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TRISTRAM DE PIRO

Abstract.

We begin with the reaction rate formula, given in [5];

ξ′(0) =
α1Q(T,P )(grad(Q)(T,P )�γ′12(0))

grad(Q)(T,P )�γ′12(0)−cQ(T,P )
(∗)

where;

α1 = βc+1∏c
i=1 ni

, β =
∑c

i=1 ni

c is the number of substances, ni, for 1 ≤ i ≤ c are the mo-
lar amounts, Q is the equilibrium coefficient and γ is the reaction
path, with γ12(0) = (T, P ). As we do in the paper [5], we can write
γ′12(0) = λ(cos(θ), sin(θ)), and we noted that ξ′(0) is monotonic in λ,
so we can assume that λ is large. Then;

ξ′(0) = α1λQ(T,P )(grad(Q)(T,P )�(cos(θ),sin(θ)))
λgrad(Q)(T,P )�(cos(θ),sinθ)−cQ(T,P )

= α1Q(T,P )(grad(Q)(T,P )�(cos(θ),sin(θ)))

grad(Q)(T,P )�(cos(θ),sinθ)− cQ(T,P )
λ

' α1Q(T,P )(grad(Q)(T,P )�(cos(θ),sin(θ)))
grad(Q)(T,P )�(cos(θ),sinθ)

= α1Q(T, P ) (∗∗)

We can expand (∗∗) as;

ξ′(0) = Q(T, P )
(
∑c
i=1 ni)

c+1∏c
i=1 ni

= Q(T,P )∏c
i=1 ni

(
∑

i1+...ij+...ic=c+1C
c+1
i1

Cc+1−i1
i2

. . . C
c+1−i1−...ij
ij+1

. . . C
c+1−i1−...−ic−1

ic

∏c
j=1 n

ij
j )

= Q(T,P )∏c
i=1 ni

(
∑

i1+...ij+...ic=c+1
(c+1)!

i1!...ij !...ic!

∏c
j=1 n

ij
j )

= Q(T, P )(
∑

i1+...ij+...ic=c+1
(c+1)!

i1!...ij !...ic!

∏c
j=1 n

ij−1
j )

1
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= Q(T, P )(
∑

µ1+...µj+...µc=1,µj≥−1
(c+1)!

(µ1+1)!...(µj+1)!...(µc+1)!

∏c
j=1 n

µj
j )

=
∑

µ1+...µj+...µc=1,µj≥−1 kµ1,...,µj ,...µc(T, P )
∏c

j=1 n
µj
j (∗ ∗ ∗)

.
where Q(T, P ) is the equilibrium constant and;

kµ1,...,µj ,...µc(T, P ) = (c+1)!Q(T,P )
(µ1+1)!...(µj+1)!...(µc+1)!

For ideal and dilute solutions, we obtained in [5], the explicit formula
for Q(T, P );

Q(T, P ) = e
εln( P

P◦ )−ε(T,P )

RT

where ε is a constant and ε(T, P ) is an error term. If we denote the
molar activation energy by Ea = ε(T, P )− εln( P

P ◦
), so that;

Q(T, P ) = e
−Ea
RT

Then (∗ ∗ ∗) includes the Arrhenius relation in the rate constant
and provides a general rate law. We want to recover a version of
this formula using collision theory, based on probability, rather than
thermodynamics. We consider an elementary reaction involving two
substances, which we model as ideal gases, by allowing the motion of
molecules to be random. We use the work in [6] as a basis for the
definitions. We start with a 1-dimensional model, generalising to 3-
dimensions later.

Definition 0.1. Let η ∈ ∗N \N , be infinite and odd, and let ν = η2

2
,

ν ∈ ∗Q≥0 \ Q. We let;

Ωη = {x ∈ ∗R : 0 ≤ x < 1}

with the nonstandard measure µη, defined by µη([
i
η
, i+1
η

)) = 1
η
, for

0 ≤ i ≤ η − 1. We let L(µη) be the corresponding Loeb measure.

Let Ωηeven = { i
η

: 0 ≤ i ≤ η − 1, i even}

with the corresponding counting measure µη, defined by µη(
i
η
) = 1

η
,

for 0 ≤ i ≤ η − 1, i even, nd Loeb measure L(µη).
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Ωηodd = { i
η

: 0 ≤ i ≤ η − 1, i odd}

with the corresponding counting measure µη, defined by µη(
i
η
) = 1

η
,

for 0 ≤ i ≤ η − 1, i odd, and Loeb measure L(µη). We let;

Tν = {t ∈ ∗R≥0}

with counting measure µν and corresponding Loeb measure L(µν).

Ωκ = {(si) : 1 ≤ i ≤ κ, si = 1 or − 1}

so that ∗Card(Ωκ) = 2κ, with corresponding counting measure µκ,
µκ(s) = 1

2κ
, and Loeb measure L(µκ), We let;

ωi : Ωκ → {1,−1}, for 1 ≤ i ≤ κ, be defined by;

ωi(s) = si

We let;

Tν,κ = {t ∈ Tν : 0 ≤ [νt] ≤ κ}

We let χ : Ωκ × Tν,κ → Ωη, be defined by;

χ(s, t) = 1
η
(∗
∑[νt]

j=1 ωj(s)) mod[0, 1), 1 ≤ [νt] ≤ κ

χ(s, 0) = 0

with corresponding ◦χ(s, t) = ( 1
η
(∗
∑[νt]

j=1 ωj(s)) mod[0, 1])◦

We let χeven : Ωηeven × Ωκ × Tν,κ → Ωη be defined by;

χeven(x, s, t) = x+ 2χ(s, t) mod[0, 1)

with corresponding ◦χeven = (x+ 2χ(s, t) mod[0, 1))◦

We let χodd : Ωηodd × Ωκ × Tν,κ → Ωη be defined by;

χodd(x, s, t) = x+ 2χ(s, t) mod[0, 1)
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with corresponding ◦χeven = (x+ 2χ(s, t) mod[0, 1))◦

We define the hitting pairing time T : Ωηeven×Ωκ×Ωηodd×Ωκ → Tν,κ
by;

T (x, s1, y, s2) = µ◦t(◦χeven(x, s1, t) = ◦χodd(y, s2, t)), (1)

We extend the measure µκ to Ω
2

κ, by letting µκ(s1, s2) = 1
22κ

. We
denote by L(µκ) again the corresponding Loeb measure.

We let χext,1 : Ω
2

κ × Tν,κ → Ωη, be defined by;

χext,1(s1, s2, t) = 1
η
(∗
∑[νt]

j=1 ωj(s1)), 1 ≤ [νt] ≤ κ

χext,1(s1, s2, 0) = 0

We let χext,2 : Ω
2

κ × Tν,κ → Ωη, be defined by;

χext,2(s1, s2, t) = 1
η
(∗
∑[νt]

j=1 ωj(s2)), 1 ≤ [νt] ≤ κ

χext,2(s1, s2, 0) = 0

with corresponding ◦χext,1 and ◦χext,2.

Lemma 0.2. For {t1, t2} ⊂ ∗Tν,κ, the random variables χext,1,t1 and
χext,2,t2 are ∗-independent, and the random variables ◦χext,1,t1 and ◦χext,2,t2
are independent. The processes ◦χext,1,t and ◦χext,2,t are rescaled Brow-
nian motion by a factor of 1√

2
. The process Bt = ◦χext,1,t − ◦χext,2,t is

Brownian motion.

Proof. Choose λ1, λ2 ⊂ ∗R, then;

µκ({(s1, s2) : χext,1,t1(s1, s2) ≤ λ1, χext,2,t2(s1, s2) ≤ λ2})

1 The set ◦χeven(x, s1, t) = ◦χodd(y, s2, t) is L(µν) measurable in Tν,κ, as the
intersection of internal sets

⋂
n∈N |χeven(x, s1, t) − χodd(y, s2, t)| < 1

n . Each set in
the intersection has an infimum tn, and we obtain an increasing bounded sequence
{tn : n ∈ N}. The set {◦tn : n ∈ N} is increasing and bounded, so has a limit,
which we denote by µ◦t.
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= µκ({(s1, s2) : χext,1,t1(s1) ≤ λ1, χext,1,t1(s2) ≤ λ2})

= µκ({s1 : χext,1,t1(s1) ≤ λ1})µκ({s2 : χext,1,t1(s2) ≤ λ2})

= µκ({(s1, s2) : χext,1,t1(s1, s2) ≤ λ1})µκ({(s1s2) : χext,1,t1(s2) ≤ λ2})

For the second claim, choose λ1, λ2 ⊂ R, then;

L(µκ)({(s1, s2) : ◦χext,1,t1(s1, s2) ≤ λ1,
◦χext,2,t2(s1, s2) ≤ λ2})

= L(µκ)({(s1, s2) : ◦χext,1,t1(s1) ≤ λ1
◦χext,1,t1(s2) ≤ λ2})

= L(µκ)({s1 : ◦χext,1,t1(s1) ≤ λ1})L(µκ)({s2 : ◦χext,1,t1(s2) ≤ λ2})

= L(µκ)({(s1, s2) : ◦χext,1,t1(s1, s2) ≤ λ1})L(µκ)({(s1s2) : ◦χext,1,t1(s2) ≤

λ2})

The next claim follows from the steps in Chapter 8 of [7], or using
[1], noting that the additional factor is not required in the calculation,

and using the fact that ν = η2

2
. It follows that, for t1 < t2, the in-

crements ◦χext,1,t2 −
◦χext,1,t1 and ◦χext,2,t2 −

◦χext,2,t1 follow the normal

distribution N(0, t2−t1
2

), with variance t2−t1
2

. It also follows that, for
t1 < t2 ≤ t3 < t4, the increments;

◦χext,1,t2 −
◦χext,1,t1 and ◦χext,1,t4 −

◦χext,1,t3 are independent

◦χext,2,t2 −
◦χext,2,t1 and ◦χext,2,t4 −

◦χext,2,t3 are independent, (A)

For the last claim, follow the steps in Theorem 8.8 of [7]. (i) is clear.
For (ii), we have, by the above, that the increments ◦χext,1,t2 −

◦χext,1,t1
and ◦χext,2,t2 −

◦χext,2,t1 are independent. In particular the difference of
the increments (◦χext,1,t2 −

◦χext,1,t1)− (◦χext,2,t2 −
◦χext,2,t1) follows the

normal distribution N(0, t2 − t1), with variance t2 − t1, and so do the
increments Bt2−Bt1 . For (iii), we can combine (A) with the argument
in the second claim. Letting;

A = ◦χext,1,t2 −
◦χext,1,t1 , B = ◦χext,2,t2 −

◦χext,2,t1

C = ◦χext,1,t4 −
◦χext,1,t3 , D = ◦χext,2,t4 −

◦χext,2,t3
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we have that;

P (A−B ≤ x,C −D ≤ y)

=
∫
z1

∫
z2
P (B = z1, D = z2, A ≤ x+ z1, C ≤ y + z2)dz1dz2

=
∫
z1

∫
z2
P (B = z1, D = z2)P (A ≤ x+ z1, C ≤ y + z2)dz1dz2

=
∫
z1

∫
z2
P (B = z1)P (D = z2)P (A ≤ x+ z1)P (C ≤ y + z2)dz1dz2

=
∫
z1
P (B = z1)P (A ≤ x+ z1)dz1

∫
z2
P (D = z2)P (C ≤ y + z2)dz2

=
∫
z1
P (B = z1, A ≤ x+ z1)dz1

∫
z2
P (D = z2, C ≤ y + z2)dz2

= P (A−B ≤ x)P (C −D ≤ y), (2)

so that the increments A−B and C −D are independent.

�

Definition 0.3. For Brownian motion {Bt : t ∈ R≥0}, we let τ be a
stopping time with two barriers 0 < x < 1 and x− 1 < 0, so that;

τ = min{t : Bt = x orBt = x− 1}

We let τ1 be the stopping time for the barrier x;

τ1 = min{t : Bt = x}

τ2 the stopping time for the barrier 1− x;

τ2 = min{t : Bt = 1− x}

τ3 the stopping time for the barrier −1;

τ3 = min{t : Bt = −1}

τ4 the stopping time for the barrier 1;

2For a cumulative density function F (x, y) = P (X ≤ x, Y ≤ y), by P (X =
x, Y ≤ y), we mean ∂F

∂x (x, y)
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τ4 = min{t : Bt = 1}

Lemma 0.4. We have that the probability distribution of τ is given by;

fτ (t) = [− x√
2πt3

exp(−x2

2t
)− 1−x√

2πt3
exp(− (1−x)2

2t
)]
∫∞
v=t

1√
2π(v−t)3

exp( −1
2(v−t))dv

...Use to calculate expected hitting time on probability space Ω
2

η ×Ω
2

κ

and mean free path from velocity distributions, applications to fusion.

Proof. The distributions of τ1, τ2, τ3 and τ4 are well known, see [9];

fτ1(t) = x√
2πt3

exp(−x2

2t
)

fτ2(t) = 1−x√
2πt3

exp(− (1−x)2

2t
)

fτ3(t) = fτ4(t) = 1√
2πt3

exp(− 1
2t

)

We have that, for t1 < t2;

P (τ1 = t1, τ2 = t2) = P (τ2 = t2|τ1 = t1)P (τ1 = t1)

= P (τ3 = t2 − t1)P (τ1 = t1)

= x√
2πt31

exp(− x2

2t1
) 1√

2π(t2−t1)3
exp( −1

2(t2−t1)
)

and for t1 > t2;

P (τ1 = t1, τ2 = t2) = P (τ1 = t1|τ2 = t2)P (τ2 = t2)

= P (τ4 = t1 − t2)P (τ2 = t2)

= 1−x√
2πt32

exp(− (1−x)2

2t2
) 1√

2π(t1−t2)3
exp( −1

2(t1−t2)
)

as the increments Bt1 and Bt−t1 are independent.

It follows that;

P (τ > t) = P (τ1 > t, τ2 > t)

=
∫∞
u=t

∫∞
v=u

x√
2πu3

exp(−x2

2u
) 1√

2π(v−u)3
exp( −1

2(v−u)
)dvdu
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+
∫∞
v=t

∫∞
u=v

1−x√
2πv3

exp(− (1−x)2

2v
) 1√

2π(u−v)3
exp( −1

2(u−v)
)dudv

and, using the FTC;

fτ (t) = − d
dt
P (τ > t)

= −
∫∞
v=t

x√
2πt3

exp(−x2

2t
) 1√

2π(v−t)3
exp( −1

2(v−t))dv

−
∫∞
u=t

1−x√
2πt3

exp(− (1−x)2

2t
) 1√

2π(u−t)3
exp( −1

2(u−t))du

= − x√
2πt3

exp(−x2

2t
)
∫∞
v=t

1√
2π(v−t)3

exp( −1
2(v−t))dv

− 1−x√
2πt3

exp(− (1−x)2

2t
)
∫∞
v=t

1√
2π(v−t)3

exp( −1
2(v−t))dv

= [− x√
2πt3

exp(−x2

2t
)− 1−x√

2πt3
exp(− (1−x)2

2t
)]
∫∞
v=t

1√
2π(v−t)3

exp( −1
2(v−t))dv

�

Lemma 0.5. Let ν > 0 be infinite, {a, b} ⊂ R>0, B : Ωκ×T ν,κ → ∗R
be nonstandard Brownian motion;

B(t, ω) = 1√
ν
∗∑[νt]

i=1 ωi

with stopping times;

τ1 = mint∈T ν,κ{Bt = [a
√
ν]√
ν
}

τ2 = mint∈T ν,κ{Bt = −[b
√
ν]√
ν
}

τ3 = mint∈T ν,κ{Bt = − [b
√
ν]√
ν
− [a

√
ν]√
ν
}

then, if {t1, t2} ⊂ T ν,κ, with 0 < t1 < t2;

µκ(τ1 = t1, τ2 = t2) = µκ(τ1 = t1)µκ(τ3 = t2 − t1)

Proof. We have that;

(τ1 = t1, τ2 = t2) = {ω : Bt1(ω) = [a
√
ν]√
ν
, Bt(ω) ∩ { [a

√
ν]√
ν
,− [b

√
ν]√
ν
} =

∅, 0 ≤ t < t1, Bt(ω) 6= − [b
√
ν]√
ν
, t1 < t < t2, Bt2(ω) = − [b

√
ν]√
ν
} (∗)
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Let pr1 : Ωκ → Ω[t1v] be the projection onto the first [t1ν] co-

ordinates, and define Xt1 ⊂ Ω[t1v] by pr1((τ1 = t1)). Clearly, we

have that µ[t1ν](Xt1) = µκ(τ1 = t1). Let pr2 : Ωκ → Ω[t2ν]−[t1ν]

be the projection onto the first [t2ν] − [t1ν] coordinates , and define
Xt1,t2 ⊂ Ω[t2ν]−[t1ν] by pr2((τ3 = t2 − t1)). Clearly, we have that

µ[t2ν]−[t1ν](Xt1,t2) = µκ(τ3 = t2 − t1). Let pr3 : Ωκ → Ω[t2ν]−[t1ν] be
the projection onto coordinates [t1ν] + 1 to [t2ν], then we have that, by
(∗);

ω ∈ (τ1 = t1, τ2 = t2) iff pr1(ω) ∈ Xt1 and pr3(ω) ∈ Xt1,t2

Let pr4 : Ωκ → Ω[t2ν] be the projection onto the first [t2ν] coordi-
nates, and let Xt2 = pr4(τ1 = t1, τ2 = t2), then;

µκ(τ1 = t1, τ2 = t2) = µ[t2ν](Xt2)

=
∗Card(Xt2 )

2[t2ν]

=
∗Card(Xt1 )∗Card(Xt1,t2 )

2[t1ν]2[t2ν]−[t1ν]

= µ[t1ν](Xt1)µ[t2ν]−[t1ν](Xt1,t2)

= µκ(τ1 = t1)µκ(τ3 = t2 − t1)
�

Definition 0.6. Let f : R2 → R, in the variables (t, x) be analytic,
such that, on a bounded region V ⊂ R2, all the partial derivatives
∂i+jf
∂xi∂tj

≤ EV i!j!, for some EV ∈ R, with transfer f ∗ : ∗R2 → ∗R,

let B : Ωκ × T ν,κ → ∗R be nonstandard Brownian motion, and let
g : Ωκ × T ν,κ → ∗R be defined by;

g(t, ω) = f ∗( [tν]
ν
, B [tν]

ν

(ω))

We define;

dg [tν]
ν

(ω) = g(ω, [tν]+1
ν

)− g(ω, [tν]
ν

)

dt = 1
ν

dB [tν]
ν

(ω) =
ω [tν]+1

ν√
ν
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We define the nonstandard derivatives;

∂f∗

∂t
| [tν]
ν
,ω

= ∂f∗

∂t
| [tν]
ν
,B [tν]

ν

(ω)
= ν(f ∗( [tν]+1

ν
, B [tν]

ν

(ω))− f ∗( [tν]
ν
, B [tν]

ν

(ω)))

∂f∗

∂Bt
| [tν]
ν
,ω

= ∂f∗

∂Bt
| [tν]
ν
,B [tν]

ν

(ω)
= ν(f ∗([tν], B [tν]+1

ν

(ω))− f ∗( [tν]
ν
, B [tν]

ν
,ω

))

( ∂f
∂Bt

)∗| [tν]
ν
,ω

= ( ∂f
∂Bt

)∗| [tν]
ν
,B [tν]

ν

(ω)
= ∂f

∂x

∗|
(ω,

[tν]
ν

)

( ∂
2f

∂B2
t
)∗| [tν]

ν
,ω

= ( ∂
2f

∂B2
t
)∗| [tν]

ν
,B [tν]

ν

(ω)
= ∂2f

∂x2

∗
|
ω,

[tν]
ν

We define the filtration {F i
ν

: 0 ≤ i ≤ κ} on Ωκ by letting F i
ν

be

generated as a ∗-σ algebra by the basic sets;

Uki = {ω ∈ Ωκ : (ω(j))1≤j≤i = ki}

where ki is a sequence of 1’s and −1’s of length i.

We say that a process M : Ωκ × T ν,κ → ∗R is adapted to the fil-
trartion if Mt is ∗-measurable with respect to F [tν]

ν

. We define internal

integrals by;

For t1 < t2;∫ t2
t1
M(t, ω)dt =

∫ [t2ν]
ν

[t1ν]
ν

M(t, ω)dt = 1
ν
∗∑ [t2ν]

ν

i=
[t1ν]
ν

M( i
ν
, ω)

For t1 < t2;∫ t2
t1
M(t, ω)dBt =

∫ [t2ν]
ν

[t1ν]
ν

M(t, ω)dBt = 1√
ν
∗∑ [t2ν]

ν

i=
[t1ν]
ν

M( i
ν
, ω)ωi+1

If Mt is adapted to the filtration, we define;

E(Mt|Fs) = E(M [tν]
ν

|F [sν]
ν

)

to be the orthogonal projection of M [tν]
ν

onto the ∗-subspace of ∗-
measurable random variables with respect to F [sν]

ν

, see [8] for more de-

tails, so that;

E(Mt|F0) = E(Mt) =
∫

Ωκ
Mt(ω)dµκ(ω)
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We define Mt to be a nonstandard martingale if E(Mt|Fs) = Ms

We define Mt to be a quasi-nonstandard martingale, on [0, λ] if for

0 ≤ [sν]
ν
≤ [tν]

ν
≤ [λν]

ν
;

E(Mt|Fs) 'Ms and |E(Mt|Fs)−Ms| ≤ C

ν
1
12

for some C ∈ R.

Lemma 0.7. We have that;

dg [tν]
ν

(ω) = ((∂f
∂t

)∗|
ω,

[tν]
ν

+1
2
( ∂

2f
∂B2

t
)∗|

ω,
[tν]
ν

)dt+(( ∂f
∂Bt

)∗|
ω,

[tν]
ν

)dB [tν]
ν

+C [tν]
ν

(ω)

where |C [tν]
ν

(ω)| ≤
C [tν]

ν ,ω

ν
3
2

and C [tν]
ν
,ω
∈ R>0 if [tν]

ν
and B [tν]

ν

(ω) are

finite.

There exist {λ1, λ2} ⊂ ∗N infinite, and Vλ1,λ2 ⊂ Ωκ, such that for

0 ≤ [t1ν]
ν
< [t2ν]

ν
≤ [λ2ν]

ν
, with t1 and t2 finite, ω ∈ Vλ1,λ2, we have that;

g( [t2ν]
ν
, ω)−g( [t1ν]

ν
, ω) '

∫ [t2ν]−1
ν

[t1ν]
ν

((∂f
∂t

)∗|
ω,

[tν]
ν

+1
2
( ∂

2f
∂B2

t
)∗|

ω,
[tν]
ν

)dt+
∫ [t2ν]−1

ν
[t1ν]
ν

(( ∂f
∂Bt

)∗|
ω,

[tν]
ν

)dB [tν]
ν

and, moreover;

|g( [t2ν]
ν
, ω)−g( [t1ν]

ν
, ω)−(

∫ [t2ν]−1
ν

[t1ν]
ν

((∂f
∂t

)∗|
ω,

[tν]
ν

+1
2
( ∂

2f
∂B2

t
)∗|

ω,
[tν]
ν

)dt+
∫ [t2ν]−1

ν
[t1ν]
ν

(( ∂f
∂Bt

)∗|
ω,

[tν]
ν

)dB [tν]
ν

)|

≤ ν−
1
4

with µκ(Vλ1,λ2) ' 1 and µκ(Ωκ \ Vλ1,λ2) ≤ 1
λ1

;

For gt constant on Ωκ \ Vλ1,λ2, for t finite, if ((∂f
∂t

)∗|ω,t+ 1
2
( ∂

2f
∂B2

t
)∗|ω,t) =

0, for 0 ≤ [t1ν]
ν
≤ t ≤ [t2ν]

ν
≤ λ2, then;

|E(g [t2ν]
ν

− g [t1ν]
ν

|F [t1ν]
ν

)| ≤ C

ν
1
12

' 0

and gt is a quasi-nonstandard martingale on [0, T ], for T finite.
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Proof. We have that;

dg [tν]
ν

(ω) = g(ω, [tν]+1
ν

)− g(ω, [tν]
ν

)

= f ∗( [tν]+1
ν
, B [tν]+1

ν

(ω))− f ∗( [tν]
ν
, B [tν]

ν

(ω))

As f is analytic, for {t, x} ⊂ R, {h1, h2} ⊂ R, with max(|h1|, |h2|) <
1
2
, we have that;

f(t+ h1, x+ h2) = f(t, x) + h1
∂f
∂t
|t,x + h2

∂f
∂x
|t,x +

h22
2
∂2f
∂x2
|t,x

+
∑

(i,j):i≥1,j≥1
∂i+jf
∂ti∂xj

|t,x h
i
1h
j
2

i!j!
+
∑

i≥2
∂if
∂ti
|t,x h

i
1

i!
+
∑

j≥3
∂jf
∂xj
|t,x h

j
2

j!

so that;

|f(t+ h1, x+ h2)− f(t, x)− h1
∂f
∂t
|t,x − h2

∂f
∂x
|t,x − h22

2
∂2f
∂x2
|t,x|

≤Mt,x|h1||h2|
∑

(i,j):i≥1,j≥1 |h1|i−1|h2|j−1+Mt,x|h1|2
∑

i≥2 |h1|i−2+Mt,x|h2|3
∑

i≥3 |h1|i−3

= Mt,x|h1||h2|
∑

(i,j):i≥0,j≥0 |h1|i|h2|j + Mt,x|h1|2
1−|h1| + Mt,x|h2|3

1−|h2|

≤Mt,x|h1||h2|
∑

i≥0
|h1|i

1−|h2| + 2Mt,x|h1|2 + 2Mt,x|h2|3

≤ Mt,x|h1||h2|
(1−|h1|)(1−|h2|) + 2Mt,x|h1|2 + 2Mt,x|h2|3

≤ 4Mt,x|h1||h2|+ 2Mt,x|h1|2 + 2Mt,x|h2|3

By transfer, we obtain that, for {t, x} ⊂ ∗R, D ∈ ∗R, |(t, x)| ≤ D,
{h1, h2} ⊂ ∗R>0, with max(|h1|, |h2|) < 1

2
;

|f ∗(t+ h1, x+ h2)− f ∗(t, x)− h1(∂f
∂t

)∗|t,x − h2(∂f
∂x

)∗|t,x − h22
2

(∂
2f
∂x2

)∗|t,x|

≤ 4Mt,x|h1||h2|+ 2Mt,x|h1|2 + 2Mt,x|h2|3

with Mt,x ≤MD, and MD ∈ R if (t, x) is finite, so that, with;

h1 = 1
ν
< 1

2

h2 = B [tν]+1
ν

−B [tν]
ν

=
ω [tν]+1

ν√
ν
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|h2| ≤ 1√
ν
< 1

2

h2
2 = 1

ν

h2
1 = 1

ν2

|h3
2 ≤ 1

ν
3
2

we have that;

|f ∗( [tν]+1
ν
, B [tν]+1

ν

(ω))−f ∗( [tν]
ν
, B [tν]

ν

(ω))−h1(∂f
∂t

)∗|( [tν]
ν
, B [tν]

ν

(ω))−h2(∂f
∂x

)∗|( [tν]
ν
, B [tν]

ν

(ω))

−h22
2

(∂
2f
∂x2

)∗|( [tν]
ν
, B [tν]

ν

(ω))|

= |f ∗( [tν]+1
ν
, B [tν]+1

ν

(ω))− f ∗( [tν]
ν
, B [tν]

ν

(ω))− 1
ν
(∂f
∂t

)∗|( [tν]
ν
, B [tν]

ν

(ω))

−
ω [tν]+1

ν√
ν

(∂f
∂x

)∗|( [tν]
ν
, B [tν]

ν

(ω))− 1
2ν

(∂
2f
∂x2

)∗|( [tν]
ν
, B [tν]

ν

(ω))|

= |f ∗( [tν]+1
ν
, B [tν]+1

ν

(ω))− f ∗( [tν]
ν
, B [tν]

ν

(ω))− [(∂f
∂t

)∗|( [tν]
ν
, B [tν]

ν

(ω))

+1
2
(∂

2f
∂x2

)∗|( [tν]
ν
, B [tν]

ν

(ω))]dt− (∂f
∂x

)∗|( [tν]
ν
, B [tν]

ν

(ω))dB [tν]
ν

(ω)|

≤ 4M [tν]
ν
,B [tν]

ν

(ω)
|h1||h2|+ 2M [tν]

ν
,B [tν]

ν

(ω)
|h1|2 + 2M [tν]

ν
,B [tν]

ν

(ω)
|h2|3

≤
4M [tν]

ν ,B [tν]
ν

(ω)

ν
3
2

+

2M [tν]
ν ,B [tν]

ν

(ω)

ν2
+

2M [tν]
ν ,B [tν]

ν

(ω)

ν
3
2

≤
6M [tν]

ν ,B [tν]
ν

(ω)

ν
3
2

with M [tν]
ν
,B [tν]

ν

(ω)
finite, if ( [tν]

ν
, B [tν]

ν

(ω)) is finite.

For the second claim, we can use the result in [1], see also [7], that

a.e (V ) L(µκ), for [t2ν]
ν

finite, 0 ≤ t ≤ [t2ν]
ν

, the map ( [tν]
ν
, ω) 7→ B [tν]

ν

(ω),

(†) is near standard and finite. We can approximate V by Vn, n ∈ N ,
such that Vn is µκ measurable, Vn ⊂ Vn+1 ⊂ V , and µκ(Ωκ \ Vn) ≤ 1

n
,

then, as the map (†) is internal, | [tν]
ν
, B [tν]

ν

(ω)| ≤ Mn, with Mn ∈ R>0.

By assumption, we can then assume that, for (i, j) ∈ Z2
≥0, ω ∈ Vn,

0 ≤ t ≤ [t2ν]
ν

, with t2 finite, |
∗∂i+jf
∂ti∂xj

≤ Rni!j!, for |(t, x)| ≤ Mn, with

Rn ∈ R>0. Then, using the previous result, for ω ∈ Vn, 0 ≤ [t1ν]
ν
≤ [t2ν]

ν
;
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g( [t2ν]
ν
, ω)− g( [t1ν]

ν
, ω) = ∗∑ [t2ν]−1

ν

i=
[t1ν]
ν

dg i
ν

= ∗∑ [t2ν]−1
ν

i=
[t1ν]
ν

[((∂f
∂t

)∗|ω, i
ν

+ 1
2
( ∂

2f
∂B2

t
)∗|ω, i

ν
)dt+ (( ∂f

∂Bt
)∗|ω, i

ν
)dB i

ν
+ C i

ν
(ω)]

' ∗
∑ [t2ν]−1

ν

i=
[t1ν]
ν

[((∂f
∂t

)∗|ω, i
ν

+ 1
2
( ∂

2f
∂B2

t
)∗|ω, i

ν
)dt+ (( ∂f

∂Bt
)∗|ω, i

ν
)dB i

ν
]

= 1
ν
∗∑ [t2ν]−1

ν

i=
[t1ν]
ν

((∂f
∂t

)∗|ω, i
ν

+ 1
2
( ∂

2f
∂B2

t
)∗|ω, i

ν
) + 1√

ν
∗∑ [t2ν]−1

ν

i=
[t1ν]
ν

(( ∂f
∂Bt

)∗|ω, i
ν
)ω i+1

ν

=
∫ [t2ν]−1

ν
[t1ν]
ν

((∂f
∂t

)∗|
ω,

[tν]
ν

+ 1
2
( ∂

2f
∂B2

t
)∗|

ω,
[tν]
ν

)dt+
∫ [t2ν]−1

ν
[t1ν]
ν

(( ∂f
∂Bt

)∗|
ω,

[tν]
ν

)dB [tν]
ν

as for t1 < t2 finite;

|∗
∑ [t2ν]−1

ν

i=
[t1ν]
ν

C i
ν
(ω)|

≤ [t2ν]max0≤i≤[t2ν]−1|C i
ν
(ω)|

≤ Rn[t2ν]

ν
3
2

≤ ν
5
4

ν
3
2

= ν−
1
4

' 0

where Rn is the uniform bound in Mt,x given above. Fixing [t2ν]
ν

fi-

nite, letting n vary with µκ(Ωκ \ Vn, [t2ν]
ν

) < 1
n
, Ωκ \ Vn, [t2ν]

ν

decreasing,

we have that;

{n ∈ N : |g( [t2ν]
ν
, ω)−g( [t1ν]

ν
, ω)−(

∫ [t2ν]−1
ν

[t1ν]
ν

((∂f
∂t

)∗|
ω,

[tν]
ν

+1
2
( ∂

2f
∂B2

t
)∗|

ω,
[tν]
ν

)dt

+
∫ [t2ν]−1

ν
[t1ν]
ν

(( ∂f
∂Bt

)∗|
ω,

[tν]
ν

)dB [tν]
ν

)| ≤ ν−
1
4 , for ω ∈ V

n,
[t2ν]
ν

, 0 ≤ [t1ν]
ν
≤

[t2ν]
ν
}

contains N , so by overflow, contains λ1 ∈ ∗N infinite, and we find
V
λ1,

[t2ν]
ν

with µκ(Ωκ \ Vλ1, [t2ν]ν

) < 1
λ1

, such that, for ω ∈ V
λ1,

[t2ν]
ν

;

|g( [t2ν]
ν
, ω)− g( [t1ν]

ν
, ω)− (

∫ [t2ν]−1
ν

[t1ν]
ν

((∂f
∂t

)∗|
ω,

[tν]
ν

+ 1
2
( ∂

2f
∂B2

t
)∗|

ω,
[tν]
ν

)dt
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+
∫ [t2ν]−1

ν
[t1ν]
ν

(( ∂f
∂Bt

)∗|
ω,

[tν]
ν

)dB [tν]
ν

)| ≤ ν−
1
4 (X)

for 0 ≤ [t1ν]
ν
≤ [t2ν]

ν
. We then have that, for m ∈ N , the statement

(X) holds for Vλ1,m, so that by overflow again, we can find λ2 ∈ ∗N ,
such that (X) holds for Vλ1,λ2 . In particular, µκ(Ωκ \ Vλ1,λ2) < 1

λ1
' 0

For the final claim, if ((∂f
∂t

)∗|ω,t + 1
2
( ∂

2f
∂B2

t
)∗|ω,t) = 0, for [t1ν]

ν
≤ t ≤

[t2ν]
ν
≤ [λ2ν]

ν
, then, by the second claim, for ω ∈ V

λ1,
[λ2ν]
ν

;

g( [t2ν]
ν
, ω)−g( [t1ν]

ν
, ω) '

∫ [t2ν]−1
ν

[t1ν]
ν

((∂f
∂t

)∗|
ω,

[tν]
ν

+1
2
( ∂

2f
∂B2

t
)∗|

ω,
[tν]
ν

)dt+
∫ [t2ν]−1

ν
[t1ν]
ν

(( ∂f
∂Bt

)∗|
ω,

[tν]
ν

)dB [tν]
ν

=
∫ [t2ν]−1

ν
[t1ν]
ν

(( ∂f
∂Bt

)∗|
ω,

[tν]
ν

)dB [tν]
ν

(D)

whereas, if [t1ν]
ν
≤ t ≤ [t2ν]

ν
, with t1, t2 finite, as gt is constant, for

ω ∈ Ωκ \ Vλ1,λ2 ;

g( [t2ν]
ν
, ω)− g( [t1ν]

ν
, ω) = 0 (C)

It follows, using the method of [8], Lemma 0.13, and (C), (D) ;

E(g [t2ν]
ν

− g [t1ν]
ν

|F [t1ν]
ν

)

' E(
∫ [t2ν]−1

ν
[t1ν]
ν

(( ∂f
∂Bt

)∗|
ω,

[tν]
ν

)dB [tν]
ν

|F [t1ν]
ν

)

= 0

with |E(g [t2ν]
ν

− g [t1ν]
ν

|F [t1ν]
ν

)| ≤ 1

ν
1
4
≤ 1

ν
1
12

and, for 0 < s < t finite;

E(gt|Fs) = E(gt − gs + gs|Fs)

' E(gs|Fs)

= gs

with |E(gt|Fs)− gs| ≤ 1

ν
1
14

so that gt is a quasi-nonstandard martingale on [0, T ], for T finite.
�
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Lemma 0.8. Let Bt be nonstandard Brownian motion, then if x =
k
√
ν, where 0 ≤ k ≤ [tν];

Pr(|Bt| ≥ k
ν
) ≤ 2∗exp(−k

2

2[tν]
)

In particularly, Pr(|Bt| ≥ x) ≤ 2∗exp(−x2

2t
).

Proof. For n finite, with Xn,t = 1√
n

∑[tn]
i=1 ωi, we have that, for 0 ≤ k ≤

[tn];

Pr(Xn,t ≥ k√
n
) = Pr(X ′n,t ≥ k)

= Pr(X
′+1
2
≥ k+1

2
)

Pr(Xn,t ≤ −k√
n
) = Pr(X ′n,t ≤ −k)

= Pr(X
′+1
2
≤ −k+1

2
)

where X ′ =
∑[tn]

i=1 ωi and X′+1
2

follows the Binomial distribution with

probability 1
2

and [tn] trials. We have tht E(X
′+1
2

) = 1
2
, so, by Hoeffd-

ing’s inequality;

Pr(X
′+1
2

) ≥ k+1
2
≤ e

−k2
2[tn]

Pr(X
′+1
2

) ≤ −k+1
2
≤ e

−k2
2[tn]

so that Pr(|Xn,t| ≥ k√
n
) = Pr(X ′n,t ≥ k) + Pr(X ′n,t ≤ −k) ≤ 2e

−k2
2[tn]

The result is uniform in n ∈ R>0, so transfers to the case where
ν ∈ ∗R>0, and gives the first result. Then substituting, we have that
∗exp(− k2

2[tν]
) = ∗exp(− x2ν

2[tν]
) ≤ ∗exp(−x2

2t
), which gives the second result.

�

Lemma 0.9. Let fλ(x, t) = eαx−
α2t
2 , where α =

√
2iλ, for the principal

root, λ ∈ R, then;

|fλ(x, t)| ≤ e
√
|λ||x|, for the positive square root.

and, similarly, for λ 6= 0;
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| ∂
i+jfλ
∂xi∂tj

|
i!j!

≤ max(1, e6|λ|ln(|2λ|)e
√
|λ||x|), uniformly in (i, j) ∈ Z2

≥0

for λ = 0;

| ∂
i+jfλ
∂xi∂tj

|
i!j!

≤ 1, uniformly in (i, j) ∈ Z2
≥0

Proof. For the first claim, we have that;

|fλ(x, t)| = |e
√

2iλx−iλt|

= |e
√

2iλx|

= |e
√

2λx(cos(π
4

)+isin(π
4

))|, (λ ≥ 0)

= |e
√

2λx 1√
2 |

= eλx

≤ eλ|x|

|fλ(x, t)| = |e
√
−2λx(cos( 3π

4
)+isin( 3π

4
))|, (λ ≤ 0)

= |e
√
−2λxcos( 3π

4
)|

= |e−
1√
2

√
−2λx|

= |e−
√
−λx|

≤ e
√
−λ|x|

For the second claim, using the first part;

| ∂i+jfλ
i!j!∂xi∂tj

| = |αi(−1)jαj ||fλ(x,t)|
i!j!

≤ |α|i+je
√
|λ||x|

i!j!

≤ |2λ|
i+j
2

i!j!
e
√
|λ||x|

We have that, for i ≥ 6|λ|, j ≥ 6|λ|, i! ≥ |2λ| i2 , j! ≥ |2λ| j2 , so that;
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| ∂i+jfλ
i!j!∂xi∂tj

| ≤ max(1,max1≤i,j≤6|λ|
|2λ|

i+j
2

i!j!
e
√
|λ||x|

≤ max(1, |2λ|
6|λ|+6|λ|

2 )e
√
|λ||x|

≤ max(1, |2λ|6|λ|)e
√
|λ||x|

= max(1, e6|λ|ln(|2λ|))e
√
|λ||x| (λ 6= 0)

| ∂i+jfλ
i!j!∂xi∂tj

| ≤ 1, (λ = 0)

�

Lemma 0.10. For λ ∈ R 6=0 fixed, we can obtain infinite x0 and t0,
such that for |x| ≤ x0, 0 ≤ t ≤ t0;

(i).
e6|λ|ln(|2λ|)∗exp(

√
|λ||x|)[tν]

ν
3
2

' 0

(ii). ∗exp(− x20
2t0

) ' 0

Proof. Let t0 = log∗(ν), x0 = log∗(ν)

3
√
|λ|

, then, for |x| ≤ x0;

|∗exp(
√
|λ||x|)| ≤ |∗exp(

√
|λ|x0)|

= |∗exp( log
∗(ν)
3

)|

= ν
1
3

so that;

∗exp(
√
|λ||x|)[tν]

ν
3
2

≤ ν
1
3 [tν]

ν
3
2

≤ ν
1
3 [log∗(ν)ν]

ν
3
2

≤ ν
1
3 (log∗(ν)ν+1)

ν
3
2

= log∗(ν)

ν
1
6

+ 1

ν
1
6

' 0
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and, as e6|λ|ln(|2λ|) is finite, we have that;

e6|λ|ln(|2λ|)∗exp(
√
|λ||x|)[tν]

ν
3
2

' 0

which gives (i). For (ii), we have that;

∗exp(− x20
2t0

) = ∗exp(−
log∗(ν)2

9|λ|
2log∗(ν)

)

= ∗exp(− log∗(ν)
18|λ| )

= ν−
1

18|λ|

' 0

�

Definition 0.11. For λ ∈ R 6=0, we define stopped nonstandard Brow-
nian motion Bt,λ : Ωκ × Tν,κ → ∗R by:

Bt,λ(ω) = Bt(ω), if max0≤t′≤t|Bt′(ω)| ≤ log∗(ν)

3
√
|λ|

Bt,λ(ω) = log∗(ν)

3
√
|λ|

, if max0≤t′≤t|Bt′(ω)| > log∗(ν)

3
√
|λ|

and for min0≤t′≤t|Bt′(ω)| > log∗(ν)

3
√
|λ|

, Bt′(ω) > log∗(ν)

3
√
|λ|

Bt,λ(ω) = − log∗(ν)

3
√
|λ|

, if max0≤t′≤t|Bt′(ω)| > log∗(ν)

3
√
|λ|

and for min0≤t′≤t|Bt′(ω)| > log∗(ν)

3
√
|λ|

, Bt′(ω) < − log∗(ν)

3
√
|λ|

Lemma 0.12. For 0 ≤ t ≤ ∗log(v), we have that;

µκ(max0≤t′≤t|Bt′(ω)| >
∗log(ν)

3
√
|λ|

) ' 0

Proof. We have, using Lemma 0.8 and the reflection principle for ran-
dom walks, see [9], that;

µκ(max0≤t′≤t|Bt′(ω)| >
∗log(ν)

3
√
|λ|

)

≤ µκ(max0≤t′≤tBt′(ω) >
∗log(ν)

3
√
|λ|

) + µκ(min0≤t′≤tBt′(ω) < −
∗log(ν)

3
√
|λ|

)
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< 2µκ(Bt(ω) >
∗log(ν)

3
√
|λ|

) + 2µκ(Bt(ω) < −
∗log(ν)

3
√
|λ|

)

= 2µκ(|Bt(ω)| >
∗log(ν)

3
√
|λ|

)

≤ 2µκ(|Bt(ω)| > [∗log(ν)
√
ν]

3
√
|λ|ν

)

≤ 4∗exp(−
(
[∗log(ν)

√
ν]

3
√
|λ|ν

)2

2t
)

≤ 4∗exp(−
(
∗log(ν)

√
ν−1

3
√
|λ|ν

)2

2t
)

= 4∗exp(−
(
∗log(ν)−2

3
√
|λ|

)2

2t
)

≤ 4∗exp(−
(
∗log(ν)−2

3
√
|λ|

)2

2∗log(ν)
)

= 4∗exp(−
∗log(ν)2−4∗log(ν)+4

18|λ|∗log(ν)
)

= 4∗exp(−
∗log(ν)+4− 4

∗log(ν)
18|λ| )

≤ 8ν
−1

18|λ| ∗exp( 4
18|λ|)

' 0

�

Lemma 0.13. If Xt : Ωκ → ∗R is a Ft-measurable random variable,
with Xt ' 0, then, for 0 ≤ s ≤ t, E(Xt|Fs) ' 0 as well.

Proof. For n ∈ N , we have that |Xt| < 1
n
, so that by Jensen’s inequal-

ity and monotonicity, we have;

|E(Xt|Fs)| ≤ E(|Xt||Fs)

< E( 1
n
|Fs)

= 1
n
E(1|Fs)

= 1
n

As n ∈ N was arbitrary, we obtain that E(Xt|Fs) ' 0.

�
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Definition 0.14. For α ∈ C, we define Mα,t = ∗exp(αB [tν]
ν

− α2[tν]
2ν

).

For α =
√

2iλ, we define the stopped process Mα,t by:

Mα,t(ω) = Mα,t(ω), if max0≤t′≤t|Bt′(ω)| ≤ log∗(ν)

3
√
|λ|

Mα,t(ω) = ∗exp(α log
∗(ν)

3
√
|λ|
− α2[t′ν]

2ν
), if max0≤t′≤t|Bt′(ω)| > log∗(ν)

3
√
|λ|

and for min0≤t′≤t|Bt′(ω)| > log∗(ν)

3
√
|λ|

, Bt′(ω) > log∗(ν)

3
√
|λ|

Mα,t(ω) = ∗exp(−α log
∗(ν)

3
√
|λ|
− α2[t′ν]

2ν
), if max0≤t′≤t|Bt′(ω)| > log∗(ν)

3
√
|λ|

and for min0≤t′≤t|Bt′(ω)| > log∗(ν)

3
√
|λ|

, Bt′(ω) < − log∗(ν)

3
√
|λ|

Lemma 0.15. For α ∈ C, α =
√

2iλ, Mα,t is a quasi-nonstandard
martingale.

Proof. Let Ut ⊂ Ωκ be defined by;

Ut = {ω : max0≤t′≤tBt′ ≤ log∗(ν)

3
√
|λ|
}

V ⊂ Ωκ × Tν,κ be defined by;

V = {(t, ω) : 0 ≤ t ≤ ∗log(ν), ω ∈ Ut}

V c = {(t, ω) : 0 ≤ t ≤ ∗log(ν), ω /∈ Ut}

For ω ∈ Ωκ, let;

tω = mint′,0≤t′≤∗log(ν)(|Bt′(ω)| > log∗(ν)

3
√
|λ|

)− 1
ν

be the partial function, so that ω ∈ Utω but ω /∈ Utω+ 1
ν
. Let V ∗ ⊂ V

be defined by;

V ∗ = {(tω, ω) : ω ∈ Ωκ, tω defined}

Then, for (t, ω) ∈ V c, we have that dMα,t| [tν]
ν
,ω

= 0. For (t, ω) ∈
V \ V ∗, , by the definition of V and V ∗, the process Mα,t agrees
with Mα,t at (t, ω) and (t + 1

ν
, ω). We have that, letting f(t, x) =

exp(αx− α2t
2

);
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((∂f
∂t

)∗|(t,ω) + 1
2
( ∂

2f
∂B2

t
)∗|(t,ω) = 0

so, following the proof of Lemma 0.7 and using Lemma 0.9;

dMα,t|ω, [tν]
ν

= dMα,t|ω, [tν]
ν

= ((∂f
∂t

)∗| [tν]
ν
,ω

+ 1
2
( ∂

2f
∂B2

t
)∗| [tν]

ν
,ω

)dt+ (( ∂f
∂Bt

)∗| [tν]
ν
,ω

)dB [tν]
ν

+ C [tν]
ν

(ω)

= (( ∂f
∂Bt

)∗| [tν]
ν
,ω

)dB [tν]
ν

+ C [tν]
ν

(ω)

where;

|C [tν]
ν

(ω)| ≤ e6|λ|ln(|2λ|)∗exp(
√
|λ||x|)

ν
3
2

, |x| ≤ log∗(ν)

3
√
|λ|

.

For (t, ω) ∈ V ∗, we have that, using Lemma 0.9 again;

|dMα,t|ω, [tν]
ν

| = |Mα,t| [tν]+1
ν

,ω
−Mα,t| [tν]

ν
,ω
|

= |∗exp(α log
∗(ν)

3
√
|λ|
− α2[tν]+1

2ν
)− ∗exp(α log

∗(ν)

3
√
|λ|
− c√

ν
− α2[tν]

2ν
)|

= |∗exp(α log
∗(ν)

3
√
|λ|

)∗exp(−α2[tν]
2ν

)||∗exp(−α2

2ν
)− ∗exp(− c√

ν
)|

= |∗exp(
√

2iλ log
∗(ν)

3
√
|λ|

)∗exp(− iλ[tν]
ν

)||∗exp(− iλ
ν

)− ∗exp(− c√
ν
)|

= |∗exp(
√

2iλ log
∗(ν)

3
√
|λ|

)||1− iλ
ν

+O( 1
ν2

)− 1 + c√
ν
−O( 1

ν
)|

≤∗ exp(
√
|λ| log

∗(ν)

3
√
|λ|

) G√
ν

= Gν
1
3√
ν

' 0.

with B [tν]+1
ν

(ω) > log∗(ν)

3
√
|λ|

, 0 < c ≤ 1, G ∈ R>0

and;

|dMα,t| [tν]
ν
,ω
| = |Mα,t| [tν]+1

ν
,ω
−Mα,t| [tν]

ν
,ω
|

= |∗exp(−α log
∗(ν)

3
√
|λ|
− α2[tν]+1

2ν
)− ∗exp(−α log

∗(ν)

3
√
|λ|

+ c√
ν
− α2[tν]

2ν
)|
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= |∗exp(−α log
∗(ν)

3
√
|λ|

)∗exp(−α2[tν]
2ν

)||∗exp(−α2

2ν
)− ∗exp( c√

ν
)|

= |∗exp(−
√

2iλ log
∗(ν)

3
√
|λ|

)∗exp(− iλ[tν]
ν

)||∗exp(− iλ
ν

)− ∗exp( c√
ν
)|

= |∗exp(−
√

2iλ log
∗(ν)

3
√
|λ|

)||1− iλ
ν

+O( 1
ν2

)− 1− c√
ν
−O( 1

ν
)|

≤∗ exp(
√
|λ| log

∗(ν)

3
√
|λ|

) G√
ν

= Gν
1
3√
ν

' 0 (A)

with B [tν]+1
ν

(ω) < − log∗(ν)

3
√
|λ|

, 0 < c ≤ 1, G ∈ R>0

It follows, using the proof of Lemma 0.7 again, that, for 0 ≤ t ≤∗
log(ν);

Mα,t −Mα,0 =
∫ (t∧tω)− 1

ν

0
(( ∂f
∂Bt

)∗|
ω,

[tν]
ν

)dB [tν]
ν

+ ε(ω, t) + δ(ω, t) (C)

where, using Lemma 0.10 (i), (A), and the fact that t ≤∗ log(ν);

|ε(ω, t)| ≤
e6|λ|ln(|2λ|)∗exp(

√
|λ| log

∗(ν)
3
√
|λ|

)[tν]

ν
3
2

' 0

|δ(ω, t)| ≤ Gν
1
3√
ν

' 0

We have that tω = τ− 1
ν
, where τ is the stopping time for the barrier

log∗(ν)

3
√
|λ|

, so that;

|
∫ (t∧tω)− 1

ν

0
(( ∂f
∂Bt

)∗| [tν]
ν
,ω

)dB [tν]
ν

−
∫ (t∧τ)

0
(( ∂f
∂Bt

)∗| [tν]
ν
,ω

)dB [tν]
ν

|

≤ |
∫ (t∧tω)− 1

ν

0
(( ∂f
∂Bt

)∗| [tν]
ν
,ω

)dB [tν]
ν

−
∫ (t∧tω)

0
(( ∂f
∂Bt

)∗| [tν]
ν
,ω

)dB [tν]
ν

|

+|
∫ (t∧tω)

0
(( ∂f
∂Bt

)∗| [tν]
ν
,ω

)dB [tν]
ν

−
∫ (t∧τ)

0
(( ∂f
∂Bt

)∗| [tν]
ν
,ω

)dB [tν]
ν

|

= |( ∂f
∂Bt

)∗| [(t∧tω)ν]
ν

,ω
dB [(t∧tω)ν]

ν

|+ |( ∂f
∂Bt

)∗| [τν]
ν
,ω
dB [τν]

ν

|
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= |( ∂f
∂Bt

)∗| [(t∧tω)ν]
ν

,ω
dB [(t∧tω)ν]

ν

|

≤ 1√
ν
|( ∂f
∂Bt

)∗| [(t∧tω)ν]
ν

,ω
|

≤ αν
1
3√
ν

' 0 (B)

By proofs in [8], we have that
∫ t

0
(( ∂f
∂Bt

)∗|
ω,

[tν]
ν

)dB [tν]
ν

is a nonstandard

martingale, and by Lemma 0.16,
∫ (t∧τ)

0
(( ∂f
∂Bt

)∗|
ω,

[tν]
ν

)dB [tν]
ν

is a nonstan-

dard martingale as well. It follows from (B) and Lemma 0.13, that;

E(
∫ (t∧tω)− 1

ν

0
(( ∂f
∂Bt

)∗| [tν]
ν
,ω

)dB [tν]
ν

|Fs)

' E(
∫ t∧τ

0
( ∂f
∂Bt

)∗| [tν]
ν
,ω
dB [tν]

ν

|Fs)

=
∫ s∧τ

0
( ∂f
∂Bt

)∗| [tν]
ν
,ω
dB [tν]

ν

'
∫ (s∧tω)− 1

ν

0
( ∂f
∂Bt

)∗| [tν]
ν
,ω
dB [tν]

ν

and from (C) and Lemma 0.13 again, that;

E(Mα,t −Mα,0|Fs) 'Mα,s −Mα,0

As Mα,0 = 1, we obtain that;

E(Mα,t|Fs) 'Mα,s

as well. By the proof, using the explicit inequality in Lemma 0.13,
we have that;

|E(Mα,t −Mα,0|Fs)− (Mα,s −Mα,0)|

≤ 2Gν
1
3√
ν

+ 2αν
1
3√
ν

+
2e6|λ|ln(|2λ|)∗exp(

√
|λ| log

∗(ν)
3
√
|λ|

)[∗log(ν)ν]

ν
3
2

≤ 2Gν−
1
6 + 2αν−

1
6 + 2e6|λ|ln(|2λ|) ν

1
3 ∗log(ν)ν

ν
3
2

≤ 2Gν−
1
6 + 2αν−

1
6 + 2e6|λ|ln(|2λ|) ∗log(ν)

ν
1
6
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≤ Hλ

ν
1
12

where Hλ ∈ R>0 depends on λ. Clearly, we then obtain that;

|E(Mα,t|Fs)−Mα,s| ≤ Hλ

ν
1
12

as well, so that Mα,t is a quasi nonstandard martingale, for 0 ≤ t ≤
∗log(ν).

�

Lemma 0.16. If Mt is a nonstandard martingale, and τ is a stopping

time for the barrier [a
√
ν]√
ν

, with a ∈ ∗R, τ = min{t : Bt = [a
√
ν]√
ν
, t ∈

Tν,κ}, then the process Mt∧τ is a nonstandard martingale. In particular
the process Mα,t∧τ is a nonstandard martingale. The process Mα,t∧τ ,

for α =
√

2iλ, λ ∈ R>0, τ is a stopping time for the barrier [a
√
ν]√
ν

, with

a ∈ R>0, is a quasi-nonstandard martingale. The process Mα,t∧τ , for

α =
√

2iλ, λ ∈ R<0, τ is a stopping time for the barrier −[a
√
ν]√

ν
, with

a ∈ R>0, is a quasi-nonstandard martingale.

Proof. For the first claim, the proof for the discrete case can be found in
[9]. It is sufficient to show that the event (τ ≤ i

ν
) ∈ F i

ν
. This follows as;

(τ ≤ i
ν
) iff

∧
ωi

∑i
j=1(ωi)j = [a

√
ν]

where ωi is a sequence of 0’s nd 1’s of length i. The disjunction is a
∗-finite union of the basic sets Uki , so belongs to the ∗-σ algebra F i

ν
.

The last claim is a consequence of this lemma and lemma 0.15.

For the second claim..... �

Lemma 0.17. We have that, for λ ∈ R>0, a ∈ R>0;

E(Mα,τ ) ' 1, E(exp∗(−λτ)) ' ∗exp(−
√

2λ[aν]√
ν

)

Proof. As Mα,t∧τ is a quasi nonstandard martingale, we have that;

E(Mα,t∧τ ) ' E(Mα,0∧τ ) = E(Mα,0) = 1 (∗)

...........................
Let κ1 = ν

4
3 < ν

3
2 < κ, so that κ1

ν
3
2

= 1

ν
1
6
' 0, and (∗) goes through '.
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By Lemma 0.18, we have that;

P (τ ≥ κ1
ν

) ≤ A[a
√
ν]√

[
κ1
ν
ν]

= A[a
√
ν]√

[κ1]

= A[a
√
ν]√

[ν
4
3 ]

' 0

We have that;

Mα,τ |(τ≥κ1
ν

)c = Mα,
κ1
ν
∧τ |(τ≥κ1

ν
)c

so that asMα,t∧τ is bounded by ∗exp(α [a
√
ν]√
ν

), we have thatE(Mα,τ ) '
1, with;

|E(Mα,τ )− 1| ≤ 2A[a
√
ν]√

[ν
4
3 ]

∗
exp(α [a

√
ν]√
ν

)

.............
�

Lemma 0.18. We have that, for κ ≥ max(2, 3a, a2);

P (Ta ≥ κ) ≤ Ca√
κ

where Ca = 8ae
√

6√
π

, for a random walk, starting at 0, with steps 1 and

−1, and barrier a > 0, stopping time Ta;

For nonstandard Brownian motion Bt, with barrier [a
√
ν]√
ν

, a ∈ R,

and stopping time τ , we have that there exists A ∈ R, with;

P (τ ≥ [tν]
ν

) ≤ A [a
√
ν]√

[tν]

for [tν] ≥ max(2, 3[a
√
ν], [a

√
ν]2). In particular, for t ≥ a2 +1, when

t ∈ R, we have that;

P (τ ≥ [tν]
ν

) ≤ 2
√

2Aa√
t

.

Proof. We have that, see [3];
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P (Ta = n) = a
n
Cn
n−a
2

1
2n

for n ≥ a > 0, n− a even.

It follows that, using Stirling’s approximation, for κ > max(2, 3a, a2);

P (Ta ≥ κ) =
∑∞

n=κ,n−a even
a
n
Cn
n−a
2

1
2n

=
∑∞

n=κ,n−a even
a
n

n!
n−a
2

!n+a
2

!
1

2n

≤
∑∞

n=κ,n−a even
a
n

√
2πn(n

e
)ne

1
12n

√
2π(n−a

2
)(n−a

2e
)
n−a
2
√

2π(n+a
2

)(n+a
2e

)
n+a
2 e

1

12(n−a2 )+1 e

1

12(n+a2 )+1

1
2n

≤
∑∞

n=κ,n−a even
4a
n

√
2πn(n

e
)n√

2π(n−a
2

)(n−a
2e

)
n−a
2
√

2π(n+a
2

)(n+a
2e

)
n+a
2

1
2n

≤
∑∞

n=κ,n−a even
4a
n

√
3√

π
√
n

(n
e

)n

(n−a
2e

)
n−a
2 (n+a

2e
)
n+a
2

1
2n

≤
∑∞

n=κ,n−a even
4a
√

3√
πn
√
n

(n
e

)n

(n−a
2e

)
n
2 (n+a

2e
)
n
2

1

(n−a
2e

)
−a
2 (n+a

2e
)
a
2

1
2n

=
∑∞

n=κ,n−a even
4a
√

3√
πn
√
n

(n
e

)n

(n−a
2e

)
n
2 (n+a

2e
)
n
2

(n−a
n+a

)
a
2

1
2n

≤
∑∞

n=κ,n−a even
4a
√

3√
πn
√
n

(n
e

)n

(n−a
2e

)
n
2 (n+a

2e
)
n
2

1
2n

=
∑∞

n=κ,n−a even
4a
√

3√
πn
√
n
( 4n2

n2−a2 )
n
2

1
2n

=
∑∞

n=κ,n−a even
4a
√

3√
πn
√
n
( n2

n2−a2 )
n
2

=
∑∞

n=κ,n−a even
4a
√

3√
πn
√
n
(1 + a2

n2−a2 )
n
2

≤
∑∞

n=κ,n−a even
4a
√

3√
πn
√
n
(1 + 2a2

n2 )
n
2

=
∑∞

n=κ,n−a even
4a
√

3√
πn
√
n
((1 + 2a2

n2 )n
2
)

1
2n

≤
∑∞

n=κ,n−a even
4a
√

3√
πn
√
n
e
a2

n

≤
∑∞

n=κ,n−a even
4ae
√

3√
πn
√
n

≤ 4ae
√

3√
π

∫∞
κ−1

dx
x
√
x

= 4ae
√

3√
π

[−2

x
1
2

]∞κ−1
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= 4ae
√

3√
π

2

(κ−1)
1
2

≤ 4ae
√

3√
π

2
√

2

κ
1
2

≤ Ca

κ
1
2

where Ca = 8ae
√

6√
π

For the next claim, just observe that the above proof is uniform in
a random walk with a barrier at [a

√
n] for n ∈ N , so by transfer, we

can obtain the result for infinite ν ∈ ∗N , rescaling the walk by a factor

of 1√
ν

and moving the barrier to [a
√
ν]√
ν

, the constant A being 8e
√

6√
π

. The

last claim is just a simple exercise in nonstandard arithmetic, noting
that for t ≥ a2 +1, the max condition is automatically satisfied for [tν].

�
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