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QUANTUM THEORY 5: NO RADIATION OF LIGHT

TRISTRAM DE PIRO

Abstract.

Definition 0.1. We call (E0, B0), a solution to Maxwell’s equation in
vacuum, good, if (E + E0) × B0 = 0, for some fundamental solution
(E, 0) corresponding to {ρ, J} satisfying the conditions from Lemma
4.1 in [9], with {ρ, J} not vacuum and {ρ, J} ⊂ S(R3×R>0). We call

(E0, B0) static if ∂E0

∂t
= ∂B1

∂t
= 0.

Definition 0.2. We say that a field C(x, t) is simple if all the com-
ponents ci, 1 ≤ i ≤ 3 are continuously fourth differentiable in the
coordinates (x1, x2, x3) and continuously twice differentiable in the co-
ordinate t, such that the partial derivatives all belong to L1(R3) for
fixed t ≥ 0, and, the L1-norm of the partial derivatives is uniformly
bounded for 0 ≤ t < 1.

Definition 0.3. We say that a real pair (E,B), satisfying Maxwell’s
equations for some {ρ, J}, satisfies the strong no radiation condition if;

P (r, t) =
∫
S(0,r)

(E ×B) � dS = 0

for all r > 0 and t ∈ R. We say that it satisfies the no radiation
condition if;

limr→∞P (r, t) = 0

for all t ∈ R

Lemma 0.4. For any {ρ, J} satisfying the conditions from Lemma
4.1 in [9], if (E, 0) denotes a fundamental solution, then a solution
{E + E0, B0}, with (ρ, J, E + E0, B0) satisfying Maxwell’s equations,
satisfies the no radiating condition, if E,E0 and B0 are simple and

{(E + E0)0,
∂(E+E0)

∂t
|0, (B0)0,

∂B0

∂t
|0} ⊂ S(R3), (∗). Moreover, we have
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that explicit representation;

(E + E0)(x, t) = 1

(2π)
3
2

∫
R3(b(k)eikct + d(k)e−ikct)eik�xdk

B0(x, t) = 1

(2π)
3
2

∫
R3(b′(l)e

ilct + d′(l)e−ilct)eil�xdl

where {b, d, b′d′} ⊂ S(R3).

Proof. By Lemma 4.1 in [9], and the argument in [1], we have that;

�2E = 0, B = 0

�2E0 = 0, �2B0 = 0 (∗)

Then;

limr→∞P (r) = limr→∞
∫
S(r)

((E + E0)× (B +B0))dS(r)

= limr→∞
∫
S(r)

(E ×B)dS(r) + limr→∞
∫
S(r)

((E + E0)×B0)dS(r)

+limr→∞
∫
S(r)

(E0 ×B)dS(r)

= limr→∞
∫
S(r)

((E + E0)×B0)dS(r)

and, by (∗), we have that �2(E + E0) = 0 as well, (†).

Assume that E,E0 and B0 are simple, then, E+E0 and B0 are sim-
ple, and we have that;

52(E − E0)− 1
c2
∂2(E−E0)

∂t2
= 0

so that, applying the three dimensional Fourier transform F to the
components, and using integration by parts, we have that;

F(52(E − E0))(k, t))− 1
c2
∂2(F(E−E0))(k,t)

∂t2

= −k2F(E − E0)(k, t)− 1
c2
∂2(F(E−E0))(k,t)

∂t2

= −k2(f)(k, t)− 1
c2
∂2f(k,t)
∂t2
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= 0

where k2 = k21 + k22 + k23, a = F(E −E0). For fixed k, we obtain the
ordinary differential equation;

d2ak
dt2

= −c2k2ak

so that;

ak(t) = C0(k)eikct +D0(k)e−ikct

with;

ak(0) = C0(k) +D0(k)

a′
k
(0) = ikcC0(k)− ikcD0(k) (††)

and, solving the simultaneous equations (††), we obtain that;

C0(k) = 1
2
(ak(0) + 1

ikc
a′
k
(0))

D0(k) = 1
2
(ak(0)− 1

ikc
a′
k
(0))

and;

F(E − E0)(k, t) = a(k, t)

= 1
2
(ak(0) + 1

ikc
a′
k
(0))eikct + 1

2
(ak(0) + 1

ikc
a′
k
(0))e−ikct

= b(k)eikct + d(k)e−ikct

where;

b(k) = 1
2
(F((E + E0)|(x,0))|(k,0) + 1

ikc
F(∂(E+E0)

∂t
|(x,0))|(k,0))

d(k) = 1
2
(F((E + E0)|(x,0))|(k,0) − 1

ikc
F(∂(E+E0)

∂t
|(x,0))|(k,0))

Similarly;

F(B0)(l, t) = a′(l, t) = b′(l)eilct + d′(l)e−ilct
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where;

b′(l) = 1
2
(F((B0)|(x,0))|(l,0) + 1

ilc
F(∂(B0)

∂t
|(x,0))|(l,0))

d′(l) = 1
2
(F((B0)|(x,0))|(l,0) − 1

ilc
F(∂(B0)

∂t
|(x,0))|(l,0))

and l2 = l21+l
2
2+l

2
3. Using the fact that {b(k)eikct+d(k)e−ikct, b′(l)eilct+

d′(l)e−ilct} ⊂ S(R3 for t ∈ R, we can apply the inversion theorem, to
obtain;

(E + E0)(x, t) = 1

(2π)
3
2

∫
R3(b(k)eikct + d(k)e−ikct)eik�xdk

B0(x, t) = 1

(2π)
3
2

∫
R3(b′(l)e

ilct + d′(l)e−ilct)eil�xdl

As we noted above, {beikct + de−ikct, b′eilct + d′e−ilct} ⊂ S(R3 for
t ∈ R, so that, by the fact that the Fourier transform preserves the
Schwartz class, see [14], we must have that {(E+E0)t, (B0)t} ⊂ S(R3)
for t ∈ R. Then, for n ≥ 3 and the definition of the Schwartz class;

|P (r, t)| = |
∫
S(r)

((E + E0)t × (B0)t)dS|

≤
∫
S(r)
|((E + E0)t × (B0)t) � n̂|dS(r)|

≤
∫
S(r)
|(E + E0)t||(B0)t|dS(r)

≤ 4πr2C1,n

rn
D1,n

rn

= 4πC1,nD1,n

r2n−2

so clearly;

limr→∞P (r, t) = 0

�

Definition 0.5. Fix a real propagation vector k0 and a real vector d0
with k0 � d0 = 0. Let;

E0(x, t) = d0e
−ik0cteik0�x

B0(x, t) = d
′
0e
−ik0cteik0�x
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where d
′
0 = 1

c
(k0 × d0). Then, see [1], the pair (E0, B0) solves

Maxwell’s equation in vacuum, and so does (Re(E0), Re(B0)). We
call (Re(E0), Re(B0)) a monochromatic solution.

Lemma 0.6. For a monochromatic solution (Re(E0), Re(B0)) to Maxwell’s
equation in vacuum, we have that P (r, t) = O(r). In particularly,
(Re(E0), Re(B0)) doesn’t satisfy satisfy the no radiation condition un-
less E0 = d0 and B0 = 0, or E0 = B0 = 0, in which cases (Re(E0), Re(B0))
is constant. Any constant real solution (E1, B1) satisfies the strong no
radiation and no radiation conditions

Proof. We have, for a monochromatic solution, that;

Re(E0)(x, t) = d0
4

(eik0cteik0�x+eik0cte−ik0�x+e−ik0cteik0�x+e−ik0cte−ik0�x)

Re(B0)(x, t) = d
′
0

4
(eik0cteik0�x+eik0cte−ik0�x+e−ik0cteik0�x+e−ik0cte−ik0�x)

so that Re(E0)×Re(B0)

= (d0×d
′
0)

16
(e2ik0cte2ik0�x + e2ik0cte−2ik0�x + e−2ik0cte2ik0�x + e−2ik0cte−2ik0�x

+2e2ik0ct + 2e−2ik0ct + 2e2ik0�x + 2e−2ik0�x + 4)

By the divergence theorem, we have that;

P (r, t) =
∫
S(0,r)

(Re(E0)×Re(B0))dS(r)

=
∫
B(0,r)

5�( (d0×d
′
0)

16
(e2ik0cte2ik0�x+e2ik0cte−2ik0�x+e−2ik0cte2ik0�x+e−2ik0cte−2ik0�x

+2e2ik0ct + 2e−2ik0ct + 2e2ik0�x + 2e−2ik0�x + 4))dB(r)

=
∫
B(0,r)

(d0×d
′
0)

16
� 2ik0(e

2ik0�x(e2ik0ct + e−2ik0ct + 2)− e−2ik0�x(e2ik0ct

+e−2ik0ct + 2))dB(r)

= (d0×d
′
0)

16
� 2ik0(e

2ik0ct + e−2ik0ct + 2)(2( 2πr
|2k0|

)
3
2J 3

2
(r|2k0|))

= (d0×d
′
0)

4
� ik0(e2ik0ct + e−2ik0ct + 2)(( πr

|k0|
)
3
2J 3

2
(2r|k0|))

= (d0×d
′
0)

4
� ik0(e2ik0ct+e−2ik0ct+2)( πr

|k0|
)
3
2 ( 1

πr|k0|
)
1
2 (P1(

1
2r|k0|

)sin(2r|k0|)
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−Q0(
1

2r|k0|
)cos(2r|k0|))

= (d0×d
′
0)

4
� ik0(e2ik0ct + e−2ik0ct + 2)( πr

|k0|
)
3
2 ( 1

πr|k0|
)
1
2 (( P1,1

2r|k0|
)sin(2r|k0|)

−Q0,0cos(2r|k0|))

= (d0×d
′
0)

4
� ik0(e2ik0ct + e−2ik0ct + 2)( π

|k0|
)
3
2 ( 1

π|k0|
)
1
2 (( P1,1

2|k0|
)sin(2r|k0|)

−Q0,0rcos(2r|k0|))

Clearly, P (r, t) = O(r) unless d0 × d
′
0 � k0 = 0, in which case either

k0 = 0 or d0 = 0. In the first case, we obtain that E0 = d0 and B0 = 0,
in the second case, we obtain that E0 = B0 = 0. The last claim is clear
by the divergence theorem and the fact that 5 � (E1 ×B1) = 0. �

Lemma 0.7. For any {ρ, J} satisfying the conditions from Lemma 4.1
in [9], if (E, 0) denotes a fundamental solution, then a solution {E +
E0, B0}, with (ρ, J, E + E0, B0) satisfying Maxwell’s equations such

that {E,E0, B0} are simple and {(E +E0)0,
∂(E+E0)

∂t
|0, (B0)0,

∂B0

∂t
|0} ⊂

S(R3), satisfies the strong no-radiation condition, using the integral
representation in Lemma 0.4, when;

a(k, t)× a′(l, t) = 0 (†)

or when B0 is parallel to E + E0. In either of these cases, the no
radiation condition holds as well.

If {E,E0, B0} are simple, then {E+E0, B0} satisfies the no-radiation
condition when...?

Proof. Using the result of Lemma 0.4, we can use the integral repre-
sentations of E + E0 and B0 to compute;

((E + E0)×B0)(x, t)

= 1
(2π)3

∫
R6(b(k)× b′(l))ei(k+l)�xei(k+l)ctdkdl

+ 1
(2π)3

∫
R6(b(k)× d′(l))ei(k+l)�xei(k−l)ctdkdl

+ 1
(2π)3

∫
R6(d(k)× b′(l))ei(k+l)�xei(l−k)ctdkdl
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+ 1
(2π)3

∫
R6(d(k)× d′(l))ei(k+l)�xe−i(k+l)ctdkdl, (††)

Clearly, if (†) is satisfied, then we obtain that (E + E0) × B0 = 0,
so that 5 � ((E + E0) × B0) = 0, and using the divergence theorem,
P (r, t) = 0 for all r > 0 and t ∈ R≥0, and limr→∞P (r, t) = 0, for all
t ∈ R≥0, so that the strong no radiation and no radiation conditions
hold. Similarly, if B0 is parallel to E + E0, then (E + E0) × B0 = 0,
so that ((E + E0), B0) satisfies the strong no radiation and the no ra-
diation conditions again.

If {E,E0, B0} are simple, then, we have that;

F(( ∂2

∂x21
+ ∂2

∂x22
+ ∂2

∂x23
)2(E+E0))(k, t) = (k21 + k22 + k23)2F(E+E0)(k, t)

so that, for |k| ≥ 1, ≤ i ≤ 3;

|F(E + E0)i(k, t)| ≤ 1
|k|4

∫
R3 |( ∂2

∂x21
+ ∂2

∂x22
+ ∂2

∂x23
)(E + E0)i|dx

≤ Ci,t
|k|4

and, similarly;

|F(B0)i(k, t)| ≤ Di,t
|k|4

where {Ci,t, Di,t} ⊂ R≥0

Similarly;

|F(E + E0)(k, t)|

≤
∑3

i=1 |F(E + E0)i(k, t)|

≤ Ct
|k|4

where Ct =
∑3

i=1Ci,t

and |F(B0)(k, t)|

≤ Dt
|k|4 (])
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Clearly, we have that F(E + E0)(k, t) and F(B0)(k, t) are differen-
tiable and therefore bounded on B(0, 1), so that, using polar coordi-
nates, with k1 = Rsin(θ)cos(φ), k2 = Rsin(θ)sin(φ), k3 = Rcos(θ)
;

|
∫
R3 F(E + E0)i,tdk|

= |
∫
B(0,1)

F(E + E0)i,tdk +
∫
R3\B(0,1)

F(E + E0)i,tdk|

≤ Ci,t,1 + |
∫
R>1

∫ π
0

∫ π
−π F(E + E0)i,t(R, θ, φ)R2sin(θ)dRdθdφ

≤ Ci,t,1 +
∫
R>1

∫ π
0

∫ π
−π R

2Ci,t
R4 dR

≤ Ci,t,1 + 2π2Ci,t
∫∞
1

1
R2dR

= Ci,t,1 + 2π2Ci,t

so that, for 1 ≤ i ≤ 3, F(E + E0)i,t ∈ L1(R3), and, similarly,
F(B0)i,t ∈ L1(R3). Following the proof of Lemma 0.4, we can still
use the inversion theorem integral and the integral representations for
((E +E0), B0), and the computation (††) holds again. We have, using
polar coordinates, that;

|
∫
B(0,1)

1
ikc
F(

∂E+E0,i

∂t
|x,0)(k)dk|

≤
∫ 1

0

∫ π
0

∫ π
−π |F(

∂E+E0,i

∂t
|x,0)(R, θ, φ)| 1

R
R2dRdθp.hi

= 2π2

2
= π2

so that the components, 1
ikc
F(

∂E+E0,i

∂t
|x,0)(k) for 1 ≤ i ≤ 3, are inte-

grable on B(0, 1), and, therefore, so are the components of {b, b′, d, d′}.
Applying the result (]), we obtain that, for k| > 1;

|b(k) + d(k)| ≤ C0

|k|4

|eikctb(k) + eikctd(k)| ≤ C0

|k|4

|eikctb(k) + e−ikctd(k)| ≤ Ct
|k|4

|(eikct − e−ikct)d(k)|
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= 2|sin(kct)d(k)|

≤ C0+Ct
|k|4

so that at time t = π
2kc

, we have that;

|d(k)| ≤
C0+C π

2kc

|k|4

≤ C0+E
|k|4

where E ∈ R>0 is the uniform bound for t ∈ [0, 1], and, similarly,
for |k| > 1;

max(|b|, |b′|, |d|, |d′|)(k) ≤ F
|k|4

for some F ∈ R>0. In particularly, we have that the components

{b, b′, d, d′} belong to L1(R
3
) and we can apply the calculation in (††).

By the divergence theorem, we have that;∫
S(0,r)

(b(k)× d′(l))ei(k+l)�xei(k−l)ctdS(r)

=
∫
B(0,r)

5 � ((b(k)× d′(l))ei(k+l)�xei(k−l)ct)dB(r)

=
∫
B(0,r)

((b(k)× d′(l)) � i(k + l))ei(k+l)�xei(k−l)ctdB(r)

= ((b(k)× d′(l)) � i(k + l))( 2πr
|k+l|)

3
2J 3

2
(r|k + l|)ei(k−l)ct

= ((b(k)× d′(l)) � i(k + l))( 2πr
|k+l|)

3
2 ( 2

π(r|k+l|))
1
2 (P1(

1
r|k+l|)sin(r|k + l|)

−Q0(
1

r|k+l|)cos(r|k + l|))ei(k−l)ct

= ((b(k)× d′(l)) � i(k + l))( 2πr
|k+l|)

3
2 ( 2

π(r|k+l|))
1
2
P1,1

r|k+l|sin(r|k + l|)

−Q0,0cos(r|k + l|))ei(k−l)ct

= ((b(k)× d′(l)) � i(k + l))( 2π
|k+l|)

3
2 ( 2

π(|k+l|))
1
2
P1,1

|k+l|sin(r|k + l|)ei(k−l)ct

−((b(k)×d′(l))�i(k+l))( 2π
|k+l|)

3
2 ( 2

π(|k+l|))
1
2Q0,0rcos(r|k+l|))ei(k−l)ct (∗)

By (∗), we have that;
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limr→∞P (r) = 1
(2π)3

limr→∞
∫
R6((b(k)×d′(l))�i(k+l))( 2π

|k+l|)
3
2 ( 2

π(|k+l|))
1
2
P1,1

|k+l|

sin(r|k + l|)ei(k−l)ctdkdl

− 1
(2π)3

limr→∞
∫
R6((b(k)× d′(l)) � i(k + l))( 2π

|k+l|)
3
2 ( 2

π(|k+l|))
1
2Q0,0

rcos(r|k + l|))ei(k−l)ctdkdl

Let g(k, l, t) = 1
(2π)3

(b(k)×d′(l))�i(k+l))( 2π
|k+l|)

3
2 ( 2

π(|k+l|))
1
2
P1,1

|k+l|e
i(k−l)ct

and h(k, l, t) = − 1
(2π)3

(b(k)×d′(l))�i(k+l)( 2π
|k+l|)

3
2 ( 2

π(|k+l|))
1
2Q0,0e

i(k−l)ct

(∗ ∗ ∗)

Then {g, h} ⊂ S(R3 ×R>0) and, we have that;

limr→∞P (r, t)

= limr→∞
∫
R6 g(k, l, t)dksin(r|k + l|)dl

+limr→∞r
∫
R6 h(k, l, t)dkcos(r|k + l|)dl

From (∗ ∗ ∗), we have that;

g(k, l, t) = iP1,1

2π2 (b(k)× d′(l)) � u(k,l)|k+l|2 e
i(k−l)ct

where u(k, l) is a unit vector, so that, using Fubini’s Theorem, and

a change of variables k
′
= k + l, we have;∫

R6(g(k, l, t)ei(r|k+l|)dkdl

=
∫
R6

iP1,1

2π2 (b(k)× d′(l)) � u(k,l)|k+l|2 e
i(k−l)ctei(r|k+l|)dkdl

=
∫
R6

φ(k,l,t)

|k+l|2 e
i(r|k+l|)dkdl

=
∫
R3(

∫
R3

φ(k,l,t)

|k+l|2 e
i(r|k+l|)dk)dl

=
∫
R3(

∫
R3

φ(k
′−l,l,t)
|k′|2

ei(r|k
′|)dk

′
)dl

=
∫
R3(

∫
R3

φ(k−l,l,t)
|k|2 ei(r|k|)dk)dl



SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 5: NO RADIATION OF LIGHT11

where φ(k, l, t) = iP1,1

2π2 (b(k)× d′(l)) � u(k, l)ei(k−l)ct

It follows, switching to polars coordinates;

k1 = Rsin(θ)cos(φ), k2 = Rsin(θ)sin(φ), k3 = Rcos(θ)

that;∫
R6(g(k, l, t)ei(r|k+l|)dkdldk

=
∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π

q(R,θ,φ,t,l)
R2 eirRR2sin(θ)dRdθ)dl

=
∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π q(R, θ, φ, t, l)e

irRsin(θ)dRdθ)dl (2)

where q(R, θ, φ, t, l) = φ(k − l, l, t).

From (∗ ∗ ∗) again, we have that;

h(k, l, t) = −iQ0,0

2π2 (b(k)× d′(l)) � u(k,l)|k+l| e
i(k−l)ct

where u(k, l) is a unit vector, so that, using Fubini’s Theorem, and

a change of variables k
′
= k + l, we have;∫

R6(h(k, l, t)ei(r|k+l|)dkdl

=
∫
R6

−iQ0,0

2π2 (b(k)× d′(l)) � u(k,l)|k+l| e
i(k−l)ctei(r|k+l|)dkdl

=
∫
R6

θ(k,l,t)

|k+l| e
i(r|k+l|)dkdl

=
∫
R3(

∫
R3

θ(k,l,t)

|k+l| e
i(r|k+l|)dk)dl

=
∫
R3(

∫
R3

θ(k
′−l,l,t)
|k′|

ei(r|k
′|)dk

′
)dl

=
∫
R3(

∫
R3

θ(k−l,l,t)
|k| ei(r|k|)dk)dl

where θ(k, l, t) = −iQ0,0

2π2 (b(k)× d′(l)) � u(k, l)ei(k−l)ct

It follows, switching to polars coordinates;

k1 = Rsin(θ)cos(φ), k2 = Rsin(θ)sin(φ), k3 = Rcos(θ)



12 TRISTRAM DE PIRO

that;∫
R6(h(k, l, t)ei(r|k+l|)dkdldk

=
∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π

p(R,θ,φ,t,l)
R

eirRR2sin(θ)dRdθ)dl

=
∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π p(R, θ, φ, t, l)e

irRRsin(θ)dRdθ)dl (3)

where p(R, θ, φ, t, l) = θ(k − l, l, t).

Write b(k) = b1(k) + ib2(k), d
′
(l) = d

′
1(l) + id

′
2(l)

where;

b1(k) = 1
2
Re(F((E + E0)|(x,0))|(k,0)) + 1

2kc
Im(F(∂(E+E0)

∂t
|(x,0))|(k,0))

b2(k) = 1
2
Im(F((E + E0)|(x,0))|(k,0))− 1

2kc
Re(F(∂(E+E0)

∂t
|(x,0))|(k,0))

d
′
1(l) = 1

2
Re(F((B0)|(x,0))|(l,0))− 1

2lc
Im(F(∂(B0)

∂t
|(x,0))|(l,0))

d
′
2(l) = 1

2
Im(F((B0)|(x,0))|(l,0)) + 1

2lc
Re(F(∂(B0)

∂t
|(x,0))|(l,0))

We have that;

q(R, θ, φ, t, l)

= iP1,1

2π2 [(b1,l(R, θ, φ)× d′1(l)− b2,l(R, θ, φ)× d′2(l))

�ul(R, θ, φ, l)]µ(R, θ, φ, l, t)

−P1,1

2π2 [(b2,l(R, θ, φ)× d′1(l) + b1,l(R, θ, φ)× d′2(l))

�ul(R, θ, φ, l)]µ(R, θ, φ, l, t) (1)

and, similarly;

p(R, θ, φ, t, l)

= −iQ0,0

2π2 [(b1,l(R, θ, φ)× d′1(l)− b2,l(R, θ, φ)× d′2(l))
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�ul(R, θ, φ, l)]µ(R, θ, φ, l, t)

+Q0,0

2π2 [(b2,l(R, θ, φ)× d′1(l) + b1,l(R, θ, φ)× d′2(l))

�ul(R, θ, φ, l)]µ(R, θ, φ, l, t) (4)

where b1,l(k) = b1(k − l), b2,l(k) = b2(k − l), ul(k, l) = u(k − l, l),

µ(k, l, t) = ei(|k−l|−|l|)ct

and, from (1), (2), we have that;∫
R6 g(k, l, t)ei(r|k+l|)dkdl

=
∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π

iP1,1

2π2 [(b1,l(R, θ, φ)× d′1(l)− b2,l(R, θ, φ)

×d′2(l))�ul(R, θ, φ, l)]µ(R, θ, φ, l, t)−P1,1

2π2 [(b2,l(R, θ, φ)×d′1(l)+b1,l(R, θ, φ)

×d′2(l)) � ul(R, θ, φ, l)]µ(R, θ, φ, l, t)eirRsin(θ)dRdθ)dl

and, from (4), (3);∫
R6 h(k, l, t)ei(r|k+l|)dkdl

=
∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π

−iQ0,0

2π2 [(b1,l(R, θ, φ)× d′1(l)− b2,l(R, θ, φ)

×d′2(l))�ul(R, θ, φ, l)]µ(R, θ, φ, l, t)+Q0,0

2π2 [(b2,l(R, θ, φ)×d′1(l)+b1,l(R, θ, φ)

×d′2(l)) � ul(R, θ, φ, l)]µ(R, θ, φ, l, t)eirRRsin(θ)dRdθdφ)dl

Write b1(k) = b11(k) + b12(k)
k

, d
′
1(l) = d

′
11(l) + d

′
12(l)
l

Then;

b1,l(k) = b1(k − l) = b11(k − l) + b12(k−l)
|k−l|

and;

b1,l(R, θ, φ) = b11,l(R, θ, φ) +
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|

where b11,l(k) = b11(k − l) and b12,l(k) = b12(k − l)
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Then, we have that;∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π

iP1,1

2π2 [b1,l(R, θ, φ)×d′1(l))�ul(R, θ, φ, l)]µ(R, θ, φ, l, t)eirRsin(θ)dRdθdφ)dl

=
∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π

iP1,1

2π2 [(b11,l(R, θ, φ)+
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|)

×(d
′
11(l) + d

′
12(l)
l

)] � ul(R, θ, φ, l)]µ(R, θ, φ, l, t)eirRsin(θ)dRdθdφ)dl

and, we have that;∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π

−iQ0,0

2π2 [(b1,l(R, θ, φ)×d′1(l))�ul(R, θ, φ, l)]µ(R, θ, φ, l, t)eirRRsin(θ)

dRdθdφ)dl

=
∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π

−iQ0,0

2π2 [(b11,l(R, θ, φ)+
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|)

×(d
′
11(l) + d

′
12(l)
l

)] � ul(R, θ, φ, l)]µ(R, θ, φ, l, t)eirRRsin(θ)dRdθdφ)dl

From (]), we have that the real and imaginary components of;

{F((B0)|(x,0))|(l,0),F((E+E0)|(x,0))|(l,0),F((∂B0

∂t
|(x,0))|(l,0),F(∂(E+E0)

∂t
)|(x,0))|(l,0)}

decay faster than 1
|l|4 (need 1

|l|6 ?). It follows that the components of;

{b11,l(k)× d′11(l),
b11,l(k)×d

′
12(l)

l
,
b12,l(k)×d

′
11(l)

|k−l| ,
b12,l(k)×d

′
12(l)

|k−l|l }

decay faster than 1
|k|4|l|4|k−l| , and, as ul(k, l) is a unit vector, |ν(k, l, t)| =

1, |sin(θ(k))| ≤ 1, so do the components of;

{[(b11,l(k)×d′11(l))�ul(k, l)]ν(k, l, t)sin(θ(k)), [(
b11,l(k)×d

′
12(l)

l
)�ul(k, l))]ν(k, l, t)sin(θ(k)),

[(
b12,l(k)×d

′
11(l)

|k−l| )�ul(k, l)]ν(k, l, t)sin(θ(k)), [(
b12,l(k)×d

′
12(l)

|k−l|l )�ul(k, l)]ν(k, l, t)sin(θ(k))}

Noting that, for C ∈ R>0, D ∈ R>0 and fixed l ∈ R3, l 6= 0, without
loss of generality, assuming that D < |l|?;

|
∫
|k|>D

C
|k|4||l|4|k−l| |dk

= |
∫
D<|k|<|l|+1

C
|k|4||l|4|k−l| |dk +

∫
D>|l|+1

C
|k|4||l|4|k−l| |dk|
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≤ |
∫
D<|k|<|l|+1

C
|k|4||l|4|k−l|dk|+ |

∫
|k|>|l|+1>D

C
|k|4||l|4|k−l|dk|

≤ C
D4|l|4

∫
Ann(D,|l|+1)

1
|k−l|dk + 1

|l|4
∫
|k|>|l|+1

C
|k|4dk

= C
D4|l|4

∫
Annl(D,|l|+1)

1
|k|dk + 1

|l|4
∫ π
0

∫ π
−π

∫∞
|l|+1

CR2sin(θ)
R4 dRdθdθdφ

≤ C
D4|l|4

∫
B(0,2|l|+2D+1)

1
|k|dk + 1

|l|4
∫ π
0

∫ π
−π

∫∞
|l|+1

C
R2dRdθdθdφ

≤ 2π2C
D4|l|4

∫ 2|l|+2D+1

0
R2

R
dR + 2π2C

(|l|+1)|l|4

≤ π2C(2|l|+2D+1)2

D4|l|4 + 2π2C
D|l|4

It follows, that for fixed r ∈ R>0, we can choose Dr, Er such that,
for fixed r ∈ R>0;∫

|k|>Dr

∫
|l>Er |α(k, l, t)|dkdl

≤
∫
|l|>Er

1
|l|4r2

(see note above for faster decay)

≤ 2π2

Err2

where;

α(k, l, t) = α(R, θ, φ, l, t) = iP1,1

2π2 [(b11,l(R, θ, φ)+
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|)×

(d
′
11(l) + d

′
12(l)
l

)] � ul(R, θ, φ, l)]µ(R, θ, φ, l, t)sin(θ)

β(k, l, t) = β(R, θ, φ, l, t) = −iQ0,0

2π2 [(b11,l(R, θ, φ)+
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|)×

(d
′
11(l) + d

′
12(l)
l

)] � ul(R, θ, φ, l)]µ(R, θ, φ, l, t)sin(θ)∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π

−iQ0,0

2π2 [(b11,l(R, θ, φ)+
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|)

×(d
′
11(l) + d

′
12(l)
l

)] � ul(R, θ, φ, l)]µ(R, θ, φ, l, t)eirRRsin(θ)dRdθdφ)dl

=
∫
R3

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π β(R, θ, φ, l, t)eirRRdθdφ)dl

Splits as four terms, the worst of which is;∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π

−iQ0,0

2π2 [
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|
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×d
′
12(l)
l

] � ul(R, θ, φ, l)]µ(R, θ, φ, l, t)eirRsin(θ)RdRdθdφ)dl

=
∫
R3

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π β4(R, θ, φ, l, t)e

irRRdRdθdφ)dl

Again, fix l 6= 0, with θ 6= cos−1( l3
l
) = θ0,l and φ 6= tan−1( l2

l1
) = φ0,l.

By the result of Lemma 0.18 (change to β4 factor), we can assume

that the real and imaginary parts of ∂Rβ4(R,θ,φ,l,t)
∂R

are oscillatory, then

as limR→0Rβ4(R, θ, φ, l, t) = 0 and limR→0
∂Rβ4(R,θ,φ,l,t)

∂R
= M ∈ R, we

can apply the result of Lemma 0.13, and assume that;

|
∫
R>0

β4(R, θ, φ, l, t)e
irRRdR| ≤ 4

√
2|| ∂Rβ4

∂R
||∞+Dl

r2
(remove

√
2 and in-

clude spacing δl)

for sufficiently large r ∈ R>0, where;

||∂Rβ4
∂R
||∞ = ||β4 +R∂β4

∂R
||∞

≤ ||β4||∞ + ||R∂β4
∂R
||∞

= |−iQ0,0

2π2 [
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|×
d
′
12(l)
l

]�ul(R, θ, φ, l)sin(θ)|

+|−iQ0,0

2π2 [ ∂
∂R

(
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|)×
d
′
12(l)
l

]�ul(R, θ, φ, l)sin(θ)|

+|−iQ0,0

2π2 [
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|×
d
′
12(l)
l

]� ∂
∂R

(ul(R, θ, φ, l))sin(θ)|

≤ Q0,0

2π2 |
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| ||
d
′
12(l)
l
|

+Q0,0

2π2 | ∂∂R(
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|)||
d
′
12(l)
l
|

+Q0,0

2π2 |
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| ||
d
′
12(l)
l
|| ∂
∂R

( k
|k|)|

= Q0,0

2π2 |
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| ||
d
′
12(l)
l
|

+Q0,0

2π2 | ∂∂R(
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|)||
d
′
12(l)
l
|

and Dl is the sum of the decay rates for the real and imaginary

components of ∂Rβ4
∂R

. Fix κ > 0, then, as, for fixed l 6= 0, Rβ4(k, l) ∈
L1(R3), we can choose θ0,l,κ1 < θ0,l < θ0,l,κ2 , φ0,l,κ1

< φ0,l < φ0,l,κ2
, such
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that;

|
∫
R>0

∫
θ0,l,κ1

≤θ≤θ0,l,κ2

∫
φ0,l,κ1

≤φ≤φ0,l,κ2
Rβ4(R, θ, φ, l, t)e

irRdRdθdφ| ≤ κ
(l+1)4

Then;

|
∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π Rβ4(R, θ, φ, l, t)e

irRdRdθdφ|

≤ |
∫
R>0

∫
([0,π)×[0,2π)\[φ0,l,κ1 ,φ0,l,κ2 ]×[φ0,l,κ1 ,φ0,l,κ2 ])

Rβ4(R, θ, φ, l, t)e
irRdRdθdφ|

+|
∫
R>0

∫
θ0,l,κ1

≤θ≤θ0,l,κ2

∫
φ0,l,κ1

≤φ≤φ0,l,κ2
Rβ4(R, θ, φ, l, t)e

irRdRdθdφ|

≤ |
∫
R>0

∫
Vl,κ1,κ2

Rβ4(R, θ, φ, l, t)e
irRdRdθdφ|+ κ

(l+1)4

≤
∫
Vl,κ1,κ2

(|
∫
R>0

Rβ4(R, θ, φ, l, t)e
irRdR|)dθdφ+ κ

(l+1)4

≤ 2π2
4
√
2|| ∂Rβ4

∂R
|V
l,κ1,κ2

||∞+Dl

r2
+ κ

(l+1)4

≤ 2π2

r2
(2
√
2Q0,0

π2 | b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| ||
d
′
12(l)
l
|

+2
√
2Q0,0

π2 | ∂
∂R

(
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|)||
d
′
12(l)
l
|+Dl) + κ

(l+1)4

= 2π2

r2
(2
√
2Q0,0

π2 | b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| ||
d
′
12(l)
l
|

+2
√
2Q0,0

π2 |
∂
∂R

(b12,l(R,θ,φ))

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|

+
b12,l(R,θ,φ)<(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l, ∂

∂R
((Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l)>

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|3 ||d
′
12(l)
l
|+

Dl) + κ
(l+1)4

≤ 2π2

r2
(2
√
2Q0,0

π2 | b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| ||
d
′
12(l)
l
|

+2
√
2Q0,0

π2 |
∂
∂R

(b12,l(R,θ,φ))

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| ||
d
′
12(l)
l
|

+2
√
2Q0,0

π2

|b12,l(R,θ,φ)||((sin(θ)cos(φ),sin(θ)sin(φ),cos(θ)))|
|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|2 |d

′
12(l)
l
|+Dl) + κ

(l+1)4

≤ 2π2

r2
(2
√
2Q0,0

π2

|b12,l(R,θ,φ)|
|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| |

d
′
12(l)
l
|

+2
√
2Q0,0

π2

| ∂
∂R

(b12,l(R,θ,φ))|
|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| |

d
′
12(l)
l
|
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+2
√
6Q0,0

π2

|b12,l(R,θ,φ)|
|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|2 |

d
′
12(l)
l
|+Dl) + κ

(l+1)4
(F )

where;

Vl,κ1,κ2 = ([0, π)× [0, 2π) \ [φ0,l,κ1
, φ0,l,κ2

]× [φ0,l,κ1
, φ0,l,κ2

])

.................

Using the fact thatR
|b12,l(R,θ,φ)|

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| |[φ0,l,κ1 ,φ0,l,κ2 ]×[φ0,l,κ1 ,φ0,l,κ2 ]×R>0

is integrable, need to split
∫
R>0

∫
θ0,l,κ1

≤θ≤θ0,l,κ2

∫
φ0,l,κ1

≤φ≤φ0,l,κ2
R|β4(R, θ, φ, l, t)|dRdθdφ

into
∫
|R|>r

∫
θ0,l,κ1

≤θ≤θ0,l,κ2

∫
φ0,l,κ1

≤φ≤φ0,l,κ2
R|β4(R, θ, φ, l, t)|dRdθdφ (A)

and
∫
|R|<r

∫
θ0,l,κ1

≤θ≤θ0,l,κ2

∫
φ0,l,κ1

≤φ≤φ0,l,κ2
R|β4(R, θ, φ, l, t)|dRdθdφ (B)

Can control (A) as 1
r2(l+1)4

due to decay, vary (B) as 1

r
5
4 (1+l)4

, similarly

to below, then angles θ0,l,κ2 − θ0,l,κ1 and φ0,l,κ2
− φ0,l,κ1

can vary as

( 1

r
5
4

)
1
3 = 1

r
5
12

. Then last and worst term in (F ) varies as 1
1

r
5
12

2 = r
5
6 .

Integrating and looking at all components, for sufficiently large r ∈
R>0. Follows that,

|
∫
R6 h(k, l, t)eir|k+ldkdl| ≤ Fr

5
6

r2
+ H

r
5
4

+ J
r2

where {F,H, J} ⊂ R. Follows that?(split again Re(h), Im(h))

|
∫
R6 h(k, l, t)cos(r|k + l|)dkdl ≤ F ′r

5
6

r2
+ H′

r
5
4

+ J ′

r2

for sufficiently large r′ > r, invoking uniform version of Lemma 0.12
again. In particular;

limr→∞r
∫
R6 h(k, l, t)cos(r|k + l|)dkdl = limr→∞

1
r

= limr→∞
F ′r

5
6

r
+

H′

r
1
4

+ J ′

r
= 0

so no radiation condition holds.

..........................
Similarly;
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R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π

iP1,1

2π2 [(b11,l(R, θ, φ)+
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|)

×(d
′
11(l) + d

′
12(l)
l

)] � ul(R, θ, φ, l)]µ(R, θ, φ, l, t)eirRsin(θ)dRdθdφ)dl

=
∫
R3

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π α(R, θ, φ, l, t)eirRdRdθdφ)dl

Splits as four terms, the worst of which is;∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π

iP1,1

2π2 [
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|

×d
′
12(l)
l

] � ul(R, θ, φ, l)]µ(R, θ, φ, l, t)eirRsin(θ)dRdθdφ)dl

=
∫
R3

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π α4(R, θ, φ, l, t)e

irRdRdθdφ)dl

Again, fix l 6= 0, with θ 6= cos−1( l3
l
) = θ0,l and φ 6= tan−1( l2

l1
) = φ0,l.

By the result of Lemma 0.18, we can assume that the real and imagi-
nary parts of α4(R, θ, φ, l, t) are oscillatory, then as limR→0α4(R, θ, φ, l, t) =
M ∈ R, we can apply the result of Lemmas 0.15, 0.17 and 0.8, and
assume that;

|
∫
R>0

α4(R, θ, φ, l, t)e
irRdR|

≤ |
∫
R>0

Re(α4)(R, θ, φ, l, t)e
irRdR|+|

∫
R>0

Im(α4)(R, θ, φ, l, t)e
irRdR|

≤ 2
r
(
nl,θ,φ,Re||Re(α4)||∞

ξRe
+

Dl,θ,φ,Re
nl,θ,φξRe

)

+2
r
(
nl,θ,φ,Im||Im(α4)||∞

ξIm
+

Dl,θ,φ,Im
nl,θ,φξIm

)

so that, for l > 1;

|
∫
R>0

α4(R, θ, φ, l, t)e
irRdR|

≤ 2
r
(4
√
3l||Re(α4)||∞

ξRe
+

C2
5
2 | d
′
12(l)

l
|

4
√
3lξRe

)

+2
r
(4
√
3l||Im(α4)||∞

ξIm
+

C2
5
2 | d
′
12(l)

l
|

4
√
3lξIm

)

≤ 2
rξ

(4
√

3l(||Re(α4)||∞ + ||Im(α4)||∞) +
C2

7
2 | d
′
12(l)

l
|

4
√
3l

)
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≤ 2
rξ

(4
√

6l||α4||∞ +
C2

7
2 | d
′
12(l)

l
|

4
√
3l

)

and, similarly, for 0 < l ≤ 1;

|
∫
R>0

α4(R, θ, φ, l, t)e
irRdR|

≤ 2
rξ

(4
√

6||α4||∞ +
C2

7
2 | d
′
12(l)

l
|

4
√
3

) (D)

for sufficiently large r ∈ R>0, where ξRe > 0, ξIm > 0 are constants
independent of l, θ, φ, ξ = min(ξRe, ξIm) > 0, {Dl,θ,φ,Re, Dl,θ,φ,Im} are

the decay rates for the real and imaginary components of α4(R, θ, φ, l, t).
We have that;

||α4||∞ = | iP1,1

2π2 [
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|×
d
′
12(l)
l

]�ul(R, θ, φ, l)sin(θ)|

≤ P1,1

2π2 |
b12,l(R,θ,φ)sin(θ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| ||
d
′
12(l)
l
|

= |P1,1

2π2

b12,l(k)

k2|k−l| ||
d
′
12(l)
l
|

where;

P1,1

2π2

b12,l(k)

k2|k−l| = P1,1

2π2

b12,l(R,θ,φ)sin(θ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|

Fix κ > 0, then, as, for fixed l 6= 0,
|b12,l(k)|
k2|k−l| ∈ L

1(R3), we can choose

θ0,l,κ1 < θ0,l < θ0,l,κ2 , φ0,l,κ1
< φ0,l < φ0,l,κ2

, such that;

|
∫
R>0

∫
θ0,l,κ1

≤θ≤θ0,l,κ2

∫
φ0,l,κ1

≤φ≤φ0,l,κ2

P1,1

2π2

|b12,l(k)|
k2|k−l| (R, θ, φ, l, t)e

irRdRdθdφ| ≤
κ′

Then;

|
∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π α4(R, θ, φ, l, t)e

irRdRdθdφ|

≤ |
∫
R>0

∫
([0,π)×[0,2π)\[φ0,l,κ1 ,φ0,l,κ2 ]×[φ0,l,κ1 ,φ0,l,κ2 ])

α4(R, θ, φ, l, t)e
irRdRdθdφ|

+|
∫
R>0

∫
θ0,l,κ1

≤θ≤θ0,l,κ2

∫
φ0,l,κ1

≤φ≤φ0,l,κ2
α4(R, θ, φ, l, t)e

irRdRdθdφ|

≤ |
∫
R>0

∫
Vl,κ1,κ2

α4(R, θ, φ, l, t)e
irRdRdθdφ|+ κ′||d

′
12(l)
l
|
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≤
∫
Vl,κ1,κ2

(|
∫
R>0

α4(R, θ, φ, l, t)e
irRdR|)dθdφ+ κ′||d

′
12(l)
l
|

Using (D), it follows that, for l > 1;

|
∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π α4(R, θ, φ, l, t)e

irRdRdθdφ|

≤ 2π2 2
rξ

(4
√

6l||α4|Vl,κ1,κ2 ||∞ +
C2

7
2 | d
′
12(l)

l
|

4
√
3l

) + κ′||d
′
12(l)
l
|

≤ 4π2

rξ
(4
√
6P1,1l

2π2 |
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| |Vl,κ1,κ2 ||
d
′
12(l)
l
|+C2

7
2 | d
′
12(l)

l
|

4
√
3l

)

+κ′||d
′
12(l)
l
|

and, for 0 < l ≤ 1;

|
∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π α4(R, θ, φ, l, t)e

irRdRdθdφ|

≤ 2π2 2
rξ

(4
√

6||α4|Vl,κ1,κ2 ||∞ +
C2

7
2 | d
′
12(l)

l
|

4
√
3

) + κ′||d
′
12(l)
l
|

≤ 4π2

rξ
(4
√
6P1,1

2π2 |
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| |Vl,κ1,κ2 ||
d
′
12(l)
l
|+C2

7
2 | d
′
12(l)

l
|

4
√
3

)

+κ′||d
′
12(l)
l
| (H)

Fix δ > 0 arbitrary, then we have that, for l > δ, sufficiently small
0 < κ < min( δ

2
, δ2);∫

R>0

∫
θ0,l,κ1

≤θ≤θ0,l,κ2

∫
φ0,l,κ1

≤φ≤φ0,l,κ2

P1,1

2π2 |
b12,l(R,θ,φ)sin(θ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| |dRdθdφ

=
∫
Wl,κ1,κ2

P1,1

2π2

|b12,l(k)|
|k−l||k|2

=
∫
(Wl,κ1,κ2

)l

P1,1

2π2

|b12(k)|
|k||k+l|2dk

≤
∫
B(0,κ)

P1,1

2π2

|b12(k)|
|k||k+l|2dk +

∫
(Wl,κ1,κ2

)l\B(0,κ)

P1,1

2π2

|b12(k)|
|k||k+l|2dk

≤ P1,1

2π2 || b12(k)|k+l|2 ||∞,B(0,κ)

∫
0<R<κ

1
R
R2|sin(θ)|dRdθdφ+P1,1

2π2

∫
(Wl,κ1,κ2

)l\B(0,κ)
|b12(k)|
|k||k+l|2dk

≤ 2P1,1

δ2π2 ||b12(k)||∞,B(0,κ)
κ2

2
+ 1

κ

P1,1

2π2

∫
(Wl,κ1,κ2

)l
| b12(k)|k+l|2 )|dk

= 2P1,1

δ2π2 ||b12(k)||∞,B(0,κ)
κ2

2
+ 1
κ

P1,1

2π2

∫
(Wl,κ1,κ2

)
| b12,l(R,θ,φ)

R2 |R2sin(θ)dRdθdφ
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≤ 2P1,1

δ2π2 ||b12(k)||∞,B(0,κ)
κ2

2
+ 1
κ

P1,1

2π2 |θ0,l,κ2−θ0,l,κ1||φ0,l,κ2
−φ0,l,κ2

|S1(1)

∫
R>0
|b12,l(R)|dR

≤ 2P1,1

δ2π2 ||b12(k)||∞,B(0,κ)
κ2

2
+ 1

κ

P1,1

2π2 |θ0,l,κ2 − θ0,l,κ1||φ0,l,κ2
− φ0,l,κ2

|S1(1)K

≤ 2P1,1

δ2π2 ||b12(k)||∞,B(0,κ)
κ2

2
+ P1,1

2π2 κ

≤ 2P1,1

π2 ||b12(k)||∞,B(0,κ)
δ2

2
+ P1,1

2π2 κ = κ′ (M)

for |θ0,l,κ2 − θ0,l,κ1| = |φ0,l,κ2
− φ0,l,κ1

|S1(1), |θ0,l,κ2 − θ0,l,κ1| ≤
κ√
K

(G)

where;

Wl,κ1,κ2
= ([φ0,l,κ1

, φ0,l,κ2
]× [φ0,l,κ1

, φ0,l,κ2
]×R>0)

(Wl,κ1,κ2
)l = {k : k + l ∈ Wl,κ1,κ2

}

and, we can assume that |b12,l(R)| is independent of {θ, φ}, with

||b12,l(R)||L1(R>0) ≤ K, independently of l, due to the decay.

In particularly, choosing θ0,l,κ2 = θ0,l + κ
2
√
K

, θ0,l,κ1 = θ0,l − κ
2
√
K

,

φ0,l,κ2
= φ0,l + κ

2
√
K

, φ0,l,κ1
= φ0,l − κ

2
√
K

, we have that (G) holds and

d(l, Vl,κ1,κ2) ≥ lsin( κ
2
√
K

) ≥ lκ
4
√
K

, for sufficiently small κ. We then have

that;

| b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| |Vl,κ1,κ2 | ≤
4
√
K

lκ
||b12,l(R, θ, φ)||∞ = 4

√
KD
lκ

where D ∈ R>0, independent of l. From (H), (M), we obtain that,
for l > 1;

|
∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π α4(R, θ, φ, l, t)e

irRdRdθdφ|

≤ 4π2

rξ
(4
√
6P1,1l

2π2 (4
√
KD
lκ

)|d
′
12(l)
l
|+ C2

7
2 | d
′
12(l)

l
|

4
√
3l

)

+κ′||d
′
12(l)
l
| (l > δ)

and, for 0 < l ≤ 1;

|
∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π α4(R, θ, φ, l, t)e

irRdRdθdφ|



SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 5: NO RADIATION OF LIGHT23

≤ 4π2

rξ
(4
√
6P1,1

2π2 (4
√
KD
lκ

)|d
′
12(l)
l
|+ C2

7
2 | d
′
12(l)

l
|

4
√
3

)

+κ′||d
′
12(l)
l
| (l > δ)

Using the fact that { |d
′
12(l)|
l2

, |d
′
12(l)|
l
} ⊂ L1(R3), and integrating g(k, l, t)eir|k+l|

over R3 × B(0, δ) separately, using Lemma 0.9, looking at all compo-
nents, for sufficiently large r ∈ R>0, need uniformity in l version of
Lemma 0.12, follows that,

|
∫
R6 g(k, l, t)eir|k+l|dkdl| ≤ Aδ + F (κ)

r
+Hκ′

where {A,H} ⊂ R. Follows that?(split again Re(g), Im(g))

|
∫
R6 g(k, l, t)sin(r|k + l|)dkdl ≤ Bδ + T (κ)

r
+ Sκ′

for sufficiently large r, In particular as κ′ > 0, δ > 0 can be made
arbitrarily small, and;

|limr→∞
∫
R6 g(k, l, t)cos(r|k + l|)dkdl| < Aδ +Hκ′

limr→∞
∫
R6 g(k, l, t)cos(r|k + l|)dkdl = 0

so no radiation condition holds.

�

Lemma 0.8. We have that;

|α4(R, θ, φ, t, l)| ≤ C2
5
2

R2 |d
′
12(l)
l
|, for R > 4l

√
3, l > 1

R > 4
√

3, 0 < l ≤ 1

|Re(α4)(R, θ, φ, t, l) ≤ |C2
5
2

R2 |d
′
12(l)
l
|, for R > 4l

√
3, l > 1

R > 4
√

3, 0 < l ≤ 1

|Im(α4)(R, θ, φ, t, l)| ≤ C2
5
2

R2 |d
′
12(l)
l
|, for R > 4l

√
3, l > 1

R > 4
√

3, 0 < l ≤ 1
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where C ∈ R>0

In particularly, the families {Re(α4)(R, θ, φ, t, l) : l ∈ R3, l 6= 0, θ 6=
cos−1( l3

l1
), φ 6= tan−1( l2

l1
)} and {Im(α4)(R, θ, φ, t, l) : l ∈ R3, l 6= 0, θ 6=

cos−1( l3
l1

), φ 6= tan−1( l2
l1

)} are of moderate decrease nl,θ,φ, with;

nl,θ,φ = 4l
√

3, l > 1

nl,θ,φ = 4
√

3, 0 < l ≤ 1

and Dl,θ,φ = C2
5
2 |d
′
12(l)
l
|

Proof. We have that;

|α4| ≤ |P1,1

2π2

b12,l(k)

k2|k−l| ||
d
′
12(l)
l
|

|b12,l(k)| ≤ D
|k−l|4 , |k − l| > 0 (change this)

where D ∈ R>0

so that;

|α4(R, θ, φ, t, l)| ≤ |d
′
12(l)
l
| C
|k−l|5

= C|d
′
12(l)
l
| 1

[(Rsin(θ)cos(φ)−l1)2+(Rsin(θ)sin(φ)−l2)2+(Rcos(θ)−l3)2]
5
2

= C
R5 |d

′
12(l)
l
| 1

[(sin(θ)cos(φ)− l1
R
)2+(sin(θ)sin(φ)− l2

R
)2+(cos(θ)− l3

R
)2]

5
2

= C
R5 |d

′
12(l)
l
| 1

[1− 2l1sin(θ)cos(φ)
R

− 2l2sin(θ)sin(φ)
R

− 2l3cos(θ)
R

+ l2

R2 ]
5
2

= C
R5 |d

′
12(l)
l
| 1

(1−x+ l2

R2 )
5
2

where C ∈ R>0 and;

|x| ≤ 2(|l1|+|l2|+|l3|)
R

≤ 2l
√
3

R
≤ 1

2
, for R > 4l

√
3

so that;

|α4(R, θ, φ, t, l)| ≤ C2
5
2

R5 |d
′
12(l)
l
| ≤ C2

5
2

R2 |d
′
12(l)
l

(for R > 4l
√

3, l > 1,
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R > 4
√

3, 0 < l ≤ 1)

In particularly;

|Re(α4)(R, θ, φ, t, l)| ≤ |α4(R, θ, φ, t, l)| ≤ C2
5
2

R2 |d
′
12(l)
l
|

for R > 4l
√

3, l > 1, R > 4
√

3, 0 < l ≤ 1

|Im(α4)(R, θ, φ, t, l)| ≤ |α4(R, θ, φ, t, l)| ≤ C2
5
2

R2 |d
′
12(l)
l
|

for R > 4l
√

3, l > 1, R > 4
√

3, 0 < l ≤ 1

�

Lemma 0.9. We have that;

|b12,l(k)|
|k|2|k−l| |

d
′
12(l)
l
| ∈ L1(R6),

|b12,l(k)|
|k||k−l|2 |

d
′
12(l)
l
| ∈ L1(R6)

Proof. For the first claim, fix l 6= 0, then;

1
|k|2 |B(l, l

2
) ≤ 4

l2
, 1
|k−l| |R3\B(l, l

2
) ≤ 2

l

so that;∫
R3

|b12,l(k)|
|k|2|k−l| |dk =

∫
B(l, l

2
)

|b12,l(k)|
|k|2|k−l|dk +

∫
R3\B(l, l

2
)

|b12,l(k)|
|k|2|k−l|dk

≤ 4
l2

∫
B(l, l

2
)

|b12,l(k)|
|k−l| dk + 2

l

∫
R3\B(l, l

2
)

|b12,l(k)|
|k|2 dk

≤ 4
l2

∫
B(l, l

2
)

|b12,l(k)|
|k−l| dk + 2

l

∫
R3

|b12,l(k)|
|k|2 dk

= 4
l2

∫
B(0, l

2
)
|b12(k)|
|k| dk + 2

l

∫
R3

|b12,l(k)|
|k|2 dk

= 4
l2

∫ l
2

0

∫
0≤θ≤π,−π≤φ≤π

|b12(R,θ,φ)|
R

R2sin(θ)dRdθdφ+ 2
l

∫
B(0,1)

|b12,l(k)|
|k|2 dk

+
∫
R3\B(0,1)

|b12,l(k)|
|k|2 dk

≤ 8π2

l2
[R

2

2
]
l
2
0 +2

l

∫ 1

0

∫
0≤θ≤π,−π≤φ≤π

|b12(R,θ,φ)|
R2 R2sin(θ)dRdθdφ+

∫
R3\B(0,1)

|b12,l(k)|dk

≤ π2 + 4π2

l
[R]10 + C
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= π2 + 4π2

l
+ C

where C = ||b12,l||L1(R3) is independent of l. It follows that;∫
R6

|b12,l(k)|
|k|2|k−l| |

d
′
12(l)
l
|dkdl ≤

∫
R3(π

2 + 4π2

l
+ C)|d

′
12(l)
l
|dl

= (π2 + C)
∫
R3

|d′12(l)
|l| dl + 4π2

∫
R3

|d′12(l)
|l|2 dl

≤ (π2 + C)(
∫
B(0,1)

|d′12(l)
|l| dl +

∫
R3\B(0,1)

|d′12(l)|dl)

+4π2(
∫
B(0,1)

|d′12(l)
|l|2 dl +

∫
R3\B(0,1)

|d′12(l)|dl)

≤ (π2 + C)(
∫ 1

0

∫
0≤θ≤π,−π≤φ≤π ||d

′
12(R, θ, φ)|Rsin(θ)dθdφ+D)

+4π2(
∫ 1

0

∫
0≤θ≤π,−π≤φ≤π ||d

′
12(R, θ, φ)|sin(θ)dθdφ+D)

≤ (π2 + C)(π2 +D) + 4π2(2π2 +D)

= 9π4 + π2C + 5π2D + CD

where D = ||d′12||L1(R3)

For the second claim, fix l 6= 0, then, using the substitution k
′
= k−l

and the previous proof, we obtain that;∫
R3

|b12,l(k)|
|k||k−l|2 |dk =

∫
R3

|b12(k)|
|k|2|k+l| |dk ≤ π2 + 4π2

l
+ C

Following the above proof again, we have that;∫
R6

|b12,l(k)|
|k||k−l|2 |

d
′
12(l)
l
|dkdl ≤

∫
R3(π

2 + 4π2

l
+ C)|d

′
12(l)
l
|dl

≤ 9π4 + π2C + 5π2D + CD

�

Definition 0.10. We say that f ∈ C(R) is of moderate decrease if
there exists a constant D ∈ R>0 with |f(x)| ≤ D

|x|2 for |x| > 1. We

say that f ∈ C(R>0) is of moderate decrease if there exists a constant
D ∈ R>0 with |f(x)| ≤ D

|x|2 for |x| > 1. We say that f ∈ C(R)

is of moderate decrease n, if there exists a constant Dn ∈ R>0 with
|f(x)| ≤ Dn

|x|2 for |x| > n. We say that f ∈ C(R>0) is of moderate
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decrease n if there exists a constant Dn ∈ R>0 with |f(x)| ≤ Dn
|x|2 for

|x| > n. We say that f ∈ C(R) is of very moderate decrease if there
exists a constant D ∈ R>0 with |f(x)| ≤ D

|x| for |x| > 1. We say that

f ∈ C(R) is of very moderate decrease n if there exists a constant
Dn ∈ R>0 with |f(x)| ≤ D

|x| for |x| > n. We say that f ∈ C(R>0)

is of very moderate decrease if there exists a constant D ∈ R>0 with
|f(x)| ≤ D

|x| for |x| > 1. We say that f ∈ C(R>0) is of very moderate

decrease n if there exists a constant Dn ∈ R>0 with |f(x)| ≤ Dn
|x| for

|x| > n. We say that f ∈ C(R) is non-oscillatory if there are finitely
many points {yi : 1 ≤ i ≤ n} ⊂ R for which f |(yi,yi+1) is monotone, 1 ≤
i ≤ n−1, and f |(−∞,y1) and f |(yn,∞) is monotone. We denote by val(f)
the minimum number of such points. We say that f ∈ C(R>0) is non-
oscillatory if there are finitely many points {yi : 1 ≤ i ≤ n} ⊂ R>0 for
which f |(yi,yi+1) is monotone, 1 ≤ i ≤ n− 1, and f |(0,y1) and f |(yn,∞) is
monotone. Similarily, we denote by val(f) the minimum number. We
say that f ∈ C(R) is oscillatory if there exists an increasing sequence
{yi : i ∈ Z} ⊂ R, for which f |(yi,yi+1) is monotone, i ∈ Z, and there
exists δ > 0, with yi+1 − yi > δ, for i ∈ Z. We say that f ∈ C(R>0)
is oscillatory if there exists a sequence {yi : i ∈ N} ⊂ R, for which
f |(0,y1) is monotone, and f |(yi,yi+1) is monotone, i ∈ N , and there exists
δ > 0, with y1 > δ and yi+1 − yi > δ, for i ∈ N .

Lemma 0.11. Let f ∈ C(R) and df
dx
∈ C(R) be of moderate decrease,

with df
dx

non-oscillatory, then defining the Fourier transform by;

F(f)(k) = 1

(2π)
1
2

∫
R f(x)e−ikxdx

we have that, there exists a constant C ∈ R>0, such that;

|F(f)(k)| ≤ C
|k|2

for sufficiently large k. Let f ∈ C(R) and df
dx
∈ C(R) be of moderate

decrease, with df
dx

oscillatory, then, similarly;

we have that, there exists a constant C ∈ R>0, such that;

|F(f)(k)| ≤ C
|k|2

for sufficiently large k.
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The same result holds in the two claims, replacing moderate decrease
with moderate decrease n.

Proof. As f is of moderate decrease, we have that f ∈ L1(R) and
lim|x|→∞f(x) = 0 Similarly, df

dx
∈ L1(R) and df

dx
is continuous. We

have, using integration by parts, that;

F( df
dx

)(k) = 1

(2π)
1
2

∫
R

df
dx

(y)e−ikydy

= [f(y)e−iky]∞−∞ + ik
∫
R f(y)e−ikydy

= ik
∫
R f(y)e−ikydy

= ikF(f)(k)

so that, for |k| > 1;

|F(f)(k)| ≤ |F( df
dx

)(k)|
|k| , (†)

As df
dx

is of moderate decrease, for any ε > 0, we can find Nε ∈ N
such that;

|F( df
dx

)(k)− 1

(2π)
1
2

∫ Nε
−Nε

df
dx

(y)e−ikydy| < ε (∗)

As df
dx
|−Nε,Nε is continuous and non-oscillatory, by the proof of Lemma

0.9 in [7], using underflow, we can find {Dε, Eε} ⊂ R>0, such that, for
all |k| > Dε, we have that;

| 1

(2π)
1
2

∫ Nε
−Nε

df
dx

(y)e−ikydy| < Eε
|k| , (∗∗)

It is easy to see from the proof, that {Dε, Eε} can be chosen uniformly
in ε. Then, from (∗), (∗∗), and the triangle inequality, we obtain that,
for |k| > Dε;

|F( df
dx

)(k)|

≤ |F( df
dx

)(k)− 1

(2π)
1
2

∫ Nε
−Nε

df
dx

(y)e−ikydy|+ | 1

(2π)
1
2

∫ Nε
−Nε

df
dx

(y)e−ikydy|

< ε+ Eε
|k|

so that, as {Dε, Eε} were uniform and ε was arbitrary, we obtain that;
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|F( df
dx

)(k)| < E
|k| , for |k| > D

and, from (†), for |k| > D, that;

|F(f)(k)| ≤ |F( df
dx

)(k)|
|k| < E

|k|2

For the second claim, we can follow the proof of the second claim in
Lemma 0.13. The final claim is a simple adaptation of the first two
claims. �

Lemma 0.12. Let f ∈ C(R>0) be of moderate decrease, with f non-
oscillatory, and limx→0f(x) = M , with M ∈ R, then defining the half
Fourier transform G, by;

G(f)(k) =
∫∞
0
f(x)e−ikxdx

we have that, there exists a constant E ∈ R>0, such that;

|G(f)(k)| ≤ E
|k|

for sufficiently large |k|. Moreover, we can choose;

E = 2||f ||∞val(f)

Let f ∈ C(R>0) be of moderate decrease, with f oscillatory, and
limx→0f(x) = M , with M ∈ R, then, similarly;

we have that, there exists a constant E ∈ R>0, such that;

|G(f)(k)| ≤ E
|k|

for sufficiently large |k|. Moreover, we can choose E = (4||f ||∞+D)
δ

,
where D and δ are given in Definition 0.10.

The first claim is the same, replacing moderate decrease with mod-
erate decrease n. The second claim is the same, replacing moderate
decrease with moderate decrease n, with the modification that we can

choose E = 2n||f ||∞
δ

+ 2Dn
nδ

.

Proof. As f is of moderate decrease and limx→0f(x) = M , we have
that f ∈ L1(R>0) and lim|x|→∞f(x) = 0.
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As f is of moderate decrease, for any ε > 0, we can find Nε ∈ N
such that;

|G(f)(k)−
∫ Nε
0
f(y)e−ikydy| < ε (∗)

As f |0,Nε is continuous and non-oscillatory, by the proof of Lemma
0.9 in [7], using underflow, we can find {Dε, Eε} ⊂ R>0, such that, for
all |k| > Dε, we have that;

|
∫ Nε
0
f(y)e−ikydy| < Eε

|k| , (∗∗)

It is easy to see from the proof, that {Dε, Eε} can be chosen uni-
formly in ε, Splitting the calculation into real and imaginary compo-
nents, it is straightfoward to see that it is possible to choose Eε with
Eε = 2||f ||∞val(f), noting that the infinitesimal correction existing
after the use of underflow, drops out after taking the standard part.
Then, from (∗), (∗∗), and the triangle inequality, we obtain that, for
|k| > Dε;

|G(f)(k)|

≤ |G(f)(k)−
∫ Nε
0
f(y)e−ikydy|+ |

∫ Nε
0
f(y)e−ikydy|

< ε+ Eε
|k|

so that, as {Dε,ρ, Eε} were uniform and ε was arbitrary, we obtain
that;

|G(f)(k)| < E
|k| , for sufficiently large |k|

For the second claim, after choosing N ∈ N , we have that f |(0,N)

is non-oscillatory, and, moreover, there are at most N
δ

monotone inter-
vals. As in (∗∗), and inspection of the proof in [7], we get;

|
∫ N
0
fe−ikydy| < EN

|k|

for sufficiently large |k|, where EN = 2NC
δ

and C = maxx∈R>0|f |.
Choosing N > 1, as f is of moderate decrease, we can assume that

|f | ≤ D
x2

, for x > N . Then, using the proof in [7] again, the definition

of oscillatory, and noting that ∗
∑

y∗i>N
D
y2i
'

∑
yi>N

D
y2i

, we have that,
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for sufficiently large |k|;

|
∫∞
N
fe−ikydy| < ( 2

|k|
∑

yi>N
D
y2i

)

≤ ( 2
|k|

∑
n∈Z≥0

D
(yi0+nδ)

2 )

≤ 2D
δ|k|

∫∞
yi0

dx
x2

= 2D
δ|k|yi0

≤ 2D
δ|k|N

where yi0 ≥ N and yi0 ≤ yi, for all yi ≥ N . It follows that;

|G(f)(k)| = |
∫ N
0
fe−ikydy +

∫∞
N
fe−ikydy|

≤ |
∫ N
0
fe−ikydy|+ |

∫∞
N
fe−ikydy|

≤ EN
|k| + 2D

δ|k|N

≤ 2
|k|(

NC
δ

+ D
δN

)

It follows, using (†), that;

|G(f)(k) ≤ E
|k|

where E = 2(NC
δ

+ D
δN

)

In particular, choosing N = 2, we can take;

E = 2(2C
δ

+ D
2δ

) = (4C+D)
δ

= (4||f ||∞+D)
δ

For the final claim, the modification for the first part is the same. In
the second part, choose N ≥ n, rather than N > 1 in the proof, and
replace D with Dn, to get E = 2(NC

δ
+ Dn

δN
), then, taking N = n, we

obtain E = 2(nC
δ

+ Dn
δn

).
�

Lemma 0.13. Let f ∈ C(R>0) and df
dx
∈ C(R>0) be of moderate de-

crease, with df
dx

non-oscillatory, and limx→0f(x) = 0, limx→0
df
dx

(x) =
M , with M ∈ R, then defining the half Fourier transform G, by;
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G(f)(k) =
∫∞
0
f(x)e−ikxdx

we have that, there exists a constant E ∈ R>0, such that;

|G(f)(k)| ≤ E
|k|2

for sufficiently large k. Moreover, we can choose E = 2|| df
dx
||∞val( dfdx)

Let f ∈ C(R>0) and df
dx
∈ C(R>0) be of moderate decrease, with

df
dx

oscillatory, and limx→0f(x) = 0, limx→0
df
dx

(x) = M , with M ∈ R,
then, similarly;

we have that, there exists a constant E ∈ R>0, such that;

|G(f)(k)| ≤ E
|k|2

for sufficiently large k, Moreover, we can choose E =
(4|| df

dx
||∞+D)

δ
.

The first claim is the same, replacing moderate decrease with mod-
erate decrease n. The second claim is the same, replacing moderate
decrease with moderate decrease n, with the modification that we can

choose E =
2n|| df

dx
||∞

δ
+ 2Dn

nδ
.

Proof. As f is of moderate decrease and limx→0f(x) = 0, we have that
f ∈ L1(R>0) and lim|x|→∞f(x) = 0. Similarly, df

dx
∈ L1(R>0) and df

dx
is

continuous. We have, using integration by parts, that;

G( df
dx

)(k) =
∫∞
0

df
dx

(y)e−ikydy

= [f(y)e−iky]∞0 + ik
∫∞
0
f(y)e−ikydy

= ik
∫∞
0
f(y)e−ikydy

= ikG(f)(k)

so that, for |k| > 1;

|G(f)(k)| ≤ |G( df
dx

)(k)|
|k| , (†)
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As df
dx

is of moderate decrease, for any ε > 0, we can find Nε ∈ N
such that;

|G( df
dx

)(k)−
∫ Nε
0

df
dx

(y)e−ikydy| < ε (∗)

As df
dx
|0,Nε is continuous and non-oscillatory, by the proof of Lemma

0.9 in [7], using underflow, we can find {Dε, Eε} ⊂ R>0, such that, for
all |k| > Dε, we have that;

|
∫ Nε
0

df
dx

(y)e−ikydy| < Eε
|k| , (∗∗)

It is easy to see from the proof, that {Dε, Eε} can be chosen uniformly
in ε. Then, from (∗), (∗∗), and the triangle inequality, we obtain that,
for |k| > Dε;

|G( df
dx

)(k)|

≤ |G( df
dx

)(k)−
∫ Nε
0

df
dx

(y)e−ikydy|+ |
∫ Nε
0

df
dx

(y)e−ikydy|

< ε+ Eε
|k|

so that, as {Dε, Eε} were uniform and ε was arbitrary, we obtain that;

|G( df
dx

)(k)| < E
|k| , for |k| > D

and, from (†), for |k| > D, that;

|G(f)(k)| ≤ |G( df
dx

)(k)|
|k| < E

|k|2

The choice of E is the same as in the proof of Lemma 0.12. For the
second claim, the proof up to (†) is the same. After choosing N ∈ N ,
we have that df

dx
|(0,N) is non-oscillatory, and, moreover, there are at

most N
δ

monotone intervals. As in (∗∗), and inspection of the proof in
[7], we get;

|
∫ N
0

df
dx
e−ikydy| < EN

|k|

where EN ≤ 2NC
δ

and C = maxx∈R>0 | dfdx |.
Choosing N > 1, as df

dx
is of moderate decrease, we can assume that

| df
dx
| ≤ D

x2
, for x > N . Then, using the proof in [7] again, and the
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definition of oscillatory, we have that, for sufficiently large |k|;

|
∫∞
N

df
dx
e−ikydy| < ( 2

|k|
∑

yi>N
D
y2i

)

≤ ( 2
|k|

∑
n∈Z≥0

D
(yi0+nδ)

2 )

≤ 2D
δ|k|

∫∞
yi0

dx
x2

= 2D
δ|k|yi0

≤ 2D
δ|k|N

where yi0 ≥ N and yi0 ≤ yi, for all yi ≥ N . It follows that;

|G( df
dx

)(k)| = |
∫ N
0

df
dx
e−ikydy +

∫∞
N

df
dx
e−ikydy|

≤ |
∫ N
0

df
dx
e−ikydy|+ |

∫∞
N

df
dx
e−ikydy|

≤ EN
|k| + 2D

δ|k|N

≤ 2
|k|(

NC
δ

+ D
δN

)

It follows, using (†), that;

|G(f)(k)| ≤ |G( df
dx

)(k)|
|k| < EN

|k|2

where EN = 2(NC
δ

+ D
δN

)

As in Lemma 0.12, we can choose E as in the final claim of the two
parts.

For the final claim, the modification for the first part is the same. In
the second part, choose N ≥ n, rather than N > 1 in the proof, and
replace D with Dn, to get EN = 2(NC

δ
+ Dn

δN
), then, taking N = n, we

obtain E = 2(nC
δ

+ Dn
δn

). �

Definition 0.14. We say that a family W = {fv : v ∈ V }, with
fv ∈ C(R>0) and V ⊂ Rn open, is of moderate decrease if there exists
constants Dv ∈ R>0 with |fv(x)| ≤ Dv

|x|2 for |x| > 1. We say that a

family W = {fv : v ∈ V }, with fv ∈ C(R>0) and V ⊂ Rn open,
is of moderate decrease nv if there exists constants Dv ∈ R>0 with
|fv(x)| ≤ Dv

|x|2 for |x| > nv, where n : V → R>0 is continuous. We
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say that the family {fv : v ∈ V } is non-oscillatory if there are finitely
many points {yi,v : 1 ≤ i ≤ n} ⊂ R for which fv|(yi,v ,yi+1,v) is monotone,
1 ≤ i ≤ n − 1, and f |(−∞,y1,v) and f |(yn,v ,∞) is monotone. We denote
by val(W ) the minimum number of such points. We say that a family
W = {fv : v ∈ V }, with fv ∈ C(R>0) is oscillatory if there exists
a sequence {yi,v : i ∈ N} ⊂ R, for which f |(0,y1,v) is monotone, and
f |(yi,v ,yi+1,v) is monotone, i ∈ N , and there exists δv > 0, with y1 > δv
and yi+1 − yi > δv, for i ∈ N .

Lemma 0.15. Let a family W = {fv : v ∈ V } be of moderate decrease,
with W non-oscillatory, and limx→0fv(x) = Mv, with Mv ∈ R, then
we have that, there exists constants Ev ∈ R>0, such that;

|G(fv)(k)| ≤ Ev
|k|

for sufficiently large |k|, independent of v. Moreover, we can choose;

Ev = 2||fv||∞val(W )

Let a family W = {fv : v ∈ V } be of moderate decrease and oscilla-
tory, and limx→0fv(x) = Mv, with Mv ∈ R, then, similarly;

we have that, there exists constants Ev ∈ R>0, such that;

|G(f)(k)| ≤ Ev
|k|

for sufficiently large |k|, independent of v. Moreover, we can choose

Ev = (4||fv ||∞+Dv)
δv

where Dv and δv are given in Definition 0.20.

The first claim is the same, replacing moderate decrease with mod-
erate decrease nv. The second claim is the same, replacing moderate
decrease with moderate decrease nv, with the modification that we can

choose Ev = 2nv ||fv ||∞
δv

+ 2Dv
nvδv

.

Proof. As each fv is of moderate decrease and limx→0fv(x) = Mv, we
have that each fv ∈ L1(R>0) and lim|x|→∞fv(x) = 0.

As each fv is of moderate decrease, for any ε > 0, we can find
Nε,v ∈ N such that;
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|G(fv)(k)−
∫ Nε,v
0

fv(y)e−ikydy| < ε (∗)

As each fv|0,Nε,v is continuous and non-oscillatory, by the proof of
Lemma 0.9 in [7], quantifying over the nonstandard parameter space
∗V , linking the parameters with Nε,v, and using underflow again, we
can find {Dε, Eε,v} ⊂ R>0, such that, for all |k| > Dε, we have that;

|
∫ Nε,v
0

fv(y)e−ikydy| < Eε,v
|k| , (∗∗)

It is easy to see from the proof, that {Dε, Eε,v} can be chosen uni-
formly in ε, as the number of monotone intervals in the interval (0, Nε,v)
is always bounded by val(W ). Splitting the calculation into real and
imaginary components, it is again straightfoward to see that it is pos-
sible to choose Eε,v with Eε,v = 2||fv||∞val(W ). Again, note that the
infinitesimal correction existing after the use of underflow, drops out
after taking the standard part, for each fv. Then, from (∗), (∗∗), and
the triangle inequality, we obtain that, for |k| > Dε;

|G(fv)(k)|

≤ |G(fv)(k)−
∫ Nε,v
0

fv(y)e−ikydy|+ |
∫ Nε,v
0

fv(y)e−ikydy|

< ε+
Eε,v
|k|

so that, as {Dε, Eε,v} were uniform and ε was arbitrary, we obtain
that;

|G(fv)(k)| < Ev
|k| , for sufficiently large |k|, independently of v.

For the second claim, after choosing N ∈ N , we have that each
fv|(0,N) is non-oscillatory, and, moreover, there are at most N

δv
mono-

tone intervals. As in (∗∗), and inspection of the proof in [7], we get;

|
∫ N
0
fve
−ikydy| < EN

|k|

for sufficiently large |k|, independent of v, where EN = 2NCv
δv

and

Cv = maxx∈R>0|fv|.
Choosing N > 1, as each fv is of moderate decrease, we can assume

that |fv| ≤ Dv
x2

, for x > N . Then, using the proof in [7] again, and the
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definition of oscillatory, we have that, for sufficiently large |k|, inde-
pendent of v;

|
∫∞
N
fve
−ikydy| < ( 2

|k|
∑

yi,v>N
Dv
y2i,v

)

≤ ( 2
|k|

∑
n∈Z≥0

Dv
(yi0,v+nδv)

2 )

≤ 2Dv
δv |k|

∫∞
yi0 ,v

dx
x2

= 2Dv
δv |k|yi0,v

≤ 2Dv
δv |k|N

where yi0,v ≥ N and yi0,v ≤ yi,v , for all yi,v ≥ N . It follows that;

|G(fv)(k)| = |
∫ N
0
fve
−ikydy +

∫∞
N
fve
−ikydy|

≤ |
∫ N
0
fve
−ikydy|+ |

∫∞
N
fve
−ikydy|

≤ EN
|k| + 2Dv

δv |k|N

≤ 2
|k|(

NCv
δv

+ Dv
δvN

)

It follows, using (†), that;

|G(fv)(k) ≤ EN
|k|

where EN = 2(NCv
δv

+ Dv
Nδv

)

In particular, choosing N = 2, we can take;

E = E2 = 2(2Cv
δv

+ Dv
2δv

) = (4Cv+Dv)
δv

= (4||fv ||∞+Dv)
δv

For the final claim, the modification for the first part is the same. In
the second part, choose N ≥ nv, rather than N > 1 in the proof, then,
taking N = nv, we obtain E = Env = 2(nvCv

δv
+ Dv

nvδv
)

�

Lemma 0.16. Let a family W = {fv : v ∈ V } be of moderate de-
crease such that the family W ′ = { df

dxv
: v ∈ V } is of moderate decrease

and non-oscillatory, with limx→0fv(x) = 0, limx→0
dfv
dx

(x) = Mv, with
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Mv ∈ R, for v ∈ V , then we have that, there exists constants Ev ∈ R>0,
such that;

|G(fv)(k)| ≤ Ev
|k|2

for sufficiently large k, independent of v. Moreover, we can choose
Ev = 2||dfv

dx
||∞val(W ′)

Let the families W = {fv : v ∈ V } and W ′ = { df
dxv

: v ∈ V } be of
moderate decrease with W ′ oscillatory as well, with limx→0fv(x) = 0,
limx→0

dfv
dx

(x) = Mv, with Mv ∈ R, then, similarly, we have that, there
exists constants Ev ∈ R>0, such that;

|G(fv)(k)| ≤ Ev
|k|2

for sufficiently large k, independent of v. Moreover, we can choose;

Ev =
(4|| dfv

dx
||∞+Dv)

δv

where Dv and δv are given in Definition 0.20.

The first claim is the same, replacing moderate decrease with mod-
erate decrease nv. The second claim is the same, replacing moderate
decrease with moderate decrease nv, with the modification that we can

choose Ev =
2nv ||

dfv
dx
||∞

δv
+ 2Dv

nvδv
.

Proof. As each fv is of moderate decrease and limx→0fv(x) = 0, we
have that each fv ∈ L1(R>0) and lim|x|→∞fv(x) = 0. Similarly, each
dfv
dx
∈ L1(R>0) and each dfv

dx
is continuous. We have, using integration

by parts, that;

G(dfv
dx

)(k) =
∫∞
0

dfv
dx

(y)e−ikydy

= [fv(y)e−iky]∞0 + ik
∫∞
0
fv(y)e−ikydy

= ik
∫∞
0
fv(y)e−ikydy

= ikG(fv)(k)

so that, for |k| > 1;
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|G(fv)(k)| ≤ |G( dfv
dx

)(k)|
|k| , (†)

As dfv
dx

is of moderate decrease, for any ε > 0, we can find Nε,v ∈ N
such that;

|G(dfv
dx

)(k)−
∫ Nε,v
0

dfv
dx

(y)e−ikydy| < ε (∗)

As dfv
dx
|0,Nε,v is continuous and non-oscillatory, by the proof of Lemma

0.9 in [7], using underflow and quantifying over the nonstandard param-
eter space again, linked to the parameters Nε,v, we can find {Dε, Eε,v} ⊂
R>0, such that, for all |k| > Dε, we have that;

|
∫ Nε,v
0

dfv
dx

(y)e−ikydy| < Eε,v
|k| , (∗∗)

Again, as in the proof of Lemma 0.15, {Dε, Eε,v} can be chosen uni-
formly in ε. Then, from (∗), (∗∗), and the triangle inequality, we obtain
that, for |k| > Dε;

|G(dfv
dx

)(k)|

≤ |G(dfv
dx

)(k)−
∫ Nε,v
0

dfv
dx

(y)e−ikydy|+ |
∫ Nε,v
0

dfv
dx

(y)e−ikydy|

< ε+
Eε,v
|k|

so that, as {Dε, Eε,v} were uniform and ε was arbitrary, we obtain
that;

|G(dfv
dx

)(k)| < Ev
|k| , for |k| > D, independent of v

and, from (†), for |k| > D, that;

|G(fv)(k)| ≤ |G( dfv
dx

)(k)|
|k| < Ev

|k|2

where the choice of Ev is the same as in the proof of Lemma 0.15.
For the second claim, the proof up to (†) is the same. After choosing
N ∈ N , we have that each dfv

dx
|(0,N) is non-oscillatory, and, moreover,

there are at most N
δv

monotone intervals. As in (∗∗), and inspection of

the proof in [7], we get;

|
∫ N
0

dfv
dx
e−ikydy| < EN

|k|
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where EN ≤ 2NCv
δv

and Cv = maxx∈R>0|dfvdx |.
Choosing N > 1, as dfv

dx
is of moderate decrease, we can assume that

|dfv
dx
| ≤ Dv

x2
, for x > N . Then, using the proof in [7] again, and the defi-

nition of oscillatory, we have that, for sufficiently large |k|, independent
of v;

|
∫∞
N

dfv
dx
e−ikydy| < ( 2

|k|
∑

yi,v>N
Dv
y2i,v

)

≤ ( 2
|k|

∑
n∈Z≥0

Dv
(yi0,v+nδv)

2 )

≤ 2Dv
δv |k|

∫∞
yi0 ,v

dx
x2

= 2Dv
δv |k|yi0 ,v

≤ 2Dv
δv |k|N

where yi0,v ≥ N and yi0,v ≤ yi,v, for all yi,v ≥ N . It follows that;

|G(dfv
dx

)(k)| = |
∫ N
0

df
dx
e−ikydy +

∫∞
N

dfv
dx
e−ikydy|

≤ |
∫ N
0

dfv
dx
e−ikydy|+ |

∫∞
N

dfv
dx
e−ikydy|

≤ EN
|k| + 2Dv

δv |k|N

≤ 2
|k|(

NCv
δv

+ Dv
δvN

)

It follows, using (†), that;

|G(fv)(k)| ≤ |G( dfv
dx

)(k)|
|k| < Ev

|k|2

where Ev = 2(NCv
δv

+ Dv
δvN

)

As in Lemma 0.15, we can choose Ev as in the final claim of the two
parts.

For the final claim, the modification for the first part is the same. In
the second part, choose N ≥ nv, rather than N > 1 in the proof, then,
taking N = nv, we obtain Ev = 2(nvCv

δv
+ Dv

nvδv
)

�
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Lemma 0.17. For fixed l ∈ R3, t ∈ R>0, we have that the polar rep-
resentation of ei(k−l)ct, k ∈ R3, k = |k|, l = |l|, is given by;

e−ilcteirct

for r ∈ R>0, 0 ≤ θ < π, −π ≤ φ ≤ π

Moreover, the real and imaginary parts of e−ilcteirct are oscillatory,
with spacings;

δreal,l = δreal,l = π
ct

If f is non-oscillatory, analytic, of moderate decrease, with limr→∞ln(f)′′(r) =
0, then fRe(e−ilcteirct) and fIm(e−ilcteirct) are oscillatory, with a fixed
lower bound δ on the spacing, independent of l.

Proof. The first claim is clear. We have that;

Re(e−ilcteirct) = cos((r − l)ct)

Im(e−ilcteirct) = sin((r − l)ct)

We have that the maxima of cos((r−l)ct) occur when sin((r−l)ct) =
0 and −cos((r−l)ct) < 0, so when r = l+ π

2ct
+ 2nπ

ct
, for n ∈ Z. The min-

ima of cos((r−l)ct) occur when sin((r−l)ct) = 0 and cos((r−l)ct) < 0,

so when r = l + π
2ct

+ (2n+1)π
ct

, for n ∈ Z. It follows that cos((r − l)ct)
is monotone in the intervals [l + π

2ct
+ 2nπ

ct
, l + π

2ct
+ (2n+1)π

ct
], for n ∈ Z,

and the spacing is given by;

(l + π
2ct

+ (2n+1)π
ct

)− (l + π
2ct

+ 2nπ
ct

) = π
ct

A similar calculation follows for sin((r − l)ct). For the final claim,
we have that;

(fcos((r − l)ct))′ = 0

iff f ′cos((r − l)ct)− fsin((r − l)ct) = 0

iff f ′

f
= tan((r − l)ct) (†)
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Let G(r, (l)) = f ′

f
− tan((r − l)ct), then, we have that, for l 6= 0, the

differential;

dG = (∂G
∂r
, ∂G
∂λ1
, ∂G
∂λ2
, ∂G
∂λ3

)

= (ln(f)′′ − ctsec2((r − 1)ct), λ1ct
λ
sec2((r − 1)ct), λ2ct

λ
sec2((r − 1)ct)

, λ3ct
λ
sec2((r − 1)ct)) 6= 0 (C)

We have that;

|∂tan((r−l)ct)
∂r

| = |ctsec2((r − l)ct)| ≥ ct

With the assumption that limr→∞ln(f)′′(r) = 0, we have that that

there exists L ∈ R>0, such that |f ′
f

′
||(L,∞) < ct. It follows that the

spacing between solutions to (†) in (L,∞) is at least π
2ct

. We have

that, for l 6= 0, (f ′cos((r − l)ct) − fsin((r − l)ct))|(0,L) is analytic, so,

for fixed l 6= 0, there exist finitely many solutions to (†) in (0, L]. Let;

δL = inf(δl,L : l 6= 0)

where δl is the spacing between solutions to (†) on (0, L], for fixed
l. Then, if δL = 0, we would have obtain a branch point in the zero
set of G(r, (l)), contradicting (C). It follows that δL > 0. Let δ =
min(δL,

π
2ct

), then as fcos((r − l)ct)|yi,yi+1
is monotone, for i ∈ Z,

where yi is a solution to (†), we have that fcos((r− l)ct) is oscillatory
with a lower bound on the spacing given by δ > 0, independent of l. A
similar calculation hods for fsin(r − l)ct.

�

Lemma 0.18. For fixed l ∈ R3, t ∈ R>0, we have that the polar rep-
resentation of ei(k−l)ct, k ∈ R3, k = |k|, l = |l|, is given by;

eirctν(r,θ,φ,l), r ∈ R>0, 0 ≤ θ < π, −π ≤ φ ≤ π

where;

limr→∞ν(r, θ, φ, l) = 1
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uniformly in {θ, φ}. Moreover, for θ 6= cos−1( l3
l
), φ 6= tan−1( l2

l1
), the

real and imaginary parts of eirctν(r,θ,φ,l) are oscillatory.

If f is non-oscillatory, analytic, of moderate decrease, with limx→∞ln(f)′′(x) =
0 then fcos(rctν(r, θ, φ, l)) and fsin(rctν(r, θ, φ, l)) are oscillatory, for
θ 6= cos−1( l3

l
), φ 6= tan−1( l2

l1
).

Proof. Making the substitution, k1 = rsin(θ)cos(φ), k2 = rsin(θ)sin(φ),
k3 = rcos(θ), we obtain;

ei(k−l)ct = ei[(rsin(θ)cos(φ)−l1)
2+(rsin(θ)sin(φ)−l2)2+(rcos(θ)−l3)2]

1
2 ct

= ei(r
2−(2l1sin(θ)cos(φ)+2l2sin(θ)sin(φ)+2l3cos(θ))+l2)

1
2 ct

= eirctν(r,θ,φ,l)

where;

ν(r, θ, φ, l) = (1− 1
r
(2l1sin(θ)cos(φ) + 2l2sin(θ)sin(φ) + 2l3cos(θ)) +

l2

r2
)
1
2

It is clear, as |2l1sin(θ)cos(φ)+2l2sin(θ)sin(φ)+2l3cos(θ)| ≤ 2(|l1|+
|l2| + |l3|), that limr→∞ν(r, θ, φ, l) = 1, uniformly in {θ, φ}. For the
next claim, we show that cos(rctν(r, θ, φ, l)) is oscillatory, leaving the
other case to the reader. We have that;

∂cos(rctν(r,θ,φ,l))
∂r

= 0

iff −sin(rctν(r, θ, φ, l))(ctν(r, θ, φ, l) + rct∂ν(r,θ,φ,l)
∂r

) = 0

iff sin(rctν(r, θ, φ, l)) = 0 or ctν(r, θ, φ, l) + rct∂ν(r,θ,φ,l)
∂r

= 0

iff rctν(r, θ, φ, l) = π
2

+ nπ, (n ∈ Z)

or ctν(r, θ, φ, l) + rct
2ν(r,θ,φ,l)

( 1
r2
γ(θ, φ, l)− 2l2

r3
) = 0

where;

γ(θ, φ, l) = 2l1sin(θ)cos(φ) + 2l2sin(θ)sin(φ) + 2l3cos(θ)
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We have;

limr→∞[ctν(r, θ, φ, l) + rct
2ν(r,θ,φ,l)

( 1
r2
γ(θ, φ, l)− 2l2

r3
)] = ct 6= 0

so that, by continuity, the zeros of;

ctν(r, θ, φ, l) + rct
2ν(r,θ,φ,l)

( 1
r2
γ(θ, φ, l)− 2l2

r3
)

are located in a compact interval [0, K], for some K ∈ R>0. With
the assumption on {θ, φ}, we have that;

ctν(r, θ, φ, l) + rct
2ν(r,θ,φ,l)

( 1
r2
γ(θ, φ, l)− 2l2

r3
)

is analytic, so it can only have a finite number of zeros located in
the interval [0, K], (∗). We have that limr→∞rctν(r, θ, φ, l) = ∞ and
limr→0rctν(r, θ, φ, l) = ctl, so, by the intermediate value theorem, we
can find an infinite number of solutions to rctν(r, θ, φ, l) = π

2
+ nπ,

n ∈ Z, located in R>0. As;

limr→∞[ctν(r, θ, φ, l) + rct
2ν(r,θ,φ,l)

( 1
r2
γ(θ, φ, l)− 2l2

r3
)] = ct

and;

limr→0[ctν(r, θ, φ, l) + rct
2ν(r,θ,φ,l)

( 1
r2
γ(θ, φ, l)− 2l2

r3
)]

= limr→0
∂rctν(r,θ,φ,l)

∂r

= limr→0
∂ct|k(r,θ,φ)−l|

∂r

is finite, we have that ∂rctν(r,θ,φ,l)
∂r

is bounded by M ∈ R>0 on R>0.

Using the mean value theorem, if rn is a solution to rctν(r, θ, φ, l) =
π
2

+ nπ, and rm is a solution to rctν(r, θ, φ, l) = π
2

+mπ, then

|rn − rm| ≥
|(π

2
+nπ)−(π

2
+nπ)|

M

= |(n−m)|π
M

≥ π
M

, (n 6= m)

By the observation (∗), and the fact that;
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[ctν(r, θ, φ, l) + rct
2ν(r,θ,φ,l)

( 1
r2
γ(θ, φ, l)− 2l2

r3
)]

is monotone on (K,∞), there can be at most a finite number {ni1 , . . . , nip}
for which there exist multiple solutions rn,nij ∈ R>0 to rctν(r, θ, φ, l) =
π
2

+ niπ. Let Z denote the {ri : i ∈ N} for which there exists

a solution to rctν(r, θ, φ, l) = π
2

+ nπ, n ∈ Z, and Z0 the finite

set consisting of solutions to rctν(r, θ, φ, l) = π
2

+ nijπ, 1 ≤ j ≤
p and the zeros on [0, K], corresponding to (∗). Ordering Z ∪ Z0

as a set {ri : i ∈ N}, it is clear that cos(rctν(r, θ, φ, l))|(ri,ri+1) is
monotone. Choosing δ = min( π

M
, d(Z \ Z0, Z0), Sep(Z0)) > 0, where

Sep(Z0) = min(d(r, r′) : {r, r′} ⊂ Z0, r 6= r′), we obtain the result that
cos(rctν(r, θ, φ, l)) is oscillatory.

For the final claim, we can, without loss of generality, assume that
there exists L ∈ R>0 for which f |(L,∞) is monotone decreasing and
f |(L,∞) > 0. Then, by the product rule, we have that;

(fcos(rctν(r, θ, φ, l)))′ = 0

iff f ′cos(rctν(r, θ, φ, l)))− fsin(rctν(r, θ, φ, l))(rctν(r, θ, φ, l))′ = 0

iff f ′

f
= tan(rctν(r, θ, φ, l))(rctν(r, θ, φ, l))′ (†)

We have that limr→∞(rctν(r, θ, φ, l))′ = ct, in particularly, we can
assume that (rctν(r, θ, φ, l))′ > 0 in (L,∞), so that rctν(r, θ, φ, l) is

increasing in (L,∞). By the hypotheses, f ′

f
|(L,∞) < 0, so that for a so-

lution r1 to (†) in (L,∞), we must have that tan(r1ctν(r1, θ, φ, l)) < 0,
(∗ ∗ ∗ ∗ ∗). Moreover, by the assumption;

limx→∞ln(f)′′(x) = limx→∞(f
′

f
)′(x) = 0 (∗ ∗ ∗)

As tan′(x) ≥ 1, for x ∈ R, and limr→∞(rctν(r, θ, φ, l))′ = ct, by

the chain rule, we can assume that |∂(tan(rctν(r,θ,φ,l)))
∂r

| ≥ ct
2

, in (L,∞),
(∗ ∗ ∗∗). Combining, (∗ ∗ ∗), (∗ ∗ ∗∗), (∗ ∗ ∗ ∗ ∗), it follows that for
{r1, r2} solving (†) in (L,∞), the separation |r2 − r1| ≥ π

2
. By the

assumptions, we have that fcos(rctν(r, θ, φ, l)) is analytic on [0, L+1),
so that (fcos(rctν(r, θ, φ, l)))′ is analytic on [0, L+ 1). It follows there
can only be finitely many solutions to (†) in (0, L), and, therefore,
similarly to the above, fcos(rctν(r, θ, φ, l)) is oscillatory. The argument
for fsin(rctν(r, θ, φ, l)) is similar and left to the reader.
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�

Lemma 0.19. With notation as in Lemmas 0.18 and 0.7, if;

α(k, l, t) = α(R, θ, φ, l, t) = iP1,1

2π2 [(b11,l(R, θ, φ)+
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|)×

(d
′
11(l) + d

′
12(l)
l

)] � ul(R, θ, φ, l)]µ(R, θ, φ, l, t)sin(θ)

and;

β(k, l, t) = β(R, θ, φ, l, t) = −iQ0,0

2π2 [(b11,l(R, θ, φ)+
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|)×

(d
′
11(l) + d

′
12(l)
l

)] � ul(R, θ, φ, l)]µ(R, θ, φ, l, t)sin(θ)

then;

α(R, θ, φ, l, t) = α1(R, θ, φ, l, t)µ(R, θ, φ, l, t) = e−ilctα1(R, θ, φ, l, t)e
iRctν(R,θ,φ,l)

β(R, θ, φ, l, t) = β1(R, θ, φ, l, t)µ(R, θ, φ, l, t) = e−ilctβ1(R, θ, φ, l, t)e
iRctν(R,θ,φ,l)

For fixed l 6= 0 and θ 6= cos−1( l3
l
), φ 6= tan−1( l2

l1
), if the real and

imaginary components of e−ilctα1(R, θ, φ, l, t) satisfy the conditions of
Lemma 0.18, then the real and imaginary components of α are oscilla-
tory. Similarly, if the real and imaginary components of;

{e−ilctβ1(R, θ, φ, l, t), e−ilctR∂β1(R,θ,φ,l,t)
∂R

, icte−ilctRβ1(R, θ, φ, l, t)(ν(R, θ, φ, l)+

R∂ν(R,θ,φ,l)
∂R

)}

satisfy the conditions of Lemma 0.18, then the real and imaginary

components of ∂Rβ(R,θ,φ,l,t)
∂R

are oscillatory.

Proof. We have that;

Re(α) = Re(e−ilctα1e
iRctν) = Re(e−ilctα1cos(Rctν))+Re(ie−ilctα1sin(Rctν))

= Re(e−ilctα1)cos(Rctν) + Im(e−ilctα1)sin(Rctν)

Im(α) = Im(e−ilctα1e
iRctν) = Im(e−ilctα1cos(Rctν))+Im(ie−ilctα1sin(Rctν))

= Im(e−ilctα1)cos(Rctν) +Re(e−ilctα1)sin(Rctν)
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so the first claim, follows from Lemma 0.18.

We also have that;

Re(∂(Rβ)
∂R

) = Re(∂(Re
−ilctβ1eiRctν)

∂R
) = Re(e−ilctβ1e

iRctν)+Re(R∂(e−ilctβ1eiRctν)
∂R

)

= Re(e−ilctβ1e
iRctν)+Re(e−ilctR∂β1

R
eiRctν)+Re(icte−ilctRβ1(ν+R ∂ν

∂R
)eiRctν)

Im(∂(Rβ)
∂R

) = Im(∂(Re
−ilctβ1eiRctν)

∂R
) = Re(e−ilctβ1e

iRctν)+Re(R∂(e−ilctβ1eiRctν)
∂R

)

= Im(e−ilctβ1e
iRctν)+Re(e−ilctR∂β1

R
eiRctν)+Re(icte−ilctRβ1(ν+R ∂ν

∂R
)eiRctν)

and the second claim follows, using the previous calculation and
Lemma 0.18.

�

Definition 0.20. We say that f ∈ C(R \ {0}) is of moderate decrease
if there exists a constant D ∈ R>0 with |f(x)| ≤ D

|x|2 for |x| > 1.

We say that f ∈ C(R \ {0}) is of very moderate decrease if there ex-
ists a constant D ∈ R>0 with |f(x)| ≤ D

|x| for |x| > 1.We say that

f ∈ C(R \ {0}) is non-oscillatory if there are finitely many points
{yi : 1 ≤ i ≤ n} ⊂ R for which f |(yi,yi+1) is monotone, 1 ≤ i ≤ n − 1,
and f |(−∞,y1) and f |(yn,∞) is monotone. We say that f ∈ C(R \ {0})
is symmetrically asymptotic if f and df

dx
are of moderate decrease, df

dx
is

non-oscillatory, {f, df
dx
} ⊂ L1((−ε, ε)), and for ε > 0;

limy→0−f(y) = limy→0+f(y) = M

and

limy→0−
df
dx

(y) = −limy→0+
df
dx

(y) = L (∗)

where L ∈ {+∞,−∞}, M ∈ R. We say that f ∈ C(R \ {0}) is light
symmetrically asymptotic if f and df

dx
are of very moderate decrease, f

and df
dx

are non-oscillatory, {f, df
dx
} ⊂ L1((−ε, ε)), and for ε > 0, the

condition (∗) holds.

Lemma 0.21. Let f be symmetrically asymptotic, then we have that,
for any δ > 0, there exist constants {Cδ, Dδ} ⊂ R>0, such that;

|F(f)(k)| ≤ δ
|k| + Cδ

|k|2 , for |k| > Dδ
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Proof. As f is symmetrically asymptotic, we have that limx→0−f(x) =
limx→0+f(x) = M , where M ∈ R. In either case, we can apply inte-
gration by parts, to obtain (†) in Lemma 0.11. The step (∗) follows
from the fact that df

dx
is of moderate decrease. As df

dx
is non-oscillatory,

we can find x0 < 0 < x1, with df
dx
|x0,0 and df

dx
|0,x0 monotone. In par-

ticular, for any δ > 0, we can find x0 < y0 < 0 < y1 < x1 such
that

∫
(y0,y1)

| df
dx

(y)|dy < δ((2π)
1
2 ) and df

dx
(y0) = L1,0,

df
dx

(y1 = L2,0, with

{L1,0, L2,0} ⊂ R. Then;

| 1

(2π)
1
2

∫ Nε
−Nε

df
dx

(y)e−ikydy − 1

(2π)
1
2

∫
(−Nε,y0)∪(y1,Nε)

df
dx

(y)e−ikydy|

≤ 1

(2π)
1
2

∫
(y0,y1)

| df
dx

(y)|dy

< δ

Again, by the proof of Lemma 0.9 in [7], using underflow, we can
find {Dε,y0,y1 , Eε,y0,y1} ⊂ R>0, such that, for all |k| > Dε,y0,y1 , we have
that;

| 1

(2π)
1
2

∫
(−Nε,y0)∪(y1,Nε)

df
dx

(y)e−ikydy| < Eε,y0,y1
|k| , (∗∗)

It is easy to see from the proof, that {Dε,y0,y1 , Eε,y0,y1} can be chosen
uniformly in ε, so that using the triangle inequality again, we obtain;

|F( df
dx

)(k)| ≤ ε+ δ +
Eε,y0,y1
|k|

for |k| > Dε,y0,y1

As ε was arbitrary, and Eε,y0,y1 is uniform in ε, we obtain that;

|F( df
dx

)(k)| ≤ δ +
Ey0,y1
|k|

for |k| > Dy0,y1 .

so that, using (†) again;

|F(f)(k)| ≤ δ
|k| +

Ey0,y1
|k|2 , (†)

= δ
|k| + Cδ

|k|2
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for |k| > Dδ, where Cδ = Ey0,y1 and Dδ = Dy0,y1 .

�

Lemma 0.22. There exists a unique fundamental solution (E, 0), with
E decaying in the sense of [8], for given (ρ, J), not vacuum. Without

any decay condition, the difference E−E ′ of two such solutions {E,E ′},
is either 0 or static and unbounded with 5 � E = 0 and 5 × E = 0,
(∗), with the possibility (∗) being satisfiable. If (E0, B0) is a solution to
Maxwell’s equation in vacuum, then we cannot have that E + E0 = 0.

Proof. Suppose there exist two fundamental solutions (E, 0) and (E
′
, 0),

then (0, 0, E − E ′, 0) is a solution to Maxwell’s equations in vacuum.
It follows from Maxwell’s fourth equation, that;

∂(E−E′)
∂t

= 0

and, from the relations in Lemma 4.1 of [9], that;

�2(E − E ′) = 52(E − E ′) = 0

By the decaying condition and properties of harmonic functions, we

have that E − E ′ = 0, so that E = E
′
. Without the decay condition,

we must have that E − E
′

is unbounded or E − E
′

= 0, and from
Maxwell’s first and second equations, we must have that 5 �E = 0 and
5 × E = 0 as well. The satisfiable claim follows from the fact that
we can construct a solution (0, 0, E0, 0) to Maxwell’s equations in free
space, by the requirements that;

(i). 5 � E0 = 0

(ii). ∂E0

∂t
= 0

(iii). 5× E0 = 0

It is possible to satisfy the requirements (i), (iii), for a function
f : R3 → R, so that we can define E0(x, t) = f(x) to satisfy the
conditions (i), (ii), (iii). For the last claim, suppose that E + E0 = 0,
then E = −E0 and we have that, by Maxwell’s equations, and (E0, B0)
a vacuum solution;
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5 � E = −5 �E0 = ρ
ε0

= 0

so that ρ = 0. Using the fact that 5(ρ) + 1
c2
∂J
∂t

= 0 and �2J = 0,

we have that ∂J
∂t

= 0 and 52J = 0, so that, as J ∈ S(R3), we must

have that J = 0 and (ρ, J) is a vacuum solution, contradicting the
hypotheses. �
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