬁgﬁﬁwap<wwwm<m+m

By (x), we have that;
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11 PU) = i e [ (BOR) < D) (R (22 ()
sin(r|k + 1))’ Vet dkdl

— iMoo Jrs ((0(F) x d'(1)) - i@"‘h)(%ﬁ(ﬁﬁ@op
reos(r|k +1)))e! =Dt dkdl

Let (R, 1,8) = ks (B0R) < (D) D) (25 ) i

and h(k, [, t) = — 5 (b(k) xd'(1))si(k+1)( (m)%Qo,oe"(k*W

(% * %)

e

|k+l\)

Then {g,h} C S(R? x Rp) and, we have that;
lim, oo P(r, 1)
= lim, o0 [re 9(k, 1, t)dksin(r|k + 1])dl
Ui, oot [re h(k, 1, t)dkcos(r|k + 1])dl
From (x * %), we have that;
-

gk, 1) = P (B(k) x d (1))« HED ikt

where %(k, 1) is a unit vector, so that, using Fubini’s Theorem, and
a change of variables K =%+ 1, we have;

o (g(E, 1, £)eiE+1D Tl
= Jro S (0(R) < d (D) - %ei(k*l)dei(r@+f|) JEd]
= Jro Ik]:—§|t2 e/ ]
= Jro Urs |k’i§|§ eI+ df) dl
— Jpo (o Et e T VAR )l

:fRSU’RS k|k|121t) ei(rlk)) dk)dl
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where qﬁ(%, Z, t) = %2 (1‘)(%) % a/(l)) ] ﬂ(E7 Z)ei(k—l)ct

It follows, switching to polars coordinates;

k1 = Rsin(0)cos(¢), ke = Rsin(0)sin(¢), ks = Rcos(0)
that;

Jro(9(E, 1, ) F+ D ddldE:

= JralUry Jocoen Joconr “Lo2ED R R25in(0)dRdo) dl

= Sy Jocoen Joco con A(R, 0, 0,1, 1) sin(0)dRd6)dl (2)

where ¢(R, 0, ¢,t,1) = ¢(k —1,1,1).

From (x * %) again, we have that;

W1 1) = = @(R) < 4 (D)« e

where (k, 1) is a unit vector, so that, using Fubini’s Theorem, and
a change of variables K =k+ 1, we have;

_ fR6 90 (5(F) ><a’a)).ﬂgg)ei<k—l>ctei<r@+ﬂ>dm

_fns fn 0(k,l,t) ei(rlk+]) dk)dl

3 k4

0k —11,t) -f’ 7N\ 77
= Js (s "2 VR )l
= fR3 fR3 O(E ﬁt z(T‘k‘)dk)dl
—2900 (b(k) x d (1)) « u(k, [)eitk—Det

It follows, switching to polars coordinates;

where 0(k,1,t) =

k1 = Rsin(0)cos(¢), ko = Rsin(6)sin(¢), ks = Rcos(0)
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that;
Jro (h(R, T, £)e 1D dkdldk
= S Uy Jocon Jocpann PRS2 R B2 5 (6)d Rd6) dl
= fR3(fR>O f0§9<7r f0§¢§27rp(R’ 0,¢,t,1)e"ERsin(0)dRdA)dl (3)

where p(R,0,¢,t,1) = 0(k —1,1,t).

Write b(k) = by (k) + iby(k), d (1) = d,(1) + idy(1)

where;

bi(F) = $Re(F((E + Eo)lw0)lro) + st m(F (5572 .0) r.0)

bo(k) = SIm(F((E + Eo)l@o) o) — s BeF (557 w0) o)

4\(1) = 3Re(F((Bo)l@o)lao) — s m(F(*52=0) )

—/

dy(1) = LIm(F(Bo)l @)l 0)) + 2 Re(F (222 2.0 iy)

2lc

We have that;

Q(Ra 97 d)a ta Z)

= St [(by (R, 0,0) x d,(1) = by(R, 0,6) x dy(1))
(R, 0,6, D]u(R.0,6,1,1)

— 2 (by3(R,0,0) x dy(1) + by 3(R. 0, 6) x dy(1)
(R, 0,6, D)u(R.0,6.1,1) (1)

and, similarly;

p(‘R? 97 (b? t? Z)

= Z200((B,3(R, 0, 6) x dy(1) — by3(R. 0, 6) x dy(I))

272
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w(R,0,6,1)u(R.0,6,1,1)
+922((By3(R. 0, 6) x d, (1) + b, 3(R, 0,0) x dy(D))
w(R,0,6,Du(R,0,6,1,1) (4)

where b Z(
wk, 1) = e

| =
S~—
I
>
S
—
>
|
=
S
—~
|
SN—
Il
@I
A
?vl
NI
\_/
5
ey
ko
=
Il
~|
—
|
|
\.NI
o~
SN—

and, from (1), (2), we have that;
Jrs 9k, 1, 1)+ dkedl
= Jos Uy Jocon Jocpeon St 10y 1(R. 0, 6) x d, (1) = byy( R, 0, 0)
xdy(1))5(R, 0,6, DIu(R, 6, 6,1, )= 52 [(b, (R, 0, 6) xd, (1) +b, (R, 0, 0)
xdy()) (R, 0, 6, 1) (R, 0, p, 1, t)e" Rsin(0)dRd6)dl
and, from (4), (3);
oo W, 1, )+ @]
= JroUroy Jocor Jococor 52 [(Bi(R,0,0) x &, (1) = byy(R, 6, 6)
02 (b, (R, 0, ) xd, (1)+b, 5(R. 0, 0)

xdy(1)) (R, 0, 6, )| (R, 0, 6,1, t)e" B Rsin(0)dRdOdp)dl

xdy (1)) (R, 0,6, D](R. 0, 6,1, 1)+

Write by (k) = by (k) + b12 k) E () = c_l (D) + dm(l)

Then;
byg(R) = by (k= 1) = bua (k — 1) + 2D
and;

by, 7(R,0,0)
|(Rsin(0)cos(¢),Rsin(0)sin(¢),Rcos(0))—I|

B1,Z(Ra 0,0) = 511,Z(R7 0,0)+

where Bllj(E) = bll(E — l) and 51272(E) = 612(% - Z)
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Then, we have that;

Jrs Uy Jocoen Jococon %[Blj(}z,9,¢)sz’1(Z)).ai(R,9,¢,Z)]M(R,9,¢,Z, t)eEsin(0)dRddp)a

iPy (R,0,9)
- fRd (fR>O f0<9<ﬂ' f0§¢§2ﬂ' ?121 Kbllj(R’ 9’ ¢)+ |(Rsin(@)cos(qS),}lzszl‘n(e)sin(qb),Rcos(@))—ﬂ)

(@, (1) + B30)] (R, 0, 6, )|u(R. 0, 6,1, 1) sin(6)dRd0dS) ]
and, we have that;

fR3 (f’R>0 f0§6<7r f0§¢§27r % [(l_)lj(Ra 67 ¢) XEII (Z))'EZ(R7 07 ¢7 Z)]M(Ra (9, ¢7 Zv t)eiTRRSin(e)

dRdOd¢)dl

_ —iQo,0 (7 (R,0,9)
- fR3(fR>0 f0<9<7r f0§¢§27r 27rg - [(bll,l(R’ 9’ ¢)+ |(Rsin(0)cos(¢),;22sin( 0)sin(¢),Rcos(0))— l\)
x(dy (1) + 230 . (R, 0, 6, 1)]u(R, 0, 6, . t)e"  Rsin(0)dRd0de)d]

From (), we have that the real and imaginary components of;

{F(Bo)lwn)l gy F(E+E) @)l a0y F(E2]@o)lio F () @o) g0}
decay faster than ﬁ (need | ll|6 ). It follows that the components of;

- = = = b (R)xdia() by, (k)xdy (1) by, (k) xdio(])
{bll z(k’) X dll(l) 11,1 ; 12 7 12,1 |E_Z|11 7 12,1 ‘E Z|l12 }
decay faster than W, and, as uz(k, [) is a unit vector, |v(k,[,t)| =

1, |sin(8(k))| < 1, so do the components of;

Noting that, for C' € R~q, D € R+ and fixed [ € R?, [ # 0, without
loss of generality, assuming that D < |[|?;

| Jia> b e |9F

N — 1. —C L
= |fD<|E\<m+1 \E\4|\Z|4\E—Z| |dk + fD>|ﬂ+1 [ [4[2]4 [k~ k]
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__C¢_ _Jr o — ¢ _ _dr
< |fD<|E|<\Z|+1 k|4)1)4[k—1| dk| + | flk\>\l\+1>D |k|4||l|4|k—lldk‘

C
it S e ek

IN

C 1
DA|i4 fAnn Dl +1) [k— l|dk T

¢ 1 T [T o0 CR szn
D44 fAnnf(D,erl ‘k‘dk + wa |”4 fo f,ﬂ. f|l|+1 de@d@dgb

c
DAI* fB (0,2l|[+-2D+1) %dk + e g fo f f\ll—i—l R? dRdodod¢

2 2|l|+2D+1 R2 2120
< 27 7C’ m=C_
= b T+ G

IN

< mCEl+2D+1)? | 272C
- DAt Dt

It follows, that for fixed r € R~g, we can choose D,, E, such that,
for fixed 7 € R~o;

Jion, Jism, l0(E.1,0)|dRdl

1
[U1|>Er ||4r2
(see note above for faster decay)
272
— E,r?

where;

- by, 7(R.0,0)
ok, 1t) = a(R.0,¢,1.t) = 2 #[(by7(R.0,0)+ |(Rsm(9)cos(qs),11z2;:;n( 0)sin(¢), Reos(0))— ”)x

(@, (1) + 220)) .7 (R, 0,6, 1) u(R, 0, 6,1, £)sin(0)

R E 7(R707¢)
B(k’l’ ) ﬁ(R 0 ¢’l’t> 7T2 Kblll(R 0 ¢) Rsin(9)005(¢),Il%?én(e)sin(qb),Rcos(e))—ﬂ)X

(dll(z) + dul( )] UZ(R7 97 gbv l)] (R7 07 ¢7 lv t)sm(é’)

—iQo,0 [(T _ b, 7(R,0,0)
f’R3 (f’R>0 f0<€<7r f0§¢§27r 27rg ° [(bll,l(R’ 0’ ¢)+ |(Rsin(&)cos(d)),Ifsin(@)sin((b),Rcos(@))fﬂ)
x(dh, (1) + 220)] (R, 60, 6,1)]u(R. 0, 6,1, 1) Rsin(6)dRd0de)d]

= Jrs Jry Jocoen Jococon B(R,0, 6,1, )" RAOQ)d]

Splits as four terms, the worst of which is;

Jrs Uy Jocoon Jocpan 5221 Ledn ,
R3NIR~0 JO<O<m JO<p<2m 272 L|(Rsin(0)cos(4),Rsin(0)sin(¢),Rcos(0))—I|
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x120) (R0, ¢, 1)|u(R, 0, 6,1, 1) Rsin(0) RARdOde)d]

= [rs fR>0 f0§9<7r f0§¢§27r Bi(R,0,0,1,t) e RARAOd®)d]

Again, fix [ # 0, with 6 # 003*1(13) = 0,7 and ¢ # tanil(lf) Po -

By the result of Lemma 0.18 (change to f, factor), we can assume

: : ORB4(R,0,0,1,1)
that the real and 1magilnary parts of =525 e
as limp—oRBi(R,0,6,1,t) = 0 and limp_,o 220 EL0L) — \f e R we
can apply the result of Lemma 0.13, and assume that;

are oscillatory, then

OR
4v/2)| 2884 || o+ D;
7"2

| fR>0 B4(R, 0, o, 1, t)e"PRAR| <
clude spacing d;)

(remove V2 and in-

for sufficiently large r € R~q, where;

||8R64||oo ||B4+R%||oo

< 11Balloc + 1RG0

—1Qo,0 E12,Z(R79’¢) d1o(D)
272 [|(Rsin(@)cos(d)),Rsin(G)Sin(d)),Rcos(@))—ﬂ X 12l ] (R 9 ¢’ )SZTL( )‘

R o 512,Z(R70’¢) E’ (l
32" o7 (e @eos@) Tem@eint@) Teos@ 1) <51 (R, 0, 6, )sin(0)|

Elz,Z(Rﬁ@) d M7 8 (= 7 :
22 [|(Rsm(e)cos(qs),Rsm(e)sm(¢),Rcos(o))—ﬂ X 2= gg (Wi(R, 0, ¢,1))sin(0)]
by, 7(R,0,0)

1222
|(Rsin(8)cos(p),Rsin(8)sin(p),Rcos(9))—I|

2] 2 e DII%C)
OR \ |(Rsin(0)cos(p),Rsin(0)sin(¢p),Rcos(6))—

7(R907¢) E 1
+Q°’°| sl I IFAE]

[(Rsin(0)cos(¢),Rsin(6)sin(¢p),Rcos(0))— |f

Qo,0 | by, 1(R.0,9)

||d12 ) |
|(Rsin(0)cos(¢),Rsin(0)sin(¢),Rcos(6))—|

i( b1o i (R.60,9) ) )|‘3'12(7)|
IR\ |(Rsin(8)cos(¢),Rsin(0)sin(¢),Rcos(0))—1 l

and D; is the sum of the decay rates for the real and imaginary
components of %. Fix x > 0, then, as, for fixed [ # 0, RB4(k,l) €
L'(R?), we can choose 07, < 07 < 037,r> Poin, < Poi < Poiny SUch
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that;

| fR>0 f%j,ml <6<6
Then,;

Rﬁll(Ra 67 ¢7 Za t)e

f¢0,7,~1 §¢S¢O,i,n2

0,2,&2

| Sy Jocon Jocoon BBs(R, 0, 0,1, )e dRdOd|
<|Jr., f([O’Wmﬂ\”’om’%,z,nglx[%,z,ﬁl,%MD RB4(R,0,¢,1,t)em RdRdOdg|
1 reo Joys,. RB4(R,0,6,1,t)e" RdRdfdg|
<|Jr., fvm,n RBA(R, 0, ¢,1,t)e" "dRAGdS| + 5

<Jv

<0<6 f%;m <O<By 10,

Oin

|fR RB4(R,0,6,1, )™ dR|)didg + —(lf1)4

l,k1,k9
V275 v, et D
m? . + oo
< £(2V§Q0,0 | by 1 (R.0,9) ) ||E/12(Z) ’
— 72 w2 |(Rsin(6)cos(¢),Rsin(0)sin(¢),Rcos(0))—1|
2\[QO 0 gl?,f(Rﬁ’(b) d12 l)
+ | (9R( |(Rsin(0)cos(¢),Rsin(8)sin(p),Rcos(d )| | | + Dy ) l+1)4
(Q\fQo 0 | 512,7(1%797‘1’) ||d12 ) |
o 7”2 |(Rsin(0)cos(p),Rsin(0)sin(¢),Rcos(0))—I]|
_’_2\/§Q0,0 | %( 12,7(R,0,9)) _
w2 |(Rsin(0)cos(¢),Rsin(0)sin(¢),Rcos(0))—I|

512’Z(R,9,¢)<(Rsin(@)cos(¢)),Rsin(@)sin(¢),Rcos(@))fz,%((Rsin(@)cos(qS),Rsin(&)sin(d)),Rcos( ))—1)> | ‘ d12(l) H—

+ . |(Rsin(0)cos(¢),Rsin(0)sin(¢p),Rcos())—1|3
Dyp) + (+1)*
< E(2\/§Q0,0 | E12,T(R’9’¢) ) ||El12(z) |
= r? w2 |(Rsin(0)cos(¢),Rsin(0)sin(¢),Rcos(0))—I|
_|_2\/§Q0,0 | %(512,2(3794’)) ||d12 ’
w2 |(Rsin(0)cos(¢p),Rsin(0)sin(p),Rcos(0))—|

22900 Pia (001 (inO)cos) sin0)sin) cosO Fo@) )
w2 |(Rsin(0)cos(4),Rsin(0)sin(¢),Rcos(0))—1|2

+ (l+1)

d12 l) |

< E(Z\/iQO,O |512J(R707¢)| |
— r? m2 |(Rsin(8)cos(¢),Rsin()sin(¢),Rcos(6))—I|

2v/2Q0.0 | 5 (b5, 7(R.0,0))|

+ w2 |(Rsin(9)cos(¢),Rsin(0)sin(¢),Rcos(0))— l\|

d12 l) |
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2v6Qo,0 |b,, 7(R.0,9)| |
m2|(Rsin(0)cos($),Rsin(6)sin(¢),Rcos(9))—1|2

+ 20| 1 py) (F)

+ (l—:l)4

where;

‘/Z,){l,lﬁ',g - ([0 7T> [O 27T) \ [%,Z,mv QSOJ,RQ] X [¢0J,ﬁ17 Cbo,i,m])

. 615 7(R.0,0)]
USlng the fact that R|(Rsin(9)cos(d)) Rsin(6)sin(¢),Rcos())—I| |[¢0,7,~1 7¢0,i,m2]>< [¢0,T,~1 7¢0,i,n2]XR>0

is integrable, need to split fR>0 feoj’nl <0<ty f¢0,7,n1§¢§¢0,7,n2 R|B4(R,0,¢,1,t)|dRdOdp

into [, Jy R|B4(R,0,¢,1,t)|dRdId¢ (A)

and f‘R|<T 1o

S N S
Can control (A) as Q(ZH due to decay, vary (B) as T
to below, then angles 6y;, . — 6y, and ¢q;,, — ¢yi,., can Vary as
()5 = —L-. Then last and worst term in (F) varies as —— = r6.
rd ri2 5

Soﬁeoi,@ f%,i,ml S‘bg%,ing

0,1,.‘%1

gageo 1o fd)oj”{l §¢§¢OJ’K2 R‘ﬂ4(R7 07 ¢7 Z? t) |de0d¢ (B)

O,Z,Kl

similarly

Integrating and looking at all components, for sufﬁciently large r €
R~o. Follows that,

r2

—_ = - 5
| fro h(E, 1) Mwﬁmgﬁf+%+i

where {F, H, J} C R. Follows that?(split again Re(h), Im(h))

7.7 7 1 T 17 2 / /
| Jro Bk, 1 t)cos(rlk + 1))dkdl < 555 + T + 5

for sufficiently large ' > r, invoking uniform version of Lemma 0.12
again. In particular;

_ 5
limy, oot fRG h(k,1,t)cos(r|k + 1|)dkdl = lzmr_>oo = lZmT—N)oF:G 1
o J_
L

so no radiation condition holds.

Similarly:;
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i P; R 7 b ’7(R70’¢)
fR3 (fR>O f0<9<ﬂ' f0§¢§2ﬂ' # [(blle(R’ 9’ ¢)+ |(Rsin(@)cos(d)),]ﬁsén(@)sin(qﬁ),Rcos(G))—Z| )

/

x(dy (1) + D20 .5 (R, 0, 6, )] (R, 0, 6, 1, t)e" Fsin(0) dRdOd ) d

= [rs fR>O fogeq fOS <o a(R,0,0,1,t)e™FdRdOd)dl

Splits as four terms, the worst of which is;

‘/‘ (f f J" iPl)l [ Elzj(Rvev‘ﬁ) _
R3VIRo J0<LO<m J0<o<2m 272 L|(Rsin(6)cos(o),Rsin(0)sin(¢),Rcos(0))—I|

% E’HZ(D] (R, 0,0,D)|(R, 0, 0,1, t)e Esin(0)dRdOde)dl

= Jro Jroy Jocoen Jococon @a(R, 0, 0,1, 1) RdRAOA)d]

Again, fix [ # 0, with 6 # cos™'(%) = 6,7 and ¢ # tan_l(lf) o
By the result of Lemma 0.18, we can assume that the real and imagi-
nary parts of ay(R, 0, ¢, 1, t) are oscillatory, then as limg_,0o4(R, 0, ¢,1,1) =
M € R, we can apply the result of Lemmas 0.15, 0.17 and 0.8, and
assume that;

|f7z 4(R,0,6,1,t) e dR|

< | fR>O RQ(OZ4)(R, 0, ¢, Z, t)e“"RdRH—l fR>o Im(a4)(R’ 0,0, Z’ t)eierR|

<2(”Z,9,¢,Re||Re(“4)”°° Dz,e,«b,Re)
- T ERe n[’@@é-Re

_’_2(n7,0,¢,1m“1m(a4)”"° Dig.¢.1m
r Eim n2797¢51m

so that, for [ > 1;

| fro, 0a(R,0,0,1,t)e dR)|

IN

514120
2 (BURe(an)lle | €2F1 75
r ERe 4\/§Z§Re

5 (T
2 (4BlImion)le CTZI—‘“%(”\)
T EIm A3l rm

+

02%|3/12(7)‘

< Z(4V/31(||Re(0) oo + [[Tm(0s)||o) + S5
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12
< 2 (4V6l] |l + %)

and, similarly, for 0 <[ < 1;

| Jo., a(R,0,6,1, 1) dR)|

< 2@Vl + 20 ()

for sufficiently large r € R~¢, where &g, > 0,&7,, > 0 are constants
independent of 1,6, ¢, & = min(ége, Erm) > 0, {Di9.6.res Diggim) are
the decay rates for the real and imaginary components of ay (R, 0, ¢, 1, 1)
We have that;

||a4||oo - |7:Pl’1

512,Z(R79’¢)
272

,Rsin(8)sin(¢),Rcos(6))—I|
by, 7(R.0,8)sin(0) | |E’12(Z) |
cos(p),Rsin(0)sin(¢),Rcos(0))—I| l

[ [(Rsin(0)cos(¢)

X d12(l ]
P13 |
272 1| (Rsin(9)

_ P11b121

||d12 l)|
272 k2[k—1|

where;

Py b12£(k) _ P
2% k2lk—l|

by, 7(R.0,0)sin(6)
o2 |(Rsin(0)cos(¢),Rsin(0)sin(¢),Rcos(0))—I|
Fix x> 0, then, as, for fixed [ # 0 1o (F)]

1 3
R © L'(R?), we can choose
90,7,/{1 < HO,Z < 90,7,/427 ¢0J,Hl < (boj < ¢0717K2, such that7

| fR>0 f9 1

0,0,m1 SQSGO,Z,NQ f¢0j,,€1§¢§¢0’m

P11 ‘bmz Bl

37 oy (10, ¢, 1 t)e" "dRdfdg| <

Then,;

| fR>o f0§9<7r f0§¢§27r as(R, 0,01, t)e"dRdOdg|

< | fR>o f([O,fr)X [0,20\[B0.7 e, 1P0.7,k5) X [P0.7,11 07,05 ))

el
= | fR>0 fV

., aa(R.0,0,1,t)e" dRdOd| sy

ay(R,0,¢,1,t)e"  dRdfd|

7 irR
vy SO<007 ey f¢>0,z,,{1§¢>ﬁ¢0iﬁ2 ay(R,0,0,1,t)e™ dRdOd|

(R0, 6. 1)sin(0)
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<y

l,k1,k9

(| fr., aa(R.0,0,1, 1) dR])dbdo + /|| 2@
Using (D), it follows that, for [ > 1;
| fR>0 f0§0<7r f0§¢§2ﬂ— OZ4(R7 07 ¢7 Z; t)@”Rdequﬁl

22 027|720 1 d()
<27 E(4\/6l\|044!vmﬁ2|!oo +—i )+ K| 922

_2(4\/6P1Y1l | Emj(R,@,d)) |
- ¢ 22 |(Rsin(6)cos(¢),Rsin(0)sin(¢),Recos(0))—I| Vik1.m0

NG CQ%‘EID(Z”
By )

dio(l
150
and, for 0 < < 1;

| fn>0 Iy oen fog b<om ay(R,0,0,1,t)e"FdRdOd)|

HE 0
22 (4Bl [l + CEATL) 1 ) T
< 471- (4fP1 1 | le,Z(RVQ’d)) ’ | ’ d12 |+ 022 ‘ d12(l) | )
= e 272 |(Rsin(8)cos(¢),Rsin(0)sin(¢),Rcos(0))—1| Vi K1 5KD 4\/§

|40 (1)

Fix 6 > 0 arbitrary, then we have that, for [ > ¢, sufficiently small
0 <k < min(Z,§%);

P11 12, Z(R 0 ¢)57'n(0)

Jroo oy, 05001, 001, <050010, 27r2||<Rsm(0>cos< ) Rain(@)sin(g) Reon@) T} | 411000
_ f P1,1 ‘Elzj(fﬂ
Wl SRR 7T2 ‘kilHk'Q
_ Py bz (k)|
o f(Wml ko T on2 |k||k+l|2dk
Pi1 |bia(k)] P bR g7
< Jo@n 3 Eiee R+ S, ons@s 5 ek
Pra b2 (k) 2 P b12(F)| 7.
< oz || [k+1)2 Hoo B(0,x) f0<R</< RR |SZTL( )‘de9d¢+ wa,nl,n2)7\3(67“) k| [k+1]2 dk
2P ) — —_ 2 1 P R b (k
< B (Dl o) + 20 S, 2210
2P 1 2 12,1 R 0 ¢)

Z012(F) | o s + 257 Jo Wy ) ]T|R2$in(9)de9d¢

k272
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2P P T
52121 ||b12( )Hoo ,B(0,x) 2 +}$ 2;—21 ‘90,2,@_90,2,&1H%jm_%,i,@bl(l) fR>0 ‘blzj(R)‘dR

| /\

2P - 2 P
2 1012k o005 + 2555100700 — O, |P01ks — Do, ls1(1) K

2P | |% P
et 02|l p@ns + 52k

| /\

IN

< T bWl pon G + zem = 1 (M)

for |90,Z,ng - O,l,m| |¢Ol@ ¢0,Z,m’5”1(1)7 |90,Z,nz - QO,Z,m| < \/LE (@)

where;

m,lfvl,HQ = <[¢0,Z,H17 ¢O,Z,R2] X [¢0,Z,I€17 ¢OJ,I€2] X R>0)
(V[/i,l{l,ﬁg)i = {E : E +Z S M/Z,Iil,HQ}

and, we can assume that |l_)12j(R)| is independent of {0, ¢}, with

1610 7(R)||21(roo) < K, independently of 1, due to the decay.

In particularly, choosing 6,7, = 6,7 + f 001, = Oo1 — #ﬁ’

Doy = Poi T 3y Poim = Poi — 3y We have that (G) holds and

A0 Vi) > Isin( ) > 75
that;

| 512’1(R,9,¢) ’ |<
|(Rsin(8)cos(¢),Rsin(0)sin(¢),Rcos(0))—I| Vf,nl,@ —

VE|1b,,1(R, 0, 9)||oo = LED

K

where D € R+, independent of I. From (H), (M), we obtain that,
for [ > 1;

| fR>o f0§0<7r f0§¢§27r au(R,0,6,1,t)e"EdRdOd)|

- - 7. dyo(
_2<4\/6P1,1l(4\/ED)‘d/12(l)| + 022\%(”
— 7€ 22 Ik l 44/31

+4]1 220 (1 > o)
and, for 0 < < 1;

| wa fogm IR o< (R, 0,0,1,t)e™dRdOd)|
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4V6Py 1 (4\/FD)|3/120)| + CQ%\MU

42
< Ik l 4/3

=~ ?( o2

+r||D2Q) (7 > 6)

Using the fact that {@, %T(Z)'} C L'(R?), and integrating g(k, I, t)e™r*+
over R? x B(0, ) separately, using Lemma 0.9, looking at all compo-
nents, for sufficiently large r € R+, need uniformity in [ version of
Lemma 0.12, follows that,

| oo 9,1, ) " RdT < A5+ P12 1 Fw

where {A, H} C R. Follows that?(split again Re(g), Im(g))

| fro 9B, 1, t)sin(r[k +1|)dkdl < Bs + T 4 Sp!

for sufficiently large r, In particular as " > 0,6 > 0 can be made
arbitrarily small, and;

limy oo [ 9(k, 1, t)cos(r|k + 1|)dkdl| < AS + H¥'
Limy oo [ 9(k, 1, t)cos(r|k + 1|)dkdl = 0

so no radiation condition holds.

Lemma 0.8. We have that,

|a4(R9¢tz)\<02? dw |, for R > 41\/3,1 > 1

R>4V3,0<1<1

|Re(au) (R, 6, 6,t,1) < |42 2§ d12 |, for R > 41v/3,1 > 1
R>4V30<1<1
[Im(aq)(R,0,0,t,1)] < 022 |d12 |, for R > 41v/3,1 > 1

R>4V3,0<1<1
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where C' € R+

In part@cularly, the families { Re(ay)(R, 0, ¢,t, l) leR?
—(k 3), ¢ # tan”™ (lQ)} and {Im(ay)(R,0,¢,t,1) : 1 € R,

14
1

(ll)’ ¢ # tan~ (f?)} are of moderate decrease njg 4, with;

Nige=4V3, 1> 1
Nge=4V3,0<1<1

Proof. We have that;

Py b dy (1
|Oé4| =~ 2;.21 k122|li ” || 12 )|
|bys (E)| < E i , |k — 1] > 0 (change this)

where D € R+

so that;
a(R, 0, 6,8,7)] < |220) <
_ C«|3'12[(f) | 1
[(Rsin(8)cos(#)—11)?+(Rsin(8)sin(¢)—L>)2+(Reos(9)13)2]
RS | du(l) | l . l l 2
[(sin(0)cos(¢)—F)?+(sin(0)sin(¢)— F)?+(cos(0)—3)%] 2
— | d12(l) | 1
RS [1— 2zlsin(;)cos(¢) B 2l2$in(]62)sin(¢) B 213c1(;s(0) +%]g
— d12(l) | 1
R5 (kxﬂ%)%

where C' € R+ and;

o] < 2alHEle) < 23 < 1 for B > 41v/3

so that;

log(R, 0, 6,t,1)] < 022 dw | < 022 dw (for R > 41V/3,1 > 1,

0,
0

0+
o
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R>4v3,0<1<1)

In particularly;

|Re(ay)(R,0,6,t,1)] < |asg(R,0,6,t,1)] < 022 d'121(l)|

for R>41v/3,1>1, R>4vV3,0<1<1

[Im(aa)(R, 0, 6,4,1)] < |aa(R, 0, 6,1,1)] < €220

for R >41v3,1>1, R>4V3,0<1<1

Lemma 0.9. We have that;

d
Lt 30| € L1(RY),

d12 | c LI(R6)

byo1(
EE1|2|

Proof. For the first claim, fix [ # 0, then;

1 4 1 2
W|B(i %) S ZE ‘E ||R3\B(l ) <
so that;
|b12l . B Z(EN 7. |E127I(E)‘ 7
= u‘d’“ Jo.5) TR + Jrno04) R OF

(k)| 2 b1y 7 (R o
S fB b lell\ dk + fR3\B(Z,i 1|2El|2 dk

2

12,l(k 121(’“)‘ 7.
< & Jpay T BT S R
_ [b12(k)| by, 1(k)| o
= fB 5.1) Al dk + 2 ng TE dk

2 E R,Q, . :(E)| _

=4 f02 Jococn nenen 280N R25in () d Rdfd + 2 me) 1|2kz|2 Ji
bio (k)| =

+fR3\B(6,1) 1|2El|2 dk

71'2 2 é 1 12
< 81_2[%]0 +% fo fogagn,ﬂr@gn : ;;29 ¢)|R25m(9>de‘9d¢+fR3\B(o1 | ( )|dk

<m?+ 4R+ C
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2
N R e

where C = HBHJH 11(r#) is independent of I. It follows that;

fRG |k:1|§|lk l\‘du l)|dk'dl < f m+ 47; + C)’dm ’dl

dys(1) d,
= (12 +C) [rs ! lﬁ\( dl + 472 [, ! ﬁTa

S <7T2+C>(f36 ‘dl‘a(l dl+fR3\301 |d12( )|dz)
+47T2<fB(6’ ‘dlllTQ dl + ng\B 0 1) |d12( )‘dl)

< (r*+ C)(fo fogegn,_qrg¢§7r ||312(R, 0,9)|Rsin(0)dfd¢ + D)

+47T2(f01 fogegm_ﬂg(ﬁgﬂ ||E/12(R, 0,)|sin(0)dfd¢ + D)

< (r?+ C)(n* + D) + 4n*(2n% + D)
=971 + 12C + 57D + CD

—r
where D = ||d12||L1(’R3)

For the second claim, fix [ # 0, then, using the substitution K =k-1
and the previous proof, we obtain that;

|b12l o |b12 k)l 47r
Jrs = l|2|dk’ Jrs |k\2\k+l||dk <gp24dn 4 o

Following the above proof again, we have that;

fRs |k1|\2kl l|2‘d12 l)‘dkdl < f w2 47lr + C)’dl? ’dl

< 97t 4+ 72C 4+ 572D + CD
O

Definition 0.10. We say that f € C(R) is of modemte decrease if
there exists a constant D € R~o with |f(x)] < B |2 for |x| > 1. We
say that f € C(Rso) is of moderate decrease if there exists a constant
D € Ry with |f(x)] < # for |z| > 1. We say that f € C(R)
1s of moderate decrease n, if there exists a constant D, € R~y with
|f(z)] < D v for x| > n. We say that f € C(Rso) is of moderate
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decrease n if there exists a constant D,, € Ro with |f(z)| < @—‘3 for

|z| > n. We say that f € C(R) is of very moderate decrease if there
exists a constant D € R~ with |f(x)] < % for |x| > 1. We say that

f € C(R) is of very moderate decrease n if there exists a constant
D, € R+ with |f(x)] < % for |x| > n. We say that f € C(Rso)
1s of very moderate decrease if there exists a constant D € R~y with
|f(x)| < ‘% for |x| > 1. We say that f € C(Rso) is of very moderate
decrease n if there exists a constant D, € R~ with |f(z)| < ﬁ—T for

|z| > n. We say that f € C(R) is non-oscillatory if there are finitely
many points {y; : 1 <i <n} CR for which f|y, y.,.) i monotone, 1 <
i <n—1, and f|(—soy) and f(y, 0) is monotone. We denote by val(f)
the minimum number of such points. We say that f € C(Rso) is non-
oscillatory if there are finitely many points {y; : 1 <i < n} C R~q for
which f|(y, yiir) % monotone, 1 < i <n—1, and f|oy,) and f|y, 0o) is
monotone. Similarily, we denote by val(f) the minimum number. We
say that f € C(R) is oscillatory if there exists an increasing sequence
{yi 11 € Z} C R, for which f|y,y,.,) is monotone, i € Z, and there
exists § > 0, with y; 11 —y; > 0, fori € Z. We say that f € C(R<o)
is oscillatory if there exists a sequence {y; : i € N} C R, for which
flog) is monotone, and f|(y, 4.,y is monotone, i € N, and there exists
6 >0, with y; >0 and y;41 —y; > 0, forie N.

Lemma 0.11. Let f € C(R) and L € C(R) be of moderate decrease,
with % non-oscillatory, then defining the Fourier transform by,

FU®) = b5 fo Sa)e da
we have that, there exists a constant C € R+, such that;
FHE)] <

for sufficiently large k. Let f € C(R) and % € C(R) be of moderate
decrease, with % oscillatory, then, similarly;

we have that, there exists a constant C € R+, such that;
FHE) < S

for sufficiently large k.
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The same result holds in the two claims, replacing moderate decrease
with moderate decrease n.

Proof. As f is of moderate decrease, we have that f € L'(R) and

limjg| oo f(r) = 0 Similarly, £ € L'(R) and £ is continuous. We

have, using integration by parts, that;

FE)H) = 211 i ey
= [f(y)e ™)X + ik [ f(y)e ™dy
=ik fR f(y)e_ikydy

= ik F(f)(k)

so that, for |k| > 1;

F(F) (k)] < EGa®L 4

- Ld

As % is of moderate decrease, for any ¢ > 0, we can find N, € N
such that;

FE® - iy [ e dy] < e (3

As %\, N.,N. 1s continuous and non-oscillatory, by the proof of Lemma
0.9 in [7], using underflow, we can find {D,, E.} C R+, such that, for
all |k| > D., we have that;

NE —1 €
| [oN, B e *vdy| < fr, (x%)
(2m) 2
It is easy to see from the proof, that { D, E.} can be chosen uniformly
in e. Then, from (x), (xx), and the triangle inequality, we obtain that,
for |k| > Dq;

d Ne 4 —1 Ne (] —1
< IF(E)R) = 5p [ EW)e ™yl + |1 [, @ (w)e ™ dyl

<6+|%|

so that, as { D., E.} were uniform and € was arbitrary, we obtain that;
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\F(Ly(k)| < L, for |k| > D

k[

and, from (1), for |k| > D, that;

FEHW B
IF()R) < =5 < i

For the second claim, we can follow the proof of the second claim in
Lemma 0.13. The final claim is a simple adaptation of the first two
claims. U

Lemma 0.12. Let f € C(Rso) be of moderate decrease, with f non-
oscillatory, and limg,_of(x) = M, with M € R, then defining the half
Fourier transform G, by;

G (k) =[5~ fla)e " da

we have that, there exists a constant 2 € R~q, such that;

G < &

for sufficiently large |k|. Moreover, we can choose;

E = 2|[fllecval(f)

Let f € C(Rso) be of moderate decrease, with f oscillatory, and
limg_of(z) = M, with M € R, then, similarly;

we have that, there exists a constant E € R~q, such that;

Gk < £
for sufficiently large |k|. Moreover, we can choose E = w,
where D and 0 are given in Definition 0.10.

The first claim s the same, replacing moderate decrease with mod-
erate decrease n. The second claim is the same, replacing moderate
decrease with moderate decrease n, with the modification that we can

_ 2n)|fllc | 2Dn
choose E = i ey o

Proof. As f is of moderate decrease and lim,_,of(x) = M, we have
that f € L'(Rso) and limjy o0 f(2) = 0.
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As f is of moderate decrease, for any € > 0, we can find N, € N/
such that;

GU)R) = Jo Fly)e™dy| < e ()

As flo.n. is continuous and non-oscillatory, by the proof of Lemma
0.9 in [7], using underflow, we can find {D, E.} C R~q, such that, for
all |k| > D, we have that;

| Jo fly)em™dy| < fis, (xx)

It is easy to see from the proof, that {D., E.} can be chosen uni-
formly in €, Splitting the calculation into real and imaginary compo-
nents, it is straightfoward to see that it is possible to choose E. with
E. = 2||f||wval(f), noting that the infinitesimal correction existing
after the use of underflow, drops out after taking the standard part.
Then, from (x), (xx), and the triangle inequality, we obtain that, for
k| > De;

1G(f)(k)|
<|GF)(KR) = [ fly)e ™vdy| +] [ fly)e*vdy|
<€+ |%|

so that, as {D
that;

e.p» Pe} were uniform and e was arbitrary, we obtain

IG(f)(k)| < WEI’ for sufficiently large |k|

For the second claim, after choosing N € N, we have that f]| n)
is non-oscillatory, and, moreover, there are at most % monotone inter-
vals. As in (xx), and inspection of the proof in [7], we get;

N o _ik E
| Jo fem™dy| < T

for sufficiently large |k|, where Ey = % and C' = maz,er,|f|-

Choosing N > 1, as f is of moderate decrease, we can assume that
|/ < &, for # > N. Then, using the proof in [7] again, the definition

D D
D SN 2 we have that,

of oscillatory, and noting that * Zy*> N
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for sufficiently large |k/;

I fe vy < (53, 0n 2)

2 D
< (7] 2nez=0 Ggrno?)

X dx
§|k| fylo

2D
6|k|yi0

<2

2D
< Sk

i

where y;, > N and y;, < y;, for all y; > N. It follows that;
N —i (%) —i
GUNE) = fy fe™dy+ [y fe ™yl

< | LY fertvdy| + | [ fe vyl

2D
< Tt s

NC | D

Sl(a m)

|K|

It follows, using (1), that;

In particular, choosing N = 2, we can take;

E = 2(% + %) — (4C;D) — (4Hf|\go+D)

For the final claim, the modification for the first part is the same. In
the second part, choose N > n, rather than N > 1 in the proof, and
replace D with D,,, to get F = Q(NC + 5%), then, taking N = n, we
obtain £ = 2(%< +

671)
O

Lemma 0. 13 Let f € C(Rso) and ﬁ € C(Rso) be of moderate de-

crease, with d non-oscillatory, and lzmx_mf( ) =0, lzmxﬁogf (x) =
M, with M € R, then defining the half Fourier transform G, by;
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G(f)(k) =[5~ fz)e*dx

we have that, there exists a constant & € R~q, such that;

G <
for sufficiently large k. Moreover, we can choose E = 2||j—£]|wval(%)

Let f € C(Rso) and % € C(R=o) be of moderate decrease, with
% oscillatory, and lim,_of(z) = 0, lz’m,HO%(x) = M, with M € R,
then, similarly;

we have that, there exists a constant 2 € R~q, such that;

G <

. 4| & |o+D
for sufficiently large k, Moreover, we can choose E = Hld’”'(s#.

The first claim is the same, replacing moderate decrease with mod-
erate decrease n. The second claim is the same, replacing moderate

decrease with moderate decrease n, with the modification that we can

2n| Lo | 2D
choose E = —— + =

Proof. As f is of moderate decrease and lim,_,of(z) = 0, we have that
f € LY(Ro) and limyyoo f () = 0. Similarly, £ € LY(R~o) and £ is
continuous. We have, using integration by parts, that;

G(EIR) =[5 E(y)e ™ vdy

= [f()e ™™ + ik [;7 f(y)e " vdy
ik [ Fy)e vy

= ikG(f)(k)

so that, for |k| > 1;

G0 (k)] < LGB ()
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As 4 —x is of moderate decrease, for any ¢ > 0, we can find N, € N
such that;

d; Ne d; —1
G(E) (k) — [y e (y)e ™dy| < e ()
As %|0, N, is continuous and non-oscillatory, by the proof of Lemma

0.9 in [7], using underflow, we can find {D., E.} C R~q, such that, for
all |k| > D., we have that;

€ df —zk
|f0 el Ydy| < |k| ()
It is easy to see from the proof, that { D, E.} can be chosen uniformly

in €. Then, from (x), (x%), and the triangle inequality, we obtain that,
for |k| > Dq;

<1G(EIK) = [ Ewetvdy| + | f Ey)e My

<e+ L |k|

so that, as { D., E.} were uniform and € was arbitrary, we obtain that;
G(L) (k)| < £, for [k] > D

and, from (), for |k| > D, that;

G5 (k)] < S < &

The choice of E' is the same as in the proof of Lemma 0.12. For the
second claim, the proof up to (}) is the same. After choosing N € N,
we have that df ~|(0,n) is non-oscillatory, and, moreover, there are at
most ¥ = monotone intervals. As in (%), and inspection of the proof in
7], we get;

N _
| Jo e ™yl < Ikl

where Ey < 2NC and C = maa:xeR>O|%|

Choosing N > 1 as <L is of moderate decrease, we can assume that
< L forz > N. Then, using the proof in [7] again, and the

|d:p| 72
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definition of oscillatory, we have that, for sufficiently large |k|;

| [y e *vdy| < (% 2 y>N %)

2 D
< (7] 2nez=0 Ggrno?)

< 2D [0 dz
- 5|k| Yig x?

2D
6|k|yi0

2D
< Sk

i

where y;, > N and y;, < y;, for all y; > N. It follows that;
N —i o0 —i
G R = | fy e ™vdy + [ Ee*vdyl
N —i o0 —i
<|fy de Myl +1 [ e vyl

< Ex 4 2D

2 (NC D
< w5+ 5w)

As in Lemma 0.12, we can choose E as in the final claim of the two
parts.

For the final claim, the modification for the first part is the same. In
the second part, choose N > n, rather than N > 1 in the proof, and
replace D with D,,, to get Exy = Q(NTC + ?—A’}), then, taking N = n, we

obtain £ = 2(%C + Du), O

Definition 0.14. We say that a family W = {f; : © € V}, with
fo € C(Rso) and V C R™ open, is of moderate decrease if there exists
constants Dy € R~ with |fz(x)] < g—ﬁ for |x| > 1. We say that a
family W = {fz : v € V}, with fz € C(Rso) and V. C R" open,
1s of moderate decrease ny if there exists constants Dy € R~o with
|fo(@)] < E5 for |z| > ny, where n : V. — Rsq is continuous. We

||
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say that the family {fs : © € V'} is non-oscillatory if there are finitely
many points {yiz : 1 < i <n} CR for which fs|(y, . yii10) 9 monotone,
1<i<n—1, and f|—soy, ) and fl(y, .00 i monotone. We denote
by val(W) the minimum number of such points. We say that a family
W = {fy: v €V}, with fz € C(R=o) is oscillatory if there ezists
a sequence {y;5 : 1 € N} C R, for which f|oy,.) is monotone, and
Flyioisrn) 15 monotone, i € N, and there exists o5 > 0, with y; > 5
and yi 1 — y; > 05, fori € N.

Lemma 0.15. Let a family W = {f5 : v € V'} be of moderate decrease,
with W non-oscillatory, and lim, o f5(x) = My, with My € R, then
we have that, there exists constants Ey € R~q, such that;

G < 2
for sufficiently large |k|, independent of 5. Moreover, we can choose;
By = 2|| o ocval (W)

Let a family W = {f5 : © € V'} be of moderate decrease and oscilla-
tory, and lim,_o f+(x) = My, with My € R, then, similarly;

we have that, there exists constants Ey € Rwq, such that;

G(NF)] <

=[5

for sufficiently large |k|, independent of v. Moreover, we can choose

4| fzl|oco+ Dz
By — Wlil=tDo)

v

where Dy and o6z are given in Definition 0.20.

The first claim is the same, replacing moderate decrease with mod-
erate decrease ny. The second claim is the same, replacing moderate
decrease with moderate decrease ny, with the modification that we can

2nz|| folloo 8
choose By = =& Ijs{ lleo 4 23;7.

Proof. As each f5 is of moderate decrease and lim,_,o f5(z) = Mz, we
have that each fz € L'(R~¢) and limy)e0 f5(z) = 0.

As each f; is of moderate decrease, for any ¢ > 0, we can find
N3 € N such that;
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G(f5) (k) — [N foly)e ™vdy| < e ()

As each fglon,, is continuous and non-oscillatory, by the proof of
Lemma 0.9 in [7], quantifying over the nonstandard parameter space
*V, linking the parameters with V.5, and using underflow again, we
can find {D., E.5} C R0, such that, for all |k| > D,, we have that;

Ne,@ —1 Ee,?
| Jo " foly)e ™dy| < S5, (%)

It is easy to see from the proof, that {D., E.5} can be chosen uni-
formly in €, as the number of monotone intervals in the interval (0, N, z)
is always bounded by val(W). Splitting the calculation into real and
imaginary components, it is again straightfoward to see that it is pos-
sible to choose E.5 with E.5 = 2||f5]|ccval(W). Again, note that the
infinitesimal correction existing after the use of underflow, drops out
after taking the standard part, for each f;. Then, from (x), (xx), and
the triangle inequality, we obtain that, for |k| > D,;

() ()
<IGUE) = J3 Folwye ™yl + | J; foly)e ™ dy|

EE,W

< e+ D

so that, as {D., E.5} were uniform and e was arbitrary, we obtain
that;

IG(f3) (k)| < %, for sufficiently large |k|, independently of v.

For the second claim, after choosing N € N, we have that each
f5l0,n) is non-oscillatory, and, moreover, there are at most g mono-

tone intervals. As in (#x), and inspection of the proof in [7], we get;

N —ik E
|f0 fie ydy| < ﬁ

for sufficiently large |k|, independent of U, where Ey = % and
Uy = maxa:eR>0|fﬁ’-

Choosing N > 1, as each f3 is of moderate decrease, we can assume
that |fs| < Zg, for £ > N. Then, using the proof in [7] again, and the
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definition of oscillatory, we have that, for sufficiently large |k|, inde-
pendent of v;

[N feem ™yl < (X, x5

2 Dy
< <W 2”6320 (yiO,Fer%)"’)

< 2D%
- éilkl fyzow x?

2Dz
5F‘k‘yi0 T

2Dy
S SHN

where y;, . > N and y;, . < v, for all y; > N. It follows that;
G = | fy foe™vdy + [ fre=*vdy]

N —i 0o —i
< |fo Jwe kydy| + | fN fwe kydy|

QD*
< Tt

2 (NCy | Dy
< m( o + 551\/)

It follows, using (1), that;

G (k) < B

where Ey = 2( S

i)

In particular, choosing N = 2, we can take;

BBy = 2% + B) = U500 = (it

For the final claim, the modification for the first part is the same. In
the second part, choose N > ng, rather than N > 1 in the proof, then,

taking N = ny, we obtain F = E,_ = 2("” T + i)gv)

g

Lemma 0.16. Let a family W = {fv : 0 € V} be of moderate de-
crease such that the family W' = : 0 € V'} is of moderate decrease

and non-oscillatory, with lzmxﬁofg( ) 0, lzmxﬁo‘fjf”( ) = My, with
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Mz € R, forv € V, then we have that, there exists constants Ey € Ry,
such that;

(o) (k)| <

for sufficiently large k, independent of v. Moreover, we can choose
By = 2| % | cval (W)

Let the families W = {fz : 7 € V} and W' = %F :v € V} be of
moderate decrease with W' oscillatory as well, with lim, o f5(z) = 0,
limx_,o%(x) = My, with My € R, then, similarly, we have that, there

exists constants Fy € Rg, such that;

(o) (k)| <

for sufficiently large k, independent of ©. Moreover, we can choose;

df—
@AY+ D)
Ep= e =T

where Dy and 63 are given in Definition 0.20.

The first claim s the same, replacing moderate decrease with mod-
erate decrease ny. The second claim is the same, replacing moderate
decrease with moderate decrease ny, with the modification that we can
20l gFllso | 2Dy

ow Nz

choose Ey =

Proof. As each f; is of moderate decrease and lim, o f5(z) = 0, we
have that each fy € L*(Rxo) and lim—oo fo(x) = 0. Similarly, each
% € L'(R+o) and each %j is continuous. We have, using integration
by parts, that;

G(I=) (k) = [y~ Tz (y)e Hvdy

= [foly)e™™I]5° + ik [;~ faly)e ™*vdy
=ik [ fo(y)e *dy

= ikG(f7) (k)

so that, for |k| > 1;
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(o) (k)| < DI (4

As ‘% is of moderate decrease, for any € > 0, we can find N, € N/
such that;

1G(%=) (k) — [, L2 (y)e*vdy| < e ()

As %b, N. is continuous and non-oscillatory, by the proof of Lemma
0.9 in [7], using underflow and quantifying over the nonstandard param-
eter space again, linked to the parameters N, 3, we can find {D,, E. 5} C
R0, such that, for all |k| > D,., we have that;

o (y)evdy| < T, (+4)

dx

Again, as in the proof of Lemma 0.15, { D, E. 3} can be chosen uni-
formly in €. Then, from (x), (%), and the triangle inequality, we obtain
that, for |k| > D;

G(F) (k)|

Nf’i T —1 €V Gfg —1
< IG(E) (k) — o™ S y)e ™vdy| + | [y Fe(y)e vyl

<6+ ||

so that, as {D., F.5} were uniform and e was arbitrary, we obtain
that;

|g(dfv)( )| < Ikl for |k| > D, independent of ©

and, from (1), for |k| > D, that;

G(Ymy(k .
G| < SO _ pe

where the choice of E is the same as in the proof of Lemma 0.15.
For the second claim, the proof up to (f) is the same. After choosing
N € N, we have that each df7|(0 ~) is non-oscillatory, and, moreover,
there are at most ]\1 monotone intervals. As in (xx), and inspection of
the proof in [7], we get

N dfy —
| Jo Gre™vdy| < T TR
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2NCy df
where Ey < === and C5 = mazzer., |57 ),

Choosing N > 1, as ‘éif is of moderate decrease, we can assume that

]df”\ < Pz for x > N. Then, using the proof in [7] again, and the defi-
nition of oscﬂlatory, we have that, for sufficiently large |k|, independent
of 7;

|f130 0¢l1f; _Zkydy| < (\k\ Eym>N £_z>

2 Dy
= <W 2”6320 (yio,i‘:néi)Q)

S 2D* fy - :E2

2D%
5F‘k‘yi0 0

2Dy
S51k|N

IN

where y;, - > N and y;,5 < ¥i5, for all y;3 > N. It follows that;
v N 77; S v *’L’

GV =1 fo Te™dy + [7 Gze*vdyl

< |fN dfs —zkydy| +|f00 dfz —ikydy’

SE_N_F(S?ﬁ

It follows, using (1), that;

dfy
G(fo) (k)| < W oy

where E; = 2(NC“ +

%)

As in Lemma 0.15, we can choose E as in the final claim of the two
parts.

For the final claim, the modification for the first part is the same. In
the second part, choose N > ng, rather than N > 1 in the proof, then,
taking N = ng, we obtain Fy = 2("?5F + n[f)ai)

vV

U
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Lemma 0.17. For ﬁane_dz € Rt € R0, we have that the polar rep-
resentation of eV Lk € R®, k= |k|, | = ||, is given by;

6lect ezrct

forr€eRop, 0<O<7m, - <o <7
Moreover, the real and imaginary parts of e~"“e’ are oscillatory,
with spacings;

J

real,l

:6 =1

real,l ct

If f is non-oscillatory, analytic, of moderate decrease, with lim, _.In(f)"(r) =
0, then fRe(e~"er) and fIm(e~e) are oscillatory, with a fived
lower bound d on the spacing, independent of [.

Proof. The first claim is clear. We have that;
Re(e~eteirety = cos((r — I)ct)
Im(e~ieteiret) = sin((r — l)ct)

We have that the maxima of cos((r—1[)ct) occur when sin((r—I[)ct) =
0 and —cos((r—1)ct) < 0, so when r = I+75+22% for n € Z. The min-
ima of cos((r—1)ct) occur when sin((r—I)ct) = 0 and cos((r—1)ct) < 0,

so when r =14 7= + (Z"H L, for n € Z. Tt follows that cos((r — I)ct)
is monotone in the intervals [l o+ BT 4 w] forn € Z,
and the spacing is given by;

2n+1)m nmw s
(I+ & + &dlmy (g oy 20my _ o

A similar calculation follows for sin((r — [)ct). For the final claim,
we have that;

(feos((r —1)et)) =0
iff f'cos((r —1)ct) — fsin((r —1)ct) =0

iff fTI = tan((r —)ct) (7)



42 TRISTRAM DE PIRO

Let G(r, (1)) = f7/ — tan((r — l)ct), then, we have that, for [ # 0, the
differential;

_(9G 9G 9G 9G
dG_(8r78A176)\278/\3)

= (In(f)" — ctsec*((r — 1)ct), 2&sec®((r — 1)ct), 2% sec?((r — 1)ct)

, 28 sec?((r — 1)et)) # 0 (C)

We have that;

|2l DD | — | ctsec?((r — D)et)| > ct

With the assumption that lim,_.In(f)”(r) = 0, we have that that
there exists L € R~o, such that ]fT,IH(L,OO) < ct. It follows that the
spacing between solutions to (f) in (L,o00) is at least 5>. We have
that, for [ # 0, (f'cos((r — l)ct) — fsin((r — )ct))|o,1) is analytic, so,
for fixed [ # 0, there exist finitely many solutions to (1) in (0, L]. Let;

0 = inf(é; : 1 #0)

where d; is the spacing between solutions to (f) on (0, L], for fixed
. Then, if §; = 0, we would have obtain a branch point in the zero
set of G(r, (1)), contradicting (C). Tt follows that 6, > 0. Let § =
min(dr, 7=), then as fcos((r — l)ct)|y, 4., is monotone, for i € Z,
where y; is a solution to (1), we have that fcos((r —[)ct) is oscillatory
with a lower bound on the spacing given by ¢ > 0, independent of I. A
similar calculation hods for fsin(r — )ct.

U

Lemma 0.18. For ﬁxe_dz € R3,t € R-o, we have that the polar rep-
resentation of eV Lk c R3, k= |k|, | = |l|, is given by;

eiretv(rfd) e R, 0<O<m, —T<¢p<T
where;

lim,_oov(1,0, ¢,1) = 1
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uniformly in {6, ¢}. Moreover, for 6 # cos (&), ¢ # tan_l(%), the

irctv(r,0,o,

real and imaginary parts of e D are oscillatory.

If f is non-oscillatory, analytic, of moderate decrease, with lim,.oIn(f)"(z) =
0 then fcos(retv(r,0,¢,1)) and fsin(rctv(r,0,¢,1)) are oscillatory, for
0 # cos 1(4), 6 # tan (8.

Proof. Making the substitution, k1 = rsin(0)cos(¢), ka = rsin(6)sin(),
ks = rcos(0), we obtain;

ei(lcfl)ct — 6i[(rsin(€)cos(¢)7l1)2+(rsin(9)sin(¢)7l2)2+(rcos(9)713)2]%ct
—_ ei(r2—(2l1sin(@)cos(¢)+2l2sin(@)sin(¢)+213005(0))+l2)%ct

— eirctu(r,e,zf)j)

where;

v(r,0,6,0) = (1— (2l sin(0)cos(¢) + 2lpsin(8) sin(¢p) + 2lzcos(8)) +

)

It is clear, as |21;sin(0)cos(¢p)+2lasin(0)sin(P)+2lzcos(0)] < 2(|l1]+
ly| + |I3]), that lim,_ev(r,0,¢,1) = 1, uniformly in {6, ¢}. For the

next claim, we show that cos(rctv(r, 0, ¢,1)) is oscillatory, leaving the
other case to the reader. We have that;

S |~
)
[N

dcos(rctv(r,0,6,0)) 0
e =

iff —sin(retv(r,0,¢,0)(ctv(r,0,6,1) + rct%ﬁ’(b@) =0

. . Ny 7 ov(r,0,p,l)
iff sin(rctv(r,0,¢,1)) =0 or ctv(r,0,¢,1) + ret=—3"2= =0
iff retv(r,0,¢,0) = = +nm, (n € 2)

or CtV(T', 97 ¢7Z) + m(%f‘y(aa ¢>Z) - %’»2) =0

where;

(0, ¢,1) = 2l1sin(0)cos(¢) + 2lysin(6)sin(¢) + 2lscos(0)
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We have;

lim, _oolctv (1,0, ¢,1) + 2u(7:<c9f¢j)(7%7(9’ ¢,1) — %2)] =ct#0

so that, by continuity, the zeros of;

ctv(r,0,,1) + 5o (5760, 6,1) — %)

are located in a compact interval [0, K], for some K € R~o. With
the assumption on {6, ¢}, we have that;

ctv(r,0,¢,1) + 2V(7:(C9€¢J)(7%7(9’ ¢,1) — 2%32)

is analytic, so it can only have a finite number of zeros located in
the interval [0, K], (*). We have that lim,_.rctv(r,0,¢,1) = oo and
lim, _orctv(r,0,¢,1) = ctl, so, by the intermediate value theorem, we
can find an infinite number of solutions to rctv(r, 0, ¢,1) = 5 + nm,

n € Z, located in R~g. As;

lim,_oo[ctv(r, 0, ¢,1) + 21/(7:2%7)(%27(97 6,1) — 2] = ct

and;

limysoletv(r,0,6,1) + 565 (57(0,6.1) — 3]

. Orctv(r,0,0,
= lim, o 2000

g Oct|k(r,0,¢)—1
= llmrao%

T

is finite, we have that %’M is bounded by M € R~q on R~g.

Using the mean value theorem, if 7, is a solution to rctv(r, 0, ¢,1) =
Z 4+ nm, and rp, is a solution to rctv(r,0,¢,l) = 5 + mm, then
(5 +nm)—(5+nm)]|
M

|rn_Tm| Z l

[(n=m)|m
M

>z (n#m)

By the observation (x), and the fact that;
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[cti(r,0,0,1) + 5ot (7 (6, 9. 1) — %)

is monotone on (K, 00), there can be at most a finite number {n; ,...,n;,}

for which there exist multiple solutions T, € Ro to retv(r, 0, ¢,1) =
2 4+ n;m. Let Z denote the {r; : i € N} for which there exists
a solution to rctv(r,0,¢,1) = T +nm, n € 2, and Z the finite
set comsisting of solutions to rcty(r,0,¢,1) = 5+nym 1 <5 <
p and the zeros on [0, K], corresponding to (%). Ordering Z U Z,
as a set {r; : i € N}, it is clear that cos(rctv(r,0,¢,1))|pr. ) is
monotone. Choosing § = min({;,d(Z \ Zy, Zy), Sep(Zy)) > 0, where
Sep(Zy) = mian(d(r,r") : {r,r'} C Zy,r # '), we obtain the result that
cos(rctv(r,0, ¢,1)) is oscillatory.

For the final claim, we can, without loss of generality, assume that
there exists L € Rso for which f| ) is monotone decreasing and
fl(L,00) > 0. Then, by the product rule, we have that;

(feos(rctv(r,0,9,1))) =0
iff f'cos(rctv(r,0,¢,1))) — fsin(rctv(r, 0, ¢,1))(rctv(r, 0, ¢,1)) =0
iff fTI = tan(rctv(r,0,¢,1))(rctv(r,0,¢,1)) (1)

We have that lim,_,o(rctv(r,0,$,1)) = ct, in particularly, we can
assume that (rctv(r,0,¢,1)) > 0 in (L,00), so that rctv(r,0, ¢,1) is
increasing in (L, 00). By the hypotheses, f7,|(L7OO) < 0, so that for a so-
lution 71 to (1) in (L, o0), we must have that tan(rictv(ry, 0, ¢,1)) < 0,
(% * x * x). Moreover, by the assumption;

limaooln () () = limg oo (5)'(x) = 0 (x5 )

As tan'(z) > 1, for x € R, and lim,_o(rctv(r,0,¢,1)) = ct, by
the chain rule, we can assume that ‘a(mn(rctgy,e,w))) | > <, in (L,00),
(* % xx). Combining, (* % ), (% * %), (% * % % %), it follows that for
{r1,r2} solving (}) in (L,00), the separation |ry — 71| > 7. By the
assumptions, we have that fcos(rctv(r, 0, ¢,1)) is analytic on [0, L+1),
so that (fcos(rctv(r,0,$,1)))" is analytic on [0, L 4 1). It follows there
can only be finitely many solutions to () in (0,L), and, therefore,
similarly to the above, fcos(rctv(r, 8, $,1)) is oscillatory. The argument

for fsin(rctv(r,0,$,1)) is similar and left to the reader.
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O
Lemma 0.19. With notation as in Lemmas 0.18 and 0.7, if;
7.7 4\ 7N _ Pl b, 7(R.0,0)
(k Z ) - Oé(R, 0’ ¢’ l’ t> - #[(bH»xR’ 9’ ¢)+ |(Rsin(8)cos(¢),Rsin(0)sin(¢),Rcos(0))—I| ) X

(@, (D) + %20)] (R, 0, 6, 1)]u(R. 0, 6,1, t)sin(0)

— = b 7(R79:¢)
B(k’l’ ) B(R 0 ¢’l’t> 7T2 [(blll(R 0 QS) Rsin(@)cos(d)),;;iﬂ(@)sin((z)),Rcos(@))fﬂ)X

(@ D) + )] (R0, 6.1n(R.0.0.1.1)sin(0)

then;
a(R,0,0,1,t) = a1 (R,0,6,1,)u(R,0,6,1,t) = e "oy (R, 0, 0,1, t)eiRCt”(R’e"z”Z)
/B(R7 07 ¢7 Z’ t) - /81 (R7 07 QS’ Z’ t)M(R7 9’ ¢7 z? t) - eillCtﬁl(R7 9’ ¢7 z? t)elRCtV(R797¢>7Z)

For fized 1 # 0 and 0 # cos™(%), ¢ # tan‘l(l2), if the real and

imaginary components of e”"“ay(R,0,$,1,t) satisfy the conditions of
Lemma 0.18, then the real and imaginary components of a are oscilla-
tory. Similarly, if the real and imaginary components of;

{718y (R, 0,6,1,t), e~ REVIEEELY epeilct g, (R0, 6,1,4) (v(R, 0, ¢,1)+
RQV(%I%@J) )}

satisfy the conditions of Lemma 0.18, then the real and imaginary
ORB(R0,¢,,t)

SR are oscillatory.

components of

Proof. We have that;
Re(a) = Re(e el = Re(e " aycos(Retv))+ Re(ie™ oy sin( Retv))
= Re(e " ay)cos(Retv) + Im(e " ay)sin(Retv)
Im(a) = Im(e""a,etf) = Im(e~ "o cos(Retv))+Im(ie” "oy sin( Retv))

= Im(e"“ay)cos(Retv) + Re(e™"ay)sin(Retv)
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so the first claim, follows from Lemma 0.18.
We also have that;

e—ilct eiRctV —ile iRcty e—ilet eiRctu
Re(280)) = Re(QB0TN)) = Re(emitet Rt Re( RACCT)

= Re(efilctﬁleiRctu>_f_Re(efilctRa_g:leiRctu)_i_Re(Z'ctefilctRﬁl (V—FR%)eiRCtV)

7ilct61 eiRCtV)

e*ilct eiRctV ile iRcty e
Im(280)y = [y (2B = Re(eiet Byt ) + Re(RA21E))

— Im(e_ilCtﬁleiRcw)—|—Re(e_ilCtRa—gleiRcw)+R6(ict€_ilCtRﬁ1(V—FR%)@ZRCU/)

and the second claim follows, using the previous calculation and
Lemma 0.18.
0

Definition 0.20. We say that f € C(R \ {0}) is of moderate decrease
if there exists a constant D € Rso with |f(z)| < # for x| > 1.

We say that f € C(R\ {0}) is of very moderate decrease if there ex-
ists a constant D € R~ with |f(x)] < |% for |z| > 1.We say that

f € C(R\{0}) is non-oscillatory if there are finitely many points
{yi: 1 <@ <n} CR for which f|y,y...) 95 monotone, 1 <i <n—1,
and fl(—coy) and fly. ) is monotone. We say that f € C(R\ {0})

15 symmetrically asymptotic if f and % are of moderate decrease, % S
non-oscillatory, { f, %} C L'((—¢,¢€)), and for e > 0;

limyﬂoff(y) = lzmy%OJrf(y) =M

and

limy o (y) = —limy 04 % (y) = L (%)

where L € {+00,—o0}, M € R. We say that f € C(R \ {0}) is light
symmetrically asymptotic if f and % are of very moderate decrease, f
and % are non-oscillatory, {f,%} C L'((—¢,¢€)), and for € > 0, the
condition (x) holds.

Lemma 0.21. Let f be symmetrically asymptotic, then we have that,
for any 6 > 0, there exist constants {Cs, Ds} C R~o, such that;

\F(HR)] < g + i, for [k| > Ds
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Proof. As f is symmetrically asymptotic, we have that lim,_,o_f(z) =
limg_o4 f(x) = M, where M € R. In either case, we can apply inte-
gration by parts, to obtain (f) in Lemma 0.11. The step (x) follows
from the fact that f is of moderate decrease. As is non-oscillatory,
we can find g < 0 < x1, with dé‘ImO and dj;’0,xo monotone. In par-
ticular, for any 6 > 0, we can find o < yo < 0 < y; < x1 such
that [, [L(y)|dy < 5((27)2) and L(yo) = Lio, L(y1 = Layp, with
{leo, Lgyo} CR. Then;

: o ik df —ik
|(27r)% N, s (y)e M dy — (%)? f( Newo (o) 9 (y)e= vy
< Gt Jooun @)1y
<0

Again, by the proof of Lemma 0.9 in [7], using underflow, we can
find {Deyoy1» Eeyon } C R0, such that, for all |k| > D, ,,, we have
that;

1 df —ik Be,yq,
T S o v de (W) VYl < =, (ex)

It is easy to see from the proof, that { Dy, 41, Eeyopn } can be chosen
uniformly in €, so that using the triangle inequality again, we obtain;

F(L) (k)] < €4 6 4 Zn

for |k > Deyoun

As e was arbitrary, and E,, ,, is uniform in €, we obtain that;
IFEE) (k)| < 6 + o
for |k| > Dyq .-

so that, using () again;
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for |k| > Ds, where Cs = E,, ,, and Ds = D

Yo,y1-*

4

Lemma 0.22. There exists a unique fundamental solution (E,0), with
E decaying in the sense of [8], for gz’ven (p,J), not vacuum. Wz’thout
any decay condition, the difference E— E of two such solutions {E E }
is either 0 or static and unbounded with <7 « E = 0 and 7 x E = 0,
(%), with the possibility (x) being satisfiable. If (Eo, By) is a solution to
Mazwell’s equation in vacuum, then we cannot have that E + E, = 0.

Proof. Suppose there exist two fundamental solutions (E, 0) and (E , 0),

then (0,0, E — E/,ﬁ) is a solution to Maxwell’s equations in vacuum.
It follows from Maxwell’s fourth equation, that;

NE-E) =
at 0

and, from the relations in Lemma 4.1 of [9], that;
XE-E)=v3(E-E)=0

By the decaying condition and properties of harmonic functions, we
have that E — E = 0, so that £ = E'. Without the decay condition,
we must have that £ — E is unbounded or E — E = 0, and from
Maxwell’s first and second equations, we must have that 7. £ = 0 and
v X E = 0 as well. The satisfiable claim follows from the fact that
we can construct a solution (0,0, Ey,0) to Maxwell’s equations in free
space, by the requirements that;

(1) V.EOIO
(i). Lo =0
(iii). 7 x Eo =0

It is possible to satisfy the requirements (i), (éii), for a function
f:R?® = R, so that we can define Ey(Z,t) = f(T) to satisfy the
conditions (4), (7), (#77). For the last claim, suppose that E+ Ey=0,
then £ = —FE, and we have that, by Maxwell’s equations, and (Ey, By)
a vacuum solution;
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ViE=-vV.Ei=£=0
so that p = 0. Using the fact that 7(p) + c%aa—f =0 and O%*J =0,
we have that % = 0 and 2J = 0, so that, as J € S(R?), we must

have that J = 0 and (p,J) is a vacuum solution, contradicting the
hypotheses. 0
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