SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 5: NO RADIATION OF LIGHT

TRISTRAM DE PIRO

Abstract.

Definition 0.1. We call $\left(\bar{E}_{0}, \bar{B}_{0}\right)$, a solution to Maxwell's equation in vacuum, good, if $\left(\bar{E}+\bar{E}_{0}\right) \times \bar{B}_{0}=0$, for some fundamental solution $(\bar{E}, \overline{0})$ corresponding to $\{\rho, \bar{J}\}$ satisfying the conditions from Lemma 4.1 in [9], with $\{\rho, \bar{J}\}$ not vacuum and $\{\rho, \bar{J}\} \subset S\left(\mathcal{R}^{3} \times \mathcal{R}_{>0}\right)$. We call $\left(\bar{E}_{0}, \bar{B}_{0}\right)$ static if $\frac{\partial \bar{E}_{0}}{\partial t}=\frac{\partial \bar{B}_{1}}{\partial t}=\overline{0}$.

Definition 0.2. We say that a field $\bar{C}(\bar{x}, t)$ is simple if all the components $c_{i}, 1 \leq i \leq 3$ are continuously fourth differentiable in the coordinates $\left(x_{1}, x_{2}, x_{3}\right)$ and continuously twice differentiable in the coordinate t, such that the partial derivatives all belong to $L^{1}\left(\mathcal{R}^{3}\right)$ for fixed $t \geq 0$, and, the L^{1}-norm of the partial derivatives is uniformly bounded for $0 \leq t<1$.

Definition 0.3. We say that a real pair (\bar{E}, \bar{B}), satisfying Maxwell's equations for some $\{\rho, \bar{J}\}$, satisfies the strong no radiation condition if;

$$
P(r, t)=\int_{S(\overline{0}, r)}(\bar{E} \times \bar{B}) \cdot d \bar{S}=0
$$

for all $r>0$ and $t \in \mathcal{R}$. We say that it satisfies the no radiation condition if;

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} P(r, t)=0 \\
& \text { for all } t \in \mathcal{R}
\end{aligned}
$$

Lemma 0.4. For any $\{\rho, \bar{J}\}$ satisfying the conditions from Lemma 4.1 in $[9]$, if $(\bar{E}, \overline{0})$ denotes a fundamental solution, then a solution $\left\{\bar{E}+\bar{E}_{0}, \bar{B}_{0}\right\}$, with $\left(\rho, \bar{J}, \bar{E}+\bar{E}_{0}, \bar{B}_{0}\right)$ satisfying Maxwell's equations, satisfies the no radiating condition, if \bar{E}, \bar{E}_{0} and \bar{B}_{0} are simple and $\left\{\left(\bar{E}+\bar{E}_{0}\right)_{0},\left.\frac{\partial\left(\bar{E}+\bar{E}_{0}\right)}{\partial t}\right|_{0},\left(\bar{B}_{0}\right)_{0},\left.\frac{\partial \bar{B}_{0}}{\partial t}\right|_{0}\right\} \subset S\left(\mathcal{R}^{3}\right),(*)$. Moreover, we have
that explicit representation;

$$
\begin{aligned}
& \left(\bar{E}+\bar{E}_{0}\right)(\bar{x}, t)=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{\mathcal{R}^{3}}\left(\bar{b}(\bar{k}) e^{i k c t}+\bar{d}(\bar{k}) e^{-i k c t}\right) e^{i \bar{k} . \bar{x}} d \bar{k} \\
& \bar{B}_{0}(\bar{x}, t)=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{\mathcal{R}^{3}}\left(\overline{b^{\prime}}(\bar{l}) e^{i l c t}+\overline{d^{\prime}}(\bar{l}) e^{-i l c t}\right) e^{i \bar{l} . \bar{x}} d \bar{l} \\
& \text { where }\left\{\bar{b}, \bar{d}, \bar{b}^{\prime} \bar{d}^{\prime}\right\} \subset S\left(\mathcal{R}^{3}\right) .
\end{aligned}
$$

Proof. By Lemma 4.1 in [9], and the argument in [1], we have that;

$$
\begin{aligned}
& \square^{2} \bar{E}=\overline{0}, \bar{B}=\overline{0} \\
& \square^{2} \bar{E}_{0}=\overline{0}, \square^{2} \bar{B}_{0}=\overline{0}(*)
\end{aligned}
$$

Then;

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} P(r)=\lim _{r \rightarrow \infty} \int_{S(r)}\left(\left(\bar{E}+\bar{E}_{0}\right) \times\left(\bar{B}+\bar{B}_{0}\right)\right) d \bar{S}(r) \\
& =\lim _{r \rightarrow \infty} \int_{S(r)}(\bar{E} \times \bar{B}) d \bar{S}(r)+\lim _{r \rightarrow \infty} \int_{S(r)}\left(\left(\bar{E}+\bar{E}_{0}\right) \times \bar{B}_{0}\right) d \bar{S}(r) \\
& +\lim _{r \rightarrow \infty} \int_{S(r)}\left(\bar{E}_{0} \times \bar{B}\right) d \bar{S}(r) \\
& =\lim _{r \rightarrow \infty} \int_{S(r)}\left(\left(\bar{E}+\bar{E}_{0}\right) \times \bar{B}_{0}\right) d \bar{S}(r)
\end{aligned}
$$

and, by $(*)$, we have that $\square^{2}\left(\bar{E}+\bar{E}_{0}\right)=\overline{0}$ as well, (\dagger).
Assume that \bar{E}, \bar{E}_{0} and \bar{B}_{0} are simple, then, $\bar{E}+\bar{E}_{0}$ and \bar{B}_{0} are simple, and we have that;

$$
\nabla^{2}\left(\bar{E}-\bar{E}_{0}\right)-\frac{1}{c^{2}} \frac{\partial^{2}\left(\bar{E}-\bar{E}_{0}\right)}{\partial t^{2}}=\overline{0}
$$

so that, applying the three dimensional Fourier transform \mathcal{F} to the components, and using integration by parts, we have that;

$$
\begin{aligned}
& \left.\mathcal{F}\left(\nabla^{2}\left(\bar{E}-\bar{E}_{0}\right)\right)(\bar{k}, t)\right)-\frac{1}{c^{2}} \frac{\partial^{2}\left(\mathcal{F}\left(\bar{E}-\bar{E}_{0}\right)\right)(\bar{k}, t)}{\partial t^{2}} \\
& =-k^{2} \mathcal{F}\left(\bar{E}-\bar{E}_{0}\right)(\bar{k}, t)-\frac{1}{c^{2}} \frac{\partial^{2}\left(\mathcal{F}\left(\bar{E}-\bar{E}_{0}\right)\right)(\bar{k}, t)}{\partial t^{2}} \\
& =-k^{2}(f)(\bar{k}, t)-\frac{1}{c^{2}} \frac{\partial^{2} \bar{f}(\bar{k}, t)}{\partial t^{2}}
\end{aligned}
$$

SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 5: NO RADIATION OF LIGHB

$$
=\overline{0}
$$

where $k^{2}=k_{1}^{2}+k_{2}^{2}+k_{3}^{2}, \bar{a}=\mathcal{F}\left(\bar{E}-\bar{E}_{0}\right)$. For fixed \bar{k}, we obtain the ordinary differential equation;

$$
\frac{d^{2} \bar{a}_{\bar{k}}}{d t^{2}}=-c^{2} k^{2} \bar{a}_{\bar{k}}
$$

so that;
$\bar{a}_{\bar{k}}(t)=\bar{C}_{0}(\bar{k}) e^{i k c t}+\bar{D}_{0}(\bar{k}) e^{-i k c t}$
with;
$\bar{a}_{\bar{k}}(0)=\bar{C}_{0}(\bar{k})+\bar{D}_{0}(\bar{k})$
$\bar{a}_{\bar{k}}^{\prime}(0)=i k c \bar{C}_{0}(\bar{k})-i k c \bar{D}_{0}(\bar{k})(\dagger \dagger)$
and, solving the simultaneous equations ($\dagger \dagger$), we obtain that;
$\bar{C}_{0}(\bar{k})=\frac{1}{2}\left(\bar{a}_{\bar{k}}(0)+\frac{1}{i k c} \bar{a}_{\bar{k}}^{\prime}(0)\right)$
$\bar{D}_{0}(\bar{k})=\frac{1}{2}\left(\bar{a}_{\bar{k}}(0)-\frac{1}{i k c} \bar{a}_{\bar{k}}^{\prime}(0)\right)$
and;
$\mathcal{F}\left(\bar{E}-\bar{E}_{0}\right)(\bar{k}, t)=\bar{a}(\bar{k}, t)$
$=\frac{1}{2}\left(\bar{a}_{\bar{k}}(0)+\frac{1}{i k c} \bar{a}_{\bar{k}}^{\prime}(0)\right) e^{i k c t}+\frac{1}{2}\left(\bar{a}_{\bar{k}}(0)+\frac{1}{i k c} \bar{a}_{\bar{k}}^{\prime}(0)\right) e^{-i k c t}$
$=\bar{b}(\bar{k}) e^{i k c t}+\bar{d}(\bar{k}) e^{-i k c t}$
where;
$\bar{b}(\bar{k})=\frac{1}{2}\left(\left.\mathcal{F}\left(\left.\left(\bar{E}+\bar{E}_{0}\right)\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{k}, 0)}+\left.\frac{1}{i k c} \mathcal{F}\left(\left.\frac{\partial\left(\bar{E}+\bar{E}_{0}\right)}{\partial t}\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{k}, 0)}\right)$
$\bar{d}(\bar{k})=\frac{1}{2}\left(\left.\mathcal{F}\left(\left.\left(\bar{E}+\bar{E}_{0}\right)\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{k}, 0)}-\left.\frac{1}{i k c} \mathcal{F}\left(\left.\frac{\partial\left(\bar{E}+\bar{E}_{0}\right)}{\partial t}\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{k}, 0)}\right)$
Similarly;
$\mathcal{F}\left(\bar{B}_{0}\right)(\bar{l}, t)=\bar{a}^{\prime}(\bar{l}, t)=\overline{b^{\prime}}(\bar{l}) e^{i l c t}+\overline{d^{\prime}}(\bar{l}) e^{-i l c t}$
where;

$$
\begin{aligned}
& \overline{b^{\prime}}(\bar{l})=\frac{1}{2}\left(\left.\mathcal{F}\left(\left.\left(\bar{B}_{0}\right)\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{l}, 0)}+\left.\frac{1}{i l c} \mathcal{F}\left(\left.\frac{\partial\left(\bar{B}_{0}\right)}{\partial t}\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{l}, 0)}\right) \\
& \overline{d^{\prime}}(\bar{l})=\frac{1}{2}\left(\left.\mathcal{F}\left(\left.\left(\bar{B}_{0}\right)\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{l}, 0)}-\left.\frac{1}{i l c} \mathcal{F}\left(\left.\frac{\partial\left(\bar{B}_{0}\right)}{\partial t}\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{l}, 0)}\right)
\end{aligned}
$$

and $l^{2}=l_{1}^{2}+l_{2}^{2}+l_{3}^{2}$. Using the fact that $\left\{\bar{b}(\bar{k}) e^{i k c t}+\bar{d}(\bar{k}) e^{-i k c t}, \overline{b^{\prime}}(\bar{l}) e^{i l c t}+\right.$ $\left.\overline{d^{\prime}}(\bar{l}) e^{-i l c t}\right\} \subset S\left(\mathcal{R}^{3}\right.$ for $t \in \mathcal{R}$, we can apply the inversion theorem, to obtain;

$$
\begin{aligned}
& \left(\bar{E}+\bar{E}_{0}\right)(\bar{x}, t)=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{\mathcal{R}^{3}}\left(\bar{b}(\bar{k}) e^{i k c t}+\bar{d}(\bar{k}) e^{-i k c t}\right) e^{i \bar{k} . \bar{x}} d \bar{k} \\
& \bar{B}_{0}(\bar{x}, t)=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{\mathcal{R}^{3}}\left(\overline{b^{\prime}}(\bar{l}) e^{i l c t}+\overline{d^{\prime}}(\bar{l}) e^{-i l c t}\right) e^{i \bar{l} \cdot \bar{x}} d \bar{l}
\end{aligned}
$$

As we noted above, $\left\{\bar{b} e^{i k c t}+\bar{d} e^{-i k c t}, \overline{b^{\prime}} e^{i l c t}+\overline{d^{\prime}} e^{-i l c t}\right\} \subset S\left(\mathcal{R}^{3}\right.$ for $t \in \mathcal{R}$, so that, by the fact that the Fourier transform preserves the Schwartz class, see [14], we must have that $\left\{\left(\bar{E}+\bar{E}_{0}\right)_{t},\left(\bar{B}_{0}\right)_{t}\right\} \subset S\left(R^{3}\right)$ for $t \in \mathcal{R}$. Then, for $n \geq 3$ and the definition of the Schwartz class;

$$
\begin{aligned}
& |P(r, t)|=\left|\int_{S(r)}\left(\left(\bar{E}+\bar{E}_{0}\right)_{t} \times\left(\bar{B}_{0}\right)_{t}\right) d \bar{S}\right| \\
& \leq \int_{S(r)}\left|\left(\left(\bar{E}+\bar{E}_{0}\right)_{t} \times\left(\bar{B}_{0}\right)_{t}\right) \cdot \hat{\bar{n}}\right| d S(r) \mid \\
& \leq \int_{S(r)}\left|\left(\bar{E}+\bar{E}_{0}\right)_{t}\right|\left|\left(\bar{B}_{0}\right)_{t}\right| d S(r) \\
& \leq 4 \pi r^{2} \frac{C_{1, n}}{r^{n}} \frac{D_{1, n}}{r^{n}} \\
& =\frac{4 \pi C_{1, n} D_{1, n}}{r^{2 n-2}}
\end{aligned}
$$

so clearly;

$$
\lim _{r \rightarrow \infty} P(r, t)=0
$$

Definition 0.5. Fix a real propagation vector \bar{k}_{0} and a real vector \bar{d}_{0} with $\bar{k}_{0} \cdot \bar{d}_{0}=0$. Let;

$$
\begin{aligned}
& \bar{E}_{0}(\bar{x}, t)=\bar{d}_{0} e^{-i k_{0} c t} e^{i \bar{k}_{0} . \bar{x}} \\
& \bar{B}_{0}(\bar{x}, t)=\bar{d}_{0}^{\prime} e^{-i k_{0} c t} e^{i \bar{k}_{0} . \bar{x}}
\end{aligned}
$$

SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 5: NO RADIATION OF LIGHt where $\bar{d}_{0}^{\prime}=\frac{1}{c}\left(\bar{k}_{0} \times \bar{d}_{0}\right)$. Then, see $[1]$, the pair $\left(\bar{E}_{0}, \bar{B}_{0}\right)$ solves Maxwell's equation in vacuum, and so does $\left(\operatorname{Re}\left(\bar{E}_{0}\right), \operatorname{Re}\left(\bar{B}_{0}\right)\right)$. We call $\left(\operatorname{Re}\left(\bar{E}_{0}\right), \operatorname{Re}\left(\bar{B}_{0}\right)\right)$ a monochromatic solution.

Lemma 0.6. For a monochromatic solution $\left(\operatorname{Re}\left(\bar{E}_{0}\right), \operatorname{Re}\left(\bar{B}_{0}\right)\right)$ to Maxwell's equation in vacuum, we have that $P(r, t)=O(r)$. In particularly, $\left(\operatorname{Re}\left(\bar{E}_{0}\right), \operatorname{Re}\left(\bar{B}_{0}\right)\right)$ doesn't satisfy satisfy the no radiation condition unless $\bar{E}_{0}=\bar{d}_{0}$ and $\bar{B}_{0}=0$, or $\bar{E}_{0}=\bar{B}_{0}=\overline{0}$, in which cases $\left(\operatorname{Re}\left(\bar{E}_{0}\right), \operatorname{Re}\left(\bar{B}_{0}\right)\right)$ is constant. Any constant real solution $\left(\bar{E}_{1}, \bar{B}_{1}\right)$ satisfies the strong no radiation and no radiation conditions

Proof. We have, for a monochromatic solution, that;

$$
\begin{aligned}
& \operatorname{Re}\left(\bar{E}_{0}\right)(\bar{x}, t)=\frac{\bar{d}_{0}}{4}\left(e^{i k_{0} c t} e^{i \bar{k}_{0} . \bar{x}}+e^{i k_{0} c t} e^{-i \bar{k}_{0} . \bar{x}}+e^{-i k_{0} c t} e^{i \bar{k}_{0} . \bar{x}}+e^{-i k_{0} c t} e^{-i \bar{k}_{0} . \bar{x}}\right) \\
& \operatorname{Re}\left(\bar{B}_{0}\right)(\bar{x}, t)=\frac{\bar{d}_{0}^{\prime}}{4}\left(e^{i k_{0} c t} e^{i \bar{k}_{0} \cdot \bar{x}}+e^{i k_{0} c t} e^{-i \bar{k}_{0} . \bar{x}}+e^{-i k_{0} c t} e^{i \bar{k}_{0} . \bar{x}}+e^{-i k_{0} c t} e^{-i \bar{k}_{0} \cdot \bar{x}}\right) \\
& \text { so that } \operatorname{Re}\left(\bar{E}_{0}\right) \times \operatorname{Re}\left(\bar{B}_{0}\right) \\
& =\frac{\left(\bar{d}_{0} \times \bar{d}_{0}^{\prime}\right)}{16}\left(e^{2 i k_{0} c t} e^{2 i \bar{k}_{0} . \bar{x}}+e^{2 i k_{0} c t} e^{-2 i \bar{k}_{0} . \bar{x}}+e^{-2 i k_{0} c t} e^{2 i \bar{k}_{0} \cdot \bar{x}}+e^{-2 i k_{0} c t} e^{-2 i \bar{k}_{0} . \bar{x}}\right. \\
& \left.+2 e^{2 i k_{0} c t}+2 e^{-2 i k_{0} c t}+2 e^{2 i \bar{k}_{0} . \bar{x}}+2 e^{-2 i \bar{k}_{0} . \bar{x}}+4\right)
\end{aligned}
$$

By the divergence theorem, we have that;

$$
\begin{aligned}
& P(r, t)=\int_{S(\overline{0}, r)}\left(\operatorname{Re}\left(\bar{E}_{0}\right) \times \operatorname{Re}\left(\bar{B}_{0}\right)\right) d \bar{S}(r) \\
& =\int_{B(\overline{0}, r)} \nabla \cdot\left(\frac { (\overline { d } _ { 0 } \times \overline { d } _ { 0 } ^ { \prime }) } { 1 6 } \left(e^{2 i k_{0} c t} e^{2 i \bar{k}_{0} \cdot \bar{x}^{x}}+e^{2 i k_{0} c t} e^{-2 i \bar{k}_{0} \cdot \bar{x}}+e^{-2 i k_{0} c t} e^{2 i \bar{k}_{0} \cdot \bar{x}}+e^{-2 i k_{0} c t} e^{-2 i \bar{k}_{0} \cdot \bar{x}}\right.\right. \\
& \left.\left.+2 e^{2 i k_{0} c t}+2 e^{-2 i k_{0} c t}+2 e^{2 i \bar{k}_{0} \cdot \bar{x}}+2 e^{-2 i \bar{k}_{0} \cdot \bar{x}}+4\right)\right) d B(r) \\
& =\int_{B(\overline{0}, r)} \frac{\left(\bar{d}_{0} \times \bar{d}_{0}^{\prime}\right)}{16} \cdot 2 i \bar{k}_{0}\left(e^{2 i \bar{k}_{0} \cdot \bar{x}}\left(e^{2 i k_{0} c t}+e^{-2 i k_{0} c t}+2\right)-e^{-2 i \bar{k}_{0} \cdot \bar{x}}\left(e^{2 i k_{0} c t}\right.\right. \\
& \left.\left.+e^{-2 i k_{0} c t}+2\right)\right) d B(r) \\
& =\frac{\left(\bar{d}_{0} \times \bar{d}_{0}^{\prime}\right)}{16} \cdot 2 i \bar{k}_{0}\left(e^{2 i k_{0} c t}+e^{-2 i k_{0} c t}+2\right)\left(2\left(\frac{2 \pi r}{\left|2 \bar{k}_{0}\right|}\right)^{\frac{3}{2}} J_{\frac{3}{2}}\left(r\left|2 \bar{k}_{0}\right|\right)\right) \\
& =\frac{\left(\bar{d}_{0} \times \bar{d}_{0}^{\prime}\right)}{4} \cdot i \bar{k}_{0}\left(e^{2 i k_{0} c t}+e^{-2 i k_{0} c t}+2\right)\left(\left(\frac{\pi r}{\left|\bar{k}_{0}\right|} \frac{3}{2} J_{\frac{3}{2}}\left(2 r\left|\bar{k}_{0}\right|\right)\right)\right. \\
& =\frac{\left(\bar{d}_{0} \times \bar{d}_{0}^{\prime}\right)}{4} \cdot i \bar{k}_{0}\left(e^{2 i k_{0} c t}+e^{-2 i k_{0} c t}+2\right)\left(\frac{\pi r}{\left|\bar{k}_{0}\right|}\right)^{\frac{3}{2}}\left(\frac{1}{\pi r\left|\bar{k}_{0}\right|}\right)^{\frac{1}{2}}\left(P_{1}\left(\frac{1}{2 r\left|\bar{k}_{0}\right|}\right) \sin \left(2 r\left|\bar{k}_{0}\right|\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-Q_{0}\left(\frac{1}{2 r\left|\bar{k}_{0}\right|}\right) \cos \left(2 r\left|\bar{k}_{0}\right|\right)\right) \\
& =\frac{\left(\bar{d}_{0} \times \bar{a}_{0}^{\prime}\right)}{4} \cdot i \bar{k}_{0}\left(e^{2 i k_{0} c t}+e^{-2 i k_{0} c t}+2\right)\left(\frac{\pi r}{\left|\bar{k}_{0}\right|}\right)^{\frac{3}{2}}\left(\frac { 1 } { \pi r | \overline { k } _ { 0 } | } \frac { \frac { 1 } { 2 } } { 2 } \left(\left(\frac{P_{1,1}}{2 r\left|\bar{k}_{0}\right|}\right) \sin \left(2 r\left|\bar{k}_{0}\right|\right)\right.\right. \\
& \left.-Q_{0,0} \cos \left(2 r\left|\bar{k}_{0}\right|\right)\right) \\
& =\frac{\left(\bar{d}_{0} \times \bar{a}_{0}^{\prime}\right)}{4} \cdot i \bar{k}_{0}\left(e^{2 i k_{0} c t}+e^{-2 i k_{0} c t}+2\right)\left(\frac{\pi}{\left|\bar{k}_{0}\right|}\right)^{\frac{3}{2}}\left(\frac{1}{\pi\left|\bar{k}_{0}\right|}\right)^{\frac{1}{2}}\left(\left(\frac{P_{1,1}}{2\left|\bar{k}_{0}\right|}\right) \sin \left(2 r\left|\bar{k}_{0}\right|\right)\right. \\
& \left.-Q_{0,0} r \cos \left(2 r\left|\bar{k}_{0}\right|\right)\right)
\end{aligned}
$$

Clearly, $P(r, t)=O(r)$ unless $\bar{d}_{0} \times \bar{d}_{0}^{\prime} \cdot \bar{k}_{0}=0$, in which case either $\bar{k}_{0}=\overline{0}$ or $\bar{d}_{0}=\overline{0}$. In the first case, we obtain that $\bar{E}_{0}=\bar{d}_{0}$ and $\bar{B}_{0}=\overline{0}$, in the second case, we obtain that $\bar{E}_{0}=\bar{B}_{0}=\overline{0}$. The last claim is clear by the divergence theorem and the fact that $\nabla \cdot\left(\bar{E}_{1} \times \bar{B}_{1}\right)=0$.

Lemma 0.7. For any $\{\rho, \bar{J}\}$ satisfying the conditions from Lemma 4. 1 in $[9]$, if $(\bar{E}, \overline{0})$ denotes a fundamental solution, then a solution $\{\bar{E}+$ $\left.\bar{E}_{0}, \bar{B}_{0}\right\}$, with $\left(\rho, \bar{J}, \bar{E}+\bar{E}_{0}, \bar{B}_{0}\right)$ satisfying Maxwell's equations such that $\left\{\bar{E}, \bar{E}_{0}, \bar{B}_{0}\right\}$ are simple and $\left\{\left(\bar{E}+\bar{E}_{0}\right)_{0},\left.\frac{\partial\left(\bar{E}+\bar{E}_{0}\right)}{\partial t}\right|_{0},\left(\bar{B}_{0}\right)_{0},\left.\frac{\partial \bar{B}_{0}}{\partial t}\right|_{0}\right\} \subset$ $S\left(\mathcal{R}^{3}\right)$, satisfies the strong no-radiation condition, using the integral representation in Lemma 0.4, when;

$$
\bar{a}(\bar{k}, t) \times \overline{a^{\prime}}(\bar{l}, t)=\overline{0}(\dagger)
$$

or when \bar{B}_{0} is parallel to $\bar{E}+\bar{E}_{0}$. In either of these cases, the no radiation condition holds as well.

If $\left\{\bar{E}, \bar{E}_{0}, \bar{B}_{0}\right\}$ are simple, then $\left\{\bar{E}+\bar{E}_{0}, \bar{B}_{0}\right\}$ satisfies the no-radiation condition when...?

Proof. Using the result of Lemma 0.4, we can use the integral representations of $\bar{E}+\bar{E}_{0}$ and \bar{B}_{0} to compute;

$$
\begin{aligned}
& \left(\left(\bar{E}+\bar{E}_{0}\right) \times \bar{B}_{0}\right)(\bar{x}, t) \\
& =\frac{1}{(2 \pi)^{3}} \int_{\mathcal{R}^{6}}\left(\bar{b}(\bar{k}) \times \overline{b^{\prime}}(\bar{l})\right) e^{i(\bar{k}+\bar{l}) \cdot \bar{x}} e^{i(k+l) c t} d \bar{k} d \bar{l} \\
& +\frac{1}{(2 \pi)^{3}} \int_{\mathcal{R}^{6}}\left(\bar{b}(\bar{k}) \times \overline{d^{\prime}}(\bar{l})\right) e^{i(\bar{k}+\bar{l}) \cdot \bar{x}} e^{i(k-l) c t} d \bar{k} d \bar{l} \\
& +\frac{1}{(2 \pi)^{3}} \int_{\mathcal{R}^{6}}\left(\bar{d}(\bar{k}) \times \overline{b^{\prime}}(\bar{l})\right) e^{i(\bar{k}+\bar{l}) \cdot \bar{x}} e^{i(l-k) c t} d \bar{k} d \bar{l}
\end{aligned}
$$

SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 5: NO RADIATION OF LIGHT

$$
+\frac{1}{(2 \pi)^{3}} \int_{\mathcal{R}^{6}}\left(\bar{d}(\bar{k}) \times \overline{d^{\prime}}(\bar{l})\right) e^{i(\bar{k}+\bar{l}) \cdot \bar{x}} e^{-i(k+l) c t} d \bar{k} d \bar{l},(\dagger \dagger)
$$

Clearly, if (\dagger) is satisfied, then we obtain that $\left(\bar{E}+\bar{E}_{0}\right) \times \bar{B}_{0}=\overline{0}$, so that $\nabla \cdot\left(\left(\bar{E}+\bar{E}_{0}\right) \times \bar{B}_{0}\right)=0$, and using the divergence theorem, $P(r, t)=0$ for all $r>0$ and $t \in \mathcal{R}_{\geq 0}$, and $\lim _{r \rightarrow \infty} P(r, t)=0$, for all $t \in \mathcal{R}_{\geq 0}$, so that the strong no radiation and no radiation conditions hold. Similarly, if \bar{B}_{0} is parallel to $\bar{E}+\bar{E}_{0}$, then $\left(\bar{E}+\bar{E}_{0}\right) \times \bar{B}_{0}=\overline{0}$, so that $\left(\left(\bar{E}+\bar{E}_{0}\right), \bar{B}_{0}\right)$ satisfies the strong no radiation and the no radiation conditions again.

If $\left\{\bar{E}, \bar{E}_{0}, \bar{B}_{0}\right\}$ are simple, then, we have that;

$$
\mathcal{F}\left(\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}\right)^{2}\left(\bar{E}+\bar{E}_{0}\right)\right)(\bar{k}, t)=\left(k_{1}^{2}+k_{2}^{2}+k_{3}^{2}\right)^{2} \mathcal{F}\left(\bar{E}+\bar{E}_{0}\right)(\bar{k}, t)
$$

so that, for $|\bar{k}| \geq 1, \leq i \leq 3$;

$$
\begin{aligned}
& \left|\mathcal{F}\left(\bar{E}+\bar{E}_{0}\right)_{i}(\bar{k}, t)\right| \leq \frac{1}{|\bar{k}|^{4}} \int_{\mathcal{R}^{3}}\left|\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}\right)\left(\bar{E}+\bar{E}_{0}\right)_{i}\right| d \bar{x} \\
& \leq \frac{C_{i, t}}{|\bar{k}|^{4}}
\end{aligned}
$$

and, similarly;

$$
\left|\mathcal{F}\left(\bar{B}_{0}\right)_{i}(\bar{k}, t)\right| \leq \frac{D_{i, t}}{|\overline{\mid k}|^{4}}
$$

where $\left\{C_{i, t}, D_{i, t}\right\} \subset \mathcal{R}_{\geq 0}$
Similarly;

$$
\begin{aligned}
& \left|\mathcal{F}\left(\bar{E}+\bar{E}_{0}\right)(\bar{k}, t)\right| \\
& \leq \sum_{i=1}^{3}\left|\mathcal{F}\left(\bar{E}+\bar{E}_{0}\right)_{i}(\bar{k}, t)\right| \\
& \leq \frac{C_{t}}{|\bar{k}|^{4}}
\end{aligned}
$$

where $C_{t}=\sum_{i=1}^{3} C_{i, t}$
and $\left|\mathcal{F}\left(\bar{B}_{0}\right)(\bar{k}, t)\right|$
$\leq \frac{D_{t}}{|\bar{k}|^{4}}(\sharp)$

Clearly, we have that $\mathcal{F}\left(\bar{E}+\bar{E}_{0}\right)(\bar{k}, t)$ and $\mathcal{F}\left(\bar{B}_{0}\right)(\bar{k}, t)$ are differentiable and therefore bounded on $B(\overline{0}, 1)$, so that, using polar coordinates, with $k_{1}=R \sin (\theta) \cos (\phi), k_{2}=R \sin (\theta) \sin (\phi), k_{3}=R \cos (\theta)$;

$$
\begin{aligned}
& \left|\int_{\mathcal{R}^{3}} \mathcal{F}\left(\bar{E}+\bar{E}_{0}\right)_{i, t} d \bar{k}\right| \\
& =\left|\int_{B(\overline{0}, 1)} \mathcal{F}\left(\bar{E}+\bar{E}_{0}\right)_{i, t} d \bar{k}+\int_{\mathcal{R}^{3} \backslash B(\overline{0}, 1)} \mathcal{F}\left(\bar{E}+\bar{E}_{0}\right)_{i, t} d \bar{k}\right| \\
& \leq C_{i, t, 1}+\mid \int_{R>1} \int_{0}^{\pi} \int_{-\pi}^{\pi} \mathcal{F}\left(\bar{E}+\bar{E}_{0}\right)_{i, t}(R, \theta, \phi) R^{2} \sin (\theta) d R d \theta d \phi \\
& \leq C_{i, t, 1}+\int_{R>1} \int_{0}^{\pi} \int_{-\pi}^{\pi} R^{2} \frac{C_{i, t}}{R^{4}} d R \\
& \leq C_{i, t, 1}+2 \pi^{2} C_{i, t} \int_{1}^{\infty} \frac{1}{R^{2}} d R \\
& =C_{i, t, 1}+2 \pi^{2} C_{i, t}
\end{aligned}
$$

so that, for $1 \leq i \leq 3, \mathcal{F}\left(\bar{E}+\bar{E}_{0}\right)_{i, t} \in L^{1}\left(\mathcal{R}^{3}\right)$, and, similarly, $\mathcal{F}\left(\bar{B}_{0}\right)_{i, t} \in L^{1}\left(\mathcal{R}^{3}\right)$. Following the proof of Lemma 0.4 , we can still use the inversion theorem integral and the integral representations for $\left(\left(\bar{E}+\bar{E}_{0}\right), \bar{B}_{0}\right)$, and the computation ($\left.\dagger \dagger\right)$ holds again. We have, using polar coordinates, that;

$$
\begin{aligned}
& \left|\int_{B(\overline{0}, 1)} \frac{1}{i k c} \mathcal{F}\left(\left.\frac{\partial \bar{E}+\bar{E}_{0, i}}{\partial t}\right|_{\bar{x}, 0}\right)(\bar{k}) d \bar{k}\right| \\
& \leq \int_{0}^{1} \int_{0}^{\pi} \int_{-\pi}^{\pi}\left|\mathcal{F}\left(\left.\frac{\partial \bar{E}+\bar{E}_{0, i}}{\partial t}\right|_{\bar{x}, 0}\right)(R, \theta, \phi)\right| \frac{1}{R} R^{2} d R d \theta \mathrm{p} h i \\
& =\frac{2 \pi^{2}}{2}=\pi^{2}
\end{aligned}
$$

so that the components, $\frac{1}{i k c} \mathcal{F}\left(\left.\frac{\partial \bar{E}+\bar{E}_{0, i}}{\partial t}\right|_{\bar{x}, 0}\right)(\bar{k})$ for $1 \leq i \leq 3$, are integrable on $B(\overline{0}, 1)$, and, therefore, so are the components of $\left\{\bar{b}, \bar{b}^{\prime}, \bar{d}, \bar{d}^{\prime}\right\}$.

Applying the result (\sharp), we obtain that, for $\bar{k} \mid>1$;

$$
\begin{aligned}
& |\bar{b}(\bar{k})+\bar{d}(\bar{k})| \leq \frac{C_{0}}{|\bar{k}|^{4}} \\
& \left|e^{i k c t} \bar{b}(\bar{k})+e^{i k c t} \bar{d}(\bar{k})\right| \leq \frac{C_{0}}{|\bar{k}|^{4}} \\
& \left|e^{i k c t} \bar{b}(\bar{k})+e^{-i k c t} \bar{d}(\bar{k})\right| \leq \frac{C_{t}}{|\bar{k}|^{4}} \\
& \left|\left(e^{i k c t}-e^{-i k c t}\right) \bar{d}(\bar{k})\right|
\end{aligned}
$$

SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 5: NO RADIATION OF LIGH?

$$
\begin{aligned}
& =2|\sin (k c t) \bar{d}(\bar{k})| \\
& \leq \frac{C_{0}+C_{t}}{|k|^{4}}
\end{aligned}
$$

so that at time $t=\frac{\pi}{2 k c}$, we have that;

$$
\begin{aligned}
& |\bar{d}(\bar{k})| \leq \frac{C_{0}+C_{\frac{\pi}{2}}}{|k|^{4}} \\
& \leq \frac{C_{0}+E}{|k|^{4}}
\end{aligned}
$$

where $E \in \mathcal{R}_{>0}$ is the uniform bound for $t \in[0,1]$, and, similarly, for $|\bar{k}|>1$;

$$
\max \left(|\bar{b}|,\left|\bar{b}^{\prime}\right|,|\bar{d}|,\left|\bar{d}^{\prime}\right|\right)(\bar{k}) \leq \frac{F}{|k|^{4}}
$$

for some $F \in \mathcal{R}_{>0}$. In particularly, we have that the components $\left\{\bar{b}, \bar{b}^{\prime}, \bar{d}, \bar{d}^{\prime}\right\}$ belong to $L^{1}\left(\bar{R}^{3}\right)$ and we can apply the calculation in ($\left.\dagger \dagger\right)$.

By the divergence theorem, we have that;

$$
\begin{aligned}
& \int_{S(\overline{0}, r)}\left(\bar{b}(\bar{k}) \times \overline{d^{\prime}}(\bar{l})\right) e^{i(\bar{k}+\bar{l}) \cdot \bar{x}} e^{i(k-l) c t} d \bar{S}(r) \\
& =\int_{B(\overline{0}, r)} \nabla \cdot\left(\left(\bar{b}(\bar{k}) \times \overline{d^{\prime}}(\bar{l})\right) e^{i(\bar{k}+\bar{l}) \cdot \bar{x}} e^{i(k-l) c t}\right) d B(r) \\
& =\int_{B(\overline{0}, r)}\left(\left(\bar{b}(\bar{k}) \times \overline{d^{\prime}}(\bar{l})\right) \cdot i(\bar{k}+\bar{l})\right) e^{i(\bar{k}+\bar{l}) \cdot \bar{x}} e^{i(k-l) c t} d B(r) \\
& =\left(\left(\bar{b}(\bar{k}) \times \overline{d^{\prime}}(\bar{l})\right) \cdot i(\bar{k}+\bar{l})\right)\left(\frac{2 \pi r}{|\bar{k}+\bar{l}|}\right)^{\frac{3}{2}} J_{\frac{3}{2}}(r|\bar{k}+\bar{l}|) e^{i(k-l) c t} \\
& =\left(\left(\bar{b}(\bar{k}) \times \overline{d^{\prime}}(\bar{l})\right) \cdot i(\bar{k}+\bar{l})\right)\left(\frac{2 \pi r}{|\bar{k}+\bar{l}|}\right)^{\frac{3}{2}}\left(\frac{2}{\pi(r|\bar{k}+\bar{l}|)}\right)^{\frac{1}{2}}\left(P_{1}\left(\frac{1}{r|\bar{k}+\bar{l}|}\right) \sin (r|\bar{k}+\bar{l}|)\right. \\
& \left.-Q_{0}\left(\frac{1}{r|\bar{k}+\bar{l}|}\right) \cos (r|\bar{k}+\bar{l}|)\right) e^{i(k-l) c t} \\
& =\left(\left(\bar{b}(\bar{k}) \times \overline{d^{\prime}}(\bar{l})\right) \cdot i(\bar{k}+\bar{l})\right)\left(\frac{2 \pi r}{|\bar{k}+\bar{l}|}\right)^{\frac{3}{2}}\left(\frac{2}{\pi(r|\bar{k}+\bar{l}|)}\right)^{\frac{1}{2}} \frac{P_{1,1}}{r|\bar{k}+\bar{l}|} \sin (r|\bar{k}+\bar{l}|) \\
& \left.-Q_{0,0} \cos (r|\bar{k}+\bar{l}|)\right) e^{i(k-l) c t} \\
& =\left(\left(\bar{b}(\bar{k}) \times \overline{d^{\prime}}(\bar{l})\right) \cdot i(\bar{k}+\bar{l})\right)\left(\frac{2 \pi}{|\bar{k}+\bar{l}|}\right)^{\frac{3}{2}}\left(\frac{2}{\pi(|\bar{k}+\bar{l}|)}\right) \frac{1}{2} \frac{P_{1,1}}{|\bar{k}+\bar{l}|} \sin (r|\bar{k}+\bar{l}|) e^{i(k-l) c t} \\
& \left.-\left(\left(\bar{b}(\bar{k}) \times \overline{d^{\prime}}(\bar{l})\right) \cdot i(\bar{k}+\bar{l})\right)\left(\frac{2 \pi}{|\bar{k}+\bar{l}|}\right) \frac{3}{2}\left(\frac{2}{\pi(|\bar{k}+\bar{l}|)}\right)^{\frac{1}{2}} Q_{0,0} r \cos (r|\bar{k}+\bar{l}|)\right) e^{i(k-l) c t}(*)
\end{aligned}
$$

By (*), we have that;

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} P(r)=\frac{1}{(2 \pi)^{3}} \lim _{r \rightarrow \infty} \int_{\mathcal{R}^{6}}\left(\left(\bar{b}(\bar{k}) \times \overline{d^{\prime}}(\bar{l})\right) \cdot i(\bar{k}+\bar{l})\right)\left(\frac{2 \pi}{|\bar{k}+\bar{l}|}\right)^{\frac{3}{2}}\left(\frac{2}{\pi(|\bar{k}+\bar{l}|)}\right)^{\frac{1}{2}} \frac{P_{1,1}}{|\bar{k}+\bar{l}|} \\
& \sin (r|\bar{k}+\bar{l}|) e^{i(k-l) c t} d \bar{k} d \bar{l} \\
& -\frac{1}{(2 \pi)^{3}} \lim _{r \rightarrow \infty} \int_{\mathcal{R}^{6}}\left(\left(\bar{b}(\bar{k}) \times \overline{d^{\prime}}(\bar{l})\right) \cdot i(\bar{k}+\bar{l})\right)\left(\frac{2 \pi}{|\bar{k}+\bar{l}|}\right)^{\frac{3}{2}}\left(\frac{2}{\pi(|\bar{k}+\bar{l}|)}\right)^{\frac{1}{2}} Q_{0,0} \\
& r \cos (r|\bar{k}+\bar{l}|)) e^{i(k-l) c t} d \bar{k} d \bar{l}
\end{aligned}
$$

Let $\left.g(\bar{k}, \bar{l}, t)=\frac{1}{(2 \pi)^{3}}\left(\bar{b}(\bar{k}) \times \overline{d^{\prime}}(\bar{l})\right) \cdot i(\bar{k}+\bar{l})\right)\left(\frac{2 \pi}{|\bar{k}+\bar{l}|}\right)^{\frac{3}{2}}\left(\frac{2}{\pi(|\bar{k}+\bar{l}|)}\right)^{\frac{1}{2}} \frac{P_{1,1}}{|\bar{k}+\bar{l}|} e^{i(k-l) c t}$ and $h(\bar{k}, \bar{l}, t)=-\frac{1}{(2 \pi)^{3}}\left(\bar{b}(\bar{k}) \times \overline{d^{\prime}}(\bar{l})\right) \cdot i(\bar{k}+\bar{l})\left(\frac{2 \pi}{\mid \bar{k}+\bar{l}}\right)^{\frac{3}{2}}\left(\frac{2}{\pi(|\bar{k}+\bar{l}|)}\right)^{\frac{1}{2}} Q_{0,0} e^{i(k-l) c t}$ $(* * *)$

Then $\{g, h\} \subset S\left(\mathcal{R}^{3} \times \mathcal{R}_{>0}\right)$ and, we have that;

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} P(r, t) \\
& =\lim _{r \rightarrow \infty} \int_{\mathcal{R}^{6}} g(\bar{k}, \bar{l}, t) d \bar{k} \sin (r|\bar{k}+\bar{l}|) d \bar{l} \\
& +\lim _{r \rightarrow \infty} r \int_{\mathcal{R}^{6}} h(\bar{k}, \bar{l}, t) d \bar{k} \cos (r|\bar{k}+\bar{l}|) d \bar{l}
\end{aligned}
$$

From $(* * *)$, we have that;
$g(\bar{k}, \bar{l}, t)=\frac{i P_{1,1}}{2 \pi^{2}}\left(\bar{b}(\bar{k}) \times \bar{d}^{\prime}(\bar{l})\right) \cdot \frac{\bar{u}(\bar{k}, \bar{l})}{\mid \bar{k}+\overline{l^{2}}} e^{i(k-l) c t}$
where $\bar{u}(\bar{k}, \bar{l})$ is a unit vector, so that, using Fubini's Theorem, and a change of variables $\bar{k}^{\prime}=\bar{k}+\bar{l}$, we have;

$$
\begin{aligned}
& \int_{\mathcal{R}^{6}}\left(g(\bar{k}, \bar{l}, t) e^{i(r|\bar{k}+\bar{l}|)} d \bar{k} d \bar{l}\right. \\
& =\int_{\mathcal{R}^{6}} \frac{i P_{1,1}\left(\bar{b}\left(\bar{b}(\bar{k}) \times \bar{d}^{\prime}(\bar{l})\right) \cdot \frac{\bar{u}(\bar{k}, \bar{l})}{2 \bar{k}+\left.\bar{l}\right|^{2}} e^{i(k-l) c t} e^{i(r|\bar{k}+\bar{l}|)} d \bar{k} d \bar{l}\right.}{=\int_{\mathcal{R}^{6}} \frac{\bar{\phi}(\bar{k}, \bar{l}, t)}{|\bar{k}+\bar{l}|^{2}} e^{i(r|\bar{k}+\bar{l}|)} d \bar{k} d \bar{l}} \\
& =\int_{\mathcal{R}^{3}}\left(\int_{\mathcal{R}^{3}} \frac{\phi(\bar{k}, \bar{l}, t)}{|\bar{k}+\bar{l}|^{2}} e^{i(r|\bar{k}+\bar{l}|)} d \bar{k}\right) d \bar{l} \\
& =\int_{\mathcal{R}^{3}}\left(\int_{\mathcal{R}^{3}} \frac{\phi\left(\bar{k}^{\prime}-\bar{l} \bar{l}, t\right)}{|\bar{k}|^{2}} e^{i\left(r| |_{k}^{\prime} \mid\right)} d \bar{k}^{\prime}\right) d \bar{l} \\
& =\int_{\mathcal{R}^{3}}\left(\int_{\mathcal{R}^{3}} \frac{\phi(\bar{k}-\bar{l}, \bar{l}, t)}{|\bar{k}|^{2}} e^{i(r|\bar{k}|)} d \bar{k}\right) d \bar{l}
\end{aligned}
$$

SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 5: NO RADIATION OF LIGHIT where $\phi(\bar{k}, \bar{l}, t)=\frac{i P_{1,1}}{2 \pi^{2}}\left(\bar{b}(\bar{k}) \times \bar{d}^{\prime}(\bar{l})\right) \cdot \bar{u}(\bar{k}, \bar{l}) e^{i(k-l) c t}$

It follows, switching to polars coordinates;

$$
k_{1}=R \sin (\theta) \cos (\phi), k_{2}=R \sin (\theta) \sin (\phi), k_{3}=R \cos (\theta)
$$

that;

$$
\begin{aligned}
& \int_{\mathcal{R}^{6}}\left(g(\bar{k}, \bar{l}, t) e^{i(r|\bar{k}+\bar{l}|)} d \bar{k} d \bar{l} d \bar{k}\right. \\
& =\int_{\mathcal{R}^{3}}\left(\int_{\mathcal{R}>0} \int_{0 \leq \theta<\pi} \int_{0 \leq \phi \leq 2 \pi} \frac{q(R, \theta, \phi, t, \bar{l})}{R^{2}} e^{i r R} R^{2} \sin (\theta) d R d \theta\right) d \bar{l} \\
& =\int_{\mathcal{R}^{3}}\left(\int_{\mathcal{R}_{>0}} \int_{0 \leq \theta<\pi} \int_{0 \leq \phi \leq 2 \pi} q(R, \theta, \phi, t, \bar{l}) e^{i r R} \sin (\theta) d R d \theta\right) d \bar{l}(2)
\end{aligned}
$$

where $q(R, \theta, \phi, t, \bar{l})=\phi(\bar{k}-\bar{l}, \bar{l}, t)$.
From $(* * *)$ again, we have that;

$$
h(\bar{k}, \bar{l}, t)=\frac{-i Q_{0,0}}{2 \pi^{2}}\left(\bar{b}(\bar{k}) \times \bar{d}^{\prime}(\bar{l})\right) \cdot \frac{\bar{u}(\bar{k}, \bar{l})}{|\bar{k}+\bar{l}|} e^{i(k-l) c t}
$$

where $\bar{u}(\bar{k}, \bar{l})$ is a unit vector, so that, using Fubini's Theorem, and a change of variables $\bar{k}^{\prime}=\bar{k}+\bar{l}$, we have;

$$
\begin{aligned}
& \int_{\mathcal{R}^{6}}\left(h(\bar{k}, \bar{l}, t) e^{i(r|\bar{k}+\bar{l}|)} d \bar{k} d \bar{l}\right. \\
& =\int_{\mathcal{R}^{6}} \frac{-i Q_{0,0}}{2 \pi^{2}}\left(\bar{b}(\bar{k}) \times \bar{d}^{\prime}(\bar{l})\right) \cdot \frac{\bar{u}(\bar{k}, \bar{l})}{|\bar{k}+\bar{l}|} e^{i(k-l) c t} e^{i(r|\bar{k}+\bar{l}|)} d \bar{k} d \bar{l} \\
& =\int_{\mathcal{R}^{6}} \frac{\bar{\theta}(\bar{k}, \bar{l}, t)}{|\bar{k}+\bar{l}|} e^{i(r|\bar{k}+\bar{l}|)} d \bar{k} d \bar{l} \\
& =\int_{\mathcal{R}^{3}}\left(\int_{\mathcal{R}^{3}} \frac{\theta(\bar{k}, \bar{l}, t)}{|\bar{k}+\bar{l}|} e^{i(r|\bar{k}+\bar{l}|)} d \bar{k}\right) d \bar{l} \\
& =\int_{\mathcal{R}^{3}}\left(\int_{\mathcal{R}^{3}} \frac{\theta\left(\bar{k}^{\prime}-\bar{l}, \bar{l}, t\right)}{\left|\bar{k}^{\prime}\right|} e^{i\left(r\left|\bar{k}^{\prime}\right|\right)} d \bar{k}^{\prime}\right) d \bar{l} \\
& =\int_{\mathcal{R}^{3}}\left(\int_{\mathcal{R}^{3}} \frac{\theta(\bar{k}-\bar{l}, \bar{l}, t)}{|\bar{k}|} e^{i(r|\bar{k}|)} d \bar{k}\right) d \bar{l}
\end{aligned}
$$

where $\theta(\bar{k}, \bar{l}, t)=\frac{-i Q_{0,0}}{2 \pi^{2}}\left(\bar{b}(\bar{k}) \times \bar{d}^{\prime}(\bar{l})\right) \cdot \bar{u}(\bar{k}, \bar{l}) e^{i(k-l) c t}$
It follows, switching to polars coordinates;
$k_{1}=R \sin (\theta) \cos (\phi), k_{2}=R \sin (\theta) \sin (\phi), k_{3}=R \cos (\theta)$
that;

$$
\begin{align*}
& \int_{\mathcal{R}^{6}}\left(h(\bar{k}, \bar{l}, t) e^{i(r|\bar{k}+\bar{l}|)} d \bar{k} d \bar{l} d \bar{k}\right. \\
& =\int_{\mathcal{R}^{3}}\left(\int_{\mathcal{R}>0} \int_{0 \leq \theta<\pi} \int_{0 \leq \phi \leq 2 \pi} \frac{p(R, \theta, \phi, t, \bar{l})}{R} e^{i r R} R^{2} \sin (\theta) d R d \theta\right) d \bar{l} \\
& =\int_{\mathcal{R}^{3}}\left(\int_{\mathcal{R}>0} \int_{0 \leq \theta<\pi} \int_{0 \leq \phi \leq 2 \pi} p(R, \theta, \phi, t, \bar{l}) e^{i r R} R \sin (\theta) d R d \theta\right) d \bar{l} \tag{3}
\end{align*}
$$

where $p(R, \theta, \phi, t, \bar{l})=\theta(\bar{k}-\bar{l}, \bar{l}, t)$.
Write $\bar{b}(\bar{k})=\bar{b}_{1}(\bar{k})+i \bar{b}_{2}(\bar{k}), \bar{d}^{\prime}(\bar{l})=\bar{d}_{1}^{\prime}(\bar{l})+i \bar{d}_{2}^{\prime}(\bar{l})$
where;

$$
\begin{aligned}
& \bar{b}_{1}(\bar{k})=\frac{1}{2} \operatorname{Re}\left(\left.\mathcal{F}\left(\left.\left(\bar{E}+\bar{E}_{0}\right)\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{k}, 0)}\right)+\frac{1}{2 k c} \operatorname{Im}\left(\left.\mathcal{F}\left(\left.\frac{\partial\left(\bar{E}+\bar{E}_{0}\right)}{\partial t}\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{k}, 0)}\right) \\
& \bar{b}_{2}(\bar{k})=\frac{1}{2} \operatorname{Im}\left(\left.\mathcal{F}\left(\left.\left(\bar{E}+\bar{E}_{0}\right)\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{k}, 0)}\right)-\frac{1}{2 k c} \operatorname{Re}\left(\left.\mathcal{F}\left(\left.\frac{\partial\left(\bar{E}+\bar{E}_{0}\right)}{\partial t}\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{k}, 0)}\right) \\
& \bar{d}_{1}^{\prime}(\bar{l})=\frac{1}{2} \operatorname{Re}\left(\left.\mathcal{F}\left(\left.\left(\bar{B}_{0}\right)\right|_{(\bar{x}, 0)}\right)\right|_{(\overline{(}, 0)}\right)-\frac{1}{2 l c} \operatorname{Im}\left(\left.\mathcal{F}\left(\left.\frac{\partial\left(\bar{B}_{0}\right)}{\partial t}\right|_{(\bar{x}, 0)}\right)\right|_{(\overline{(}, 0)}\right) \\
& \bar{d}_{2}^{\prime}(\bar{l})=\frac{1}{2} \operatorname{Im}\left(\left.\mathcal{F}\left(\left.\left(\bar{B}_{0}\right)\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{l}, 0)}\right)+\frac{1}{2 l c} \operatorname{Re}\left(\left.\mathcal{F}\left(\left.\frac{\partial\left(\bar{B}_{0}\right)}{\partial t}\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{l}, 0)}\right)
\end{aligned}
$$

We have that;
$q(R, \theta, \phi, t, \bar{l})$

$$
\begin{align*}
& =\frac{i P_{1,1}}{2 \pi^{2}}\left[\left(\bar{b}_{1, \bar{l}}(R, \theta, \phi) \times \bar{d}_{1}^{\prime}(\bar{l})-\bar{b}_{2, \bar{l}}(R, \theta, \phi) \times \bar{d}_{2}^{\prime}(\bar{l})\right)\right. \\
& \left.. \bar{u}_{\bar{l}}(R, \theta, \phi, \bar{l})\right] \mu(R, \theta, \phi, \bar{l}, t) \\
& -\frac{P_{1,1}}{2 \pi^{2}}\left[\left(\bar{b}_{2, \bar{l}}(R, \theta, \phi) \times \bar{d}_{1}^{\prime}(\bar{l})+\bar{b}_{1, \bar{l}}(R, \theta, \phi) \times \bar{d}_{2}^{\prime}(\bar{l})\right)\right. \\
& \left.. \bar{u}_{\bar{l}}(R, \theta, \phi, \bar{l})\right] \mu(R, \theta, \phi, \bar{l}, t) \tag{1}
\end{align*}
$$

and, similarly;
$p(R, \theta, \phi, t, \bar{l})$
$=\frac{-i Q_{0,0}}{2 \pi^{2}}\left[\left(\bar{b}_{1, \bar{l}}(R, \theta, \phi) \times \bar{d}_{1}^{\prime}(\bar{l})-\bar{b}_{2, \bar{l}}(R, \theta, \phi) \times \bar{d}_{2}^{\prime}(\bar{l})\right)\right.$

SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 5: NO RADIATION OF LIGHIB

$$
\begin{aligned}
& \left.. \bar{u}_{\bar{l}}(R, \theta, \phi, \bar{l})\right] \mu(R, \theta, \phi, \bar{l}, t) \\
& +\frac{Q_{0,0}}{2 \pi^{2}}\left[\left(\bar{b}_{2, \bar{l}}(R, \theta, \phi) \times \bar{d}_{1}^{\prime}(\bar{l})+\bar{b}_{1, \bar{l}}(R, \theta, \phi) \times \bar{d}_{2}^{\prime}(\bar{l})\right)\right. \\
& \left.. \bar{u}_{\bar{l}}(R, \theta, \phi, \bar{l})\right] \mu(R, \theta, \phi, \bar{l}, t)
\end{aligned}
$$

where $\bar{b}_{1, \bar{l}}(\bar{k})=\bar{b}_{1}(\bar{k}-\bar{l}), \bar{b}_{2, \bar{l}}(\bar{k})=\bar{b}_{2}(\bar{k}-\bar{l}), \bar{u}_{\bar{l}}(\bar{k}, \bar{l})=\bar{u}(\bar{k}-\bar{l}, \bar{l})$, $\mu(\bar{k}, \bar{l}, t)=e^{i(|\bar{k}-\bar{l}|-|\bar{l}|) c t}$
and, from (1), (2), we have that;
$\int_{\mathcal{R}^{6}} g(\bar{k}, \bar{l}, t) e^{i(r|\bar{k}+\bar{l}|)} d \bar{k} d \bar{l}$
$=\int_{\mathcal{R}^{3}}\left(\int_{\mathcal{R}>0} \int_{0 \leq \theta<\pi} \int_{0 \leq \phi \leq 2 \pi} \frac{i P_{1,1}}{2 \pi^{2}}\left[\left(\bar{b}_{1, \bar{l}}(R, \theta, \phi) \times \bar{d}_{1}^{\prime}(\bar{l})-\bar{b}_{2, \bar{l}}(R, \theta, \phi)\right.\right.\right.$
$\left.\left.\times \bar{d}_{2}^{\prime}(\bar{l})\right) \cdot \bar{u}_{\bar{l}}(R, \theta, \phi, \bar{l})\right] \mu(R, \theta, \phi, \bar{l}, t)-\frac{P_{1,1}}{2 \pi^{2}}\left[\left(\bar{b}_{2, \bar{l}}(R, \theta, \phi) \times \bar{d}_{1}^{\prime}(\bar{l})+\bar{b}_{1, \bar{l}}(R, \theta, \phi)\right.\right.$
$\left.\left.\left.\times \bar{d}_{2}^{\prime}(\bar{l})\right) \cdot \bar{u}_{\bar{l}}(R, \theta, \phi, \bar{l})\right] \mu(R, \theta, \phi, \bar{l}, t) e^{i r R} \sin (\theta) d R d \theta\right) d \bar{l}$
and, from (4), (3);
$\int_{\mathcal{R}^{6}} h(\bar{k}, \bar{l}, t) e^{i(r|\bar{k}+\bar{l}|)} d \bar{k} d \bar{l}$
$=\int_{\mathcal{R}^{3}}\left(\int_{\mathcal{R}>0} \int_{0 \leq \theta<\pi} \int_{0 \leq \phi \leq 2 \pi} \frac{-i Q_{0,0}}{2 \pi^{2}}\left[\left(\bar{b}_{1, \bar{l}}(R, \theta, \phi) \times \bar{d}_{1}^{\prime}(\bar{l})-\bar{b}_{2, \bar{l}}(R, \theta, \phi)\right.\right.\right.$
$\left.\left.\times \bar{d}_{2}^{\prime}(\bar{l})\right) \cdot \bar{u}_{\bar{l}}(R, \theta, \phi, \bar{l})\right] \mu(R, \theta, \phi, \bar{l}, t)+\frac{Q_{0,0}}{2 \pi^{2}}\left[\left(\bar{b}_{2, \bar{l}}(R, \theta, \phi) \times \bar{d}_{1}^{\prime}(\bar{l})+\bar{b}_{1, \bar{l}}(R, \theta, \phi)\right.\right.$
$\left.\left.\left.\times \bar{d}_{2}^{\prime}(\bar{l})\right) \cdot \bar{u}_{\bar{l}}(R, \theta, \phi, \bar{l})\right] \mu(R, \theta, \phi, \bar{l}, t) e^{i r R} R \sin (\theta) d R d \theta d \phi\right) d \bar{l}$
Write $\bar{b}_{1}(\bar{k})=\bar{b}_{11}(\bar{k})+\frac{\bar{b}_{12}(\bar{k})}{k}, \bar{d}_{1}^{\prime}(\bar{l})=\bar{d}_{11}^{\prime}(\bar{l})+\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}$
Then;
$\bar{b}_{1, \bar{l}}(\bar{k})=\bar{b}_{1}(\bar{k}-\bar{l})=\bar{b}_{11}(\bar{k}-\bar{l})+\frac{\bar{b}_{12}(\bar{k}-\bar{l})}{|\bar{k}-\bar{l}|}$
and;
$\bar{b}_{1, \bar{l}}(R, \theta, \phi)=\bar{b}_{11, \bar{l}}(R, \theta, \phi)+\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}$
where $\bar{b}_{11, \bar{l}}(\bar{k})=\bar{b}_{11}(\bar{k}-\bar{l})$ and $\bar{b}_{12, \bar{l}}(\bar{k})=\bar{b}_{12}(\bar{k}-\bar{l})$

Then, we have that;

$$
\begin{aligned}
& \left.\int_{\mathcal{R}^{3}}\left(\int_{\mathcal{R}_{>0}} \int_{0 \leq \theta<\pi} \int_{0 \leq \phi \leq 2 \pi} \frac{i P_{1,1}}{2 \pi^{2}}\left[\bar{b}_{1, \bar{l}}(R, \theta, \phi) \times \bar{d}_{1}^{\prime}(\bar{l})\right) \cdot \bar{u}_{\bar{l}}(R, \theta, \phi, \bar{l})\right] \mu(R, \theta, \phi, \bar{l}, t) e^{i r R} \sin (\theta) d R d \theta d \phi\right) \dot{d} \\
& =\int_{\mathcal{R}^{3}}\left(\int _ { \mathcal { R } > 0 } \int _ { 0 \leq \theta < \pi } \int _ { 0 \leq \phi \leq 2 \pi } \frac { i P _ { 1 , 1 } } { 2 \pi ^ { 2 } } \left[\left(\bar{b}_{11, \bar{l}}(R, \theta, \phi)+\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{\|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l} \mid}\right)\right.\right. \\
& \left.\left.\left.\times\left(\bar{d}_{11}^{\prime}(\bar{l})+\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right)\right] \cdot \bar{u}_{\bar{l}}(R, \theta, \phi, \bar{l})\right] \mu(R, \theta, \phi, \bar{l}, t) e^{i r R} \sin (\theta) d R d \theta d \phi\right) d \bar{l}
\end{aligned}
$$

and, we have that;
$\int_{\mathcal{R}^{3}}\left(\int_{\mathcal{R}>0} \int_{0 \leq \theta<\pi} \int_{0 \leq \phi \leq 2 \pi} \frac{-i Q_{0,0}}{2 \pi^{2}}\left[\left(\bar{b}_{1, \bar{l}}(R, \theta, \phi) \times \bar{d}_{1}^{\prime}(\bar{l})\right) \cdot \bar{u}_{\bar{l}}(R, \theta, \phi, \bar{l})\right] \mu(R, \theta, \phi, \bar{l}, t) e^{i r R} R \sin (\theta)\right.$
$d R d \theta d \phi) d \bar{l}$

$$
\begin{aligned}
& =\int_{\mathcal{R}^{3}}\left(\int _ { \mathcal { R } > 0 } \int _ { 0 \leq \theta < \pi } \int _ { 0 \leq \phi \leq 2 \pi } \frac { - i Q _ { 0 , 0 } } { 2 \pi ^ { 2 } } \left[\left(\bar{b}_{11, \bar{l}}(R, \theta, \phi)+\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\right)\right.\right. \\
& \left.\left.\left.\times\left(\bar{d}_{11}^{\prime}(\bar{l})+\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right)\right] \cdot \bar{u}_{\bar{l}}(R, \theta, \phi, \bar{l})\right] \mu(R, \theta, \phi, \bar{l}, t) e^{i r R} R \sin (\theta) d R d \theta d \phi\right) d \bar{l}
\end{aligned}
$$

From (\sharp), we have that the real and imaginary components of;

$$
\left\{\left.\mathcal{F}\left(\left.\left(\bar{B}_{0}\right)\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{l}, 0)},\left.\mathcal{F}\left(\left.\left(\bar{E}+\bar{E}_{0}\right)\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{l}, 0)},\left.\mathcal{F}\left(\left.\left(\left.\frac{\partial \bar{B}_{0}}{\partial t}\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{l}, 0)},\left.\mathcal{F}\left(\frac{\partial\left(\bar{E}+\bar{E}_{0}\right)}{\partial t}\right)\right|_{(\bar{x}, 0)}\right)\right|_{(\bar{l}, 0)}\right\}
$$

decay faster than $\frac{1}{\mid l l^{4}}$ (need $\frac{1}{|l|^{6}}$?). It follows that the components of;

$$
\left\{\bar{b}_{11, \bar{l}}(\bar{k}) \times \bar{d}_{11}^{\prime}(\bar{l}), \frac{\bar{b}_{11, \bar{l}}(\bar{k}) \times \bar{d}_{12}^{\prime}(\bar{l})}{l}, \frac{\bar{b}_{12, \bar{l}}(\bar{k}) \times \bar{d}_{11}^{\prime}(\bar{l})}{|\bar{k}-\bar{l}|}, \frac{\bar{b}_{12, \bar{i}}(\bar{k}) \times \bar{d}_{12}^{\prime}(\bar{l})}{|\bar{k}-\bar{l}| l}\right\}
$$

decay faster than $\frac{1}{\left|\bar{k} \overline{4}^{4} \bar{l}\right|^{4}|\bar{k}-\bar{l}|}$, and, as $\bar{u}_{\bar{l}}(\bar{k}, \bar{l})$ is a unit vector, $|\nu(\bar{k}, \bar{l}, t)|=$
$1,|\sin (\theta(\bar{k}))| \leq 1$, so do the components of;

$$
\begin{aligned}
& \left\{\left[\left(\bar{b}_{11, \bar{l}}(\bar{k}) \times \bar{d}_{11}^{\prime}(\bar{l})\right) \cdot \bar{u}_{\bar{l}}(\bar{k}, \bar{l})\right] \nu(\bar{k}, \bar{l}, t) \sin (\theta(\bar{k})),\left[\left(\frac{\bar{b}_{11, \bar{l}}(\bar{k}) \times \bar{d}_{12}^{\prime}(\bar{l})}{l}\right) \cdot \bar{u}_{\bar{l}}(\bar{k}, \bar{l})\right)\right] \nu(\bar{k}, \bar{l}, t) \sin (\theta(\bar{k})), \\
& \left.\left[\left(\frac{\bar{b}_{12, \bar{l}}(\bar{k}) \times \bar{d}_{11}^{\prime}(\bar{l})}{|\bar{k}-\bar{l}|}\right) \cdot \bar{u}_{\bar{l}}(\bar{k}, \bar{l})\right] \nu(\bar{k}, \bar{l}, t) \sin (\theta(\bar{k})),\left[\left(\frac{\bar{b}_{12, \bar{l}}(\bar{k}) \times \bar{d}_{12}^{\prime}(\bar{l})}{|\bar{k}-\bar{l}| l}\right) \cdot \bar{u}_{\bar{l}}(\bar{k}, \bar{l})\right] \nu(\bar{k}, \bar{l}, t) \sin (\theta(\bar{k}))\right\}
\end{aligned}
$$

Noting that, for $C \in \mathcal{R}_{>0}, D \in \mathcal{R}_{>0}$ and fixed $\bar{l} \in \mathcal{R}^{3}, \bar{l} \neq \overline{0}$, without loss of generality, assuming that $D<|\bar{l}|$?;

$$
\begin{aligned}
& \left|\int_{|\bar{k}|>D} \frac{C}{\left.|\bar{k}|^{4}| | \bar{l}\right|^{4}|\bar{k}-\bar{l}|}\right| d \bar{k} \\
& =\left|\int_{D<|\bar{k}|<|\bar{l}|+1} \frac{C}{\left.|\bar{k}|^{4}| | \bar{l}\right|^{4}|\bar{k}-\bar{l}|}\right| d \bar{k}+\int_{D>|\bar{l}|+1} \frac{C}{|\bar{k}|^{4}|\overline{\bar{l}}|^{4}|\bar{k}-\bar{l}|}|d \bar{k}|
\end{aligned}
$$

SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 5: NO RADIATION OF LIGHIb

$$
\begin{aligned}
& \leq\left|\int_{D<|\bar{k}|<|\bar{l}|+1} \frac{C}{\left.|\bar{k}|^{4}| | \bar{l}\right|^{4}|\bar{k}-\bar{l}|} d \bar{k}\right|+\left|\int_{|\bar{k}|>|\bar{l}|+1>D} \frac{C}{\left.|\bar{k}|^{4}| | \bar{l}\right|^{4}|\bar{k}-\bar{l}|} d \bar{k}\right| \\
& \leq \frac{C}{D^{4}|\bar{l}|^{4}} \int_{A n n(D,|\bar{l}|+1)} \frac{1}{|\bar{k}-\bar{l}|} d \bar{k}+\frac{1}{|\bar{l}|^{4}} \int_{|\bar{k}|>|\bar{l}|+1} \frac{C}{|\bar{k}|^{4}} d \bar{k} \\
& =\frac{C}{D^{4}|\bar{l}|^{4}} \int_{A n n_{\bar{l}}(D,|\bar{l}|+1)} \frac{1}{|\bar{k}|} d \bar{k}+\frac{1}{|\bar{l}|^{4}} \int_{0}^{\pi} \int_{-\pi}^{\pi} \int_{|\bar{l}|+1}^{\infty} \frac{C R^{2} \sin (\theta)}{R^{4}} d R d \theta d \theta d \phi \\
& \leq \frac{C}{D^{4}|\bar{l}|^{4}} \int_{B(\overline{0}, 2|\bar{l}|+2 D+1)} \frac{1}{|\bar{k}|} d \bar{k}+\frac{1}{|\bar{l}|^{4}} \int_{0}^{\pi} \int_{-\pi}^{\pi} \int_{|\bar{l}|+1}^{\infty} \frac{C}{R^{2}} d R d \theta d \theta d \phi \\
& \leq \frac{2 \pi^{2} C}{D^{4}|\bar{l}|^{4}} \int_{0}^{2|\bar{l}|+2 D+1} \frac{R^{2}}{R} d R+\frac{2 \pi^{2} C}{(|\bar{l}|+1)|\bar{l}|^{4}} \\
& \leq \frac{\pi^{2} C(2|\bar{l}|+2 D+1)^{2}}{D^{4}|\bar{l}|^{4}}+\frac{2 \pi^{2} C}{D|\bar{l}|^{4}}
\end{aligned}
$$

It follows, that for fixed $r \in \mathcal{R}_{>0}$, we can choose D_{r}, E_{r} such that, for fixed $r \in \mathcal{R}_{>0}$;

$$
\begin{aligned}
& \int_{|\bar{k}|>D_{r}} \int_{\mid \bar{l}>E_{r}}|\alpha(\bar{k}, \bar{l}, t)| d \bar{k} d \bar{l} \\
& \leq \int_{|\bar{l}|>E_{r}} \frac{1}{|\bar{l}|^{4} r^{2}}
\end{aligned}
$$

(see note above for faster decay)

$$
\leq \frac{2 \pi^{2}}{E_{r} r^{2}}
$$

where;

$$
\begin{aligned}
& \alpha(\bar{k}, \bar{l}, t)=\alpha(R, \theta, \phi, \bar{l}, t)=\frac{i P_{1,1}}{2 \pi^{2}}\left[\left(\bar{b}_{11, \bar{l}}(R, \theta, \phi)+\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\right) \times\right. \\
& \left.\left.\left(\bar{d}_{11}^{\prime}(\bar{l})+\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right)\right] \cdot \bar{u}_{\bar{l}}(R, \theta, \phi, \bar{l})\right] \mu(R, \theta, \phi, \bar{l}, t) \sin (\theta) \\
& \quad \beta(\bar{k}, \bar{l}, t)=\beta(R, \theta, \phi, \bar{l}, t)=\frac{-i Q_{0,0}}{2 \pi^{2}}\left[\left(\bar{b}_{11, \bar{l}}(R, \theta, \phi)+\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\right) \times\right. \\
& \left.\left.\left(\bar{d}_{11}^{\prime}(\bar{l})+\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right)\right] \cdot \bar{u}_{\bar{l}}(R, \theta, \phi, \bar{l})\right] \mu(R, \theta, \phi, \bar{l}, t) \sin (\theta) \\
& \quad \int_{\mathcal{R}^{3}}\left(\int _ { \mathcal { R } > 0 } \int _ { 0 \leq \theta < \pi } \int _ { 0 \leq \phi \leq 2 \pi } \frac { - i Q _ { 0 , 0 } } { 2 \pi ^ { 2 } } \left[\left(\bar{b}_{11, \bar{l}}(R, \theta, \phi)+\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\right)\right.\right. \\
& \left.\left.\left.\quad \times\left(\bar{d}_{11}^{\prime}(\bar{l})+\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right)\right] \cdot \bar{u}_{\bar{l}}(R, \theta, \phi, \bar{l})\right] \mu(R, \theta, \phi, \bar{l}, t) e^{i r R} R \sin (\theta) d R d \theta d \phi\right) d \bar{l} \\
& \left.\quad=\int_{\mathcal{R}^{3}} \int_{\mathcal{R}>0} \int_{0 \leq \theta<\pi} \int_{0 \leq \phi \leq 2 \pi} \beta(R, \theta, \phi, \bar{l}, t) e^{i r R} R d \theta d \phi\right) d \bar{l}
\end{aligned}
$$

Splits as four terms, the worst of which is;

$$
\int_{\mathcal{R}^{3}}\left(\int _ { \mathcal { R } > 0 } \int _ { 0 \leq \theta < \pi } \int _ { 0 \leq \phi \leq 2 \pi } \frac { - i Q _ { 0 , 0 } } { 2 \pi ^ { 2 } } \left[\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\right.\right.
$$

$$
\begin{aligned}
& \left.\left.\left.\times \frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right] \cdot \bar{u}_{\bar{l}}(R, \theta, \phi, \bar{l})\right] \mu(R, \theta, \phi, \bar{l}, t) e^{i r R} \sin (\theta) R d R d \theta d \phi\right) d \bar{l} \\
& \left.=\int_{\mathcal{R}^{3}} \int_{\mathcal{R}>0} \int_{0 \leq \theta<\pi} \int_{0 \leq \phi \leq 2 \pi} \beta_{4}(R, \theta, \phi, \bar{l}, t) e^{i r R} R d R d \theta d \phi\right) d \bar{l}
\end{aligned}
$$

Again, fix $\bar{l} \neq \overline{0}$, with $\theta \neq \cos ^{-1}\left(\frac{l_{3}}{l}\right)=\theta_{0, \bar{l}}$ and $\phi \neq \tan ^{-1}\left(\frac{l_{2}}{l_{1}}\right)=\phi_{0, \bar{l}}$. By the result of Lemma 0.18 (change to β_{4} factor), we can assume that the real and imaginary parts of $\frac{\partial R \beta_{4}(R, \theta, \phi, \bar{l}, t)}{\partial R}$ are oscillatory, then as $\lim _{R \rightarrow 0} R \beta_{4}(R, \theta, \phi, \bar{l}, t)=0$ and $\lim _{R \rightarrow 0} \frac{\partial R \beta_{4}(R, \theta, \phi, \bar{l}, t)}{\partial R}=M \in \mathcal{R}$, we can apply the result of Lemma 0.13, and assume that;

$$
\left|\int_{\mathcal{R}>0} \beta_{4}(R, \theta, \phi, \bar{l}, t) e^{i r R} R d R\right| \leq \frac{4 \sqrt{2}\left\|\frac{\partial R \beta_{4}}{\partial R}\right\|_{\infty}+D_{\bar{l}}}{r^{2}} \text { (remove } \sqrt{2} \text { and in- }
$$ clude spacing $\delta_{\bar{l}}$)

for sufficiently large $r \in \mathcal{R}_{>0}$, where;

$$
\begin{aligned}
& \left\|\frac{\partial R \beta_{4}}{\partial R}\right\|_{\infty}=\left\|\beta_{4}+R \frac{\partial \beta_{4}}{\partial R}\right\|_{\infty} \\
& \leq\left\|\beta_{4}\right\|_{\infty}+\left\|R \frac{\partial \beta_{4}}{\partial R}\right\|_{\infty} \\
& =\left|\frac{-i Q_{0,0}}{2 \pi^{2}}\left[\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|} \times \frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right] \cdot \bar{u}_{\bar{l}}(R, \theta, \phi, \bar{l}) \sin (\theta)\right| \\
& +\left|\frac{-i Q_{0,0}}{2 \pi^{2}}\left[\frac{\partial}{\partial R}\left(\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\right) \times \frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right] \cdot \bar{u}_{\bar{l}}(R, \theta, \phi, \bar{l}) \sin (\theta)\right| \\
& +\left|\frac{-i Q_{0,0}}{2 \pi^{2}}\left[\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|} \times \frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right] \cdot \frac{\partial}{\partial R}\left(\bar{u}_{\bar{l}}(R, \theta, \phi, \bar{l})\right) \sin (\theta)\right| \\
& \left.\leq \frac{Q_{0,0}}{2 \pi^{2}}\left|\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\right| \frac{\bar{d}_{12}^{\prime}(\bar{l})}{l} \right\rvert\, \\
& +\frac{Q_{0,0}}{2 \pi^{2}}\left|\frac{\partial}{\partial R}\left(\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\right)\right|\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right| \\
& +\frac{Q_{0,0}}{2 \pi^{2}}\left|\frac{\bar{b}_{12, \bar{l}}^{\prime}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\right| \frac{\bar{d}_{12}^{\prime}(\bar{l})}{l} \|\left|\frac{\partial}{\partial R}\left(\frac{\bar{k}}{\bar{k} \mid}\right)\right| \\
& =\frac{Q_{0,0}}{2 \pi^{2}}\left|\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\right|\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right| \\
& +\frac{Q_{0,0}}{2 \pi^{2}}\left|\frac{\partial}{\partial R}\left(\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\right)\right|\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right|
\end{aligned}
$$

and $D_{\bar{l}}$ is the sum of the decay rates for the real and imaginary components of $\frac{\partial R \beta_{4}}{\partial R}$. Fix $\kappa>0$, then, as, for fixed $\bar{l} \neq \overline{0}, R \beta_{4}(\bar{k}, \bar{l}) \in$ $L^{1}\left(\mathcal{R}^{3}\right)$, we can choose $\theta_{0, \bar{l}, \kappa_{1}}<\theta_{0, \bar{l}}<\theta_{0, \bar{l}, \kappa_{2}}, \phi_{0, \bar{l}, \kappa_{1}}<\phi_{0, \bar{l}}<\phi_{0, \bar{l}, \kappa_{2}}$, such
that;

$$
\left|\int_{\mathcal{R}>0} \int_{\theta_{0, \bar{l}, \kappa_{1}} \leq \theta \leq \theta_{0, \bar{l}, \kappa_{2}}} \int_{\phi_{0, \bar{l}, \kappa_{1}} \leq \phi \leq \phi_{0, \bar{l}, \kappa_{2}}} R \beta_{4}(R, \theta, \phi, \bar{l}, t) e^{i r R} d R d \theta d \phi\right| \leq \frac{\kappa}{(l+1)^{4}}
$$

Then;

$$
\begin{aligned}
& \left|\int_{\mathcal{R}>0} \int_{0 \leq \theta<\pi} \int_{0 \leq \phi \leq 2 \pi} R \beta_{4}(R, \theta, \phi, \bar{l}, t) e^{i r R} d R d \theta d \phi\right| \\
& \leq \mid \int_{\mathcal{R}>0} \int_{\left([0, \pi) \times[0,2 \pi) \backslash\left[\phi_{0, \bar{l}, \kappa_{1}}, \phi_{0, \bar{l}, \kappa_{2}}\right] \times\left[\phi_{\left.\left.0, \bar{l}, \kappa_{1}, \phi_{0, \bar{l}, \kappa_{2}}\right]\right)} R \beta_{4}(R, \theta, \phi, \bar{l}, t) e^{i r R} d R d \theta d \phi|.| c h e r n\right.\right.} \\
& +\left|\int_{\mathcal{R}>0} \int_{\theta_{0, \bar{l}, \kappa_{1}} \leq \theta \leq \theta_{0, \bar{l}, \kappa_{2}}} \int_{\phi_{0, \bar{l}, \kappa_{1}} \leq \phi \leq \phi_{0, \bar{l}, \kappa_{2}}} R \beta_{4}(R, \theta, \phi, \bar{l}, t) e^{i r R} d R d \theta d \phi\right| \\
& \leq\left|\int_{\mathcal{R}>0} \int_{V_{\bar{l}, \kappa_{1}, \kappa_{2}}} R \beta_{4}(R, \theta, \phi, \bar{l}, t) e^{i r R} d R d \theta d \phi\right|+\frac{\kappa}{(l+1)^{4}} \\
& \leq \int_{V_{\bar{l}, \kappa_{1}, \kappa_{2}}}\left(\left|\int_{\mathcal{R}_{>0}} R \beta_{4}(R, \theta, \phi, \bar{l}, t) e^{i r R} d R\right|\right) d \theta d \phi+\frac{\kappa}{(l+1)^{4}} \\
& \leq 2 \pi^{2} \frac{4 \sqrt{2}\left|\frac{\partial R \beta_{4}}{\partial R}\right|_{V_{l, \kappa_{1}, \kappa_{2}}} \|_{\infty}+D_{\bar{l}}}{r^{2}}+\frac{\kappa}{(l+1)^{4}} \\
& \leq \frac{2 \pi^{2}}{r^{2}}\left(\left.\frac{2 \sqrt{2} Q_{0,0}}{\pi^{2}}\left|\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\right| \frac{\bar{d}_{12}^{\prime}(\bar{l})}{l} \right\rvert\,\right. \\
& \left.+\frac{2 \sqrt{2} Q_{0,0}}{\pi^{2}}\left|\frac{\partial}{\partial R}\left(\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\right)\right|\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right|+D_{\bar{l}}\right)+\frac{\kappa}{(l+1)^{4}} \\
& =\frac{2 \pi^{2}}{r^{2}}\left(\left.\frac{2 \sqrt{2} Q_{0,0}}{\pi^{2}}\left|\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\right| \frac{\bar{d}_{12}^{\prime}(\bar{l})}{l} \right\rvert\,\right. \\
& +\left.\frac{2 \sqrt{2} Q_{0,0}}{\pi^{2}}\right|_{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|} \frac{\frac{\partial}{\partial}\left(\bar{b}_{12, \bar{l}}(R, \theta, \phi)\right)}{} \\
& \left.+\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)<(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}, \frac{\partial}{\partial R}((R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l})>}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|^{3}}| | \frac{\bar{d}_{12}^{\prime}(\bar{l})}{l} \right\rvert\,+ \\
& \left.D_{\bar{l}}\right)+\frac{\kappa}{(l+1)^{4}} \\
& \leq \frac{2 \pi^{2}}{r^{2}}\left(\left.\frac{2 \sqrt{2} Q_{0,0}}{\pi^{2}}\left|\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\right| \frac{\bar{d}_{12}^{\prime}(\bar{l})}{l} \right\rvert\,\right. \\
& +\frac{2 \sqrt{2} Q_{0,0}}{\pi^{2}}\left|\frac{\frac{\partial}{\partial R}\left(\bar{b}_{12, \bar{l}}(R, \theta, \phi)\right)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\right|\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right| \\
& \left.+\frac{2 \sqrt{2} Q_{0,0}}{\pi^{2}} \frac{\left.\left|\bar{b}_{12, \bar{l}}(R, \theta, \phi)\right| \mid((\sin (\theta) \cos (\phi)) \sin (\theta) \sin (\phi), \cos (\theta))\right) \mid}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|^{2}}\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right|+D_{\bar{l}}\right)+\frac{\kappa}{(l+1)^{4}} \\
& \leq \frac{2 \pi^{2}}{r^{2}}\left(\frac{2 \sqrt{2} Q_{0,0}}{\pi^{2}} \frac{\left|\bar{b}_{12, \bar{s}}(R, \theta, \phi)\right|}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right|\right. \\
& \left.+\frac{2 \sqrt{2} Q_{0,0}}{\pi^{2}} \frac{\left|\frac{\partial}{\partial R}\left(\bar{b}_{12, \bar{l}}(R, \theta, \phi)\right)\right|}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|} \frac{\mid \bar{d}_{12}^{\prime}(\bar{l})}{l} \right\rvert\,
\end{aligned}
$$

$\left.+\frac{2 \sqrt{6} Q_{0,0}}{\pi^{2}} \frac{\left|\bar{b}_{12, \overline{\bar{l}}}(R, \theta, \phi)\right|}{|(\sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|^{2}}\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right|+D_{\bar{l}}\right)+\frac{\kappa}{(l+1)^{4}}(F)$
where;
$V_{\bar{l}, \kappa_{1}, \kappa_{2}}=\left([0, \pi) \times[0,2 \pi) \backslash\left[\phi_{0, \bar{l}, \kappa_{1}}, \phi_{0, \bar{l}, \kappa_{2}}\right] \times\left[\phi_{0, \bar{l}, \kappa_{1}}, \phi_{0, \bar{l}, \kappa_{2}}\right]\right)$

Using the fact that $R \frac{\left|\bar{b}_{12, \bar{l}}(R, \theta, \phi)\right|}{|(R \sin (\theta) \cos (\phi), \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\left|\left.\right|_{\left.\phi_{0, \bar{l}, \kappa_{1}}, \phi_{0, \bar{l}, \kappa_{2}}\right] \times\left[\phi_{0, \bar{l}, \kappa_{1}}, \phi_{0, \bar{l}, \kappa_{2}}\right] \times \mathcal{R}>0}\right.$ is integrable, need to split $\int_{\mathcal{R}_{>0}} \int_{\theta_{0, \bar{l}, \kappa_{1}} \leq \theta \leq \theta_{0, \bar{l}, \kappa_{2}}} \int_{\phi_{0, \bar{l}, \kappa_{1}} \leq \phi \leq \phi_{0, \bar{l}, \kappa_{2}}} R\left|\beta_{4}(R, \theta, \phi, \bar{l}, t)\right| d R d \theta d \phi$ into $\int_{|R|>r} \int_{\theta_{0, \bar{l}, \kappa_{1}} \leq \theta \leq \theta_{0, \bar{l}, \kappa_{2}}} \int_{\phi_{0, \bar{l}, \kappa_{1}} \leq \phi \leq \phi_{0, \bar{l}, \kappa_{2}}} R\left|\beta_{4}(R, \theta, \phi, \bar{l}, t)\right| d R d \theta d \phi(A)$ and $\int_{|R|<r} \int_{\theta_{0, \bar{l}, \kappa_{1}} \leq \theta \leq \theta_{0, \bar{l}, \kappa_{2}}} \int_{\phi_{0, \bar{l}, \kappa_{1}} \leq \phi \leq \phi_{0, \bar{l}, \kappa_{2}}} R\left|\beta_{4}(R, \theta, \phi, \bar{l}, t)\right| d R d \theta d \phi(B)$
Can control (A) as $\frac{1}{r^{2}(l+1)^{4}}$ due to decay, vary (B) as $\frac{1}{r^{\frac{5}{4}(1+l)^{4}}}$, similarly to below, then angles $\theta_{0, \bar{l}, \kappa_{2}}-\theta_{0, \bar{l}, \kappa_{1}}$ and $\phi_{0, \bar{l}, \kappa_{2}}-\phi_{0, \bar{l}, \kappa_{1}}$ can vary as $\left(\frac{1}{r^{\frac{5}{4}}}\right)^{\frac{1}{3}}=\frac{1}{r^{\frac{5}{12}}}$. Then last and worst term in (F) varies as $\frac{1}{\frac{1}{r^{\frac{5}{12}}}}=r^{\frac{5}{6}}$.

Integrating and looking at all components, for sufficiently large $r \in$ $\mathcal{R}_{>0}$. Follows that,

$$
\left|\int_{\mathcal{R}^{6}} h(\bar{k}, \bar{l}, t) e^{i r \mid \bar{k}+\bar{l}} d \bar{k} d \bar{l}\right| \leq \frac{F r^{\frac{5}{6}}}{r^{2}}+\frac{H}{r^{\frac{5}{4}}}+\frac{J}{r^{2}}
$$

where $\{F, H, J\} \subset \mathcal{R}$. Follows that?(split again $\operatorname{Re}(h), \operatorname{Im}(h))$

$$
\left\lvert\, \int_{\mathcal{R}^{6}} h(\bar{k}, \bar{l}, t) \cos (r|\bar{k}+\bar{l}|) d \bar{k} d \bar{l} \leq \frac{F^{\prime} r^{\frac{5}{6}}}{r^{2}}+\frac{H^{\prime}}{r^{\frac{5}{4}}}+\frac{J^{\prime}}{r^{2}}\right.
$$

for sufficiently large $r^{\prime}>r$, invoking uniform version of Lemma 0.12 again. In particular;

$$
\begin{aligned}
& \quad \lim _{r \rightarrow \infty} r \int_{\mathcal{R}^{6}} h(\bar{k}, \bar{l}, t) \cos (r|\bar{k}+\bar{l}|) d \bar{k} d \bar{l}=\lim _{r \rightarrow \infty} \frac{1}{r}=\lim _{r \rightarrow \infty} \frac{F^{\prime} r^{5}}{r}+ \\
& \frac{H^{\prime}}{r^{\frac{1}{4}}}+\frac{J^{\prime}}{r}=0
\end{aligned}
$$

so no radiation condition holds.

Similarly;

SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 5: NO RADIATION OF LIGHIT

$$
\begin{aligned}
& \int_{\mathcal{R}^{3}}\left(\int _ { \mathcal { R } > 0 } \int _ { 0 \leq \theta < \pi } \int _ { 0 \leq \phi \leq 2 \pi } \frac { i P _ { 1 , 1 } } { 2 \pi ^ { 2 } } \left[\left(\bar{b}_{11, \bar{l}}(R, \theta, \phi)+\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\right)\right.\right. \\
& \left.\left.\left.\times\left(\bar{d}_{11}^{\prime}(\bar{l})+\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right)\right] \cdot \bar{u}_{\bar{l}}(R, \theta, \phi, \bar{l})\right] \mu(R, \theta, \phi, \bar{l}, t) e^{i r R} \sin (\theta) d R d \theta d \phi\right) d \bar{l} \\
& \left.=\int_{\mathcal{R}^{3}} \int_{\mathcal{R}_{>0}} \int_{0 \leq \theta<\pi} \int_{0 \leq \phi \leq 2 \pi} \alpha(R, \theta, \phi, \bar{l}, t) e^{i r R} d R d \theta d \phi\right) d \bar{l}
\end{aligned}
$$

Splits as four terms, the worst of which is;

$$
\begin{aligned}
& \int_{\mathcal{R}^{3}}\left(\int _ { \mathcal { R } > 0 } \int _ { 0 \leq \theta < \pi } \int _ { 0 \leq \phi \leq 2 \pi } \frac { i P _ { 1 , 1 } } { 2 \pi ^ { 2 } } \left[\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\right.\right. \\
& \left.\left.\left.\times \frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right] \cdot \bar{u}_{\bar{l}}(R, \theta, \phi, \bar{l})\right] \mu(R, \theta, \phi, \bar{l}, t) e^{i r R} \sin (\theta) d R d \theta d \phi\right) d \bar{l} \\
& \left.=\int_{\mathcal{R}^{3}} \int_{\mathcal{R}>0} \int_{0 \leq \theta<\pi} \int_{0 \leq \phi \leq 2 \pi} \alpha_{4}(R, \theta, \phi, \bar{l}, t) e^{i r R} d R d \theta d \phi\right) d \bar{l}
\end{aligned}
$$

Again, fix $\bar{l} \neq \overline{0}$, with $\theta \neq \cos ^{-1}\left(\frac{l_{3}}{l}\right)=\theta_{0, \bar{l}}$ and $\phi \neq \tan ^{-1}\left(\frac{l_{2}}{l_{1}}\right)=\phi_{0, \bar{l}}$. By the result of Lemma 0.18, we can assume that the real and imaginary parts of $\alpha_{4}(R, \theta, \phi, \bar{l}, t)$ are oscillatory, then as $\lim _{R \rightarrow 0} \alpha_{4}(R, \theta, \phi, \bar{l}, t)=$ $M \in \mathcal{R}$, we can apply the result of Lemmas $0.15,0.17$ and 0.8 , and assume that;

$$
\begin{aligned}
& \left|\int_{\mathcal{R}>0} \alpha_{4}(R, \theta, \phi, \bar{l}, t) e^{i r R} d R\right| \\
& \leq\left|\int_{\mathcal{R}>0} \operatorname{Re}\left(\alpha_{4}\right)(R, \theta, \phi, \bar{l}, t) e^{i r R} d R\right|+\left|\int_{\mathcal{R}>0} \operatorname{Im}\left(\alpha_{4}\right)(R, \theta, \phi, \bar{l}, t) e^{i r R} d R\right| \\
& \leq \frac{2}{r}\left(\frac{n_{\overline{\bar{l}}, \theta, \phi, R e}\left\|R e\left(\alpha_{4}\right)\right\|_{\infty}}{\xi_{R e}}+\frac{D_{\bar{l}, \theta, \phi, R e}}{n_{\bar{l}, \theta, \phi} \xi_{R e}}\right) \\
& +\frac{2}{r}\left(\frac{n_{\bar{l}, \theta, \phi, I m}\left\|I m\left(\alpha_{4}\right)\right\|_{\infty}}{\xi_{I m}}+\frac{D_{\bar{l}, \theta, \phi,, I m}}{n_{\bar{l}, \theta, \phi} \xi_{I m}}\right)
\end{aligned}
$$

so that, for $l>1$;

$$
\begin{aligned}
& \left|\int_{\mathcal{R}_{>0}} \alpha_{4}(R, \theta, \phi, \bar{l}, t) e^{i r R} d R\right| \\
& \leq \frac{2}{r}\left(\frac{4 \sqrt{3} l\left\|R e\left(\alpha_{4}\right)\right\| \|_{\infty}}{\xi_{R e}}+\frac{C 2^{\frac{5}{2}} \left\lvert\, \frac{\bar{d}_{12}^{\prime} l}{l} l\right.}{4 \sqrt{3} \mid \xi_{R e}}\right) \\
& +\frac{2}{r}\left(\frac{4 \sqrt{3} l| | I m\left(\alpha_{4}\right) \|_{\infty}}{\xi_{I m}}+\frac{C 2^{\frac{5}{2}} \left\lvert\, \frac{\bar{d}_{12}^{\prime}(\bar{l})}{}\right.}{4 \sqrt{3} l \xi_{I m}^{l}}\right) \\
& \leq \frac{2}{r \xi}\left(4 \sqrt{3} l\left(\left\|\operatorname{Re}\left(\alpha_{4}\right)\right\|_{\infty}+\left\|\operatorname{Im}\left(\alpha_{4}\right)\right\|_{\infty}\right)+\frac{C 2^{\frac{7}{2}}\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right|}{4 \sqrt{3} l}\right)
\end{aligned}
$$

$$
\leq \frac{2}{r \xi}\left(4 \sqrt{6} l| | \alpha_{4} \|_{\infty}+\frac{C 2^{\frac{7}{2}}\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right|}{4 \sqrt{3} l}\right)
$$

and, similarly, for $0<l \leq 1$;

$$
\begin{aligned}
& \left|\int_{\mathcal{R}_{>0}} \alpha_{4}(R, \theta, \phi, \bar{l}, t) e^{i r R} d R\right| \\
& \leq \frac{2}{r \xi}\left(4 \sqrt{6}| | \alpha_{4} \|_{\infty}+\frac{C 2^{\frac{7}{2}}\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right|}{4 \sqrt{3}}\right)(D)
\end{aligned}
$$

for sufficiently large $r \in \mathcal{R}_{>0}$, where $\xi_{R e}>0, \xi_{I m}>0$ are constants independent of $\bar{l}, \theta, \phi, \xi=\min \left(\xi_{R e}, \xi_{I m}\right)>0,\left\{D_{\bar{l}, \theta, \phi, R e}, D_{\bar{l}, \theta, \phi, I m}\right\}$ are the decay rates for the real and imaginary components of $\alpha_{4}(R, \theta, \phi, \bar{l}, t)$. We have that;

$$
\begin{aligned}
& \left\|\alpha_{4}\right\|_{\infty}=\left|\frac{i P_{1,1}}{2 \pi^{2}}\left[\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|} \times \frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right] \cdot \bar{u}_{\bar{l}}(R, \theta, \phi, \bar{l}) \sin (\theta)\right| \\
& \leq \frac{P_{1,1}}{2 \pi^{2}}\left|\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi) \sin (\theta)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\right|\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right| \\
& =\left|\frac{P_{1,1}}{2 \pi^{2}} \frac{\bar{b}_{12, \bar{l}}(\bar{k})}{k^{2}|\bar{k}-\bar{l}|}\right|\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right|
\end{aligned}
$$

where;

$$
\frac{P_{1,1}}{2 \pi^{2}} \frac{\bar{b}_{12, \bar{l}}(\bar{k})}{k^{2}|\bar{k}-\bar{l}|}=\frac{P_{1,1}}{2 \pi^{2}} \frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi) \sin (\theta)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}
$$

Fix $\kappa>0$, then, as, for fixed $\bar{l} \neq \overline{0}, \frac{\left|\bar{b}_{12, \bar{l}}(\bar{k})\right|}{k^{2}|\bar{k}-\bar{l}|} \in L^{1}\left(\mathcal{R}^{3}\right)$, we can choose $\theta_{0, \bar{l}, \kappa_{1}}<\theta_{0, \bar{l}}<\theta_{0, \bar{l}, \kappa_{2}}, \phi_{0, \bar{l}, \kappa_{1}}<\phi_{0, \bar{l}}<\phi_{0, \bar{l}, \kappa_{2}}$, such that;

$$
\left|\int_{\mathcal{R}_{>0}} \int_{\theta_{0, \bar{l}, \kappa_{1}} \leq \theta \leq \theta_{0, \bar{l}, \kappa_{2}}} \int_{\phi_{0, \bar{l}, \kappa_{1}} \leq \phi \leq \phi_{0, \bar{l}, \kappa_{2}}} \frac{P_{1,1}}{2 \pi^{2}} \frac{\left|\bar{b}_{12, \bar{l}}(\bar{k})\right|}{k^{2}|\bar{k}-\bar{l}|}(R, \theta, \phi, \bar{l}, t) e^{i r R} d R d \theta d \phi\right| \leq
$$

Then;

$$
\begin{aligned}
& \left|\int_{\mathcal{R}_{>0}} \int_{0 \leq \theta<\pi} \int_{0 \leq \phi \leq 2 \pi} \alpha_{4}(R, \theta, \phi, \bar{l}, t) e^{i r R} d R d \theta d \phi\right| \\
& \leq \mid \int_{\mathcal{R}_{>0}} \int_{\left([0, \pi) \times[0,2 \pi) \backslash\left[\phi_{0, \bar{l}, \kappa_{1}}, \phi_{0, \bar{l}, \kappa_{2}}\right] \times\left[\phi_{\left.0, \bar{l}, \kappa_{1}, \phi_{0, \bar{l}, \kappa_{2}}\right]} \alpha_{4}(R, \theta, \phi, \bar{l}, t) e^{i r R} d R d \theta d \phi \mid\right.\right.}^{+\left|\int_{\mathcal{R}_{>0}} \int_{\theta_{0, \bar{l}, \kappa_{1}} \leq \theta \leq \theta_{0, \bar{l}, \kappa_{2}}} \int_{\phi_{0, \bar{l}, \kappa_{1}} \leq \phi \leq \phi_{0, \bar{l}, \kappa_{2}}} \alpha_{4}(R, \theta, \phi, \bar{l}, t) e^{i r R} d R d \theta d \phi\right|} \\
& \left.\leq\left|\int_{\mathcal{R}_{>0}} \int_{V_{\bar{l}, \kappa_{1}, \kappa_{2}}} \alpha_{4}(R, \theta, \phi, \bar{l}, t) e^{i r R} d R d \theta d \phi\right|+\kappa^{\prime}| | \frac{\bar{d}_{12}^{\prime}(\bar{l})}{l} \right\rvert\,
\end{aligned}
$$

$$
\left.\leq \int_{V_{\bar{i}, \kappa_{1}, \kappa_{2}}}\left(\left|\int_{\mathcal{R}_{>0}} \alpha_{4}(R, \theta, \phi, \bar{l}, t) e^{i r R} d R\right|\right) d \theta d \phi+\kappa^{\prime}| | \frac{\bar{d}_{12}^{\prime}(\bar{l})}{l} \right\rvert\,
$$

Using (D), it follows that, for $l>1$;

$$
\begin{aligned}
& \left|\int_{\mathcal{R}>0} \int_{0 \leq \theta<\pi} \int_{0 \leq \phi \leq 2 \pi} \alpha_{4}(R, \theta, \phi, \bar{l}, t) e^{i r R} d R d \theta d \phi\right| \\
& \left.\leq 2 \pi^{2} \frac{2}{r \xi}\left(\left.4 \sqrt{6} l| | \alpha_{4}\right|_{V_{l, \kappa_{1}, \kappa_{2}}}| |_{\infty}+\frac{C^{2} \frac{7}{2}\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right|}{4 \sqrt{3} l}\right)+\kappa^{\prime}| | \frac{\bar{d}_{12}^{\prime}(\bar{l})}{l} \right\rvert\, \\
& \leq \frac{4 \pi^{2}}{r \xi}\left(\left.\frac{4 \sqrt{6} P_{1,1} l}{2 \pi^{2}}\left|\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\right| V_{\bar{l}, \kappa_{1}, \kappa_{2}}| | \frac{\bar{d}_{12}^{\prime}(\bar{l})}{l} \right\rvert\,+\frac{C 2 \frac{\overline{7}}{\frac{7}{2}}\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right|}{4 \sqrt{3 l}}\right) \\
& +\kappa^{\prime}\left|\frac{\bar{d}_{12}^{\prime} l}{l}\right|
\end{aligned}
$$

and, for $0<l \leq 1$;

$$
\begin{aligned}
& \left|\int_{\mathcal{R}>0} \int_{0 \leq \theta<\pi} \int_{0 \leq \phi \leq 2 \pi} \alpha_{4}(R, \theta, \phi, \bar{l}, t) e^{i r R} d R d \theta d \phi\right| \\
& \left.\leq 2 \pi^{2} \frac{2}{r \xi}\left(\left.4 \sqrt{6}| | \alpha_{4}\right|_{V_{\bar{l}, \kappa_{1}, \kappa_{2}}}| |_{\infty}+\frac{C 2^{\frac{7}{2}}\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{\sqrt{l}}\right|}{4 \sqrt{3}}\right)+\kappa^{\prime}| | \frac{\bar{d}_{12}^{\prime}(\bar{l})}{l} \right\rvert\, \\
& \leq \frac{4 \pi^{2}}{r \xi}\left(\left.\frac{4 \sqrt{6} P_{1,1}}{2 \pi^{2}}\left|\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\right|\right|_{V_{, \kappa_{1}, \kappa_{2}}}\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right|+\frac{C 2^{\frac{7}{2}}\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right|}{4 \sqrt{3}}\right) \\
& \left.+\kappa^{\prime}| | \frac{\bar{d}_{12}^{\prime}(\bar{l})}{l} \right\rvert\,(H)
\end{aligned}
$$

Fix $\delta>0$ arbitrary, then we have that, for $l>\delta$, sufficiently small $0<\kappa<\min \left(\frac{\delta}{2}, \delta^{2}\right)$;

$$
\begin{aligned}
& \int_{\mathcal{R}>0} \int_{\theta_{0, \bar{l}, \kappa_{1}} \leq \theta \leq \theta_{0, \bar{l}, \kappa_{2}}} \int_{\phi_{0, \bar{l}, \kappa_{1}} \leq \phi \leq \phi_{0, \bar{l}, \kappa_{2}}} \frac{P_{1,1}}{2 \pi^{2}}\left|\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi) \sin (\theta)}{\|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l} \mid}\right| d R d \theta d \phi \\
& =\int_{W_{\bar{i}, \kappa_{1}, \kappa_{2}}} \frac{P_{1,1}}{2 \pi^{2}} \frac{\left|\bar{b}_{12, \bar{l}}(\bar{k})\right|}{|\bar{k}-\bar{l}||\bar{k}|^{2}} \\
& =\int_{\left(W_{\bar{l}, \kappa_{1}, \kappa_{2}}\right) \bar{\tau}} \frac{P_{1,1}}{2 \pi^{2}} \frac{\left|\overline{b_{12}}(\bar{k})\right|}{|\bar{k}||\bar{k}+\bar{l}|^{2}} d \bar{k} \\
& \leq \int_{B(\overline{0}, \kappa)} \frac{P_{1,1}}{2 \pi^{2}} \frac{\left|\bar{b}_{12}(\bar{k})\right|}{|\bar{k}| \bar{k}+\left.\bar{l}\right|^{2}} d \bar{k}+\int_{\left(W_{\overline{l, \kappa_{1}}, \kappa_{2}}\right) \backslash \bar{\tau} \backslash(\overline{0}, \kappa)} \frac{P_{1,1}}{2 \pi^{2}} \frac{\left|\bar{b}_{12}(\bar{k})\right|}{|\bar{k}| \bar{k}+\left.\bar{l}\right|^{2}} d \bar{k} \\
& \leq \frac{P_{1,1}}{2 \pi^{2}}| | \frac{\bar{b}_{12}(\bar{k})}{\mid \bar{k}+\overline{l^{2}}} \|_{\infty, B(\overline{0}, \kappa)} \int_{0<R<\kappa} \frac{1}{R} R^{2}|\sin (\theta)| d R d \theta d \phi+\frac{P_{1,1}}{2 \pi^{2}} \int_{\left(W_{\bar{l}, \kappa_{1}, \kappa_{2}}\right) \overline{\bar{l}} \mid B(\overline{0}, \kappa)} \frac{\left|\overline{b_{12}}(\bar{k})\right|}{|\bar{k}||\bar{k}+\bar{l}|^{2}} d \bar{k} \\
& \left.\left.\leq \frac{2 P_{1,1}}{\delta^{2} \pi^{2}}| | \bar{b}_{12}(\bar{k}) \|_{\infty, B(\overline{0}, \kappa)} \frac{\kappa^{2}}{2}+\frac{1}{\kappa} \frac{P_{1,1}}{2 \pi^{2}} \int_{\left(W_{\bar{l}, \kappa_{1}, \kappa_{2}}\right) \bar{l}} \right\rvert\, \frac{\bar{b}_{12}(\bar{k})}{|\bar{k}+\bar{l}|^{2}}\right) \mid d \bar{k} \\
& =\frac{2 P_{1,1}}{\delta^{2} \pi^{2}}| | \bar{b}_{12}(\bar{k})| |_{\infty, B(\overline{0}, \kappa)} \frac{\kappa^{2}}{2}+\frac{1}{\kappa} \frac{P_{1,1}}{2 \pi^{2}} \int_{\left(W_{\bar{l}, \kappa_{1}, \kappa_{2}}\right)}\left|\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{R^{2}}\right| R^{2} \sin (\theta) d R d \theta d \phi
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{2 P_{1,1}}{\delta^{2} \pi^{2}}| | \bar{b}_{12}(\bar{k})| |_{\infty, B(\overline{0}, \kappa)} \frac{\kappa^{2}}{2}+\frac{1}{\kappa} \frac{P_{1,1}}{2 \pi^{2}}\left|\theta_{0, \bar{l}, \kappa_{2}}-\theta_{0, \bar{l}, \kappa_{1}}\right|\left|\phi_{0, \bar{l}, \kappa_{2}}-\phi_{0, \bar{l}, \kappa_{2}}\right|_{S^{1}(1)} \int_{\mathcal{R}>0}\left|\bar{b}_{12, \bar{l}}(R)\right| d R \\
& \leq \frac{2 P_{1,1}}{\delta^{2} \pi^{2}}| | \bar{b}_{12}(\bar{k})\left\|_{\infty, B(\overline{0}, \kappa)} \frac{\kappa^{2}}{2}+\frac{1}{\kappa} \frac{P_{1,1}}{2 \pi^{2}}\left|\theta_{0, \bar{l}, \kappa_{2}}-\theta_{0, \bar{l}, \kappa_{1}} \| \phi_{0, \bar{l}, \kappa_{2}}-\phi_{0, \bar{l}, \kappa_{2}}\right|_{S^{1}(1)} K\right. \\
& \leq \frac{2 P_{1,1}}{\delta^{2} \pi^{2}}| | \bar{b}_{12}(\bar{k}) \|_{\infty, B(\overline{0}, \kappa)} \frac{\kappa^{2}}{2}+\frac{P_{1,1}}{2 \pi^{2}} \kappa \\
& \leq \frac{2 P_{1,1}}{\pi^{2}}\left\|\bar{b}_{12}(\bar{k})\right\|_{\infty, B(\overline{0}, \kappa)} \frac{\delta^{2}}{2}+\frac{P_{1,1}}{2 \pi^{2}} \kappa=\kappa^{\prime}(M) \\
& \text { for }\left|\theta_{0, \bar{l}, \kappa_{2}}-\theta_{0, \bar{l}, \kappa_{1}}\right|=\left|\phi_{0, \bar{l}, \kappa_{2}}-\phi_{0, \bar{l}, \kappa_{1}}\right|_{S^{1}(1)},\left|\theta_{0, \bar{l}, \kappa_{2}}-\theta_{0, \bar{l}, \kappa_{1}}\right| \leq \frac{\kappa}{\sqrt{K}}(G)
\end{aligned}
$$

where;

$$
\begin{aligned}
& W_{\bar{l}, \kappa_{1}, \kappa_{2}}=\left(\left[\phi_{0, \bar{l}, \kappa_{1}}, \phi_{0, \bar{l}, \kappa_{2}}\right] \times\left[\phi_{0, \bar{l}, \kappa_{1}}, \phi_{0, \bar{l}, \kappa_{2}}\right] \times \mathcal{R}_{>0}\right) \\
& \left(W_{\bar{l}, \kappa_{1}, \kappa_{2}}\right)_{\bar{l}}=\left\{\bar{k}: \bar{k}+\bar{l} \in W_{\bar{l}, \kappa_{1}, \kappa_{2}}\right\}
\end{aligned}
$$

and, we can assume that $\left|\bar{b}_{12, \bar{l}}(R)\right|$ is independent of $\{\theta, \phi\}$, with $\left\|\bar{b}_{12, \bar{l}}(R)\right\|_{L^{1}\left(\mathcal{R}_{>0}\right)} \leq K$, independently of \bar{l}, due to the decay.

In particularly, choosing $\theta_{0, \bar{l}, \kappa_{2}}=\theta_{0, \bar{l}}+\frac{\kappa}{2 \sqrt{K}}, \theta_{0, \bar{l}, \kappa_{1}}=\theta_{0, \bar{l}}-\frac{\kappa}{2 \sqrt{K}}$, $\phi_{0, \bar{l}, \kappa_{2}}=\phi_{0, \bar{l}}+\frac{\kappa}{2 \sqrt{K}}, \phi_{0, \bar{l}, \kappa_{1}}=\phi_{0, \bar{l}}-\frac{\kappa}{2 \sqrt{K}}$, we have that (G) holds and $d\left(\bar{l}, V_{\bar{l}, \kappa_{1}, \kappa_{2}}\right) \geq l \sin \left(\frac{\kappa}{2 \sqrt{K}}\right) \geq \frac{l \kappa}{4 \sqrt{K}}$, for sufficiently small κ. We then have that;

$$
\left|\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\right|_{\bar{l}_{l, \kappa_{1}, \kappa_{2}}}\left|\leq \frac{4 \sqrt{K}}{l \kappa}\right|\left|\bar{b}_{12, \bar{l}}(R, \theta, \phi)\right|_{\infty}=\frac{4 \sqrt{K} D}{l \kappa}
$$

where $D \in \mathcal{R}_{>0}$, independent of \bar{l}. From $(H),(M)$, we obtain that, for $l>1$;

$$
\begin{aligned}
& \left|\int_{\mathcal{R}>0} \int_{0 \leq \theta<\pi} \int_{0 \leq \phi \leq 2 \pi} \alpha_{4}(R, \theta, \phi, \bar{l}, t) e^{i r R} d R d \theta d \phi\right| \\
& \leq \frac{4 \pi^{2}}{r \xi}\left(\frac{4 \sqrt{6} P_{1,1} l}{2 \pi^{2}}\left(\frac{4 \sqrt{K} D}{l \kappa}\right)\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right|+\frac{\left.C 2^{\frac{7}{2}} \cdot \frac{\vec{d}_{12}^{\prime}(\bar{l})}{l} \right\rvert\,}{4 \sqrt{3} l}\right) \\
& \left.+\kappa^{\prime}| | \frac{\bar{d}_{12}^{\prime}(\bar{l})}{l} \right\rvert\,(l>\delta)
\end{aligned}
$$

and, for $0<l \leq 1$;

$$
\left|\int_{\mathcal{R}>0} \int_{0 \leq \theta<\pi} \int_{0 \leq \phi \leq 2 \pi} \alpha_{4}(R, \theta, \phi, \bar{l}, t) e^{i r R} d R d \theta d \phi\right|
$$

SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 5: NO RADIATION OF LIGHLb

$$
\begin{aligned}
& \leq \frac{4 \pi^{2}}{r \xi}\left(\frac{4 \sqrt{6} P_{1,1}}{2 \pi^{2}}\left(\frac{4 \sqrt{K} D}{l \kappa}\right)\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right|+\frac{C 2^{\frac{7}{2}}\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right|}{4 \sqrt{3}}\right) \\
& \left.+\kappa^{\prime}| | \frac{\bar{d}_{12}^{\prime}(\bar{l})}{l} \right\rvert\,(l>\delta)
\end{aligned}
$$

Using the fact that $\left\{\frac{\left|\bar{d}_{12}^{\prime}(\bar{l})\right|}{l^{2}}, \frac{\left|\bar{d}_{12}^{\prime}(\bar{l})\right|}{l}\right\} \subset L^{1}\left(\mathcal{R}^{3}\right)$, and integrating $g(\bar{k}, \bar{l}, t) e^{i r|\bar{k}+\bar{l}|}$ over $\mathcal{R}^{3} \times B(\overline{0}, \delta)$ separately, using Lemma 0.9 , looking at all components, for sufficiently large $r \in \mathcal{R}_{>0}$, need uniformity in \bar{l} version of Lemma 0.12, follows that,

$$
\left|\int_{\mathcal{R}^{6}} g(\bar{k}, \bar{l}, t) e^{i r|\bar{k}+\bar{l}|} d \bar{k} d \bar{l}\right| \leq A \delta+\frac{F(\kappa)}{r}+H \kappa^{\prime}
$$

where $\{A, H\} \subset \mathcal{R}$. Follows that?(split again $\operatorname{Re}(g), \operatorname{Im}(g))$

$$
\left\lvert\, \int_{\mathcal{R}^{6}} g(\bar{k}, \bar{l}, t) \sin (r|\bar{k}+\bar{l}|) d \bar{k} d \bar{l} \leq B \delta+\frac{T(\kappa)}{r}+S \kappa^{\prime}\right.
$$

for sufficiently large r, In particular as $\kappa^{\prime}>0, \delta>0$ can be made arbitrarily small, and;

$$
\begin{aligned}
& \left|\lim _{r \rightarrow \infty} \int_{\mathcal{R}^{6}} g(\bar{k}, \bar{l}, t) \cos (r|\bar{k}+\bar{l}|) d \bar{k} d \bar{l}\right|<A \delta+H \kappa^{\prime} \\
& \lim _{r \rightarrow \infty} \int_{\mathcal{R}^{6}} g(\bar{k}, \bar{l}, t) \cos (r|\bar{k}+\bar{l}|) d \bar{k} d \bar{l}=0
\end{aligned}
$$

so no radiation condition holds.

Lemma 0.8. We have that;

$$
\begin{aligned}
& \left|\alpha_{4}(R, \theta, \phi, t, \bar{l})\right| \leq \frac{C 2^{\frac{5}{2}}}{R^{2}}\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right|, \text { for } R>4 l \sqrt{3}, l>1 \\
& R>4 \sqrt{3}, 0<l \leq 1 \\
& \left|R e\left(\alpha_{4}\right)(R, \theta, \phi, t, \bar{l}) \leq\left|\frac{C 2^{\frac{5}{2}}}{R^{2}}\right| \frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right|, \text { for } R>4 l \sqrt{3}, l>1 \\
& R>4 \sqrt{3}, 0<l \leq 1 \\
& \left|I m\left(\alpha_{4}\right)(R, \theta, \phi, t, \bar{l})\right| \leq \frac{C 2^{\frac{5}{2}}}{R^{2}}\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right|, \text { for } R>4 l \sqrt{3}, l>1 \\
& R>4 \sqrt{3}, 0<l \leq 1
\end{aligned}
$$

where $C \in \mathcal{R}_{>0}$
In particularly, the families $\left\{\operatorname{Re}\left(\alpha_{4}\right)(R, \theta, \phi, t, \bar{l}): \bar{l} \in \mathcal{R}^{3}, \bar{l} \neq \overline{0}, \theta \neq\right.$ $\left.\cos ^{-1}\left(\frac{l_{3}}{l_{1}}\right), \phi \neq \tan ^{-1}\left(\frac{l_{2}}{l_{1}}\right)\right\}$ and $\left\{\operatorname{Im}\left(\alpha_{4}\right)(R, \theta, \phi, t, \bar{l}): \bar{l} \in \mathcal{R}^{3}, \bar{l} \neq \overline{0}, \theta \neq\right.$ $\left.\cos ^{-1}\left(\frac{l_{3}}{l_{1}}\right), \phi \neq \tan ^{-1}\left(\frac{l_{2}}{l_{1}}\right)\right\}$ are of moderate decrease $n_{\bar{l}, \theta, \phi}$, with;

$$
\begin{aligned}
& n_{\bar{l}, \theta, \phi}=4 l \sqrt{3}, l>1 \\
& n_{\bar{l}, \theta, \phi}=4 \sqrt{3}, 0<l \leq 1 \\
& \text { and } D_{\bar{l}, \theta, \phi}=C 2^{\frac{5}{2}}\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right|
\end{aligned}
$$

Proof. We have that;

$$
\begin{aligned}
& \left|\alpha_{4}\right| \leq\left|\frac{P_{1,1}}{2 \pi^{2}} \frac{\bar{b}_{12, \bar{l}}(\bar{k})}{k^{2}|\bar{k}-\bar{l}|}\right|\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right| \\
& \left|\bar{b}_{12, \bar{l}}(\bar{k})\right| \leq \frac{D}{|\bar{k}-\bar{l}|^{4}},|\bar{k}-\bar{l}|>0 \text { (change this) }
\end{aligned}
$$

where $D \in \mathcal{R}_{>0}$
so that;

$$
\begin{aligned}
& \left|\alpha_{4}(R, \theta, \phi, t, \bar{l})\right| \leq\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right| \frac{C}{|\bar{k}-\bar{l}|^{5}} \\
& =C\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right| \frac{1}{\left[\left(R \sin (\theta) \cos (\phi)-l_{1}\right)^{2}+\left(R \sin (\theta) \sin (\phi)-l_{2}\right)^{2}+\left(R \cos (\theta)-l_{3}\right)^{2}\right]^{\frac{5}{2}}} \\
& =\frac{C}{R^{5}}\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right| \frac{1}{\left[\left(\sin (\theta) \cos (\phi)-\frac{l_{1}}{R}\right)^{2}+\left(\sin (\theta) \sin (\phi)-\frac{l_{2}}{R}\right)^{2}+\left(\cos (\theta)-\frac{l_{3}}{R}\right)^{2}\right]^{\frac{5}{2}}} \\
& =\frac{C}{R^{5}}\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right| \frac{1}{\left[1-\frac{2 l_{1} \sin (\theta) \cos (\phi)}{R}-\frac{2 l_{2} \sin (\theta) \sin (\phi)}{R}-\frac{2 l_{3} \cos (\theta)}{R}+\frac{l^{2}}{R^{2}}\right]^{\frac{5}{5}}} \\
& =\frac{C}{R^{5}}\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right| \frac{1}{\left(1-x+\frac{l^{2}}{R^{2}}\right)^{\frac{5}{2}}}
\end{aligned}
$$

where $C \in \mathcal{R}_{>0}$ and;
$|x| \leq \frac{2\left(\left|l_{1}\right|+\left|l_{2}\right|+\left|l_{3}\right|\right)}{R} \leq \frac{2 l \sqrt{3}}{R} \leq \frac{1}{2}$, for $R>4 l \sqrt{3}$
so that;

$$
\left.\left|\alpha_{4}(R, \theta, \phi, t, \bar{l})\right| \leq \frac{C 2^{\frac{5}{2}}}{R^{5}}\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right| \leq \frac{C 2^{\frac{5}{2}}}{R^{2}} \right\rvert\, \frac{\bar{d}_{12}^{\prime}(\bar{l})}{l} \text { (for } R>4 l \sqrt{3}, l>1,
$$

SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 5: NO RADIATION OF LIGHE

$$
R>4 \sqrt{3}, 0<l \leq 1)
$$

In particularly;

$$
\left|\operatorname{Re}\left(\alpha_{4}\right)(R, \theta, \phi, t, \bar{l})\right| \leq\left|\alpha_{4}(R, \theta, \phi, t, \bar{l})\right| \leq \frac{C 2^{\frac{5}{2}}}{R^{2}}\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right|
$$

for $R>4 l \sqrt{3}, l>1, R>4 \sqrt{3}, 0<l \leq 1$
$\left|\operatorname{Im}\left(\alpha_{4}\right)(R, \theta, \phi, t, \bar{l})\right| \leq\left|\alpha_{4}(R, \theta, \phi, t, \bar{l})\right| \leq \frac{C 2 \frac{5}{2}}{R^{2}}\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right|$
for $R>4 l \sqrt{3}, l>1, R>4 \sqrt{3}, 0<l \leq 1$

Lemma 0.9. We have that;

$$
\frac{\left|\bar{b}_{12, \bar{l}}(\bar{k})\right|}{\left.|\bar{k}|\right|^{2}|\bar{k}-\bar{l}|}\left|\frac{\bar{d}_{\frac{1}{\prime} 2}^{\prime}(\bar{l})}{l}\right| \in L^{1}\left(\mathcal{R}^{6}\right), \frac{\left|\bar{b}_{12, \bar{I}}(\bar{k})\right|}{|\bar{k}||\bar{k}-\bar{l}|^{2}}\left|\frac{\vec{d}_{12}^{\prime}(\bar{l})}{l}\right| \in L^{1}\left(\mathcal{R}^{6}\right)
$$

Proof. For the first claim, fix $\bar{l} \neq \overline{0}$, then;

$$
\left.\frac{1}{|\bar{k}|^{2}}\right|_{B\left(\bar{l}, \frac{l}{2}\right)} \leq \frac{4}{l^{2}},\left.\frac{1}{|\bar{k}-\bar{l}|}\right|_{\mathcal{R}^{3} \backslash B\left(\bar{l}, \frac{l}{2}\right)} \leq \frac{2}{l}
$$

so that;

$$
\begin{aligned}
& \int_{\mathcal{R}^{3}} \frac{\left|\bar{b}_{12, \bar{l}}(\bar{k})\right|}{|\bar{k}|^{2}|\bar{k} \bar{l}|} \left\lvert\, d \bar{k}=\int_{B\left(\bar{l}, \frac{l}{2}\right)} \frac{\left|\bar{b}_{12, \bar{l}}(\bar{k})\right|}{|\bar{k}|^{2} \mid \bar{k}-\bar{l}} d \bar{k}+\int_{\mathcal{R}^{3} \backslash B\left(\bar{l}, \frac{l}{2}\right)} \frac{\left|\bar{b}_{12, \bar{l}}(\bar{k})\right|}{|\bar{k}|^{2}|\bar{k}-\bar{l}|} d \bar{k}\right. \\
& \leq \frac{4}{l^{2}} \int_{B\left(\bar{l}, \frac{l}{2}\right)} \frac{\mid \bar{b}_{12, \bar{l}}(\bar{k}| |}{|\bar{k}-\bar{l}|} d \bar{k}+\frac{2}{l} \int_{\mathcal{R}^{3} \backslash B\left(\bar{l}, \frac{l}{2}\right)} \frac{\left\lvert\, \frac{\bar{b}_{12, \bar{l}}(\bar{k}) \mid}{|\bar{k}|^{2}} d \bar{k}\right.}{\leq \frac{4}{l^{2}} \int_{B\left(\bar{l}, \frac{l}{2}\right)} \frac{\mid \bar{b}_{12,2}(\bar{k} \mid}{|\bar{k}-\bar{l}|} d \bar{k}+\frac{2}{l} \int_{\mathcal{R}^{3}} \frac{\left|\bar{b}_{12, \bar{l}}(\bar{k})\right|}{|\bar{k}|^{2}} d \bar{k}} \\
& =\frac{4}{l^{2}} \int_{B\left(\overline{0}, \frac{l}{2}\right)} \frac{\left|\bar{b}_{12}(\bar{k})\right|}{|\bar{k}|} d \bar{k}+\frac{2}{l} \int_{\mathcal{R}^{3}} \frac{\mid \bar{b}_{12, \bar{l}}(\bar{k} \mid}{|\bar{k}|^{2}} d \bar{k} \\
& =\frac{4}{l^{2}} \int_{0}^{\frac{l}{2}} \int_{0 \leq \theta \leq \pi,-\pi \leq \phi \leq \pi} \frac{\left\lvert\, \frac{\left|\bar{b}_{12}(R, \theta, \phi)\right|}{R} R^{2} \sin (\theta) d R d \theta d \phi+\frac{2}{l} \int_{B(\overline{0}, 1)} \frac{\left|\overline{b_{12}}, \bar{l}(\bar{k})\right|}{\left.| | \bar{k}\right|^{2}} d \bar{k}\right.}{} \\
& +\int_{\mathcal{R}^{3} \backslash B(\overline{0}, 1)} \frac{\left|\bar{b}_{12, \bar{l}}(\bar{k})\right|}{|\bar{k}|^{2}} d \bar{k} \\
& \leq \frac{8 \pi^{2}}{l^{2}}\left[\frac{R^{2}}{2}\right]_{0}^{\frac{l}{2}}+\frac{2}{l} \int_{0}^{1} \int_{0 \leq \theta \leq \pi,-\pi \leq \phi \leq \pi} \frac{\left|\bar{b}_{12}(R, \theta, \phi)\right|}{R^{2}} R^{2} \sin (\theta) d R d \theta d \phi+\int_{\mathcal{R}^{3} \backslash B(\overline{0}, 1)}\left|\bar{b}_{12, \bar{l}}(\bar{k})\right| d \bar{k} \\
& \leq \pi^{2}+\frac{4 \pi^{2}}{l}[R]_{0}^{1}+C
\end{aligned}
$$

$$
=\pi^{2}+\frac{4 \pi^{2}}{l}+C
$$

where $C=\left\|\bar{b}_{12, \bar{l}}\right\|_{L^{1}\left(\mathcal{R}^{3}\right)}$ is independent of \bar{l}. It follows that;

$$
\begin{aligned}
& \left.\int_{\mathcal{R}^{6}} \frac{\mid \overline{b_{12, \bar{l}}(\bar{k}) \mid}}{|\bar{k}|^{2}|\bar{k}-\bar{l}|} \frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\left|d \bar{k} d \bar{l} \leq \int_{\mathcal{R}^{3}}\left(\pi^{2}+\frac{4 \pi^{2}}{l}+C\right)\right| \frac{\bar{d}_{12}^{\prime}(\bar{l})}{l} \right\rvert\, d \bar{l} \\
& =\left(\pi^{2}+C\right) \int_{\mathcal{R}^{3}} \frac{\left\lvert\, \frac{d_{12}^{\prime}(\bar{l})}{|\bar{l}|} d \bar{l}+4 \pi^{2} \int_{\mathcal{R}^{3}} \frac{\mid \bar{d}_{12}^{\prime}(\bar{l})}{|\bar{l}|^{2}} d \bar{l}\right.}{\leq\left(\pi^{2}+C\right)\left(\int_{B(\overline{0}, 1)} \frac{\mid \bar{d}_{12}^{\prime}(\bar{l})}{|\bar{l}|} d \bar{l}+\int_{\mathcal{R}^{3} \backslash B(\overline{0}, 1)}\left|\bar{d}_{12}^{\prime}(\bar{l})\right| d \bar{l}\right)} \\
& +4 \pi^{2}\left(\int_{B(\overline{0}, 1)} \frac{\mid \bar{d}_{12}^{\prime}(\bar{l})}{|\bar{l}|^{2}} d \bar{l}+\int_{\mathcal{R}^{3} \backslash B(\overline{0}, 1)}\left|\bar{d}_{12}^{\prime}(\bar{l})\right| d \bar{l}\right) \\
& \leq\left(\pi^{2}+C\right)\left(\int_{0}^{1} \int_{0 \leq \theta \leq \pi,-\pi \leq \phi \leq \pi}| | \bar{d}_{12}^{\prime}(R, \theta, \phi) \mid R \sin (\theta) d \theta d \phi+D\right) \\
& +4 \pi^{2}\left(\int_{0}^{1} \int_{0 \leq \theta \leq \pi,-\pi \leq \phi \leq \pi} \|\left|\bar{d}_{12}^{\prime}(R, \theta, \phi)\right| \sin (\theta) d \theta d \phi+D\right) \\
& \leq\left(\pi^{2}+C\right)\left(\pi^{2}+D\right)+4 \pi^{2}\left(2 \pi^{2}+D\right) \\
& =9 \pi^{4}+\pi^{2} C+5 \pi^{2} D+C D
\end{aligned}
$$

where $D=\left\|\bar{d}_{12}^{\prime}\right\|_{L^{1}\left(\mathcal{R}^{3}\right)}$
For the second claim, fix $\bar{l} \neq \overline{0}$, then, using the substitution $\bar{k}^{\prime}=\bar{k}-\bar{l}$ and the previous proof, we obtain that;

$$
\int_{\mathcal{R}^{3}} \frac{\left|\bar{b}_{12, \bar{l}}(\bar{k})\right|}{|\bar{k}||\bar{k}-\bar{l}|^{2}}\left|d \bar{k}=\int_{\mathcal{R}^{3}} \frac{\left|\bar{b}_{12}(\bar{k})\right|}{|\bar{k}|^{2}|\bar{k}+\bar{l}|}\right| d \bar{k} \leq \pi^{2}+\frac{4 \pi^{2}}{l}+C
$$

Following the above proof again, we have that;

$$
\begin{aligned}
& \int_{\mathcal{R}^{6}} \frac{\left|\bar{b}_{12 \bar{l}}(\bar{k})\right|}{|\bar{k}||\bar{k}-\bar{l}|^{2}}\left|\frac{\bar{d}_{12}^{\prime}}{l}(\bar{l})\right| d \bar{k} d \bar{l} \leq \int_{\mathcal{R}^{3}}\left(\pi^{2}+\frac{4 \pi^{2}}{l}+C\right)\left|\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right| d \bar{l} \\
& \leq 9 \pi^{4}+\pi^{2} C+5 \pi^{2} D+C D
\end{aligned}
$$

Definition 0.10. We say that $f \in C(\mathcal{R})$ is of moderate decrease if there exists a constant $D \in \mathcal{R}_{>0}$ with $|f(x)| \leq \frac{D}{|x|^{2}}$ for $|x|>1$. We say that $f \in C\left(\mathcal{R}_{>0}\right)$ is of moderate decrease if there exists a constant $D \in \mathcal{R}_{>0}$ with $|f(x)| \leq \frac{D}{|x|^{2}}$ for $|x|>1$. We say that $f \in C(\mathcal{R})$ is of moderate decrease n, if there exists a constant $D_{n} \in \mathcal{R}_{>0}$ with $|f(x)| \leq \frac{D_{n}}{|x|^{2}}$ for $|x|>n$. We say that $f \in C\left(\mathcal{R}_{>0}\right)$ is of moderate
decrease n if there exists a constant $D_{n} \in \mathcal{R}_{>0}$ with $|f(x)| \leq \frac{D_{n}}{|x|^{2}}$ for $|x|>n$. We say that $f \in C(\mathcal{R})$ is of very moderate decrease if there exists a constant $D \in \mathcal{R}_{>0}$ with $|f(x)| \leq \frac{D}{|x|}$ for $|x|>1$. We say that $f \in C(\mathcal{R})$ is of very moderate decrease n if there exists a constant $D_{n} \in \mathcal{R}_{>0}$ with $|f(x)| \leq \frac{D}{|x|}$ for $|x|>n$. We say that $f \in C\left(\mathcal{R}_{>0}\right)$ is of very moderate decrease if there exists a constant $D \in \mathcal{R}_{>0}$ with $|f(x)| \leq \frac{D}{|x|}$ for $|x|>1$. We say that $f \in C\left(\mathcal{R}_{>0}\right)$ is of very moderate decrease n if there exists a constant $D_{n} \in \mathcal{R}_{>0}$ with $|f(x)| \leq \frac{D_{n}}{|x|}$ for $|x|>n$. We say that $f \in C(\mathcal{R})$ is non-oscillatory if there are finitely many points $\left\{y_{i}: 1 \leq i \leq n\right\} \subset \mathcal{R}$ for which $\left.f\right|_{\left(y_{i}, y_{i+1}\right)}$ is monotone, $1 \leq$ $i \leq n-1$, and $\left.f\right|_{\left(-\infty, y_{1}\right)}$ and $\left.f\right|_{\left(y_{n}, \infty\right)}$ is monotone. We denote by $\operatorname{val}(f)$ the minimum number of such points. We say that $f \in C\left(\mathcal{R}_{>0}\right)$ is nonoscillatory if there are finitely many points $\left\{y_{i}: 1 \leq i \leq n\right\} \subset \mathcal{R}_{>0}$ for which $\left.f\right|_{\left(y_{i}, y_{i+1}\right)}$ is monotone, $1 \leq i \leq n-1$, and $\left.f\right|_{\left(0, y_{1}\right)}$ and $\left.f\right|_{\left(y_{n}, \infty\right)}$ is monotone. Similarily, we denote by val (f) the minimum number. We say that $f \in C(\mathcal{R})$ is oscillatory if there exists an increasing sequence $\left\{y_{i}: i \in \mathcal{Z}\right\} \subset \mathcal{R}$, for which $\left.f\right|_{\left(y_{i}, y_{i+1}\right)}$ is monotone, $i \in \mathcal{Z}$, and there exists $\delta>0$, with $y_{i+1}-y_{i}>\delta$, for $i \in \mathcal{Z}$. We say that $f \in C\left(\mathcal{R}_{>0}\right)$ is oscillatory if there exists a sequence $\left\{y_{i}: i \in \mathcal{N}\right\} \subset \mathcal{R}$, for which $\left.f\right|_{\left(0, y_{1}\right)}$ is monotone, and $\left.f\right|_{\left(y_{i}, y_{i+1}\right)}$ is monotone, $i \in \mathcal{N}$, and there exists $\delta>0$, with $y_{1}>\delta$ and $y_{i+1}-y_{i}>\delta$, for $i \in \mathcal{N}$.

Lemma 0.11. Let $f \in C(\mathcal{R})$ and $\frac{d f}{d x} \in C(\mathcal{R})$ be of moderate decrease, with $\frac{d f}{d x}$ non-oscillatory, then defining the Fourier transform by;

$$
\mathcal{F}(f)(k)=\frac{1}{(2 \pi)^{\frac{1}{2}}} \int_{\mathcal{R}} f(x) e^{-i k x} d x
$$

we have that, there exists a constant $C \in \mathcal{R}_{>0}$, such that;

$$
|\mathcal{F}(f)(k)| \leq \frac{C}{|k|^{2}}
$$

for sufficiently large k. Let $f \in C(\mathcal{R})$ and $\frac{d f}{d x} \in C(\mathcal{R})$ be of moderate decrease, with $\frac{d f}{d x}$ oscillatory, then, similarly;
we have that, there exists a constant $C \in \mathcal{R}_{>0}$, such that;

$$
|\mathcal{F}(f)(k)| \leq \frac{C}{|k|^{2}}
$$

for sufficiently large k.

The same result holds in the two claims, replacing moderate decrease with moderate decrease n.

Proof. As f is of moderate decrease, we have that $f \in L^{1}(\mathcal{R})$ and $\lim _{|x| \rightarrow \infty} f(x)=0$ Similarly, $\frac{d f}{d x} \in L^{1}(\mathcal{R})$ and $\frac{d f}{d x}$ is continuous. We have, using integration by parts, that;

$$
\begin{aligned}
& \mathcal{F}\left(\frac{d f}{d x}\right)(k)=\frac{1}{(2 \pi)^{\frac{1}{2}}} \int_{\mathcal{R}} \frac{d f}{d x}(y) e^{-i k y} d y \\
& =\left[f(y) e^{-i k y}\right]_{-\infty}^{\infty}+i k \int_{\mathcal{R}} f(y) e^{-i k y} d y \\
& =i k \int_{\mathcal{R}} f(y) e^{-i k y} d y \\
& =i k \mathcal{F}(f)(k)
\end{aligned}
$$

so that, for $|k|>1$;

$$
|\mathcal{F}(f)(k)| \leq \frac{\left|\mathcal{F}\left(\frac{d f}{d x}\right)(k)\right|}{|k|},(\dagger)
$$

As $\frac{d f}{d x}$ is of moderate decrease, for any $\epsilon>0$, we can find $N_{\epsilon} \in \mathcal{N}$ such that;

$$
\left|\mathcal{F}\left(\frac{d f}{d x}\right)(k)-\frac{1}{(2 \pi)^{\frac{1}{2}}} \int_{-N_{\epsilon}}^{N_{\epsilon}} \frac{d f}{d x}(y) e^{-i k y} d y\right|<\epsilon(*)
$$

As $\left.\frac{d f}{d x}\right|_{-N_{\epsilon}, N_{\epsilon}}$ is continuous and non-oscillatory, by the proof of Lemma 0.9 in [7], using underflow, we can find $\left\{D_{\epsilon}, E_{\epsilon}\right\} \subset \mathcal{R}_{>0}$, such that, for all $|k|>D_{\epsilon}$, we have that;

$$
\left|\frac{1}{(2 \pi)^{\frac{1}{2}}} \int_{-N_{\epsilon}}^{N_{\epsilon}} \frac{d f}{d x}(y) e^{-i k y} d y\right|<\frac{E_{\epsilon}}{|k|},(* *)
$$

It is easy to see from the proof, that $\left\{D_{\epsilon}, E_{\epsilon}\right\}$ can be chosen uniformly in ϵ. Then, from $(*),(* *)$, and the triangle inequality, we obtain that, for $|k|>D_{\epsilon}$;

$$
\begin{aligned}
& \left|\mathcal{F}\left(\frac{d f}{d x}\right)(k)\right| \\
& \leq\left|\mathcal{F}\left(\frac{d f}{d x}\right)(k)-\frac{1}{(2 \pi)^{\frac{1}{2}}} \int_{-N_{\epsilon}}^{N_{\epsilon}} \frac{d f}{d x}(y) e^{-i k y} d y\right|+\left|\frac{1}{(2 \pi)^{\frac{1}{2}}} \int_{-N_{\epsilon}}^{N_{\epsilon}} \frac{d f}{d x}(y) e^{-i k y} d y\right| \\
& <\epsilon+\frac{E_{\epsilon}}{|k|}
\end{aligned}
$$

so that, as $\left\{D_{\epsilon}, E_{\epsilon}\right\}$ were uniform and ϵ was arbitrary, we obtain that;

SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 5: NO RADIATION OF LIGHED

$$
\left|\mathcal{F}\left(\frac{d f}{d x}\right)(k)\right|<\frac{E}{|k|}, \text { for }|k|>D
$$

and, from (\dagger), for $|k|>D$, that;
$|\mathcal{F}(f)(k)| \leq \frac{\left|\mathcal{F}\left(\frac{d f}{d x}\right)(k)\right|}{|k|}<\frac{E}{|k|^{2}}$
For the second claim, we can follow the proof of the second claim in Lemma 0.13 . The final claim is a simple adaptation of the first two claims.

Lemma 0.12. Let $f \in C\left(\mathcal{R}_{>0}\right)$ be of moderate decrease, with f nonoscillatory, and $\lim _{x \rightarrow 0} f(x)=M$, with $M \in \mathcal{R}$, then defining the half Fourier transform \mathcal{G}, by;
$\mathcal{G}(f)(k)=\int_{0}^{\infty} f(x) e^{-i k x} d x$
we have that, there exists a constant $E \in \mathcal{R}_{>0}$, such that;
$|\mathcal{G}(f)(k)| \leq \frac{E}{|k|}$
for sufficiently large $|k|$. Moreover, we can choose;
$E=2\|f\|_{\infty} \operatorname{val}(f)$
Let $f \in C\left(\mathcal{R}_{>0}\right)$ be of moderate decrease, with f oscillatory, and $\lim _{x \rightarrow 0} f(x)=M$, with $M \in \mathcal{R}$, then, similarly;
we have that, there exists a constant $E \in \mathcal{R}_{>0}$, such that;
$|\mathcal{G}(f)(k)| \leq \frac{E}{|k|}$
for sufficiently large $|k|$. Moreover, we can choose $E=\frac{\left(4\|f\|_{\infty}+D\right)}{\delta}$, where D and δ are given in Definition 0.10.

The first claim is the same, replacing moderate decrease with moderate decrease n. The second claim is the same, replacing moderate decrease with moderate decrease n, with the modification that we can choose $E=\frac{2 n\|f\|_{\infty}}{\delta}+\frac{2 D_{n}}{n \delta}$.

Proof. As f is of moderate decrease and $\lim _{x \rightarrow 0} f(x)=M$, we have that $f \in L^{1}\left(\mathcal{R}_{>0}\right)$ and $\lim _{|x| \rightarrow \infty} f(x)=0$.

As f is of moderate decrease, for any $\epsilon>0$, we can find $N_{\epsilon} \in \mathcal{N}$ such that;

$$
\left|\mathcal{G}(f)(k)-\int_{0}^{N_{\epsilon}} f(y) e^{-i k y} d y\right|<\epsilon(*)
$$

As $\left.f\right|_{0, N_{\epsilon}}$ is continuous and non-oscillatory, by the proof of Lemma 0.9 in [7], using underflow, we can find $\left\{D_{\epsilon}, E_{\epsilon}\right\} \subset \mathcal{R}_{>0}$, such that, for all $|k|>D_{\epsilon}$, we have that;

$$
\left|\int_{0}^{N_{\epsilon}} f(y) e^{-i k y} d y\right|<\frac{E_{\epsilon}}{|k|},(* *)
$$

It is easy to see from the proof, that $\left\{D_{\epsilon}, E_{\epsilon}\right\}$ can be chosen uniformly in ϵ, Splitting the calculation into real and imaginary components, it is straightfoward to see that it is possible to choose E_{ϵ} with $E_{\epsilon}=2\|f\|_{\infty} \operatorname{val}(f)$, noting that the infinitesimal correction existing after the use of underflow, drops out after taking the standard part. Then, from $(*),(* *)$, and the triangle inequality, we obtain that, for $|k|>D_{\epsilon}$;

$$
\begin{aligned}
& |\mathcal{G}(f)(k)| \\
& \leq\left|\mathcal{G}(f)(k)-\int_{0}^{N_{\epsilon}} f(y) e^{-i k y} d y\right|+\left|\int_{0}^{N_{\epsilon}} f(y) e^{-i k y} d y\right| \\
& <\epsilon+\frac{E_{\epsilon}}{|k|}
\end{aligned}
$$

so that, as $\left\{D_{\epsilon, \rho}, E_{\epsilon}\right\}$ were uniform and ϵ was arbitrary, we obtain that;

$$
|\mathcal{G}(f)(k)|<\frac{E}{|k|}, \text { for sufficiently large }|k|
$$

For the second claim, after choosing $N \in \mathcal{N}$, we have that $\left.f\right|_{(0, N)}$ is non-oscillatory, and, moreover, there are at most $\frac{N}{\delta}$ monotone intervals. As in $(* *)$, and inspection of the proof in [7], we get;

$$
\left|\int_{0}^{N} f e^{-i k y} d y\right|<\frac{E_{N}}{|k|}
$$

for sufficiently large $|k|$, where $E_{N}=\frac{2 N C}{\delta}$ and $C=\max _{x \in \mathcal{R}_{>0}}|f|$.
Choosing $N>1$, as f is of moderate decrease, we can assume that $|f| \leq \frac{D}{x^{2}}$, for $x>N$. Then, using the proof in [7] again, the definition of oscillatory, and noting that ${ }^{*} \sum_{y_{i}^{*}>N} \frac{D}{y_{i}^{2}} \simeq \sum_{y_{i}>N} \frac{D}{y_{i}^{2}}$, we have that, for sufficiently large $|k|$;

$$
\begin{aligned}
& \left|\int_{N}^{\infty} f e^{-i k y} d y\right|<\left(\frac{2}{|k|} \sum_{y_{i}>N} \frac{D}{y_{i}^{2}}\right) \\
& \leq\left(\frac{2}{|k|} \sum_{n \in \mathcal{Z} \geq 0} \frac{D}{\left(y_{i_{0}}+n \delta\right)^{2}}\right) \\
& \leq \frac{2 D}{\delta|k|} \int_{y_{i_{0}}}^{\infty} \frac{d x}{x^{2}} \\
& =\frac{2 D}{\delta|k| y_{i_{0}}} \\
& \leq \frac{2 D}{\delta|k| N}
\end{aligned}
$$

where $y_{i_{0}} \geq N$ and $y_{i_{0}} \leq y_{i}$, for all $y_{i} \geq N$. It follows that;

$$
\begin{aligned}
& |\mathcal{G}(f)(k)|=\left|\int_{0}^{N} f e^{-i k y} d y+\int_{N}^{\infty} f e^{-i k y} d y\right| \\
& \leq\left|\int_{0}^{N} f e^{-i k y} d y\right|+\left|\int_{N}^{\infty} f e^{-i k y} d y\right| \\
& \leq \frac{E_{N}}{|k|}+\frac{2 D}{\delta|k| N} \\
& \leq \frac{2}{|k|}\left(\frac{N C}{\delta}+\frac{D}{\delta N}\right)
\end{aligned}
$$

It follows, using (\dagger), that;

$$
\left\lvert\, \mathcal{G}(f)(k) \leq \frac{E}{|k|}\right.
$$

where $E=2\left(\frac{N C}{\delta}+\frac{D}{\delta N}\right)$
In particular, choosing $N=2$, we can take;

$$
E=2\left(\frac{2 C}{\delta}+\frac{D}{2 \delta}\right)=\frac{(4 C+D)}{\delta}=\frac{\left(4\|f\|_{\infty}+D\right)}{\delta}
$$

For the final claim, the modification for the first part is the same. In the second part, choose $N \geq n$, rather than $N>1$ in the proof, and replace D with D_{n}, to get $E=2\left(\frac{N C}{\delta}+\frac{D_{n}}{\delta N}\right)$, then, taking $N=n$, we obtain $E=2\left(\frac{n C}{\delta}+\frac{D_{n}}{\delta n}\right)$.

Lemma 0.13. Let $f \in C\left(\mathcal{R}_{>0}\right)$ and $\frac{d f}{d x} \in C\left(\mathcal{R}_{>0}\right)$ be of moderate decrease, with $\frac{d f}{d x}$ non-oscillatory, and $\lim _{x \rightarrow 0} f(x)=0, \lim _{x \rightarrow 0} \frac{d f}{d x}(x)=$ M, with $M \in \mathcal{R}$, then defining the half Fourier transform \mathcal{G}, by;
$\mathcal{G}(f)(k)=\int_{0}^{\infty} f(x) e^{-i k x} d x$
we have that, there exists a constant $E \in \mathcal{R}_{>0}$, such that;
$|\mathcal{G}(f)(k)| \leq \frac{E}{|k|^{2}}$
for sufficiently large k. Moreover, we can choose $E=2\left\|\frac{d f}{d x}\right\|_{\infty}$ val $\left(\frac{d f}{d x}\right)$
Let $f \in C\left(\mathcal{R}_{>0}\right)$ and $\frac{d f}{d x} \in C\left(\mathcal{R}_{>0}\right)$ be of moderate decrease, with $\frac{d f}{d x}$ oscillatory, and $\lim _{x \rightarrow 0} f(x)=0, \lim _{x \rightarrow 0} \frac{d f}{d x}(x)=M$, with $M \in \mathcal{R}$, then, similarly;
we have that, there exists a constant $E \in \mathcal{R}_{>0}$, such that;

$$
|\mathcal{G}(f)(k)| \leq \frac{E}{|k|^{2}}
$$

for sufficiently large k, Moreover, we can choose $E=\frac{\left(4\left\|\frac{d f}{d x}\right\|_{\infty}+D\right)}{\delta}$.
The first claim is the same, replacing moderate decrease with moderate decrease n. The second claim is the same, replacing moderate decrease with moderate decrease n, with the modification that we can choose $E=\frac{2 n\left\|\frac{d f}{d x}\right\|_{\infty}}{\delta}+\frac{2 D_{n}}{n \delta}$.

Proof. As f is of moderate decrease and $\lim _{x \rightarrow 0} f(x)=0$, we have that $f \in L^{1}\left(\mathcal{R}_{>0}\right)$ and $\lim _{|x| \rightarrow \infty} f(x)=0$. Similarly, $\frac{d f}{d x} \in L^{1}\left(\mathcal{R}_{>0}\right)$ and $\frac{d f}{d x}$ is continuous. We have, using integration by parts, that;

$$
\begin{aligned}
& \mathcal{G}\left(\frac{d f}{d x}\right)(k)=\int_{0}^{\infty} \frac{d f}{d x}(y) e^{-i k y} d y \\
& =\left[f(y) e^{-i k y}\right]_{0}^{\infty}+i k \int_{0}^{\infty} f(y) e^{-i k y} d y \\
& =i k \int_{0}^{\infty} f(y) e^{-i k y} d y \\
& =i k \mathcal{G}(f)(k)
\end{aligned}
$$

so that, for $|k|>1$;

$$
|\mathcal{G}(f)(k)| \leq \frac{\left|\mathcal{G}\left(\frac{d f}{d x}\right)(k)\right|}{|k|},(\dagger)
$$

As $\frac{d f}{d x}$ is of moderate decrease, for any $\epsilon>0$, we can find $N_{\epsilon} \in \mathcal{N}$ such that;

$$
\left|\mathcal{G}\left(\frac{d f}{d x}\right)(k)-\int_{0}^{N_{\epsilon}} \frac{d f}{d x}(y) e^{-i k y} d y\right|<\epsilon(*)
$$

As $\left.\frac{d f}{d x}\right|_{0, N_{\epsilon}}$ is continuous and non-oscillatory, by the proof of Lemma 0.9 in [7], using underflow, we can find $\left\{D_{\epsilon}, E_{\epsilon}\right\} \subset \mathcal{R}_{>0}$, such that, for all $|k|>D_{\epsilon}$, we have that;

$$
\left|\int_{0}^{N_{\epsilon}} \frac{d f}{d x}(y) e^{-i k y} d y\right|<\frac{E_{\epsilon}}{|k|},(* *)
$$

It is easy to see from the proof, that $\left\{D_{\epsilon}, E_{\epsilon}\right\}$ can be chosen uniformly in ϵ. Then, from $(*),(* *)$, and the triangle inequality, we obtain that, for $|k|>D_{\epsilon}$;

$$
\begin{aligned}
& \left|\mathcal{G}\left(\frac{d f}{d x}\right)(k)\right| \\
& \leq\left|\mathcal{G}\left(\frac{d f}{d x}\right)(k)-\int_{0}^{N_{\epsilon}} \frac{d f}{d x}(y) e^{-i k y} d y\right|+\left|\int_{0}^{N_{\epsilon}} \frac{d f}{d x}(y) e^{-i k y} d y\right| \\
& <\epsilon+\frac{E_{\epsilon}}{|k|}
\end{aligned}
$$

so that, as $\left\{D_{\epsilon}, E_{\epsilon}\right\}$ were uniform and ϵ was arbitrary, we obtain that;

$$
\left|\mathcal{G}\left(\frac{d f}{d x}\right)(k)\right|<\frac{E}{|k|}, \text { for }|k|>D
$$

and, from (\dagger), for $|k|>D$, that;

$$
|\mathcal{G}(f)(k)| \leq \frac{\left|\mathcal{G}\left(\frac{d f}{d x}\right)(k)\right|}{|k|}<\frac{E}{|k|^{2}}
$$

The choice of E is the same as in the proof of Lemma 0.12 . For the second claim, the proof up to (\dagger) is the same. After choosing $N \in \mathcal{N}$, we have that $\left.\frac{d f}{d x}\right|_{(0, N)}$ is non-oscillatory, and, moreover, there are at most $\frac{N}{\delta}$ monotone intervals. As in $(* *)$, and inspection of the proof in [7], we get;

$$
\left|\int_{0}^{N} \frac{d f}{d x} e^{-i k y} d y\right|<\frac{E_{N}}{|k|}
$$

where $E_{N} \leq \frac{2 N C}{\delta}$ and $C=\max _{x \in \mathcal{R}>0}\left|\frac{d f}{d x}\right|$.
Choosing $N>1$, as $\frac{d f}{d x}$ is of moderate decrease, we can assume that $\left|\frac{d f}{d x}\right| \leq \frac{D}{x^{2}}$, for $x>N$. Then, using the proof in [7] again, and the
definition of oscillatory, we have that, for sufficiently large $|k|$;

$$
\begin{aligned}
& \left|\int_{N}^{\infty} \frac{d f}{d x} e^{-i k y} d y\right|<\left(\frac{2}{|k|} \sum_{y_{i}>N} \frac{D}{y_{i}^{2}}\right) \\
& \leq\left(\frac{2}{|k|} \sum_{n \in \mathcal{Z}_{\geq 0}} \frac{D}{\left(y_{i_{0}}+n \delta\right)^{2}}\right) \\
& \leq \frac{2 D}{\delta|k|} \int_{y_{i_{0}}}^{\infty} \frac{d x}{x^{2}} \\
& =\frac{2 D}{\delta|k| y_{i_{0}}} \\
& \leq \frac{2 D}{\delta|k| N}
\end{aligned}
$$

where $y_{i_{0}} \geq N$ and $y_{i_{0}} \leq y_{i}$, for all $y_{i} \geq N$. It follows that;

$$
\begin{aligned}
& \left|\mathcal{G}\left(\frac{d f}{d x}\right)(k)\right|=\left|\int_{0}^{N} \frac{d f}{d x} e^{-i k y} d y+\int_{N}^{\infty} \frac{d f}{d x} e^{-i k y} d y\right| \\
& \leq\left|\int_{0}^{N} \frac{d f}{d x} e^{-i k y} d y\right|+\left|\int_{N}^{\infty} \frac{d f}{d x} e^{-i k y} d y\right| \\
& \leq \frac{E_{N}}{|k|}+\frac{2 D}{\delta|k| N} \\
& \leq \frac{2}{|k|}\left(\frac{N C}{\delta}+\frac{D}{\delta N}\right)
\end{aligned}
$$

It follows, using (\dagger), that;

$$
|\mathcal{G}(f)(k)| \leq \frac{\left|\mathcal{G}\left(\frac{d f}{d x}\right)(k)\right|}{|k|}<\frac{E_{N}}{|k|^{2}}
$$

where $E_{N}=2\left(\frac{N C}{\delta}+\frac{D}{\delta N}\right)$
As in Lemma 0.12 , we can choose E as in the final claim of the two parts.

For the final claim, the modification for the first part is the same. In the second part, choose $N \geq n$, rather than $N>1$ in the proof, and replace D with D_{n}, to get $E_{N}=2\left(\frac{N C}{\delta}+\frac{D_{n}}{\delta N}\right)$, then, taking $N=n$, we obtain $E=2\left(\frac{n C}{\delta}+\frac{D_{n}}{\delta n}\right)$.
Definition 0.14. We say that a family $W=\left\{f_{\bar{v}}: \bar{v} \in V\right\}$, with $f_{\bar{v}} \in C\left(\mathcal{R}_{>0}\right)$ and $V \subset \mathcal{R}^{n}$ open, is of moderate decrease if there exists constants $D_{\bar{v}} \in \mathcal{R}_{>0}$ with $\left|f_{\bar{v}}(x)\right| \leq \frac{D_{\bar{v}}}{|x|^{2}}$ for $|x|>1$. We say that a family $W=\left\{f_{\bar{v}}: \bar{v} \in V\right\}$, with $f_{\bar{v}} \in C\left(\mathcal{R}_{>0}\right)$ and $V \subset \mathcal{R}^{n}$ open, is of moderate decrease $n_{\bar{v}}$ if there exists constants $D_{\bar{v}} \in \mathcal{R}_{>0}$ with $\left|f_{\bar{v}}(x)\right| \leq \frac{D_{\bar{v}}}{|x|^{2}}$ for $|x|>n_{\bar{v}}$, where $n: V \rightarrow \mathcal{R}_{>0}$ is continuous. We
say that the family $\left\{f_{\bar{v}}: \bar{v} \in V\right\}$ is non-oscillatory if there are finitely many points $\left\{y_{i, \bar{v}}: 1 \leq i \leq n\right\} \subset \mathcal{R}$ for which $\left.f_{\bar{v}}\right|_{\left(y_{i, \bar{v}}, y_{i+1, \bar{v})}\right.}$ is monotone, $1 \leq i \leq n-1$, and $\left.f\right|_{\left(-\infty, y_{1, \bar{v}}\right)}$ and $\left.f\right|_{\left(y_{n, \bar{v}, \infty)}\right)}$ is monotone. We denote by $\operatorname{val}(W)$ the minimum number of such points. We say that a family $W=\left\{f_{\bar{v}}: \bar{v} \in V\right\}$, with $f_{\bar{v}} \in C\left(\mathcal{R}_{>0}\right)$ is oscillatory if there exists a sequence $\left\{y_{i, \bar{v}}: i \in \mathcal{N}\right\} \subset \mathcal{R}$, for which $\left.f\right|_{\left(0, y_{1, \bar{v}}\right)}$ is monotone, and $\left.f\right|_{\left(y_{i, \bar{v}}, y_{i+1, \bar{v}}\right)}$ is monotone, $i \in \mathcal{N}$, and there exists $\delta_{\bar{v}}>0$, with $y_{1}>\delta_{\bar{v}}$ and $y_{i+1}-y_{i}>\delta_{\bar{v}}$, for $i \in \mathcal{N}$.

Lemma 0.15. Let a family $W=\left\{f_{\bar{v}}: \bar{v} \in V\right\}$ be of moderate decrease, with W non-oscillatory, and $\lim _{x \rightarrow 0} f_{\bar{v}}(x)=M_{\bar{v}}$, with $M_{\bar{v}} \in \mathcal{R}$, then we have that, there exists constants $E_{\bar{v}} \in \mathcal{R}_{>0}$, such that;

$$
\left|\mathcal{G}\left(f_{\bar{v}}\right)(k)\right| \leq \frac{E_{\bar{v}}}{|k|}
$$

for sufficiently large $|k|$, independent of \bar{v}. Moreover, we can choose;

$$
E_{\bar{v}}=2\left\|f_{\bar{v}}\right\|_{\infty} \operatorname{val}(W)
$$

Let a family $W=\left\{f_{\bar{v}}: \bar{v} \in V\right\}$ be of moderate decrease and oscillatory, and $\lim _{x \rightarrow 0} f_{\bar{v}}(x)=M_{\bar{v}}$, with $M_{\bar{v}} \in \mathcal{R}$, then, similarly;
we have that, there exists constants $E_{\bar{v}} \in \mathcal{R}_{>0}$, such that;

$$
|\mathcal{G}(f)(k)| \leq \frac{E_{\bar{v}}}{|k|}
$$

for sufficiently large $|k|$, independent of \bar{v}. Moreover, we can choose

$$
E_{\bar{v}}=\frac{\left(4\left\|f_{f_{\bar{v}}}\right\|_{\infty}+D_{\bar{v}}\right)}{\delta_{\bar{v}}}
$$

where $D_{\bar{v}}$ and $\delta_{\bar{v}}$ are given in Definition 0.20.
The first claim is the same, replacing moderate decrease with moderate decrease $n_{\bar{v}}$. The second claim is the same, replacing moderate decrease with moderate decrease $n_{\bar{v}}$, with the modification that we can choose $E_{\bar{v}}=\frac{2 n_{\bar{v}}\left\|f_{\bar{v}}\right\|_{\infty}}{\delta_{\bar{v}}}+\frac{2 D_{\bar{v}}}{n_{\bar{v}} \delta_{\bar{v}}}$.

Proof. As each $f_{\bar{v}}$ is of moderate decrease and $\lim _{x \rightarrow 0} f_{\bar{v}}(x)=M_{\bar{v}}$, we have that each $f_{\bar{v}} \in L^{1}\left(\mathcal{R}_{>0}\right)$ and $\lim _{|x| \rightarrow \infty} f_{\bar{v}}(x)=0$.

As each $f_{\bar{v}}$ is of moderate decrease, for any $\epsilon>0$, we can find $N_{\epsilon, \bar{v}} \in \mathcal{N}$ such that;

$$
\left|\mathcal{G}\left(f_{\bar{v}}\right)(k)-\int_{0}^{N_{\epsilon, \bar{v}}} f_{\bar{v}}(y) e^{-i k y} d y\right|<\epsilon(*)
$$

As each $\left.f_{\bar{v}}\right|_{0, N_{\epsilon, \bar{v}}}$ is continuous and non-oscillatory, by the proof of Lemma 0.9 in [7], quantifying over the nonstandard parameter space ${ }^{*} V$, linking the parameters with $N_{\epsilon, \bar{v}}$, and using underflow again, we can find $\left\{D_{\epsilon}, E_{\epsilon, \bar{v}}\right\} \subset \mathcal{R}_{>0}$, such that, for all $|k|>D_{\epsilon}$, we have that;

$$
\left|\int_{0}^{N_{\epsilon, \bar{v}}} f_{\bar{v}}(y) e^{-i k y} d y\right|<\frac{E_{\epsilon, \overline{\bar{v}}}}{|k|},(* *)
$$

It is easy to see from the proof, that $\left\{D_{\epsilon}, E_{\epsilon, \bar{v}}\right\}$ can be chosen uniformly in ϵ, as the number of monotone intervals in the interval $\left(0, N_{\epsilon, \bar{v}}\right)$ is always bounded by $\operatorname{val}(W)$. Splitting the calculation into real and imaginary components, it is again straightfoward to see that it is possible to choose $E_{\epsilon, \bar{v}}$ with $E_{\epsilon, \bar{v}}=2\left\|f_{\bar{v}}\right\|_{\infty} \operatorname{val}(W)$. Again, note that the infinitesimal correction existing after the use of underflow, drops out after taking the standard part, for each $f_{\bar{v}}$. Then, from $(*),(* *)$, and the triangle inequality, we obtain that, for $|k|>D_{\epsilon}$;

$$
\begin{aligned}
& \left|\mathcal{G}\left(f_{\bar{v}}\right)(k)\right| \\
& \leq\left|\mathcal{G}\left(f_{\bar{v}}\right)(k)-\int_{0}^{N_{\epsilon, \bar{v}}} f_{\bar{v}}(y) e^{-i k y} d y\right|+\left|\int_{0}^{N_{\epsilon, \bar{v}}} f_{\bar{v}}(y) e^{-i k y} d y\right| \\
& <\epsilon+\frac{E_{\epsilon, \bar{v}}}{|k|}
\end{aligned}
$$

so that, as $\left\{D_{\epsilon}, E_{\epsilon, \bar{v}}\right\}$ were uniform and ϵ was arbitrary, we obtain that;

$$
\left|\mathcal{G}\left(f_{\bar{v}}\right)(k)\right|<\frac{E_{\overline{\bar{v}}}}{|k|} \text {, for sufficiently large }|k| \text {, independently of } \bar{v} \text {. }
$$

For the second claim, after choosing $N \in \mathcal{N}$, we have that each $\left.f_{\bar{v}}\right|_{(0, N)}$ is non-oscillatory, and, moreover, there are at most $\frac{N}{\delta_{\bar{v}}}$ monotone intervals. As in $(* *)$, and inspection of the proof in [7], we get;

$$
\left|\int_{0}^{N} f_{\bar{v}} e^{-i k y} d y\right|<\frac{E_{N}}{|k|}
$$

for sufficiently large $|k|$, independent of \bar{v}, where $E_{N}=\frac{2 N C_{\bar{v}}}{\delta_{\bar{v}}}$ and $C_{\bar{v}}=\max _{x \in \mathcal{R}_{>0}}\left|f_{\bar{v}}\right|$.

Choosing $N>1$, as each $f_{\bar{v}}$ is of moderate decrease, we can assume that $\left|f_{\bar{v}}\right| \leq \frac{D_{\bar{v}}}{x^{2}}$, for $x>N$. Then, using the proof in [7] again, and the pendent of \bar{v};

$$
\begin{aligned}
& \left|\int_{N}^{\infty} f_{\bar{v}} e^{-i k y} d y\right|<\left(\frac{2}{|k|} \sum_{y_{i, \bar{v}}>N} \frac{D_{\overline{\bar{v}}}}{y_{i, \bar{v}}^{2}}\right) \\
& \leq\left(\frac{2}{|k|} \sum_{n \in \mathcal{Z}_{\geq 0}} \frac{D_{\bar{v}}}{\left(y_{i_{0, \bar{v}}}+n \delta_{\bar{v}}\right)^{2}}\right) \\
& \leq \frac{2 D_{\overline{\bar{v}}}}{\delta_{\bar{v}} \left\lvert\, \int_{y_{i_{0}}, \bar{v}}^{\infty} \frac{d x}{x^{2}}\right.} \\
& =\frac{2 D_{\bar{v}}}{\delta_{\bar{v}}|k| y_{i_{0}, \bar{v}}} \\
& \leq \frac{2 D_{\bar{v}}}{\delta_{\bar{v}}|k| N}
\end{aligned}
$$

where $y_{i_{0}, \bar{v}} \geq N$ and $y_{i_{0}, \bar{v}} \leq y_{i, \bar{v}}$, for all $y_{i, \bar{v}} \geq N$. It follows that;

$$
\begin{aligned}
& \left|\mathcal{G}\left(f_{\bar{v}}\right)(k)\right|=\left|\int_{0}^{N} f_{\bar{v}} e^{-i k y} d y+\int_{N}^{\infty} f_{\bar{v}} e^{-i k y} d y\right| \\
& \leq\left|\int_{0}^{N} f_{\bar{v}} e^{-i k y} d y\right|+\left|\int_{N}^{\infty} f_{\bar{v}} e^{-i k y} d y\right| \\
& \leq \frac{E_{N}}{|k|}+\frac{2 D_{\bar{v}}}{\delta_{\bar{v}}|k| N} \\
& \leq \frac{2}{|k|}\left(\frac{N C_{\bar{v}}}{\delta_{\bar{v}}}+\frac{D_{\bar{v}}}{\delta_{\bar{v}} N}\right)
\end{aligned}
$$

It follows, using (\dagger), that;

$$
\left\lvert\, \mathcal{G}\left(f_{\bar{v}}\right)(k) \leq \frac{E_{N}}{|k|}\right.
$$

where $E_{N}=2\left(\frac{N C_{\bar{v}}}{\delta_{\bar{v}}}+\frac{D_{\bar{v}}}{N \delta_{\bar{v}}}\right)$
In particular, choosing $N=2$, we can take;

$$
E=E_{2}=2\left(\frac{2 C_{\bar{v}}}{\delta_{\bar{v}}}+\frac{D_{\bar{v}}}{2 \delta_{\bar{v}}}\right)=\frac{\left(4 C_{\overline{\widetilde{v}}}+D_{\bar{v}}\right)}{\delta_{\bar{v}}}=\frac{\left(4\left\|f_{\bar{v}}\right\|_{\infty}+D_{\bar{v}}\right)}{\delta_{\bar{v}}}
$$

For the final claim, the modification for the first part is the same. In the second part, choose $N \geq n_{\bar{v}}$, rather than $N>1$ in the proof, then, taking $N=n_{\bar{v}}$, we obtain $E=E_{n_{\bar{v}}}=2\left(\frac{n_{\bar{v}} C_{\bar{v}}}{\delta_{\bar{v}}}+\frac{D_{\bar{v}}}{n_{\bar{v}} \delta_{\bar{v}}}\right)$

Lemma 0.16. Let a family $W=\left\{f_{\bar{v}}: \bar{v} \in V\right\}$ be of moderate decrease such that the family $W^{\prime}=\left\{\frac{d f}{d x} \bar{v}: \bar{v} \in V\right\}$ is of moderate decrease and non-oscillatory, with $\lim _{x \rightarrow 0} f_{\bar{v}}(x)=0, \lim _{x \rightarrow 0} \frac{d f_{\bar{v}}}{d x}(x)=M_{\bar{v}}$, with
$M_{\bar{v}} \in \mathcal{R}$, for $\bar{v} \in V$, then we have that, there exists constants $E_{\bar{v}} \in \mathcal{R}_{>0}$, such that;

$$
\left|\mathcal{G}\left(f_{\bar{v}}\right)(k)\right| \leq \frac{E_{\bar{v}}}{|k|^{2}}
$$

for sufficiently large k, independent of \bar{v}. Moreover, we can choose $E_{\bar{v}}=2\left\|\frac{d f_{\bar{v}}}{d x}\right\|_{\infty} \operatorname{val}\left(W^{\prime}\right)$

Let the families $W=\left\{f_{\bar{v}}: \bar{v} \in V\right\}$ and $W^{\prime}=\left\{\frac{d f}{d x}{ }_{\bar{v}}: \bar{v} \in V\right\}$ be of moderate decrease with W^{\prime} oscillatory as well, with $\lim _{x \rightarrow 0} f_{\bar{v}}(x)=0$, $\lim _{x \rightarrow 0} \frac{d f_{\bar{v}}}{d x}(x)=M_{\bar{v}}$, with $M_{\bar{v}} \in \mathcal{R}$, then, similarly, we have that, there exists constants $E_{\bar{v}} \in \mathcal{R}_{>0}$, such that;

$$
\left|\mathcal{G}\left(f_{\bar{v}}\right)(k)\right| \leq \frac{E_{\bar{v}}}{|k|^{2}}
$$

for sufficiently large k, independent of \bar{v}. Moreover, we can choose;

$$
E_{\bar{v}}=\frac{\left(4\left\|\frac{d f_{\bar{v}}}{d x}\right\|_{\infty}+D_{\bar{v}}\right)}{\delta_{\bar{v}}}
$$

where $D_{\bar{v}}$ and $\delta_{\bar{v}}$ are given in Definition 0.20.
The first claim is the same, replacing moderate decrease with moderate decrease $n_{\bar{v}}$. The second claim is the same, replacing moderate decrease with moderate decrease $n_{\bar{v}}$, with the modification that we can choose $E_{\bar{v}}=\frac{2 n_{\bar{v}}\left\|\frac{d \bar{f}_{\bar{v}}}{\delta_{\bar{v}}}\right\|_{\infty}}{\delta_{\bar{v}}}+\frac{2 D_{\bar{v}}}{n_{\bar{v}}}$.

Proof. As each $f_{\bar{v}}$ is of moderate decrease and $\lim _{x \rightarrow 0} f_{\bar{v}}(x)=0$, we have that each $f_{\bar{v}} \in L^{1}\left(\mathcal{R}_{>0}\right)$ and $\lim _{|x| \rightarrow \infty} f_{\bar{v}}(x)=0$. Similarly, each $\frac{d f_{\bar{v}}}{d x} \in L^{1}\left(\mathcal{R}_{>0}\right)$ and each $\frac{d f_{\bar{v}}}{d x}$ is continuous. We have, using integration by parts, that;

$$
\begin{aligned}
& \mathcal{G}\left(\frac{d f_{\bar{v}}}{d x}\right)(k)=\int_{0}^{\infty} \frac{d f_{\bar{v}}}{d x}(y) e^{-i k y} d y \\
& =\left[f_{\bar{v}}(y) e^{-i k y}\right]_{0}^{\infty}+i k \int_{0}^{\infty} f_{\bar{v}}(y) e^{-i k y} d y \\
& =i k \int_{0}^{\infty} f_{\bar{v}}(y) e^{-i k y} d y \\
& =i k \mathcal{G}\left(f_{\bar{v}}\right)(k)
\end{aligned}
$$

so that, for $|k|>1$;

$$
\left|\mathcal{G}\left(f_{\bar{v}}\right)(k)\right| \leq \frac{\left|\mathcal{G}\left(\frac{d f_{\bar{v}}}{d x}\right)(k)\right|}{|k|},(\dagger)
$$

As $\frac{d f_{\bar{v}}}{d x}$ is of moderate decrease, for any $\epsilon>0$, we can find $N_{\epsilon, \bar{v}} \in \mathcal{N}$ such that;

$$
\left|\mathcal{G}\left(\frac{d f_{\bar{v}}}{d x}\right)(k)-\int_{0}^{N_{\epsilon, \bar{v}}} \frac{d f_{\bar{v}}}{d x}(y) e^{-i k y} d y\right|<\epsilon(*)
$$

As $\left.\frac{d f_{\bar{v}}}{d x}\right|_{0, N_{\epsilon, \bar{v}}}$ is continuous and non-oscillatory, by the proof of Lemma 0.9 in [7], using underflow and quantifying over the nonstandard parameter space again, linked to the parameters $N_{\epsilon, \bar{v}}$, we can find $\left\{D_{\epsilon}, E_{\epsilon, \bar{v}}\right\} \subset$ $\mathcal{R}_{>0}$, such that, for all $|k|>D_{\epsilon}$, we have that;

$$
\left|\int_{0}^{N_{\epsilon, \bar{v}}} \frac{d f_{\bar{v}}}{d x}(y) e^{-i k y} d y\right|<\frac{E_{\epsilon, \bar{v}}}{|k|},(* *)
$$

Again, as in the proof of Lemma $0.15,\left\{D_{\epsilon}, E_{\epsilon, \bar{v}}\right\}$ can be chosen uniformly in ϵ. Then, from $(*),(* *)$, and the triangle inequality, we obtain that, for $|k|>D_{\epsilon}$;

$$
\begin{aligned}
& \left|\mathcal{G}\left(\frac{d f_{\bar{v}}}{d x}\right)(k)\right| \\
& \leq\left|\mathcal{G}\left(\frac{d f_{\bar{v}}}{d x}\right)(k)-\int_{0}^{N_{\epsilon, \bar{v}}} \frac{d f_{\bar{v}}}{d x}(y) e^{-i k y} d y\right|+\left|\int_{0}^{N_{\epsilon, \bar{v}}} \frac{d f_{\bar{v}}}{d x}(y) e^{-i k y} d y\right| \\
& <\epsilon+\frac{E_{\epsilon, \bar{v}}}{|k|}
\end{aligned}
$$

so that, as $\left\{D_{\epsilon}, E_{\epsilon, \bar{v}}\right\}$ were uniform and ϵ was arbitrary, we obtain that;
$\left|\mathcal{G}\left(\frac{d f_{\bar{v}}}{d x}\right)(k)\right|<\frac{E_{\overline{\bar{u}}}}{|k|}$, for $|k|>D$, independent of \bar{v}
and, from (\dagger), for $|k|>D$, that;

$$
\left|\mathcal{G}\left(f_{\bar{v}}\right)(k)\right| \leq \frac{\left|\mathcal{G}\left(\frac{d f_{\overline{\bar{v}}}}{d \bar{x}}\right)(k)\right|}{|k|}<\frac{E_{\bar{v}}}{|k|^{2}}
$$

where the choice of $E_{\bar{v}}$ is the same as in the proof of Lemma 0.15 . For the second claim, the proof up to (\dagger) is the same. After choosing $N \in \mathcal{N}$, we have that each $\left.\frac{d f_{\vec{v}}}{d x}\right|_{(0, N)}$ is non-oscillatory, and, moreover, there are at most $\frac{N}{\delta_{\bar{v}}}$ monotone intervals. As in ($\left.* *\right)$, and inspection of the proof in [7], we get;

$$
\left|\int_{0}^{N} \frac{d f_{\bar{v}}}{d x} e^{-i k y} d y\right|<\frac{E_{N}}{|k|}
$$

where $E_{N} \leq \frac{2 N C_{\bar{v}}}{\delta_{\bar{v}}}$ and $C_{\bar{v}}=\max _{x \in \mathcal{R}_{>0}}\left|\frac{d f_{\bar{v}}}{d x}\right|$.
Choosing $N>1$, as $\frac{d f_{\bar{v}}}{d x}$ is of moderate decrease, we can assume that $\left|\frac{d f_{\bar{v}}}{d x}\right| \leq \frac{D_{\bar{v}}}{x^{2}}$, for $x>N$. Then, using the proof in [7] again, and the definition of oscillatory, we have that, for sufficiently large $|k|$, independent of \bar{v};

$$
\begin{aligned}
& \left|\int_{N}^{\infty} \frac{d f_{\bar{v}}}{d x} e^{-i k y} d y\right|<\left(\frac{2}{|k|} \sum_{y_{i, \bar{v}}>N} \frac{D_{\bar{v}}}{y_{i, \bar{v}}^{2}}\right) \\
& \leq\left(\frac{2}{|k|} \sum_{n \in \mathcal{Z} \geq 0} \frac{D_{\bar{v}}}{\left(y_{i_{0}, \bar{v}}+n \delta_{\bar{v}}\right)^{2}}\right) \\
& \leq \frac{2 D_{\bar{v}}}{\delta_{\bar{v}}|k|} \int_{y_{i_{0}}, \bar{w}}^{\infty} \frac{d x}{x^{2}} \\
& =\frac{2 D_{\overline{\bar{v}}}}{\delta_{\bar{v} \mid}|k| y_{i_{0}}, \bar{v}} \\
& \leq \frac{2 D_{\bar{v}}}{\delta_{\bar{v}}|k| N}
\end{aligned}
$$

where $y_{i_{0}, \bar{v}} \geq N$ and $y_{i_{0}, \bar{v}} \leq y_{i, \bar{v}}$, for all $y_{i, \bar{v}} \geq N$. It follows that;

$$
\begin{aligned}
& \left|\mathcal{G}\left(\frac{d f_{\bar{v}}}{d x}\right)(k)\right|=\left|\int_{0}^{N} \frac{d f}{d x} e^{-i k y} d y+\int_{N}^{\infty} \frac{d f_{\bar{v}}}{d x} e^{-i k y} d y\right| \\
& \leq\left|\int_{0}^{N} \frac{d f_{\bar{v}}}{d x} e^{-i k y} d y\right|+\left|\int_{N}^{\infty} \frac{d f_{\bar{v}}}{d x} e^{-i k y} d y\right| \\
& \leq \frac{E_{N}}{|k|}+\frac{2 D_{\bar{v}}}{\delta_{\bar{v}}|k| N} \\
& \leq \frac{2}{|k|}\left(\frac{N C_{\bar{u}}}{\delta_{\bar{v}}}+\frac{D_{\bar{v}}}{\delta_{\bar{v}} N}\right)
\end{aligned}
$$

It follows, using (\dagger), that;

$$
\left|\mathcal{G}\left(f_{\bar{v}}\right)(k)\right| \leq \frac{\left|\mathcal{G}\left(\frac{d f_{\bar{v}}}{d x}\right)(k)\right|}{|k|}<\frac{E_{\bar{v}}}{|k|^{2}}
$$

where $E_{\bar{v}}=2\left(\frac{N C_{\bar{v}}}{\delta_{\bar{v}}}+\frac{D_{\bar{v}}}{\delta_{\bar{v}} N}\right)$
As in Lemma 0.15, we can choose $E_{\bar{v}}$ as in the final claim of the two parts.

For the final claim, the modification for the first part is the same. In the second part, choose $N \geq n_{\bar{v}}$, rather than $N>1$ in the proof, then, taking $N=n_{\bar{v}}$, we obtain $E_{\bar{v}}=2\left(\frac{n_{\bar{v}} C_{\bar{v}}}{\delta_{\bar{v}}}+\frac{D_{\overline{\bar{v}}}}{n_{\bar{v} \delta_{\bar{v}}}}\right)$

Lemma 0.17. For fixed $\bar{l} \in \mathcal{R}^{3}, t \in \mathcal{R}_{>0}$, we have that the polar representation of $e^{i(k-l) c t}, \bar{k} \in \mathcal{R}^{3}, k=|\bar{k}|, l=|\bar{l}|$, is given by;

$$
e^{-i l c t} e^{i r c t}
$$

$$
\text { for } r \in \mathcal{R}_{>0}, 0 \leq \theta<\pi,-\pi \leq \phi \leq \pi
$$

Moreover, the real and imaginary parts of $e^{-i l c t} e^{i r c t}$ are oscillatory, with spacings;

$$
\delta_{\text {real }, \bar{l}}=\delta_{\text {real }, \bar{l}}=\frac{\pi}{c t}
$$

If f is non-oscillatory, analytic, of moderate decrease, with $\lim _{r \rightarrow \infty} \ln (f)^{\prime \prime}(r)=$ 0 , then $f \operatorname{Re}\left(e^{-i l c t} e^{i r c t}\right)$ and $\operatorname{Im}\left(e^{-i l c t} e^{i r c t}\right)$ are oscillatory, with a fixed lower bound δ on the spacing, independent of \bar{l}.

Proof. The first claim is clear. We have that;

$$
\begin{aligned}
& \operatorname{Re}\left(e^{-i l c t} e^{i r c t}\right)=\cos ((r-l) c t) \\
& \operatorname{Im}\left(e^{-i l c t} e^{i r c t}\right)=\sin ((r-l) c t)
\end{aligned}
$$

We have that the maxima of $\cos ((r-l) c t)$ occur when $\sin ((r-l) c t)=$ 0 and $-\cos ((r-l) c t)<0$, so when $r=l+\frac{\pi}{2 c t}+\frac{2 n \pi}{c t}$, for $n \in \mathcal{Z}$. The minima of $\cos ((r-l) c t)$ occur when $\sin ((r-l) c t)=0$ and $\cos ((r-l) c t)<0$, so when $r=l+\frac{\pi}{2 c t}+\frac{(2 n+1) \pi}{c t}$, for $n \in \mathcal{Z}$. It follows that $\cos ((r-l) c t)$ is monotone in the intervals $\left[l+\frac{\pi}{2 c t}+\frac{2 n \pi}{c t}, l+\frac{\pi}{2 c t}+\frac{(2 n+1) \pi}{c t}\right]$, for $n \in \mathcal{Z}$, and the spacing is given by;

$$
\left(l+\frac{\pi}{2 c t}+\frac{(2 n+1) \pi}{c t}\right)-\left(l+\frac{\pi}{2 c t}+\frac{2 n \pi}{c t}\right)=\frac{\pi}{c t}
$$

A similar calculation follows for $\sin ((r-l) c t)$. For the final claim, we have that;

$$
\begin{align*}
& (f \cos ((r-l) c t))^{\prime}=0 \\
& \text { iff } f^{\prime} \cos ((r-l) c t)-f \sin ((r-l) c t)=0 \\
& \text { iff } \frac{f^{\prime}}{f}=\tan ((r-l) c t)(\dagger)
\end{align*}
$$

Let $G(r, \overline{(}))=\frac{f^{\prime}}{f}-\tan ((r-l) c t)$, then, we have that, for $\bar{l} \neq 0$, the differential;

$$
\begin{aligned}
& d G=\left(\frac{\partial G}{\partial r}, \frac{\partial G}{\partial \lambda_{1}}, \frac{\partial G}{\partial \lambda_{2}}, \frac{\partial G}{\partial \lambda_{3}}\right) \\
& =\left(\ln (f)^{\prime \prime}-c t \sec ^{2}((r-1) c t), \frac{\lambda_{1} c t}{\lambda} \sec ^{2}((r-1) c t), \frac{\lambda_{2} c t}{\lambda} \sec ^{2}((r-1) c t)\right. \\
& \left., \frac{\lambda_{3} c t}{\lambda} \sec ^{2}((r-1) c t)\right) \neq 0(C)
\end{aligned}
$$

We have that;

$$
\left|\frac{\partial \tan ((r-l) c t)}{\partial r}\right|=\left|c t \sec ^{2}((r-l) c t)\right| \geq c t
$$

With the assumption that $\lim _{r \rightarrow \infty} \ln (f)^{\prime \prime}(r)=0$, we have that that there exists $L \in \mathcal{R}_{>0}$, such that $\left\lvert\, \frac{f^{\prime}}{f}\right. \|_{(L, \infty)}<c t$. It follows that the spacing between solutions to (\dagger) in (L, ∞) is at least $\frac{\pi}{2 c t}$. We have that, for $\bar{l} \neq \overline{0},\left.\left(f^{\prime} \cos ((r-l) c t)-f \sin ((r-l) c t)\right)\right|_{(0, L)}$ is analytic, so, for fixed $\bar{l} \neq \overline{0}$, there exist finitely many solutions to (\dagger) in ($0, L]$. Let;

$$
\delta_{L}=\inf \left(\delta_{\bar{l}, L}: \bar{l} \neq \overline{0}\right)
$$

where $\delta_{\bar{l}}$ is the spacing between solutions to (\dagger) on $(0, L]$, for fixed \bar{l}. Then, if $\delta_{L}=0$, we would have obtain a branch point in the zero set of $G(r, \overline{(}))$, contradicting (C). It follows that $\delta_{L}>0$. Let $\delta=$ $\min \left(\delta_{L}, \frac{\pi}{2 c t}\right)$, then as $\left.f \cos ((r-l) c t)\right|_{y_{i}, y_{i+1}}$ is monotone, for $i \in \mathcal{Z}$, where y_{i} is a solution to (\dagger), we have that $f \cos ((r-l) c t)$ is oscillatory with a lower bound on the spacing given by $\delta>0$, independent of \bar{l}. A similar calculation hods for $f \sin (r-l) c t$.

Lemma 0.18. For fixed $\bar{l} \in \mathcal{R}^{3}, t \in \mathcal{R}_{>0}$, we have that the polar representation of $e^{i(k-l) c t}, \bar{k} \in \mathcal{R}^{3}, k=|\bar{k}|, l=|\bar{l}|$, is given by;

$$
e^{i r c t \nu(r, \theta, \phi, \bar{l})}, r \in \mathcal{R}_{>0}, 0 \leq \theta<\pi,-\pi \leq \phi \leq \pi
$$

where;

$$
\lim _{r \rightarrow \infty} \nu(r, \theta, \phi, \bar{l})=1
$$

SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 5: NO RADIATION OF LIGHB uniformly in $\{\theta, \phi\}$. Moreover, for $\theta \neq \cos ^{-1}\left(\frac{l_{3}}{l}\right), \phi \neq \tan ^{-1}\left(\frac{l_{2}}{l_{1}}\right)$, the real and imaginary parts of $e^{i r c t \nu(r, \theta, \phi, \bar{l})}$ are oscillatory.

If f is non-oscillatory, analytic, of moderate decrease, with $\lim _{x \rightarrow \infty} \ln (f)^{\prime \prime}(x)=$ 0 then $f \cos (\operatorname{rct\nu }(r, \theta, \phi, \bar{l}))$ and $f \sin (r c t \nu(r, \theta, \phi, \bar{l}))$ are oscillatory, for $\theta \neq \cos ^{-1}\left(\frac{l_{3}}{l}\right), \phi \neq \tan ^{-1}\left(\frac{l_{2}}{l_{1}}\right)$.

Proof. Making the substitution, $k_{1}=r \sin (\theta) \cos (\phi), k_{2}=r \sin (\theta) \sin (\phi)$, $k_{3}=r \cos (\theta)$, we obtain;

$$
\begin{aligned}
& e^{i(k-l) c t}=e^{i\left[\left(r \sin (\theta) \cos (\phi)-l_{1}\right)^{2}+\left(r \sin (\theta) \sin (\phi)-l_{2}\right)^{2}+\left(r \cos (\theta)-l_{3}\right)^{2}\right]^{\frac{1}{2}} c t} \\
& =e^{i\left(r^{2}-\left(2 l_{1} \sin (\theta) \cos (\phi)+2 l_{2} \sin (\theta) \sin (\phi)+2 l_{3} \cos (\theta)\right)+l^{2}\right)^{\frac{1}{2}} c t} \\
& =e^{i r c t \nu(r, \theta, \phi, \bar{l})}
\end{aligned}
$$

where;

$$
\begin{aligned}
& \quad \nu(r, \theta, \phi, \bar{l})=\left(1-\frac{1}{r}\left(2 l_{1} \sin (\theta) \cos (\phi)+2 l_{2} \sin (\theta) \sin (\phi)+2 l_{3} \cos (\theta)\right)+\right. \\
& \left.\frac{l^{2}}{r^{2}}\right)^{\frac{1}{2}}
\end{aligned}
$$

It is clear, as $\left|2 l_{1} \sin (\theta) \cos (\phi)+2 l_{2} \sin (\theta) \sin (\phi)+2 l_{3} \cos (\theta)\right| \leq 2\left(\left|l_{1}\right|+\right.$ $\left.\left|l_{2}\right|+\left|l_{3}\right|\right)$, that $\lim _{r \rightarrow \infty} \nu(r, \theta, \phi, \bar{l})=1$, uniformly in $\{\theta, \phi\}$. For the next claim, we show that $\cos (r c t \nu(r, \theta, \phi, \bar{l}))$ is oscillatory, leaving the other case to the reader. We have that;

$$
\begin{aligned}
& \frac{\partial \cos (r c t \nu(r, \theta, \phi, \bar{l}))}{\partial r}=0 \\
& \text { iff }-\sin (r c t \nu(r, \theta, \phi, \bar{l}))\left(\operatorname{ct\nu }(r, \theta, \phi, \bar{l})+r c t \frac{\partial \nu(r, \theta, \phi, \bar{l})}{\partial r}\right)=0 \\
& \text { iff } \sin (r c t \nu(r, \theta, \phi, \bar{l}))=0 \text { or } \operatorname{ct\nu }(r, \theta, \phi, \bar{l})+r c t \frac{\partial \nu(r, \theta, \phi, \bar{l})}{\partial r}=0 \\
& \text { iff } r c t \nu(r, \theta, \phi, \bar{l})=\frac{\pi}{2}+n \pi,(n \in \mathcal{Z}) \\
& \text { or } \operatorname{ct\nu }(r, \theta, \phi, \bar{l})+\frac{r c t}{2 \nu(r, \theta, \phi, \bar{l})}\left(\frac{1}{r^{2}} \gamma(\theta, \phi, \bar{l})-\frac{2 l^{2}}{r^{3}}\right)=0
\end{aligned}
$$

where;

$$
\gamma(\theta, \phi, \bar{l})=2 l_{1} \sin (\theta) \cos (\phi)+2 l_{2} \sin (\theta) \sin (\phi)+2 l_{3} \cos (\theta)
$$

We have;

$$
\lim _{r \rightarrow \infty}\left[c t \nu(r, \theta, \phi, \bar{l})+\frac{r c t}{2 \nu(r, \theta, \phi, \bar{l})}\left(\frac{1}{r^{2}} \gamma(\theta, \phi, \bar{l})-\frac{2 l^{2}}{r^{3}}\right)\right]=c t \neq 0
$$

so that, by continuity, the zeros of;

$$
c t \nu(r, \theta, \phi, \bar{l})+\frac{r c t}{2 \nu(r, \theta, \phi, \bar{l})}\left(\frac{1}{r^{2}} \gamma(\theta, \phi, \bar{l})-\frac{2 l^{2}}{r^{3}}\right)
$$

are located in a compact interval $[0, K]$, for some $K \in \mathcal{R}_{>0}$. With the assumption on $\{\theta, \phi\}$, we have that;

$$
\operatorname{ct\nu }(r, \theta, \phi, \bar{l})+\frac{r c t}{2 \nu(r, \theta, \phi, \bar{l})}\left(\frac{1}{r^{2}} \gamma(\theta, \phi, \bar{l})-\frac{2 l^{2}}{r^{3}}\right)
$$

is analytic, so it can only have a finite number of zeros located in the interval $[0, K],(*)$. We have that $\lim _{r \rightarrow \infty} \operatorname{rct\nu }(r, \theta, \phi, \bar{l})=\infty$ and $\lim _{r \rightarrow 0} r c t \nu(r, \theta, \phi, \bar{l})=c t l$, so, by the intermediate value theorem, we can find an infinite number of solutions to $\operatorname{rct\nu }(r, \theta, \phi, \bar{l})=\frac{\pi}{2}+n \pi$, $n \in \mathcal{Z}$, located in $\mathcal{R}_{>0}$. As;

$$
\lim _{r \rightarrow \infty}\left[c t \nu(r, \theta, \phi, \bar{l})+\frac{r c t}{2 \nu(r, \theta, \phi, \bar{l})}\left(\frac{1}{r^{2}} \gamma(\theta, \phi, \bar{l})-\frac{2 l^{2}}{r^{3}}\right)\right]=c t
$$

and;

$$
\begin{aligned}
& \lim _{r \rightarrow 0}\left[c t \nu(r, \theta, \phi, \bar{l})+\frac{r c t}{2 \nu(r, \theta, \phi, \bar{l})}\left(\frac{1}{r^{2}} \gamma(\theta, \phi, \bar{l})-\frac{2 l^{2}}{r^{3}}\right)\right] \\
& =\lim _{r \rightarrow 0} \frac{\partial r c t \nu(r, \theta, \phi, \bar{l})}{\partial r} \\
& =\lim _{r \rightarrow 0} \frac{\partial c t|\bar{k}(r, \theta, \phi)-\bar{l}|}{\partial r}
\end{aligned}
$$

is finite, we have that $\frac{\partial r c t \nu(r, \theta, \phi, \bar{l})}{\partial r}$ is bounded by $M \in \mathcal{R}_{>0}$ on $\mathcal{R}_{>0}$.
Using the mean value theorem, if r_{n} is a solution to $\operatorname{rct\nu }(r, \theta, \phi, \bar{l})=$ $\frac{\pi}{2}+n \pi$, and r_{m} is a solution to $\operatorname{rct\nu }(r, \theta, \phi, \bar{l})=\frac{\pi}{2}+m \pi$, then
$\left|r_{n}-r_{m}\right| \geq \frac{\left|\left(\frac{\pi}{2}+n \pi\right)-\left(\frac{\pi}{2}+n \pi\right)\right|}{M}$
$=\frac{|(n-m)| \pi}{M}$
$\geq \frac{\pi}{M},(n \neq m)$
By the observation (*), and the fact that;

SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 5: NO RADIATION OF LIGH5

$$
\left[\operatorname{ct\nu }(r, \theta, \phi, \bar{l})+\frac{r c t}{2 \nu(r, \theta, \phi, \bar{l})}\left(\frac{1}{r^{2}} \gamma(\theta, \phi, \bar{l})-\frac{2 l^{2}}{r^{3}}\right)\right]
$$

is monotone on (K, ∞), there can be at most a finite number $\left\{n_{i_{1}}, \ldots, n_{i_{p}}\right\}$ for which there exist multiple solutions $r_{n, n_{i_{j}}} \in \mathcal{R}_{>0}$ to $\operatorname{rct\nu }(r, \theta, \phi, \bar{l})=$ $\frac{\pi}{2}+n_{i} \pi$. Let Z denote the $\left\{r_{i}: i \in \mathcal{N}\right\}$ for which there exists a solution to $\operatorname{rct\nu }(r, \theta, \phi, \bar{l})=\frac{\pi}{2}+n \pi, n \in \mathcal{Z}$, and Z_{0} the finite set consisting of solutions to $\operatorname{rct\nu }(r, \theta, \phi, \bar{l})=\frac{\pi}{2}+n_{i_{j}} \pi, 1 \leq j \leq$ p and the zeros on $[0, K]$, corresponding to $(*)$. Ordering $Z \cup Z_{0}$ as a set $\left\{r_{i}: i \in \mathcal{N}\right\}$, it is clear that $\left.\cos (\operatorname{rct\nu }(r, \theta, \phi, \bar{l}))\right|_{\left(r_{i}, r_{i+1}\right)}$ is monotone. Choosing $\delta=\min \left(\frac{\pi}{M}, d\left(Z \backslash Z_{0}, Z_{0}\right), \operatorname{Sep}\left(Z_{0}\right)\right)>0$, where $\operatorname{Sep}\left(Z_{0}\right)=\min \left(d\left(r, r^{\prime}\right):\left\{r, r^{\prime}\right\} \subset Z_{0}, r \neq r^{\prime}\right)$, we obtain the result that $\cos (\operatorname{rct\nu }(r, \theta, \phi, \bar{l}))$ is oscillatory.

For the final claim, we can, without loss of generality, assume that there exists $L \in \mathcal{R}_{>0}$ for which $\left.f\right|_{(L, \infty)}$ is monotone decreasing and $\left.f\right|_{(L, \infty)}>0$. Then, by the product rule, we have that;

$$
\begin{aligned}
& (f \cos (r c t \nu(r, \theta, \phi, \bar{l})))^{\prime}=0 \\
& \text { iff } \left.f^{\prime} \cos (r c t \nu(r, \theta, \phi, \bar{l}))\right)-f \sin (r c t \nu(r, \theta, \phi, \bar{l}))(\operatorname{rct\nu }(r, \theta, \phi, \bar{l}))^{\prime}=0 \\
& \text { iff } \frac{f^{\prime}}{f}=\tan (r c t \nu(r, \theta, \phi, \bar{l}))(r \operatorname{ct\nu }(r, \theta, \phi, \bar{l}))^{\prime}(\dagger)
\end{aligned}
$$

We have that $\lim _{r \rightarrow \infty}(\operatorname{rct\nu }(r, \theta, \phi, \bar{l}))^{\prime}=c t$, in particularly, we can assume that $(\operatorname{rct\nu }(r, \theta, \phi, \bar{l}))^{\prime}>0$ in (L, ∞), so that $\operatorname{rct\nu }(r, \theta, \phi, \bar{l})$ is increasing in (L, ∞). By the hypotheses, $\left.\frac{f^{\prime}}{f}\right|_{(L, \infty)}<0$, so that for a solution r_{1} to (\dagger) in (L, ∞), we must have that $\tan \left(r_{1} \operatorname{ct\nu }\left(r_{1}, \theta, \phi, \bar{l}\right)\right)<0$, $(* * * * *)$. Moreover, by the assumption;

$$
\lim _{x \rightarrow \infty} \ln (f)^{\prime \prime}(x)=\lim _{x \rightarrow \infty}\left(\frac{f^{\prime}}{f}\right)^{\prime}(x)=0(* * *)
$$

As $\tan ^{\prime}(x) \geq 1$, for $x \in \mathcal{R}$, and $\lim _{r \rightarrow \infty}(\operatorname{rct\nu }(r, \theta, \phi, \bar{l}))^{\prime}=c t$, by the chain rule, we can assume that $\left|\frac{\partial(\tan (r \operatorname{ct\nu }(r, \theta, \phi, \bar{l})))}{\partial r}\right| \geq \frac{c t}{2}$, in (L, ∞), $(* * * *)$. Combining, $(* * *),(* * * *),(* * * * *)$, it follows that for $\left\{r_{1}, r_{2}\right\}$ solving (\dagger) in (L, ∞), the separation $\left|r_{2}-r_{1}\right| \geq \frac{\pi}{2}$. By the assumptions, we have that $f \cos (\operatorname{rct\nu }(r, \theta, \phi, \bar{l}))$ is analytic on $[0, L+1)$, so that $(f \cos (\operatorname{rct\nu }(r, \theta, \phi, \bar{l})))^{\prime}$ is analytic on $[0, L+1)$. It follows there can only be finitely many solutions to (\dagger) in $(0, L)$, and, therefore, similarly to the above, $f \cos (r \operatorname{ct\nu }(r, \theta, \phi, \bar{l}))$ is oscillatory. The argument for $f \sin (r c t \nu(r, \theta, \phi, \bar{l}))$ is similar and left to the reader.

Lemma 0.19. With notation as in Lemmas 0.18 and 0.7, if;

$$
\begin{aligned}
& \alpha(\bar{k}, \bar{l}, t)=\alpha(R, \theta, \phi, \bar{l}, t)=\frac{i P_{1,1}}{2 \pi^{2}}\left[\left(\bar{b}_{11, \bar{l}}(R, \theta, \phi)+\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{(\operatorname{Rsin}(\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l})}\right) \times\right. \\
& \left.\left.\left(\bar{d}_{11}^{\prime}(\bar{l})+\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right)\right] \cdot \bar{u}_{\bar{l}}(R, \theta, \phi, \bar{l})\right] \mu(R, \theta, \phi, \bar{l}, t) \sin (\theta)
\end{aligned}
$$

and;

$$
\begin{aligned}
& \beta(\bar{k}, \bar{l}, t)=\beta(R, \theta, \phi, \bar{l}, t)=\frac{-i Q_{0,0}}{2 \pi^{2}}\left[\left(\bar{b}_{11, \bar{l}}(R, \theta, \phi)+\frac{\bar{b}_{12, \bar{l}}(R, \theta, \phi)}{|(R \sin (\theta) \cos (\phi), R \sin (\theta) \sin (\phi), R \cos (\theta))-\bar{l}|}\right) \times\right. \\
& \left.\left.\left(\bar{d}_{11}^{\prime}(\bar{l})+\frac{\bar{d}_{12}^{\prime}(\bar{l})}{l}\right)\right] \cdot \bar{u}_{\bar{l}}(R, \theta, \phi, \bar{l})\right] \mu(R, \theta, \phi, \bar{l}, t) \sin (\theta)
\end{aligned}
$$

then;

$$
\begin{aligned}
& \alpha(R, \theta, \phi, \bar{l}, t)=\alpha_{1}(R, \theta, \phi, \bar{l}, t) \mu(R, \theta, \phi, \bar{l}, t)=e^{-i l c t} \alpha_{1}(R, \theta, \phi, \bar{l}, t) e^{i R c t \nu(R, \theta, \phi, \bar{l})} \\
& \beta(R, \theta, \phi, \bar{l}, t)=\beta_{1}(R, \theta, \phi, \bar{l}, t) \mu(R, \theta, \phi, \bar{l}, t)=e^{-i l c t} \beta_{1}(R, \theta, \phi, \bar{l}, t) e^{i R c t \nu(R, \theta, \phi, \bar{l})}
\end{aligned}
$$

For fixed $\bar{l} \neq \overline{0}$ and $\theta \neq \cos ^{-1}\left(\frac{l_{3}}{l}\right), \phi \neq \tan ^{-1}\left(\frac{l_{2}}{l_{1}}\right)$, if the real and imaginary components of $e^{-i l c t} \alpha_{1}(R, \theta, \phi, \bar{l}, t)$ satisfy the conditions of Lemma 0.18, then the real and imaginary components of α are oscillatory. Similarly, if the real and imaginary components of;

$$
\begin{aligned}
& \quad\left\{e^{-i l c t} \beta_{1}(R, \theta, \phi, \bar{l}, t), e^{-i l c t} R \frac{\partial \beta_{1}(R, \theta, \phi, \bar{l}, t)}{\partial R}, i c t e^{-i l c t} R \beta_{1}(R, \theta, \phi, \bar{l}, t)(\nu(R, \theta, \phi, \bar{l})+\right. \\
& \left.\left.R \frac{\partial \nu(R, \theta, \phi, \bar{l})}{\partial R}\right)\right\}
\end{aligned}
$$

satisfy the conditions of Lemma 0.18, then the real and imaginary components of $\frac{\partial R \beta(R, \theta, \phi, \bar{l}, t)}{\partial R}$ are oscillatory.

Proof. We have that;

$$
\begin{aligned}
& \operatorname{Re}(\alpha)=\operatorname{Re}\left(e^{-i l c t} \alpha_{1} e^{i R c t \nu}\right)=\operatorname{Re}\left(e^{-i l c t} \alpha_{1} \cos (\operatorname{Rct} \nu)\right)+\operatorname{Re}\left(i e^{-i l c t} \alpha_{1} \sin (\operatorname{Rct} \nu)\right) \\
& =\operatorname{Re}\left(e^{-i l c t} \alpha_{1}\right) \cos (\operatorname{Rct} \nu)+\operatorname{Im}\left(e^{-i l c t} \alpha_{1}\right) \sin (\operatorname{Rct} \nu) \\
& \operatorname{Im}(\alpha)=\operatorname{Im}\left(e^{-i l c t} \alpha_{1} e^{i R c t \nu}\right)=\operatorname{Im}\left(e^{-i l c t} \alpha_{1} \cos (R c t \nu)\right)+\operatorname{Im}\left(i e^{-i l c t} \alpha_{1} \sin (R c t \nu)\right) \\
& =\operatorname{Im}\left(e^{-i l c t} \alpha_{1}\right) \cos (\operatorname{Rct} \nu)+\operatorname{Re}\left(e^{-i l c t} \alpha_{1}\right) \sin (R c t \nu)
\end{aligned}
$$ so the first claim, follows from Lemma 0.18 .

We also have that;

$$
\begin{aligned}
& \operatorname{Re}\left(\frac{\partial(R \beta)}{\partial R}\right)=\operatorname{Re}\left(\frac{\partial\left(\operatorname{Re}^{-i l c t} \beta_{1} e^{i R c t \nu}\right)}{\partial R}\right)=\operatorname{Re}\left(e^{-i l c t} \beta_{1} e^{i R c t \nu}\right)+\operatorname{Re}\left(R \frac{\partial\left(e^{-i l c t} \beta_{1} e^{i R c t \nu}\right)}{\partial R}\right) \\
& =\operatorname{Re}\left(e^{-i l c t} \beta_{1} e^{i R c t \nu}\right)+\operatorname{Re}\left(e^{-i l c t} R \frac{\partial \beta_{1}}{R} e^{i R c t \nu}\right)+\operatorname{Re}\left(i c t e^{-i l c t} R \beta_{1}\left(\nu+R \frac{\partial \nu}{\partial R}\right) e^{i R c t \nu}\right) \\
& \operatorname{Im}\left(\frac{\partial(R \beta)}{\partial R}\right)=\operatorname{Im}\left(\frac{\partial\left(R e^{-i l c t} \beta_{1} e^{i R c t \nu}\right)}{\partial R}\right)=\operatorname{Re}\left(e^{-i l c t} \beta_{1} e^{i R c t \nu}\right)+\operatorname{Re}\left(R \frac{\partial\left(e^{-i l c t} \beta_{1} e^{i R c t \nu}\right)}{\partial R}\right) \\
& =\operatorname{Im}\left(e^{-i l c t} \beta_{1} e^{i R c t \nu}\right)+\operatorname{Re}\left(e^{-i l c t} R \frac{\partial \beta_{1}}{R} e^{i R c t \nu}\right)+\operatorname{Re}\left(i c t e^{-i l c t} R \beta_{1}\left(\nu+R \frac{\partial \nu}{\partial R}\right) e^{i R c t \nu}\right)
\end{aligned}
$$

and the second claim follows, using the previous calculation and Lemma 0.18.

Definition 0.20. We say that $f \in C(\mathcal{R} \backslash\{0\})$ is of moderate decrease if there exists a constant $D \in \mathcal{R}_{>0}$ with $|f(x)| \leq \frac{D}{|x|^{2}}$ for $|x|>1$. We say that $f \in C(\mathcal{R} \backslash\{0\})$ is of very moderate decrease if there exists a constant $D \in \mathcal{R}_{>0}$ with $|f(x)| \leq \frac{D}{|x|}$ for $|x|>1$. We say that $f \in C(\mathcal{R} \backslash\{0\})$ is non-oscillatory if there are finitely many points $\left\{y_{i}: 1 \leq i \leq n\right\} \subset \mathcal{R}$ for which $\left.f\right|_{\left(y_{i}, y_{i+1}\right)}$ is monotone, $1 \leq i \leq n-1$, and $\left.f\right|_{\left(-\infty, y_{1}\right)}$ and $\left.f\right|_{\left(y_{n}, \infty\right)}$ is monotone. We say that $f \in C(\mathcal{R} \backslash\{0\})$ is symmetrically asymptotic if f and $\frac{d f}{d x}$ are of moderate decrease, $\frac{d f}{d x}$ is non-oscillatory, $\left\{f, \frac{d f}{d x}\right\} \subset L^{1}((-\epsilon, \epsilon))$, and for $\epsilon>0$;

$$
\lim _{y \rightarrow 0-} f(y)=\lim _{y \rightarrow 0+} f(y)=M
$$

and

$$
\begin{equation*}
\lim _{y \rightarrow 0-\frac{d f}{d x}}(y)=-\lim _{y \rightarrow 0+\frac{d f}{d x}}(y)=L \tag{*}
\end{equation*}
$$

where $L \in\{+\infty,-\infty\}, M \in \mathcal{R}$. We say that $f \in C(\mathcal{R} \backslash\{0\})$ is light symmetrically asymptotic if f and $\frac{d f}{d x}$ are of very moderate decrease, f and $\frac{d f}{d x}$ are non-oscillatory, $\left\{f, \frac{d f}{d x}\right\} \subset L^{1}((-\epsilon, \epsilon))$, and for $\epsilon>0$, the condition (*) holds.

Lemma 0.21. Let f be symmetrically asymptotic, then we have that, for any $\delta>0$, there exist constants $\left\{C_{\delta}, D_{\delta}\right\} \subset \mathcal{R}_{>0}$, such that;

$$
|\mathcal{F}(f)(k)| \leq \frac{\delta}{|k|}+\frac{C_{\delta}}{|k|^{2}}, \text { for }|k|>D_{\delta}
$$

Proof. As f is symmetrically asymptotic, we have that $\lim _{x \rightarrow 0-} f(x)=$ $\lim _{x \rightarrow 0+} f(x)=M$, where $M \in \mathcal{R}$. In either case, we can apply integration by parts, to obtain (\dagger) in Lemma 0.11 . The step ($*$) follows from the fact that $\frac{d f}{d x}$ is of moderate decrease. As $\frac{d f}{d x}$ is non-oscillatory, we can find $x_{0}<0<x_{1}$, with $\left.\frac{d f}{d x}\right|_{x_{0}, 0}$ and $\left.\frac{d f}{d x}\right|_{0, x_{0}}$ monotone. In particular, for any $\delta>0$, we can find $x_{0}<y_{0}<0<y_{1}<x_{1}$ such that $\int_{\left(y_{0}, y_{1}\right)}\left|\frac{d f}{d x}(y)\right| d y<\delta\left((2 \pi)^{\frac{1}{2}}\right)$ and $\frac{d f}{d x}\left(y_{0}\right)=L_{1,0} \frac{d f}{d x}\left(y_{1}=L_{2,0}\right.$, with $\left\{L_{1,0}, L_{2,0}\right\} \subset \mathcal{R}$. Then;

$$
\begin{aligned}
& \left|\frac{1}{(2 \pi)^{\frac{1}{2}}} \int_{-N_{\epsilon}}^{N_{\epsilon}} \frac{d f}{d x}(y) e^{-i k y} d y-\frac{1}{(2 \pi)^{\frac{1}{2}}} \int_{\left(-N_{\epsilon}, y_{0}\right) \cup\left(y_{1}, N_{\epsilon}\right)} \frac{d f}{d x}(y) e^{-i k y} d y\right| \\
& \leq \frac{1}{(2 \pi)^{\frac{1}{2}}} \int_{\left(y_{0}, y_{1}\right)}\left|\frac{d f}{d x}(y)\right| d y \\
& <\delta
\end{aligned}
$$

Again, by the proof of Lemma 0.9 in [7], using underflow, we can find $\left\{D_{\epsilon, y_{0}, y_{1}}, E_{\epsilon, y_{0}, y_{1}}\right\} \subset \mathcal{R}_{>0}$, such that, for all $|k|>D_{\epsilon, y_{0}, y_{1}}$, we have that;

$$
\left|\frac{1}{(2 \pi)^{\frac{1}{2}}} \int_{\left(-N_{\epsilon}, y_{0}\right) \cup\left(y_{1}, N_{\epsilon}\right)} \frac{d f}{d x}(y) e^{-i k y} d y\right|<\frac{E_{\epsilon, y_{0}, y_{1}}}{|k|},(* *)
$$

It is easy to see from the proof, that $\left\{D_{\epsilon, y_{0}, y_{1}}, E_{\epsilon, y_{0}, y_{1}}\right\}$ can be chosen uniformly in ϵ, so that using the triangle inequality again, we obtain;

$$
\left|\mathcal{F}\left(\frac{d f}{d x}\right)(k)\right| \leq \epsilon+\delta+\frac{E_{\epsilon, y_{0}, y_{1}}}{|k|}
$$

for $|k|>D_{\epsilon, y_{0}, y_{1}}$
As ϵ was arbitrary, and $E_{\epsilon, y_{0}, y_{1}}$ is uniform in ϵ, we obtain that;
$\left|\mathcal{F}\left(\frac{d f}{d x}\right)(k)\right| \leq \delta+\frac{E_{y_{0}, y_{1}}}{|k|}$
for $|k|>D_{y_{0}, y_{1}}$.
so that, using (\dagger) again;

$$
\begin{align*}
& |\mathcal{F}(f)(k)| \leq \frac{\delta}{|k|}+\frac{E_{y_{0}, y_{1}}}{|k|^{2}}, \\
& =\frac{\delta}{|k|}+\frac{C_{\delta}}{|k|^{2}}
\end{align*}
$$

SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 5: NO RADIATION OF LIGHy

$$
\text { for }|k|>D_{\delta} \text {, where } C_{\delta}=E_{y_{0}, y_{1}} \text { and } D_{\delta}=D_{y_{0}, y_{1}} \text {. }
$$

Lemma 0.22. There exists a unique fundamental solution $(\bar{E}, \overline{0})$, with \bar{E} decaying in the sense of [8], for given (ρ, \bar{J}), not vacuum. Without any decay condition, the difference $\bar{E}-\bar{E}^{\prime}$ of two such solutions $\left\{\bar{E}, \bar{E}^{\prime}\right\}$, is either $\overline{0}$ or static and unbounded with $\nabla \cdot \bar{E}=0$ and $\nabla \times \bar{E}=\overline{0}$, $(*)$, with the possibility $(*)$ being satisfiable. If $\left(\bar{E}_{0}, \bar{B}_{0}\right)$ is a solution to Maxwell's equation in vacuum, then we cannot have that $\bar{E}+\bar{E}_{0}=\overline{0}$.

Proof. Suppose there exist two fundamental solutions $(\bar{E}, \overline{0})$ and $\left(\bar{E}^{\prime}, \overline{0}\right)$, then $\left(0, \overline{0}, \bar{E}-\bar{E}^{\prime}, \overline{0}\right)$ is a solution to Maxwell's equations in vacuum. It follows from Maxwell's fourth equation, that;

$$
\frac{\partial\left(\bar{E}-\bar{E}^{\prime}\right)}{\partial t}=\overline{0}
$$

and, from the relations in Lemma 4.1 of [9], that;

$$
\square^{2}\left(\bar{E}-\bar{E}^{\prime}\right)=\nabla^{2}\left(\bar{E}-\bar{E}^{\prime}\right)=0
$$

By the decaying condition and properties of harmonic functions, we have that $\bar{E}-\bar{E}^{\prime}=\overline{0}$, so that $\bar{E}=\bar{E}^{\prime}$. Without the decay condition, we must have that $\bar{E}-\bar{E}^{\prime}$ is unbounded or $\bar{E}-\bar{E}^{\prime}=\overline{0}$, and from Maxwell's first and second equations, we must have that $\nabla \cdot \bar{E}=0$ and $\nabla \times \bar{E}=\overline{0}$ as well. The satisfiable claim follows from the fact that we can construct a solution $\left(0, \overline{0}, \bar{E}_{0}, \overline{0}\right)$ to Maxwell's equations in free space, by the requirements that;
(i). $\nabla \cdot \bar{E}_{0}=0$
(ii). $\frac{\partial \bar{E}_{0}}{\partial t}=\overline{0}$
(iii). $\nabla \times \bar{E}_{0}=\overline{0}$

It is possible to satisfy the requirements $(i),(i i i)$, for a function $\bar{f}: \mathcal{R}^{3} \rightarrow \mathcal{R}$, so that we can define $\bar{E}_{0}(\bar{x}, t)=\bar{f}(\bar{x})$ to satisfy the conditions $(i),(i i),(i i i)$. For the last claim, suppose that $\bar{E}+\bar{E}_{0}=\overline{0}$, then $\bar{E}=-\bar{E}_{0}$ and we have that, by Maxwell's equations, and $\left(\bar{E}_{0}, \bar{B}_{0}\right)$ a vacuum solution;

$$
\nabla \cdot \bar{E}=-\nabla \cdot \bar{E}_{0}=\frac{\rho}{\epsilon_{0}}=0
$$

so that $\rho=0$. Using the fact that $\nabla(\rho)+\frac{1}{c^{2}} \frac{\partial \bar{J}}{\partial t}=\overline{0}$ and $\square^{2} \bar{J}=\overline{0}$, we have that $\frac{\partial \bar{J}}{\partial t}=\overline{0}$ and $\nabla^{2} \bar{J}=\overline{0}$, so that, as $\bar{J} \in S\left(\mathcal{R}^{3}\right)$, we must have that $\bar{J}=\overline{0}$ and (ρ, \bar{J}) is a vacuum solution, contradicting the hypotheses.

References

[1] An Introduction to Electrodynamics, Third Edition, Pearson Education, (2008)
[2] On convergence and growth of partial sums of Fourier series, L. Carlsen, Acta Mathematica, 116 (1): 135157, (1966).
[3] Partial Differential Equations, L. C. Evans, Graduate Studies in Mathematics, Volume 19, AMS, (1998).
[4] Fourier Analysis and its Applications, Folland, G. B., Wadsworth, (1992).
[5] Fourier Analysis, T. Korner, CUP, (1988)
[6] Maths Stack Exchange; https://math.stackexchange.com/questions/291877/bounding-the-solution-of-a-wave-equation-in-3-dimensions
[7] Simple Proofs of the Riemann-Lebesgue Lemma using Nonstandard Analysis, Tristram de Piro, available at http://www.curvalinea.net (51), (2019)
[8] Some Arguments for the Wave Equation in Quantum Theory 2, Tristram de Piro, Open Journal of Mathematical Sciences, available at http://www.curvalinea.net (59), (2022)
[9] Some Arguments for the Wave Equation in Quantum Theory 3, Tristram de Piro, submitted to the Open Journal of Mathematical Sciences, available at http://www.curvalinea.net (63), (2022)
[10] A Simple Proof of the Fourier Inversion Theorem Using Nonstandard Analysis, Tristram de Piro, available at http://www.curvalinea.net (19), (2013)
[11] Some Arguments for the Wave Equation in Quantum Theory, Tristram de Piro, Open Journal of Mathematical Sciences, available at http://www.curvalinea.net (58), (2021)
[12] The Continuity Equation and Particle Motion, Tristram de Piro, in progress, (2022)
[13] College Calculus with Analytic Geometry, Protter, Murray H.; Morrey, Charles B. Jr, (2nd ed.), Reading: Addison-Wesley, (1970)
[14] Fourier Analysis, An Introduction, E. Stein and R. Sakarchi, Princeton Lectures in Mathematics, (2003).
[15] Introfuction to Fourier Analysis on Euclidean Spaces, E. Stein and G. Weiss, Princeton University Press, (1971).

Flat 3, Redesdale House, 85 The Park, Cheltenham, GL50 2RP
E-mail address: t.depiro@curvalinea.net

