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Abstract.

Definition 0.1. We call (E0, B0), a solution to Maxwell’s equation in
vacuum, good, if (E + E0) × B0 = 0, for some fundamental solution
(E, 0) corresponding to {ρ, J} satisfying the conditions from Lemma
4.1 in [12], with {ρ, J} not vacuum and {ρ, J} ⊂ S(R3 × R>0). We

call (E0, B0) static if ∂E0

∂t
= ∂B0

∂t
= 0.

Definition 0.2. We say that a field C(x, t) is simple if all the com-
ponents ci, 1 ≤ i ≤ 3 are continuously fourth differentiable in the
coordinates (x1, x2, x3) and continuously twice differentiable in the co-
ordinate t, such that the partial derivatives all belong to L1(R3) for
fixed t ≥ 0, and, the L1-norm of the partial derivatives is uniformly
bounded for 0 ≤ t < 1. We also require that the components ci are in
L2(R3) and, for some a > 0, ea|x|ci(x, t) ∈ L2(R3).

Definition 0.3. We say that a real pair (E,B), satisfying Maxwell’s
equations for some {ρ, J}, satisfies the strong no radiation condition if;

P (r, t) =
∫
S(0,r)

(Et ×Bt) � dS = 0

for all r > 0 and t ∈ R. We say that it satisfies the no radiation
condition if;

limr→∞P (r, t) = 0

for all t ∈ R

Lemma 0.4. For any {ρ, J} satisfying the conditions from Lemma
4.1 in [12], if (E, 0) denotes a fundamental solution, then a solution
{E + E0, B0}, with (ρ, J, E + E0, B0) satisfying Maxwell’s equations,
satisfies the no radiating condition, if E,E0 and B0 are simple and

{(E + E0)0,
∂(E+E0)

∂t
|0, (B0)0,

∂B0

∂t
|0} ⊂ S(R3), (∗). Moreover, we have
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the explicit representation;

(E + E0)(x, t) = 1

(2π)
3
2

∫
R3(b(k)eikct + d(k)e−ikct)eik�xdk

B0(x, t) = 1

(2π)
3
2

∫
R3(b1(l)e

ilct + d1(l)e
−ilct)eil�xdl

where {b, d, b1, d1} ⊂ S(R3).

Proof. By Lemma 4.1 in [12], and the argument in [6], we have that;

�2E = 0, B = 0

�2E0 = 0, �2B0 = 0 (∗)

Then, as B = 0;

limr→∞P (r) = limr→∞
∫
S(r)

((E + E0)× (B +B0))dS(r)

= limr→∞
∫
S(r)

(E ×B)dS(r) + limr→∞
∫
S(r)

((E + E0)×B0)dS(r)

+limr→∞
∫
S(r)

(E0 ×B)dS(r)

= limr→∞
∫
S(r)

((E + E0)×B0)dS(r)

and, by (∗), we have that �2(E + E0) = 0 as well, (†).

Assume that E,E0 and B0 are simple, then, E+E0 and B0 are sim-
ple, and we have that;

52(E − E0)− 1
c2
∂2(E−E0)

∂t2
= 0

so that, applying the three dimensional Fourier transform F to the
components, and using integration by parts, we have that;

F(52(E − E0))(k, t))− 1
c2
∂2(F(E−E0))(k,t)

∂t2

= −k2F(E − E0)(k, t)− 1
c2
∂2(F(E−E0))(k,t)

∂t2

= −k2a(k, t)− 1
c2
∂2a(k,t)
∂t2
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= 0

where k2 = k21 + k22 + k23, a = F(E −E0). For fixed k, we obtain the
ordinary differential equation;

d2ak
dt2

= −c2k2ak

so that;

ak(t) = C0(k)eikct +D0(k)e−ikct

with;

ak(0) = C0(k) +D0(k)

a′
k
(0) = ikcC0(k)− ikcD0(k) (††)

and, solving the simultaneous equations (††), we obtain that;

C0(k) = 1
2
(ak(0) + 1

ikc
a′
k
(0))

D0(k) = 1
2
(ak(0)− 1

ikc
a′
k
(0))

and;

F(E − E0)(k, t) = a(k, t)

= 1
2
(ak(0) + 1

ikc
a′
k
(0))eikct + 1

2
(ak(0)− 1

ikc
a′
k
(0))e−ikct

= b(k)eikct + d(k)e−ikct

where;

b(k) = 1
2
(F((E + E0)|(x,0))|(k,0) + 1

ikc
F(∂(E+E0)

∂t
|(x,0))|(k,0))

d(k) = 1
2
(F((E + E0)|(x,0))|(k,0) − 1

ikc
F(∂(E+E0)

∂t
|(x,0))|(k,0))

Similarly;

F(B0)(l, t) = a1(l, t) = b1(l)e
ilct + d1(l)e

−ilct
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where;

b1(l) = 1
2
(F((B0)|(x,0))|(l,0) + 1

ilc
F(∂(B0)

∂t
|(x,0))|(l,0))

d+ 1(l) = 1
2
(F((B0)|(x,0))|(l,0) − 1

ilc
F(∂(B0)

∂t
|(x,0))|(l,0))

and l2 = l21+l
2
2+l

2
3. Using the fact that {b(k)eikct+d(k)e−ikct, b1(l)e

ilct+
d1(l)e

−ilct} ⊂ S(R3) for t ∈ R, we can apply the inversion theorem, to
obtain;

(E + E0)(x, t) = 1

(2π)
3
2

∫
R3(b(k)eikct + d(k)e−ikct)eik�xdk

B0(x, t) = 1

(2π)
3
2

∫
R3(b1(l)e

ilct + d1(l)e
−ilct)eil�xdl

As we noted above, {beikct + de−ikct, b1e
ilct + d1e

−ilct} ⊂ S(R3) for
t ∈ R, so that, by the fact that the Fourier transform preserves the
Schwartz class, see [17], we must have that {(E+E0)t, (B0)t} ⊂ S(R3)
for t ∈ R. Then, for n ≥ 3 and the definition of the Schwartz class;

|P (r, t)| = |
∫
S(r)

((E + E0)t × (B0)t)dS|

≤
∫
S(r)
|((E + E0)t × (B0)t) � n̂|dS(r)|

≤
∫
S(r)
|(E + E0)t||(B0)t|dS(r)

≤ 4πr2C1,n,t

rn
D1,n,t

rn

= 4πC1,n,tD1,n,t

r2n−2

so clearly;

limr→∞P (r, t) = 0

�

Definition 0.5. Fix a real propagation vector k0 6= 0 and a real vector
d0 with k0 � d0 = 0. Let;

E0(x, t) = d0e
−ik0cteik0�x

B0(x, t) = d1e
−ik0cteik0�x
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where d1 = 1
k0c

(k0 × d0). Then, see [6], the pair (E0, B0) solves

Maxwell’s equation in vacuum, and so does (Re(E0), Re(B0)). We
call a real pair (E1, B1) a monochromatic solution if it of the form
(Re(E0), Re(B0)) as above, or (E1, B1) are constants.

Lemma 0.6. For a monochromatic solution to Maxwell’s equation in
vacuum, we have that P (r, t) = O(r). In particularly, the pair (E1, B1)
doesn’t satisfy the no radiation condition unless E1 and B1 are con-
stants. Any constant real solution (E1, B1) satisfies the strong no ra-
diation and no radiation conditions.

Proof. We have, for a monochromatic solution, with k0 6= 0, that;

Re(E0)(x, t) = d0
2

(e−ik0cteik0�x + eik0cte−ik0�x)

Re(B0)(x, t) = d1
2

(e−ik0cteik0�x + eik0cte−ik0�x)

so that;

Re(E0)×Re(B0) = (d0×d
′
0)

4
(e−2ik0cte2ik0�x + e2ik0cte−2ik0�x + 2)

By the divergence theorem, using [3] and [8], we have that;

P (r, t) =
∫
S(0,r)

(Re(E0)×Re(B0))dS(r)

=
∫
B(0,r)

5 � ( (d0×d1)
4

(e−2ik0cte2ik0�x + e2ik0cte−2ik0�x + 2))dB(r)

=
∫
B(0,r)

(d0×d1)
4

� 2ik0(e
−2ik0cte2ik0�x − e2ik0cte−2ik0�x)dB(r)

= (d0×d1)
4

� 2ik0(e
−2ik0ct − e2ik0ct)( 2πr

|2k0|
)
3
2J 3

2
(r|2k0|)

= (d0×d1)
2

� ik0(e−2ik0ct − e2ik0ct)( πr
|k0|

)
3
2J 3

2
(2r|k0|)

= (d0×d1)
2

� ik0(e−2ik0ct − e2ik0ct)( πr
|k0|

)
3
2 ( 1

πr|k0|
)
1
2 (P1(

1
2r|k0|

)sin(2r|k0|)

−Q0(
1

2r|k0|
)cos(2r|k0|))

= (d0×d1)
2

� ik0(e−2ik0ct − e2ik0ct)( πr
|k0|

)
3
2 ( 1

πr|k0|
)
1
2 (( P1,1

2r|k0|
)sin(2r|k0|)

−Q0,0cos(2r|k0|))
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= (d0×d1)
2

� ik0(e−2ik0ct − e2ik0ct)( π
|k0|

)
3
2 ( 1

π|k0|
)
1
2 (( P1,1

2|k0|
)sin(2r|k0|)

−Q0,0rcos(2r|k0|))

Clearly, P (r, t) = O(r) unless d0 × d1 � k0 = 0, in which case d0 = 0,
which gives a constant solution. The last claim is clear by the diver-
gence theorem and the fact that 5 � (E1 ×B1) = 0. �

Lemma 0.7. For any {ρ, J} satisfying the conditions from Lemma 4.1
in [12], if (E, 0) denotes a fundamental solution, then a solution {E +
E0, B0}, with (ρ, J, E + E0, B0) satisfying Maxwell’s equations such

that {E,E0, B0} are simple and {(E +E0)0,
∂(E+E0)

∂t
|0, (B0)0,

∂B0

∂t
|0} ⊂

S(R3), satisfies the strong no-radiation condition, using the integral
representation in Lemma 0.4, when;

b(k, t)× b1(l, t) = b(k, t)× d1(l, t)

= d(k, t)× b1(l, t)

= d(k, t)× d1(l, t)

= 0, (†)

or when B0 is parallel to E+E0, in the sense that B0 = λ(E+E0).
In either of these cases, the no radiation condition holds as well.

If {E,E0, B0} are simple and the components of {E0, B0} are non
oscillatory, then {E + E0, B0} satisfies the no-radiation condition.

Proof. Using the result of Lemma 0.4, we can use the integral repre-
sentations of E + E0 and B0 to compute;

((E + E0)×B0)(x, t)

= 1
(2π)3

∫
R6(b(k)× b1(l))ei(k+l)�xei(k+l)ctdkdl

+ 1
(2π)3

∫
R6(b(k)× d1(l))ei(k+l)�xei(k−l)ctdkdl

+ 1
(2π)3

∫
R6(d(k)× b1(l))ei(k+l)�xei(l−k)ctdkdl
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+ 1
(2π)3

∫
R6(d(k)× d1(l))ei(k+l)�xe−i(k+l)ctdkdl, (††)

Clearly, if (†) is satisfied, then we obtain that (E + E0) × B0 = 0,
so that 5 � ((E + E0) × B0) = 0, and using the divergence theorem,
P (r, t) = 0 for all r > 0 and t ∈ R, and limr→∞P (r, t) = 0, for all
t ∈ R, so that the strong no radiation and no radiation conditions hold.
Similarly, if B0 is parallel to E +E0, then (E +E0)×B0 = 0, so that
((E + E0), B0) satisfies the strong no radiation and the no radiation
conditions again.

If {E,E0, B0} are simple, then, we have that;

F(( ∂2

∂x21
+ ∂2

∂x22
+ ∂2

∂x23
)2(E+E0))(k, t) = (k21 + k22 + k23)2F(E+E0)(k, t)

so that, for |k| ≥ 1, 1 ≤ i ≤ 3;

|F(E + E0)i(k, t)| ≤ 1
|k|4

∫
R3 |( ∂2

∂x21
+ ∂2

∂x22
+ ∂2

∂x23
)(E + E0)i|dx

≤ Ci,t
|k|4

and, similarly, for |k| > 1, 1 ≤ i ≤ 3;

|F(B0)i(k, t)| ≤ Di,t
|k|4

where {Ci,t, Di,t} ⊂ R≥0

Similarly;

|F(E + E0)(k, t)|

≤
∑3

i=1 |F(E + E0)i(k, t)|

≤ Ct
|k|4

where Ct =
∑3

i=1Ci,t

and |F(B0)(k, t)|

≤ Dt
|k|4 (])
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We have that F(E+E0)(k, t) and F(B0)(k, t) are bounded onB(0, 1),
as, for |k| ≤ 1;

|F(E + E0)(k, t)| = | 1

(2π)
3
2

∫
R3(E + E0)(x, t)e

−ik�xdx|

≤ 1
2π

3
2
∑3

i=1

∫
R3 |(E + E0)i(x, t)|dx

≤ 1
2π

3
2
∑3

i=1Di,t

where Di,t ∈ R>0.

It follows that, using polar coordinates, with k1 = Rsin(θ)cos(φ),
k2 = Rsin(θ)sin(φ), k3 = Rcos(θ), and using (])
;

|
∫
R3 F(E + E0)i,tdk|

= |
∫
B(0,1)

F(E + E0)i,tdk +
∫
R3\B(0,1)

F(E + E0)i,tdk|

≤ Ci,t,1 + |
∫
R>1

∫ π
0

∫ π
−π F(E + E0)i,t(R, θ, φ)R2sin(θ)dRdθdφ

≤ Ci,t,1 +
∫
R>1

∫ π
0

∫ π
−π R

2Ci,t
R4 dR

≤ Ci,t,1 + 2π2Ci,t
∫∞
1

1
R2dR

= Ci,t,1 + 2π2Ci,t

so that, for 1 ≤ i ≤ 3, F(E + E0)i,t ∈ L1(R3), and, similarly,
F(B0)i,t ∈ L1(R3). A similar argument shows that for 1 ≤ i ≤ 3,

F(∂(E+E0)
∂t

)i,t ∈ L1(R3), and F(∂B0

∂t
)i,t ∈ L1(R3). We have, using polar

coordinates, that;

|
∫
B(0,1)

1
ikc
F(∂E+E0)i

∂t
|x,0)(k)dk|

≤
∫ 1

0

∫ π
0

∫ π
−π |F(∂E+E0)i

∂t
|x,0)(R, θ, φ)| 1

R
R2dRdθp.hi

= 2π2

2
= π2

so that the components, 1
ikc
F(∂(E+E0)i

∂t
)|x,0)(k) for 1 ≤ i ≤ 3, are

integrable on B(0, 1). Similarly, for 1 ≤ i ≤ 3, the components
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1
ilc
F(∂(B0)i

∂t
)|x,0)(l) are integrable on B(0, 1). Therefore, so are the com-

ponents of {b, b1, d, d1}, (B).
Applying the result (]), we obtain that, for |k| > 1;

|b(k) + d(k)| ≤ C0

|k|4

|eikctb(k) + eikctd(k)| ≤ C0

|k|4

|eikctb(k) + e−ikctd(k)| ≤ Ct
|k|4

|(eikct − e−ikct)d(k)|

= 2|sin(kct)d(k)|

≤ C0+Ct
|k|4

so that at time t = π
2kc

, we have that;

|d(k)| ≤
C0+C π

2kc

|k|4

≤ C0+E
|k|4

where E ∈ R>0 is the uniform bound for t ∈ [0, 1], and, similarly,
for |k| > 1;

max(|b|, |b1|, |d|, |d1|)(k) ≤ F
|k|4 (A)

for some F ∈ R>0. In particularly, combining (A), (B), we have that

the components of {b, b1, d, d1} belong to L1(R
3
) and we can apply the

calculation in (††).
We consider one term, by the divergence theorem, and using [8], we

have that;∫
S(0,r)

(b(k)× d1(l))ei(k+l)�xei(k−l)ctdS(r)

=
∫
B(0,r)

5 � ((b(k)× d1(l))ei(k+l)�xei(k−l)ct)dB(r)

=
∫
B(0,r)

((b(k)× d1(l)) � i(k + l))ei(k+l)�xei(k−l)ctdB(r)

= ((b(k)× d1(l)) � i(k + l))( 2πr
|k+l|)

3
2J 3

2
(r|k + l|)ei(k−l)ct
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= ((b(k)× d1(l)) � i(k + l))( 2πr
|k+l|)

3
2 ( 2

π(r|k+l|))
1
2 (P1(

1
r|k+l|)sin(r|k + l|)

−Q0(
1

r|k+l|)cos(r|k + l|))ei(k−l)ct

= ((b(k)× d1(l)) � i(k + l))( 2πr
|k+l|)

3
2 ( 2

π(r|k+l|))
1
2
P1,1

r|k+l|sin(r|k + l|)

−Q0,0cos(r|k + l|))ei(k−l)ct

= ((b(k)× d1(l)) � i(k + l))( 2π
|k+l|)

3
2 ( 2

π(|k+l|))
1
2
P1,1

|k+l|sin(r|k + l|)ei(k−l)ct

−((b(k)×d1(l))�i(k+l))( 2π
|k+l|)

3
2 ( 2

π(|k+l|))
1
2Q0,0rcos(r|k+l|))ei(k−l)ct (∗)

By (∗), we have that;

limr→∞P (r) = 1
(2π)3

limr→∞
∫
R6((b(k)×d1(l))�i(k+l))( 2π

|k+l|)
3
2 ( 2

π(|k+l|))
1
2
P1,1

|k+l|

sin(r|k + l|)ei(k−l)ctdkdl

− 1
(2π)3

limr→∞
∫
R6((b(k)× d1(l)) � i(k + l))( 2π

|k+l|)
3
2 ( 2

π(|k+l|))
1
2Q0,0

rcos(r|k + l|))ei(k−l)ctdkdl

Let g(k, l, t) = 1
(2π)3

(b(k)×d1(l))�i(k+l))( 2π
|k+l|)

3
2 ( 2

π(|k+l|))
1
2
P1,1

|k+l|e
i(k−l)ct

and h(k, l, t) = − 1
(2π)3

(b(k)×d1(l))�i(k+l)( 2π
|k+l|)

3
2 ( 2

π(|k+l|))
1
2Q0,0e

i(k−l)ct

(∗ ∗ ∗)

We want to compute;

= limr→∞
∫
R6 g(k, l, t)dksin(r|k + l|)dl

+limr→∞r
∫
R6 h(k, l, t)dkcos(r|k + l|)dl

and show it is zero. Then limr→∞P (r, t) will be this limit plus 3
other similar terms going to zero, which gives the result.

From (∗ ∗ ∗), we have that;

g(k, l, t) = iP1,1

2π2 (b(k)× d′(l)) � u(k,l)|k+l|2 e
i(k−l)ct
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where u(k, l) is a unit vector, so that, using Fubini’s Theorem, and

a change of variables k
′
= k + l, we have;∫

R6(g(k, l, t)ei(r|k+l|)dkdl (P )

=
∫
R6

iP1,1

2π2 (b(k)× d′(l)) � u(k,l)|k+l|2 e
i(k−l)ctei(r|k+l|)dkdl

=
∫
R6

φ(k,l,t)

|k+l|2 e
i(r|k+l|)dkdl

=
∫
R3(

∫
R3

φ(k,l,t)

|k+l|2 e
i(r|k+l|)dk)dl

=
∫
R3(

∫
R3

φ(k
′−l,l,t)
|k′|2

ei(r|k
′|)dk

′
)dl

=
∫
R3(

∫
R3

φ(k−l,l,t)
|k|2 ei(r|k|)dk)dl

where φ(k, l, t) = iP1,1

2π2 (b(k)× d′(l)) � u(k, l)ei(k−l)ct

It follows, switching to polars coordinates;

k1 = Rsin(θ)cos(φ), k2 = Rsin(θ)sin(φ), k3 = Rcos(θ)

that;∫
R6(g(k, l, t)ei(r|k+l|)dkdldk

=
∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π

q(R,θ,φ,t,l)
R2 eirRR2sin(θ)dRdθ)dl

=
∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π q(R, θ, φ, t, l)e

irRsin(θ)dRdθ)dl (2)

where q(R, θ, φ, t, l) = φ(k − l, l, t).

From (∗ ∗ ∗) again, we have that;

h(k, l, t) = −iQ0,0

2π2 (b(k)× d′(l)) � u(k,l)|k+l| e
i(k−l)ct

where u(k, l) is a unit vector, so that, using Fubini’s Theorem, and

a change of variables k
′
= k + l, we have;∫

R6(h(k, l, t)ei(r|k+l|)dkdl (P ′)
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=
∫
R6

−iQ0,0

2π2 (b(k)× d′(l)) � u(k,l)|k+l| e
i(k−l)ctei(r|k+l|)dkdl

=
∫
R6

θ(k,l,t)

|k+l| e
i(r|k+l|)dkdl

=
∫
R3(

∫
R3

θ(k,l,t)

|k+l| e
i(r|k+l|)dk)dl

=
∫
R3(

∫
R3

θ(k
′−l,l,t)
|k′|

ei(r|k
′|)dk

′
)dl

=
∫
R3(

∫
R3

θ(k−l,l,t)
|k| ei(r|k|)dk)dl

where θ(k, l, t) = −iQ0,0

2π2 (b(k)× d′(l)) � u(k, l)ei(k−l)ct

It follows, switching to polars coordinates;

k1 = Rsin(θ)cos(φ), k2 = Rsin(θ)sin(φ), k3 = Rcos(θ)

that;∫
R6(h(k, l, t)ei(r|k+l|)dkdl

=
∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π

p(R,θ,φ,t,l)
R

eirRR2sin(θ)dRdθ)dl

=
∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π p(R, θ, φ, t, l)e

irRRsin(θ)dRdθ)dl (3)

where p(R, θ, φ, t, l) = θ(k − l, l, t).

We follow through the calculation for (P ), (P ′) but we also need the
corresponding results for;∫

R6(g(k, l, t)e−i(r|k+l|)dkdl (P ′′)∫
R6(h(k, l, t)e−i(r|k+l|)dkdl (P ′′′)

and we can use the fact that;

sin(r|k + l|) = 1
2i

(ei(r|k+l|) − e−i(r|k+l|))

cos(r|k + l|) = 1
2
(ei(r|k+l|) + e−i(r|k+l|))

We leave the details to the reader. Write b(k) = b1(k) + ib2(k),
d1(l) = d1,1(l) + id1,2(l)
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where;

b1(k) = 1
2
Re(F((E + E0)|(x,0))|(k,0)) + 1

2kc
Im(F(∂(E+E0)

∂t
|(x,0))|(k,0))

b2(k) = 1
2
Im(F((E + E0)|(x,0))|(k,0))− 1

2kc
Re(F(∂(E+E0)

∂t
|(x,0))|(k,0))

d
′
1(l) = 1

2
Re(F((B0)|(x,0))|(l,0))− 1

2lc
Im(F(∂(B0)

∂t
|(x,0))|(l,0))

d
′
2(l) = 1

2
Im(F((B0)|(x,0))|(l,0)) + 1

2lc
Re(F(∂(B0)

∂t
|(x,0))|(l,0))

We have that;

q(R, θ, φ, t, l)

= iP1,1

2π2 [(b1,l(R, θ, φ)× d1,1(l)− b2,l(R, θ, φ)× d1,2(l))

�ul(R, θ, φ, l)]µ(R, θ, φ, l, t)

−P1,1

2π2 [(b2,l(R, θ, φ)× d1,1(l) + b1,l(R, θ, φ)× d1,2(l))

�ul(R, θ, φ, l)]µ(R, θ, φ, l, t) (1)

and, similarly;

p(R, θ, φ, t, l)

= −iQ0,0

2π2 [(b1,l(R, θ, φ)× d1,1(l)− b2,l(R, θ, φ)× d1,2(l))

�ul(R, θ, φ, l)]µ(R, θ, φ, l, t)

+Q0,0

2π2 [(b2,l(R, θ, φ)× d1,1(l) + b1,l(R, θ, φ)× d1,2(l))

�ul(R, θ, φ, l)]µ(R, θ, φ, l, t) (4)

where b1,l(k) = b1(k − l), b2,l(k) = b2(k − l), ul(k, l) = u(k − l, l),

µ(k, l, t) = ei(|k−l|−|l|)ct

and, from (1), (2), we have that;∫
R6 g(k, l, t)ei(r|k+l|)dkdl
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=
∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π

iP1,1

2π2 [(b1,l(R, θ, φ)× d1,1(l)− b2,l(R, θ, φ)

×d1,2(l)) � ul(R, θ, φ, l)]µ(R, θ, φ, l, t) − P1,1

2π2 [(b2,l(R, θ, φ) × d1,1(l) +

b1,l(R, θ, φ)

×d1,2(l)) � ul(R, θ, φ, l)]µ(R, θ, φ, l, t)eirRsin(θ)dRdθdφ)dl (E)

and, from (3), (4);∫
R6 h(k, l, t)ei(r|k+l|)dkdl

=
∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π

−iQ0,0

2π2 [(b1,l(R, θ, φ)× d1,1(l)− b2,l(R, θ, φ)

×d1,2(l)) � ul(R, θ, φ, l)]µ(R, θ, φ, l, t) + Q0,0

2π2 [(b2,l(R, θ, φ) × d1,1(l) +

b1,l(R, θ, φ)

×d1,2(l)) � ul(R, θ, φ, l)]µ(R, θ, φ, l, t)eirRRsin(θ)dRdθdφ)dl (F )

Write b1(k) = b11(k) + b12(k)
k

, d1,1(l) = d1,1,1(l) + d1,1,2(l)

l

Then;

b1,l(k) = b1(k − l) = b11(k − l) + b12(k−l)
|k−l|

and;

b1,l(R, θ, φ) = b11,l(R, θ, φ) +
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|

where b11,l(k) = b11(k − l) and b12,l(k) = b12(k − l)

Again, it is sufficient to consider the first term in (E). We have that;∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π

iP1,1

2π2 [b1,l(R, θ, φ)×d1,1(l))�ul(R, θ, φ, l)]µ(R, θ, φ, l, t)eirRsin(θ)dRdθdφ)dl

=
∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π

iP1,1

2π2 [(b11,l(R, θ, φ)+
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|)

×(d1,1,1(l) + d1,1,2(l)

l
)] � ul(R, θ, φ, l)]µ(R, θ, φ, l, t)eirRsin(θ)dRdθdφ)dl

Similarly, we consider the first term in (F ), and, we have that;
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R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π

−iQ0,0

2π2 [(b1,l(R, θ, φ)×d1,1(l))�ul(R, θ, φ, l)]µ(R, θ, φ, l, t)eirRRsin(θ)

dRdθdφ)dl

=
∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π

−iQ0,0

2π2 [(b11,l(R, θ, φ)+
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|)

×(d1,1,1(l)+
d1,1,2(l)

l
)]�ul(R, θ, φ, l)]µ(R, θ, φ, l, t)eirRRsin(θ)dRdθdφ)dl

From (]), we have that the real and imaginary components of;

{F((B0)|(x,0))|(l,0),F((E+E0)|(x,0))|(l,0),F((∂B0

∂t
|(x,0))|(l,0),F(∂(E+E0)

∂t
)|(x,0))|(l,0)}

decay faster than 1
|l|4 , but strengthening the definition of simple to

infinitely differentiable if necessary, and adapting the proof, we can as-
sume the decay rate is faster than 1

|l|6 . It follows that the components of;

{b11,l(k)× d1,1,1(l),
b11,l(k)×d1,1,2(l)

l
,
b12,l(k)×d1,1,1(l)

|k−l| ,
b12,l(k)×d1,1,2(l)

|k−l|l }

decay faster than 1
|k|6|l|6|k−l| , and, as ul(k, l) is a unit vector, |ν(k, l, t)| =

|µ(R, θ, φ, l, t)| = 1, |sin(θ(k))| ≤ 1, so do the components of;

{[(b11,l(k)×d1,1,1(l))�ul(k, l)]ν(k, l, t)sin(θ(k)), [(
b11,l(k)×d1,1,2(l)

l
)�ul(k, l))]ν(k, l, t)sin(θ(k)),

[(
b12,l(k)×d1,1,1(l)

|k−l| )�ul(k, l)]ν(k, l, t)sin(θ(k)), [(
b12,l(k)×d1,1,2(l)

|k−l|l )�ul(k, l)]ν(k, l, t)sin(θ(k))}

Noting that, for C ∈ R>0, D ∈ R>0 and fixed l ∈ R3, l 6= 0, without
loss of generality, assuming that D ≤ |l|?;

|
∫
|k|>D

C
|k|6||l|6|k−l| |dk

= |
∫
D<|k|<|l|+1

C
|k|6||l|6|k−l| |dk +

∫
D>|l|+1

C
|k|6||l|6|k−l| |dk

≤ |
∫
D<|k|<|l|+1

C
|k|6||l|6|k−l|dk|+ |

∫
|k|>|l|+1>D

C
|k|6||l|6|k−l|dk|

≤ C
D6|l|6

∫
Ann(D,|l|+1)

1
|k−l|dk + 1

|l|6
∫
|k|>|l|+1

C
|k|6dk

= C
D6|l|6

∫
Annl(D,|l|+1)

1
|k|dk + 1

|l|6
∫ π
0

∫ π
−π

∫∞
|l|+1

CR2sin(θ)
R6 dRdθdφ

≤ C
D6|l|6

∫
B(0,2|l|+2D+1)

1
|k|dk + 1

|l|6
∫ π
0

∫ π
−π

∫∞
|l|+1

C
R4dRdθdφ
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≤ 2π2C
D6|l|6

∫ 2|l|+2D+1

0
R2

R
dR + 2π2C

3(|l|+1)3|l|6

≤ π2C(2|l|+2D+1)2

D6|l|6 + 2π2C
3D3|l|6

It follows, that for fixed r ∈ R>0, sufficiently large, we have that;

max(
∫
|k|>r

∫
|l>r |α(k, l, t)|dkdl,

∫
|k|>r

∫
|l>r |β(k, l, t)|dkdl)

≤
∫
|l|>r

M
|l|4r4

≤ 2π2M
r.r4

= 2π2M
r5

where M ∈ R>0, and;

α(k, l, t) = α(R, θ, φ, l, t) = iP1,1

2π2 [(b11,l(R, θ, φ)+
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|)×

(d1,1,1(l) + d1,1,2(l)

l
)] � ul(R, θ, φ, l)]µ(R, θ, φ, l, t)sin(θ)

β(k, l, t) = β(R, θ, φ, l, t) = −iQ0,0

2π2 [(b11,l(R, θ, φ)+
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|)×

(d1,1,1(l) + d1,1,2(l)

l
)] � ul(R, θ, φ, l)]µ(R, θ, φ, l, t)sin(θ)

We have that;∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π

iP1,1

2π2 [(b11,l(R, θ, φ)+
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|)

×(d1,1,1(l) + d1,1,2(l)

l
)] � ul(R, θ, φ, l)]µ(R, θ, φ, l, t)eirRsin(θ)dRdθdφ)dl

=
∫
R3

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π α(R, θ, φ, l, t)eirRdRdθdφ)dl

splits as four terms, the worst of which is;∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π

iP1,1

2π2 [
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|

×d1,1,2(l)

l
] � ul(R, θ, φ, l)]µ(R, θ, φ, l, t)eirRsin(θ)dRdθdφ)dl

=
∫
R3

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π α4(R, θ, φ, l, t)e

irRdRdθdφ)dl



SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 417

Again, fix l 6= 0, with θ 6= cos−1( l3
l
) = θ0,l and φ 6= tan−1( l2

l1
) = φ0,l.

By the results of Lemmas 0.23,0.24 and 0.18, we can assume that
the real and imaginary parts of α4(R, θ, φ, l, t) are oscillatory, then as
limR→0α4(R, θ, φ, l, t) = M ∈ R, we can apply the result of Lemmas
0.15 and 0.8, and assume that;

|
∫
R>0

α4(R, θ, φ, l, t)e
irRdR|

≤ |
∫
R>0

Re(α4)(R, θ, φ, l, t)e
irRdR|+|

∫
R>0

Im(α4)(R, θ, φ, l, t)e
irRdR|

≤ 2
r
(
nl,θ,φ,Re||Re(α4)||∞

ξRe
+

Dl,θ,φ,Re
nl,θ,φξRe

)

+2
r
(
nl,θ,φ,Im||Im(α4)||∞

ξIm
+

Dl,θ,φ,Im
nl,θ,φξIm

)

so that, for l > 1;

|
∫
R>0

α4(R, θ, φ, l, t)e
irRdR|

≤ 2
r
(4
√
3l||Re(α4)||∞

ξRe
+

C2
5
2 |
d1,1,2(l)

l
|

4
√
3lξRe

)

+2
r
(4
√
3l||Im(α4)||∞

ξIm
+

C2
5
2 |
d1,1,2(l)

l
|

4
√
3lξIm

)

≤ 2
rξ

(4
√

3l(||Re(α4)||∞ + ||Im(α4)||∞) +
C2

7
2 |
d1,1,2(l)

l
|

4
√
3l

)

≤ 2
rξ

(4
√

6l||α4||∞ +
C2

7
2 |
d1,1,2(l)

l
|

4
√
3l

)

and, similarly, for 0 < l ≤ 1;

|
∫
R>0

α4(R, θ, φ, l, t)e
irRdR|

≤ 2
rξ

(4
√

6||α4||∞ +
C2

7
2 |
d1,1,2(l)

l
|

4
√
3

) (D)

for sufficiently large r ∈ R>0, where ξRe > 0, ξIm > 0 are constants
independent of l, θ, φ, ξ = min(ξRe, ξIm) > 0, {Dl,θ,φ,Re, Dl,θ,φ,Im} are

the decay rates for the real and imaginary components of α4(R, θ, φ, l, t).
The constant ξ can be chosen independently of the parameters {θ, φ, l},
see Lemma 0.19. We have that;
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||α4||∞ = | iP1,1

2π2 [
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|×
d
′
12(l)
l

]�ul(R, θ, φ, l)sin(θ)|

≤ P1,1

2π2 |
b12,l(R,θ,φ)sin(θ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| ||
d
′
12(l)
l
|

= |P1,1

2π2

b12,l(k)

k2|k−l| ||
d
′
12(l)
l
|

where;

P1,1

2π2

b12,l(k)

k2|k−l| = P1,1

2π2

b12,l(R,θ,φ)sin(θ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|

Fix κ > 0, then, as, for fixed l 6= 0,
|b12,l(k)|
k2|k−l| ∈ L

1(R3), we can choose

θ0,l,κ1 < θ0,l < θ0,l,κ2 , φ0,l,κ1
< φ0,l < φ0,l,κ2

, such that;

|
∫
R>0

∫
θ0,l,κ1

≤θ≤θ0,l,κ2

∫
φ0,l,κ1

≤φ≤φ0,l,κ2

P1,1

2π2

|b12,l(k)|
k2|k−l| (R, θ, φ, l, t)e

irRdRdθdφ| ≤
κ′

Then;

|
∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π α4(R, θ, φ, l, t)e

irRdRdθdφ|

≤ |
∫
R>0

∫
([0,π)×[0,2π)\[φ0,l,κ1 ,φ0,l,κ2 ]×[φ0,l,κ1 ,φ0,l,κ2 ])

α4(R, θ, φ, l, t)e
irRdRdθdφ|

+|
∫
R>0

∫
θ0,l,κ1

≤θ≤θ0,l,κ2

∫
φ0,l,κ1

≤φ≤φ0,l,κ2
α4(R, θ, φ, l, t)e

irRdRdθdφ|

≤ |
∫
R>0

∫
Vl,κ1,κ2

α4(R, θ, φ, l, t)e
irRdRdθdφ|+ κ′||d

′
12(l)
l
|

≤
∫
Vl,κ1,κ2

(|
∫
R>0

α4(R, θ, φ, l, t)e
irRdR|)dθdφ+ κ′||d

′
12(l)
l
|

Using (D), it follows that, for l > 1;

|
∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π α4(R, θ, φ, l, t)e

irRdRdθdφ|

≤ 2π2 2
rξ

(4
√

6l||α4|Vl,κ1,κ2 ||∞ +
C2

7
2 | d
′
12(l)

l
|

4
√
3l

) + κ′||d
′
12(l)
l
|

≤ 4π2

rξ
(4
√
6P1,1l

2π2 |
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| |Vl,κ1,κ2 ||
d
′
12(l)
l
|+C2

7
2 | d
′
12(l)

l
|

4
√
3l

)

+κ′||d
′
12(l)
l
|
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and, for 0 < l ≤ 1;

|
∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π α4(R, θ, φ, l, t)e

irRdRdθdφ|

≤ 2π2 2
rξ

(4
√

6||α4|Vl,κ1,κ2 ||∞ +
C2

7
2 | d
′
12(l)

l
|

4
√
3

) + κ′||d
′
12(l)
l
|

≤ 4π2

rξ
(4
√
6P1,1

2π2 |
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| |Vl,κ1,κ2 ||
d
′
12(l)
l
|+C2

7
2 | d
′
12(l)

l
|

4
√
3

)

+κ′||d
′
12(l)
l
| (H)

Fix δ > 0 arbitrary, then we have that, for l > δ, sufficiently small
0 < κ < min( δ

2
, δ2);∫

R>0

∫
θ0,l,κ1

≤θ≤θ0,l,κ2

∫
φ0,l,κ1

≤φ≤φ0,l,κ2

P1,1

2π2 |
b12,l(R,θ,φ)sin(θ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| |dRdθdφ

=
∫
Wl,κ1,κ2

P1,1

2π2

|b12,l(k)|
|k−l||k|2

=
∫
(Wl,κ1,κ2

)l

P1,1

2π2

|b12(k)|
|k||k+l|2dk

≤
∫
B(0,κ)

P1,1

2π2

|b12(k)|
|k||k+l|2dk +

∫
(Wl,κ1,κ2

)l\B(0,κ)

P1,1

2π2

|b12(k)|
|k||k+l|2dk

≤ P1,1

2π2 || b12(k)|k+l|2 ||∞,B(0,κ)

∫
0<R<κ

1
R
R2|sin(θ)|dRdθdφ+P1,1

2π2

∫
(Wl,κ1,κ2

)l\B(0,κ)
|b12(k)|
|k||k+l|2dk

≤ 2P1,1

δ2π2 ||b12(k)||∞,B(0,κ)
κ2

2
+ 1

κ

P1,1

2π2

∫
(Wl,κ1,κ2

)l
| b12(k)|k+l|2 )|dk

= 2P1,1

δ2π2 ||b12(k)||∞,B(0,κ)
κ2

2
+ 1
κ

P1,1

2π2

∫
(Wl,κ1,κ2

)
| b12,l(R,θ,φ)

R2 |R2sin(θ)dRdθdφ

≤ 2P1,1

δ2π2 ||b12(k)||∞,B(0,κ)
κ2

2
+ 1
κ

P1,1

2π2 |θ0,l,κ2−θ0,l,κ1||φ0,l,κ2
−φ0,l,κ2

|S1(1)

∫
R>0
|b12,l(R)|dR

≤ 2P1,1

δ2π2 ||b12(k)||∞,B(0,κ)
κ2

2
+ 1

κ

P1,1

2π2 |θ0,l,κ2 − θ0,l,κ1||φ0,l,κ2
− φ0,l,κ2

|S1(1)K

≤ 2P1,1

δ2π2 ||b12(k)||∞,B(0,κ)
κ2

2
+ P1,1

2π2 κ

≤ 2P1,1

π2 ||b12(k)||∞,B(0,κ)
δ2

2
+ P1,1

2π2 κ = κ′ (M)

for |θ0,l,κ2 − θ0,l,κ1| = |φ0,l,κ2
− φ0,l,κ1

|S1(1), |θ0,l,κ2 − θ0,l,κ1| ≤
κ√
K

(G)

where;
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Wl,κ1,κ2
= ([φ0,l,κ1

, φ0,l,κ2
]× [φ0,l,κ1

, φ0,l,κ2
]×R>0)

(Wl,κ1,κ2
)l = {k : k + l ∈ Wl,κ1,κ2

}

and, we can assume that |b12,l(R)| is independent of {θ, φ}, with

||b12,l(R)||L1(R>0) ≤ K, independently of l, due to the decay.

In particularly, choosing θ0,l,κ2 = θ0,l + κ
2
√
K

, θ0,l,κ1 = θ0,l − κ
2
√
K

,

φ0,l,κ2
= φ0,l + κ

2
√
K

, φ0,l,κ1
= φ0,l − κ

2
√
K

, we have that (G) holds and

d(l, Vl,κ1,κ2) ≥ lsin( κ
2
√
K

) ≥ lκ
4
√
K

, for sufficiently small κ. We then have

that;

| b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| |Vl,κ1,κ2 | ≤
4
√
K

lκ
||b12,l(R, θ, φ)||∞ = 4

√
KD
lκ

where D ∈ R>0, independent of l. From (H), (M), we obtain that,
for l > 1;

|
∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π α4(R, θ, φ, l, t)e

irRdRdθdφ|

≤ 4π2

rξ
(4
√
6P1,1l

2π2 (4
√
KD
lκ

)|d
′
12(l)
l
|+ C2

7
2 | d
′
12(l)

l
|

4
√
3l

)

+κ′||d
′
12(l)
l
| (l > δ)

and, for 0 < l ≤ 1;

|
∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π α4(R, θ, φ, l, t)e

irRdRdθdφ|

≤ 4π2

rξ
(4
√
6P1,1

2π2 (4
√
KD
lκ

)|d
′
12(l)
l
|+ C2

7
2 | d
′
12(l)

l
|

4
√
3

)

+κ′||d
′
12(l)
l
| (l > δ)

Using the fact that { |d
′
12(l)|
l2

, |d
′
12(l)|
l
} ⊂ L1(R3), and integrating g(k, l, t)eir|k+l|

over R3 × B(0, δ) separately, using Lemma 0.9, looking at all compo-
nents, for sufficiently large r ∈ R>0, need uniformity in l version of
Lemma 0.12, follows that,

|
∫
R6 g(k, l, t)eir|k+l|dkdl| ≤ Aδ + F (κ)

r
+Hκ′

where {A,H} ⊂ R. Follows that?(split again Re(g), Im(g))
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|
∫
R6 g(k, l, t)sin(r|k + l|)dkdl ≤ Bδ + T (κ)

r
+ Sκ′

for sufficiently large r, In particular as κ′ > 0, δ > 0 can be made
arbitrarily small, and;

|limr→∞
∫
R6 g(k, l, t)cos(r|k + l|)dkdl| < Aδ +Hκ′

limr→∞
∫
R6 g(k, l, t)cos(r|k + l|)dkdl = 0

so the no radiation condition holds.

Similarly, we have that;∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π

−iQ0,0

2π2 [(b11,l(R, θ, φ)+
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|)

×(d
′
11(l) + d

′
12(l)
l

)] � ul(R, θ, φ, l)]µ(R, θ, φ, l, t)eirRRsin(θ)dRdθdφ)dl

=
∫
R3

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π β(R, θ, φ, l, t)eirRRdθdφ)dl

splits as four terms, the worst of which is;∫
R3(

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π

−iQ0,0

2π2 [
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|

×d
′
12(l)
l

] � ul(R, θ, φ, l)]µ(R, θ, φ, l, t)eirRsin(θ)RdRdθdφ)dl

=
∫
R3

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π β4(R, θ, φ, l, t)e

irRRdRdθdφ)dl

Again, fix l 6= 0, with θ 6= cos−1( l3
l
) = θ0,l and φ 6= tan−1( l2

l1
) = φ0,l.

By the result of Lemma 0.23, we can assume that the real and imagi-

nary parts of ∂Rβ4(R,θ,φ,l,t)
∂R

are non-oscillatory when restricted to a finite

interval [0, L]. Moreover, we have that limR→0Rβ4(R, θ, φ, l, t) = 0 and

limR→0
∂Rβ4(R,θ,φ,l,t)

∂R
= M ∈ R, both functions being of moderate de-

crease. We restrict the l parameter to an annulus Ann(ε, l0) ⊂ R3.
Then, using integration by parts, see Lemma 0.16, we have that;

|
∫
Ann(ε,l0)

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π β4(R, θ, φ, l, t)e

irRRdRdθdφ)dl|

= |
∫
Ann(ε,l0)

∫
R>0

∫
0≤θ<π,θ 6=θ0,l

∫
0≤φ≤2π,φ6=φ0,l

β4(R, θ, φ, l, t)e
irRRdRdθdφ)dl|
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= 1
r
|
∫
Ann(ε,l0)

∫
R>0

∫
0≤θ<π,θ 6=θ0,l

∫
0≤φ≤2π,φ6=φ0,l

∂Rβ4
∂R

(R, θ, φ, l, t)eirRdRdθdφ)dl|

(TUT )

We have that, for fixed l ∈ Ann(ε, l0),
∂Rβ4
∂R
∈ L1(R3), see calcula-

tion below and Lemma 0.9, so we can restrict the parameters {θ, φ}
to |θ − θ0,l| ≥ δ1|, |φ − φ0,l| ≥ δ2 such that, for arbitrary δ > 0,

l ∈ Ann(ε, l0);

|
∫
R>0

∫
|θ−θ0,l|≤δ1

∫
|φ−φ0,l|≤δ2

∂Rβ4
∂R

(R, θ, φ, l, t)eirRdRdθdφ| ≤ δ

(SUS)

By the proof of Lemma 0.16, for arbitrary ε′ > 0, there exists
Cε′ ∈ R>0, such that, uniformly in l ∈ Ann(ε, l0), |θ − θ0,l| ≥ δ1,
|φ− φ0,l| ≥ δ2;

|
∫
R>0

∂Rβ4
∂R

(R, θ, φ, l, t)eirRdR| ≤ ε′ +
Cε′
r

where Cε′ = 2val ∂Rβ4
R

||∂Rβ4
∂R
||∞ restricted to the parameters, so that;

|
∫
R>0

∫
|θ−θ0,l|≥δ1

∫
|φ−φ0,l|≥δ2

∂Rβ4
∂R

(R, θ, φ, l, t)eirRdRdθdφ|

≤ 2π2(ε′ +
Cε′
r

)

and, therefore;

|
∫
R>0

∫
θ 6=θ0,l

∫
φ 6=φ0,l

∂Rβ4
∂R

(R, θ, φ, l, t)eirRdRdθdφ| ≤ δ + 2π2(ε′ +
Cε′
r

)

It follows that;

|
∫
Ann(ε,l0)

∫
R>0

∫
0≤θ<π,θ 6=θ0,l

∫
0≤φ≤2π,φ 6=φ0,l

∂Rβ4
∂R

(R, θ, φ, l, t)eirRdRdθdφ)dl|

≤ 4πl30
3

(δ + 2π2(ε′ +
Cε′
r

))

and by (TUT ), for sufficiently large r;

|
∫
Ann(ε,l0)

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π β4(R, θ, φ, l, t)e

irRRdRdθdφ)dl|

≤ 4πl30
3

( δ
′

r
+

2π2Cε′
r2

) (TUS)
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where δ′ > 0 is arbitrary. We have that;

||∂Rβ4
∂R
||∞ = ||β4 +R∂β4

∂R
||∞

≤ ||β4||∞ + ||R∂β4
∂R
||∞

= |−iQ0,0

2π2 [
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|×
d
′
12(l)
l

]�ul(R, θ, φ, l)sin(θ)|

+|−iQ0,0R

2π2 [ ∂
∂R

(
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|)×
d
′
12(l)
l

]�ul(R, θ, φ, l)sin(θ)|

+|−iQ0,0R

2π2 [
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|×
d
′
12(l)
l

]� ∂
∂R

(ul(R, θ, φ, l))sin(θ)|

≤ Q0,0

2π2 |
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| ||
d
′
12(l)
l
|

+Q0,0R

2π2 | ∂∂R(
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|)||
d
′
12(l)
l
|

+Q0,0R

2π2 |
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| ||
d
′
12(l)
l
|| ∂
∂R

( k
|k|)|

= Q0,0

2π2 |
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| ||
d
′
12(l)
l
|

+Q0,0R

2π2 | ∂∂R(
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|)||
d
′
12(l)
l
|

≤ Q0,0

2π2 |
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| ||
d
′
12(l)
l
|

+Q0,0R

2π2 | ∂∂R(
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|)||
d
′
12(l)
l
|

= Q0,0

2π2 |
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| ||
d
′
12(l)
l
|

+Q0,0R

2π2 |
∂
∂R

(b12,l(R,θ,φ))

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|

+
b12,l(R,θ,φ)<(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l, ∂

∂R
((Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l)>

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|3 ||d
′
12(l)
l
|

≤ Q0,0

2π2 |
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| ||
d
′
12(l)
l
|

+Q0,0R

2π2 |
∂
∂R

(b12,l(R,θ,φ))

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| ||
d
′
12(l)
l
|

+Q0,0R

2π2

|b12,l(R,θ,φ)||((sin(θ)cos(φ),sin(θ)sin(φ),cos(θ)))|
|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|2 |d

′
12(l)
l
|
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≤ Q0,0

2π2

|b12,l(R,θ,φ)|
|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| |

d
′
12(l)
l
|

+Q0,0R

2π2

| ∂
∂R

(b12,l(R,θ,φ))|
|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l| |

d
′
12(l)
l
|

+
√
3Q0,0R

2π2

|b12,l(R,θ,φ)|
|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|2 |

d
′
12(l)
l
| (F )

By (F ), we see that changing to Cartesian coordinates, the above
terms are of the form;

C1|b12,l(k)|
|k|2|k−l| |

d
′
12(l)
l
|, C2|c12(k,l)|

|k||k−l| |
d
′
12(l)
l
|, C3|b12,l(k)|
|k||k−l|2 |

d
′
12(l)
l
|

where {C1, C2, C3} ⊂ R>0 and;

|c12(k, l)| ≤ |e12,l(k)|, e12,l,j(k) = |(∂b12,l,j
∂x

,
∂b12,l,j
∂y

,
∂b12,l,j
∂z

)|

By Lemma 0.9, we can see that for fixed l 6= 0, ∂Rβ4
∂R
∈ L1(R3). More-

over, we can see that when we limit the parameters {θ, φ} and use com-
pactness, to obtain (SUS) above, we then have that with |θ−θ0,l| ≥ δ1|,
|φ − φ0,l| ≥ δ2, that |k − l| ≥ lsin(θ − θ0,l) ≥ lδ1

2
, so that ||∂Rβ4

∂R
||∞ is

uniformly bounded on the restricted parameters. Using the same ar-
gument as in (TUT ), (F ), and the proof of Lemma 0.9;

|
∫
B(0,l0)c

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π β4(R, θ, φ, l, t)e

irRRdRdθdφ)dl|

= 1
r
|
∫
B(0,l0)c

∫
R>0

∫
0≤θ<π,θ 6=θ0,l

∫
0≤φ≤2π,φ6=φ0,l

∂Rβ4
∂R

(R, θ, φ, l, t)eirRdRdθdφ)dl|

≤ 1
r

∫
B(0,l0)c

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π |

∂Rβ4
∂R
|∞dRdθdφ)dl

≤ 1
r

∫
B(0,l0)c

∫
R3

C1|b12,l(k)|
|k|2|k−l| |

d
′
12(l)
l
|+C2|c12(k,l)|

|k||k−l| |
d
′
12(l)
l
|+C3|b12,l(k)|

|k||k−l|2 |
d
′
12(l)
l
|dkdl

≤ ε1
r

(ABC)

where ε1 > 0 is arbitrary for l0(ε1) sufficiently large. Similarly;

|
∫
B(0,ε)

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π β4(R, θ, φ, l, t)e

irRRdRdθdφ)dl|

≤ ε2
r

(DEF )
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where ε2 > 0 is arbitrary for ε(ε2) sufficiently small. It follows that,
for sufficiently large r, combining (TUS), (ABC), (DEF ), that;

|
∫
R3

∫
R>0

∫
0≤θ<π

∫
0≤φ≤2π β4(R, θ, φ, l, t)e

irRRdRdθdφ)dl|

≤ 4πl30
3

( δ
′

r
+

2π2Cε′
r2

) + ε1+ε2
r

(GHI)

It follows that;

|
∫
R6 h(k, l, t)eir|k+ldkdl| ≤ 4πl30

3
( δ
′

r
+

2π2Cε′
r2

) + ε1+ε2
r

It follows that, splitting the calculation into real and imaginary com-
ponents Re(h), Im(h), that;

|
∫
R6 h(k, l, t)cos(r|k + l|)dkdl ≤ 4πl30

3
( δ
′

r
+

2π2Cε′
r2

) + ε1+ε2
r

for sufficiently large r. In particular;

|limr→∞r
∫
R6 h(k, l, t)cos(r|k + l|)dkdl|

≤ limr→∞
4πl30
3

(δ′ +
2π2Cε′
r

) + ε1 + ε2

=
4πl30
3
δ′ + ε1 + ε2

As δ and ε′ in the proof can be made arbitrarily small relative to the
choice of l0, and {ε1, ε2} were arbitrary, we must have that;

limr→∞r
∫
R6 h(k, l, t)cos(r|k + l|)dkdl = 0

so the no radiation condition holds again.

�

Lemma 0.8. We have that;

|α4(R, θ, φ, t, l)| ≤ C2
5
2

R2 |d
′
12(l)
l
|, for R > 4l

√
3, l > 1

R > 4
√

3, 0 < l ≤ 1

|Re(α4)(R, θ, φ, t, l) ≤ |C2
5
2

R2 |d
′
12(l)
l
|, for R > 4l

√
3, l > 1
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R > 4
√

3, 0 < l ≤ 1

|Im(α4)(R, θ, φ, t, l)| ≤ C2
5
2

R2 |d
′
12(l)
l
|, for R > 4l

√
3, l > 1

R > 4
√

3, 0 < l ≤ 1

where C ∈ R>0

In particularly, the families {Re(α4)(R, θ, φ, t, l) : l ∈ R3, l 6= 0, θ 6=
cos−1( l3

l1
), φ 6= tan−1( l2

l1
)} and {Im(α4)(R, θ, φ, t, l) : l ∈ R3, l 6= 0, θ 6=

cos−1( l3
l1

), φ 6= tan−1( l2
l1

)} are of moderate decrease nl,θ,φ, with;

nl,θ,φ = 4l
√

3, l > 1

nl,θ,φ = 4
√

3, 0 < l ≤ 1

and Dl,θ,φ = C2
5
2 |d
′
12(l)
l
|

Proof. We have that;

|α4| ≤ |P1,1

2π2

b12,l(k)

k2|k−l| ||
d
′
12(l)
l
|

|b12,l(k)| ≤ D
|k−l|4 , |k − l| > 0 (change this)

where D ∈ R>0

so that;

|α4(R, θ, φ, t, l)| ≤ |d
′
12(l)
l
| C
|k−l|5

= C|d
′
12(l)
l
| 1

[(Rsin(θ)cos(φ)−l1)2+(Rsin(θ)sin(φ)−l2)2+(Rcos(θ)−l3)2]
5
2

= C
R5 |d

′
12(l)
l
| 1

[(sin(θ)cos(φ)− l1
R
)2+(sin(θ)sin(φ)− l2

R
)2+(cos(θ)− l3

R
)2]

5
2

= C
R5 |d

′
12(l)
l
| 1

[1− 2l1sin(θ)cos(φ)
R

− 2l2sin(θ)sin(φ)
R

− 2l3cos(θ)
R

+ l2

R2 ]
5
2

= C
R5 |d

′
12(l)
l
| 1

(1−x+ l2

R2 )
5
2

where C ∈ R>0 and;
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|x| ≤ 2(|l1|+|l2|+|l3|)
R

≤ 2l
√
3

R
≤ 1

2
, for R > 4l

√
3

so that;

|α4(R, θ, φ, t, l)| ≤ C2
5
2

R5 |d
′
12(l)
l
| ≤ C2

5
2

R2 |d
′
12(l)
l

(for R > 4l
√

3, l > 1,

R > 4
√

3, 0 < l ≤ 1)

In particularly;

|Re(α4)(R, θ, φ, t, l)| ≤ |α4(R, θ, φ, t, l)| ≤ C2
5
2

R2 |d
′
12(l)
l
|

for R > 4l
√

3, l > 1, R > 4
√

3, 0 < l ≤ 1

|Im(α4)(R, θ, φ, t, l)| ≤ |α4(R, θ, φ, t, l)| ≤ C2
5
2

R2 |d
′
12(l)
l
|

for R > 4l
√

3, l > 1, R > 4
√

3, 0 < l ≤ 1

�

Lemma 0.9. We have that;

|b12,l(k)|
|k|2|k−l| |

d
′
12(l)
l
| ∈ L1(R6),

|b12,l(k)|
|k||k−l|2 |

d
′
12(l)
l
| ∈ L1(R6)

Proof. For the first claim, fix l 6= 0, then;

1
|k|2 |B(l, l

2
) ≤ 4

l2
, 1
|k−l| |R3\B(l, l

2
) ≤ 2

l

so that;∫
R3

|b12,l(k)|
|k|2|k−l| |dk =

∫
B(l, l

2
)

|b12,l(k)|
|k|2|k−l|dk +

∫
R3\B(l, l

2
)

|b12,l(k)|
|k|2|k−l|dk

≤ 4
l2

∫
B(l, l

2
)

|b12,l(k)|
|k−l| dk + 2

l

∫
R3\B(l, l

2
)

|b12,l(k)|
|k|2 dk

≤ 4
l2

∫
B(l, l

2
)

|b12,l(k)|
|k−l| dk + 2

l

∫
R3

|b12,l(k)|
|k|2 dk

= 4
l2

∫
B(0, l

2
)
|b12(k)|
|k| dk + 2

l

∫
R3

|b12,l(k)|
|k|2 dk

= 4
l2

∫ l
2

0

∫
0≤θ≤π,−π≤φ≤π

|b12(R,θ,φ)|
R

R2sin(θ)dRdθdφ+ 2
l

∫
B(0,1)

|b12,l(k)|
|k|2 dk



28 TRISTRAM DE PIRO

+
∫
R3\B(0,1)

|b12,l(k)|
|k|2 dk

≤ 8π2

l2
[R

2

2
]
l
2
0 +2

l

∫ 1

0

∫
0≤θ≤π,−π≤φ≤π

|b12(R,θ,φ)|
R2 R2sin(θ)dRdθdφ+

∫
R3\B(0,1)

|b12,l(k)|dk

≤ π2 + 4π2

l
[R]10 + C

= π2 + 4π2

l
+ C

where C = ||b12,l||L1(R3) is independent of l. It follows that;∫
R6

|b12,l(k)|
|k|2|k−l| |

d
′
12(l)
l
|dkdl ≤

∫
R3(π

2 + 4π2

l
+ C)|d

′
12(l)
l
|dl

= (π2 + C)
∫
R3

|d′12(l)
|l| dl + 4π2

∫
R3

|d′12(l)
|l|2 dl

≤ (π2 + C)(
∫
B(0,1)

|d′12(l)
|l| dl +

∫
R3\B(0,1)

|d′12(l)|dl)

+4π2(
∫
B(0,1)

|d′12(l)
|l|2 dl +

∫
R3\B(0,1)

|d′12(l)|dl)

≤ (π2 + C)(
∫ 1

0

∫
0≤θ≤π,−π≤φ≤π ||d

′
12(R, θ, φ)|Rsin(θ)dθdφ+D)

+4π2(
∫ 1

0

∫
0≤θ≤π,−π≤φ≤π ||d

′
12(R, θ, φ)|sin(θ)dθdφ+D)

≤ (π2 + C)(π2 +D) + 4π2(2π2 +D)

= 9π4 + π2C + 5π2D + CD

where D = ||d′12||L1(R3)

For the second claim, fix l 6= 0, then, using the substitution k
′
= k−l

and the previous proof, we obtain that;∫
R3

|b12,l(k)|
|k||k−l|2 |dk =

∫
R3

|b12(k)|
|k|2|k+l| |dk ≤ π2 + 4π2

l
+ C

Following the above proof again, we have that;∫
R6

|b12,l(k)|
|k||k−l|2 |

d
′
12(l)
l
|dkdl ≤

∫
R3(π

2 + 4π2

l
+ C)|d

′
12(l)
l
|dl

≤ 9π4 + π2C + 5π2D + CD

�
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Definition 0.10. We say that f ∈ C(R) is of moderate decrease if
there exists a constant D ∈ R>0 with |f(x)| ≤ D

|x|2 for |x| > 1. We

say that f ∈ C(R>0) is of moderate decrease if there exists a constant
D ∈ R>0 with |f(x)| ≤ D

|x|2 for |x| > 1. We say that f ∈ C(R)

is of moderate decrease n, if there exists a constant Dn ∈ R>0 with
|f(x)| ≤ Dn

|x|2 for |x| > n. We say that f ∈ C(R>0) is of moderate

decrease n if there exists a constant Dn ∈ R>0 with |f(x)| ≤ Dn
|x|2 for

|x| > n. We say that f ∈ C(R) is of very moderate decrease if there
exists a constant D ∈ R>0 with |f(x)| ≤ D

|x| for |x| > 1. We say that

f ∈ C(R) is of very moderate decrease n if there exists a constant
Dn ∈ R>0 with |f(x)| ≤ D

|x| for |x| > n. We say that f ∈ C(R>0)

is of very moderate decrease if there exists a constant D ∈ R>0 with
|f(x)| ≤ D

|x| for |x| > 1. We say that f ∈ C(R>0) is of very moderate

decrease n if there exists a constant Dn ∈ R>0 with |f(x)| ≤ Dn
|x| for

|x| > n. We say that f ∈ C(R) is non-oscillatory if there are finitely
many points {yi : 1 ≤ i ≤ n} ⊂ R for which f |(yi,yi+1) is monotone,
1 ≤ i ≤ n − 1, and f |(−∞,y1) and f |(yn,∞) is monotone. We denote
by val(f) the minimum number of such points. We denote by valf (n),
the minimum number of points on the interval (0, n). We say that
f ∈ C(R>0) is non-oscillatory if there are finitely many points {yi :
1 ≤ i ≤ n} ⊂ R>0 for which f |(yi,yi+1) is monotone, 1 ≤ i ≤ n − 1,
and f |(0,y1) and f |(yn,∞) is monotone. Similarily, we denote by val(f)
the minimum number. We say that f ∈ C(R) is oscillatory if there
exists an increasing sequence {yi : i ∈ Z} ⊂ R, for which f |(yi,yi+1)

is monotone, i ∈ Z, and there exists δ > 0, with yi+1 − yi > δ, for
i ∈ Z. We say that f ∈ C(R>0) is oscillatory if there exists a sequence
{yi : i ∈ N} ⊂ R, for which f |(0,y1) is monotone, and f |(yi,yi+1) is
monotone, i ∈ N , and there exists δ > 0, with y1 > δ and yi+1−yi > δ,
for i ∈ N .

Lemma 0.11. Let f ∈ C(R) and df
dx
∈ C(R) be of moderate decrease,

with df
dx

non-oscillatory, then defining the Fourier transform by;

F(f)(k) = 1

(2π)
1
2

∫
R f(x)e−ikxdx

we have that, there exists a constant C ∈ R>0, such that;

|F(f)(k)| ≤ C
|k|2
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for sufficiently large k. Let f ∈ C(R) and df
dx
∈ C(R) be of moderate

decrease, with df
dx

oscillatory, then, similarly;

we have that, there exists a constant C ∈ R>0, such that;

|F(f)(k)| ≤ C
|k|2

for sufficiently large k.

The same result holds in the two claims, replacing moderate decrease
with moderate decrease n.

Let f ∈ C(R) be analytic, with f and df
dx

of moderate decrease, then
given ε > 0, there exists Eε such that, for sufficiently large k;

F(f)(k) ≤ Eε
|k|2 + ε

|k|

where Eε = 2val df
dx

([−Lε, Lε])|| dfdx ||∞, Lε ∈ R>0.

The same result holds with the assumption that df
dx

is just continuous

or when df
dx
∈ C(R6=0) and df

dx
∈ Lp(R), for some p > 1.

Proof. As f is of moderate decrease, we have that f ∈ L1(R) and
lim|x|→∞f(x) = 0 Similarly, df

dx
∈ L1(R) and df

dx
is continuous. We

have, using integration by parts, that;

F( df
dx

)(k) = 1

(2π)
1
2

∫
R

df
dx

(y)e−ikydy

= [f(y)e−iky]∞−∞ + ik
∫
R f(y)e−ikydy

= ik
∫
R f(y)e−ikydy

= ikF(f)(k)

so that, for |k| > 1;

|F(f)(k)| ≤ |F( df
dx

)(k)|
|k| , (†)

As df
dx

is of moderate decrease, for any ε > 0, we can find Nε ∈ N
such that;
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|F( df
dx

)(k)− 1

(2π)
1
2

∫ Nε
−Nε

df
dx

(y)e−ikydy| < ε (∗)

As df
dx
|−Nε,Nε is continuous and non-oscillatory, by the proof of Lemma

0.9 in [10], using underflow, we can find {Dε, Eε} ⊂ R>0, such that, for
all |k| > Dε, we have that;

| 1

(2π)
1
2

∫ Nε
−Nε

df
dx

(y)e−ikydy| < Eε
|k| , (∗∗)

It is easy to see from the proof, that {Dε, Eε} can be chosen uniformly
in ε. Then, from (∗), (∗∗), and the triangle inequality, we obtain that,
for |k| > Dε;

|F( df
dx

)(k)|

≤ |F( df
dx

)(k)− 1

(2π)
1
2

∫ Nε
−Nε

df
dx

(y)e−ikydy|+ | 1

(2π)
1
2

∫ Nε
−Nε

df
dx

(y)e−ikydy|

< ε+ Eε
|k|

so that, as {Dε, Eε} were uniform and ε was arbitrary, we obtain that;

|F( df
dx

)(k)| < E
|k| , for |k| > D

and, from (†), for |k| > D, that;

|F(f)(k)| ≤ |F( df
dx

)(k)|
|k| < E

|k|2

For the next claim, we can follow the proof of the second claim in
Lemma 0.13. The next claim is a simple adaptation of the first two
claims.

For the penultimate claim, we can follow the above proof up to (†)
to obtain that;

|F(f)(k)| ≤ |F( df
dx

)(k)|
|k| |k| > 1 (AA)

As df
dx

is of moderate decrease, we can find Lε ∈ R>0 such that;

| 1

(2π)
1
2

∫
|y|>Lε

df
dx

(y)e−ikydy| < ε (BB)

As df
dx
|[−Lε,Lε] is analytic, d2f

dx2
|[−Lε,Lε] has finitely many zeroes, in par-

ticularly df
dx
|[−Lε,Lε] is non-oscillatory. Using the proof above, we have
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that, for sufficiently large k;

| 1

(2π)
1
2

∫ Lε
−Lε

df
dx

(y)e−ikydy| < Eε
|k| (CC)

whereEε = val df
dx

([−Lε, Lε])|| dfdx ||∞. It follows that, from (BB), (CC),

that;

|F( df
dx

)| ≤ Eε
|k| + ε (DD)

It follows, combining (AA), (DD), that, for sufficiently large k;

|F(f)(k)| ≤
Eε
|k|+ε

|k|

= Eε
|k|2 + ε

|k|

as required.

For the final claim, we can follow the above proof up to (†) again to
obtain that;

|F(f)(k)| ≤ |F( df
dx

)(k)|
|k| |k| > 1 (AAB)

As df
dx
∈ Lp(R), by Holder’s inequality, we have that, for δ > 0;

| 1

(2π)
1
2

∫ δ
−δ

df
dx

(y)e−ikydy|

≤ 1

(2π)
1
2

∫ δ
−δ |

df
dx

(y)|dy

≤ || df
dx
|(−δ,δ)||p||1−δ,δ|| p

p−1

≤ C(2δ)
p
p−1

≤ ε
3

(CDC)

for δ sufficiently small, ε > 0 arbitrary. As df
dx

is of moderate de-
crease, we can find Lε ∈ R>0 such that;

| 1

(2π)
1
2

∫
|y|>Lε

df
dx

(y)e−ikydy| < ε
3

(BBB)

As df
dx

is continuous on [−Lε,−δ] ∪ [δ, Lε], we can, using the Stone-
Weierstrass approximation theorem, find a polynomial pδ,ε such that
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| 1

(2π)
1
2

df
dx
− 1

(2π)
1
2
pδ,ε| < ε

6Lε
, so that;

| 1

(2π)
1
2

∫
δ<|y|<Lε

df
dx

(y)e−ikydy|

≤ 1

(2π)
1
2
|
∫
δ<|y|<Lε |

df
dx
− pδ,ε(y)|dy|+ 1

(2π)
1
2
|
∫
δ<|y|<Lε pδ,ε(y)e−ikydy|

≤ 2Lεε
6Lε

+ 1

(2π)
1
2
|
∫
δ<|y|<Lε pδ,ε(y)e−ikydy|

≤ ε
3

+ 1

(2π)
1
2
|
∫
δ<|y|<Lε pδ,ε(y)e−ikydy| (CCD)

We have that pδ,ε is analytic on an open neighborhood of δ < |y| <
Lε, so that

dpδ,ε
dx
|δ<|y|<Lε has finitely many zeroes, in particularly

dpδ,ε
dx
|δ<|y|<Lε

is non-oscillatory. Using the proof above, we have that, for sufficiently
large k;

| 1

(2π)
1
2

∫
δ<|y|<Lε pδ,ε(y)e−ikydy| < Eε

|k| (CCB)

where;

Eε = 2valpδ,ε(δ < |y| < Lε)||pδ,ε|δ<|y|<Lε||∞

It follows from (CCB), (CCD), (BBB), (CDC), that;

| 1

(2π)
1
2

∫∞
−∞

df
dx

(y)e−ikydy|

≤ | 1

(2π)
1
2

∫ δ
−δ

df
dx

(y)e−ikydy|+| 1

(2π)
1
2

∫
δ<|y|<Lε

df
dx

(y)e−ikydy|+| 1

(2π)
1
2

∫
|y|>Lε

df
dx

(y)e−ikydy|

< 3 ε
3

+ Eε
|k|

< ε+ Eε
|k|

By (AAB), we then have that, for |k| sufficiently large;

|F(f)(k)| ≤ ε
|k| + Eε

|k|2

�

Lemma 0.12. Let f ∈ C(R>0) be of moderate decrease, with f non-
oscillatory, and limx→0f(x) = M , with M ∈ R, then defining the half
Fourier transform G, by;
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G(f)(k) =
∫∞
0
f(x)e−ikxdx

we have that, there exists a constant E ∈ R>0, such that;

|G(f)(k)| ≤ E
|k|

for sufficiently large |k|. Moreover, we can choose;

E = 2||f ||∞val(f)

Let f ∈ C(R>0) be of moderate decrease, with f oscillatory, and
limx→0f(x) = M , with M ∈ R, then, similarly;

we have that, there exists a constant E ∈ R>0, such that;

|G(f)(k)| ≤ E
|k|

for sufficiently large |k|. Moreover, we can choose E = (4||f ||∞+D)
δ

,
where D and δ are given in Definition 0.10.

The first claim is the same, replacing moderate decrease with mod-
erate decrease n. The second claim is the same, replacing moderate
decrease with moderate decrease n, with the modification that we can

choose E = 2n||f ||∞
δ

+ 2Dn
nδ

. We can also choose;

E = 2valf (n)||f ||∞ + 2Dn
nδ

where δ is the spacing in the interval (n,∞).

Let f ∈ C(R>0) be of moderate decrease, with f analytic and limx→0f(x) =
M . Then for all ε > 0, we have that there exists Eε such that, for suf-
ficiently large k;

|G(f)(k)| ≤ Eε
|k| + ε

where Eε = 2valf (Lε)||f ||∞ and Lε ∈ R>0.

Let f ∈ C(R>0 be of moderate decrease, with limx→0f(x) = M , then
for all ε > 0, we have that there exists Eε, such that for sufficiently
large k;
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|G(f)(k)| ≤ Eε
|k| + ε

Proof. As f is of moderate decrease and limx→0f(x) = M , we have
that f ∈ L1(R>0) and lim|x|→∞f(x) = 0.

As f is of moderate decrease, for any ε > 0, we can find Nε ∈ N
such that;

|G(f)(k)−
∫ Nε
0
f(y)e−ikydy| < ε (∗)

As f |0,Nε is continuous and non-oscillatory, by the proof of Lemma
0.9 in [10], using underflow, we can find {Dε, Eε} ⊂ R>0, such that, for
all |k| > Dε, we have that;

|
∫ Nε
0
f(y)e−ikydy| < Eε

|k| , (∗∗)

It is easy to see from the proof, that {Dε, Eε} can be chosen uni-
formly in ε, Splitting the calculation into real and imaginary compo-
nents, it is straightfoward to see that it is possible to choose Eε with
Eε = 2||f ||∞val(f), noting that the infinitesimal correction existing
after the use of underflow, drops out after taking the standard part.
Then, from (∗), (∗∗), and the triangle inequality, we obtain that, for
|k| > Dε;

|G(f)(k)|

≤ |G(f)(k)−
∫ Nε
0
f(y)e−ikydy|+ |

∫ Nε
0
f(y)e−ikydy|

< ε+ Eε
|k|

so that, as {Dε,ρ, Eε} were uniform and ε was arbitrary, we obtain
that;

|G(f)(k)| < E
|k| , for sufficiently large |k|

For the second claim, after choosing N ∈ N , we have that f |(0,N)

is non-oscillatory, and, moreover, there are at most N
δ

monotone inter-
vals. As in (∗∗), and inspection of the proof in [10], we get;

|
∫ N
0
fe−ikydy| < EN

|k|

for sufficiently large |k|, where EN = 2NC
δ

and C = maxx∈R>0|f |.
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Choosing N > 1, as f is of moderate decrease, we can assume that
|f | ≤ D

x2
, for x > N . Then, using the proof in [10] again, the definition

of oscillatory, and noting that ∗
∑

y∗i>N
D
y2i
'

∑
yi>N

D
y2i

, we have that,

for sufficiently large |k|;

|
∫∞
N
fe−ikydy| < ( 2

|k|
∑

yi>N
D
y2i

)

≤ ( 2
|k|

∑
n∈Z≥0

D
(yi0+nδ)

2 )

≤ 2D
δ|k|

∫∞
yi0

dx
x2

= 2D
δ|k|yi0

≤ 2D
δ|k|N

where yi0 ≥ N and yi0 ≤ yi, for all yi ≥ N . It follows that;

|G(f)(k)| = |
∫ N
0
fe−ikydy +

∫∞
N
fe−ikydy|

≤ |
∫ N
0
fe−ikydy|+ |

∫∞
N
fe−ikydy|

≤ EN
|k| + 2D

δ|k|N

≤ 2
|k|(

NC
δ

+ D
δN

)

It follows, using (†), that;

|G(f)(k) ≤ E
|k|

where E = 2(NC
δ

+ D
δN

)

In particular, choosing N = 2, we can take;

E = 2(2C
δ

+ D
2δ

) = (4C+D)
δ

= (4||f ||∞+D)
δ

For the next claim, the modification for the first part is the same. In
the second part, choose N ≥ n, rather than N > 1 in the proof, and
replace D with Dn, to get E = 2(NC

δ
+ Dn

δN
), then, taking N = n, we

obtain E = 2(nC
δ

+ Dn
δn

). For the next claim, replace the count of N
δ

monotone intervals for f |(0,n) with valf (n).
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For the penultimate claim, we have that, as f is of moderate decrease;

|
∫∞
n
f(y)e−ikydy| ≤

∫∞
n

D
y2
dy

= [−D
y

]∞n

= D
n

≤ ε

for n ≥ D
ε
. In particularly, if we choose Lε = D

ε
, then as f is

analytic, f ′|[0,Lε] has finitely many zeros, so f |[0,Lε] is non-oscillatory.
By the proof of Lemma 9 in [10] again, we can find Eε ∈ R>0, with
Eε = 2valf (Lε)||f ||∞, such that;

|
∫ Lε
0
f(y)e−ikydy| < Eε

|k|

for sufficiently large k. It follows that;

|G(f)(k)| = |
∫ Lε
0
f(y)e−ikydy|+ |

∫∞
Lε
f(y)e−ikydy|

≤ Eε
|k| + ε

as required.

For the final claim, as above, using the fact that f is of moderate
decrease, we can find n such that;

|
∫∞
n
f(y)e−ikydy| < ε

2
(C)

Using the Stone-Weierstrass approximation theorem, we can find an
analytic function fn,δ such that |f − fn,δ| < δ on [0, n] and;

|
∫ n
0
f(y)e−ikydy| ≤

∫ n
0
|f(y)− fn,δ(y)|dy + |

∫ n
0
fn,δ(y)e−ikydy|

≤ nδ + |
∫ n
0
fn,δ(y)e−ikydy| (D)

Using the methods above, we can find Eε,δ such that, for sufficiently
large k;
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|
∫ n
0
fn,δ(y)e−ikydy| ≤ Eε,δ

|k| (E)

Choosing δ = ε
2n

, we have from (D), (E), that;

|
∫ n
0
f(y)e−ikydy| ≤ ε

2
+

Eε, ε2
|k|

and from (C), that;

|G(f)(y)| ≤ ε+ Eε
|k|

where Eε = 2valfn(n)||fn,δ|[0,n]||∞ for the choice of analytic function
fn,δ.

�

Lemma 0.13. Let f ∈ C(R>0) and df
dx
∈ C(R>0) be of moderate de-

crease, with df
dx

non-oscillatory, and limx→0f(x) = 0, limx→0
df
dx

(x) =
M , with M ∈ R, then defining the half Fourier transform G, by;

G(f)(k) =
∫∞
0
f(x)e−ikxdx

we have that, there exists a constant E ∈ R>0, such that;

|G(f)(k)| ≤ E
|k|2

for sufficiently large k. Moreover, we can choose E = 2|| df
dx
||∞val( dfdx)

Let f ∈ C(R>0) and df
dx
∈ C(R>0) be of moderate decrease, with

df
dx

oscillatory, and limx→0f(x) = 0, limx→0
df
dx

(x) = M , with M ∈ R,
then, similarly;

we have that, there exists a constant E ∈ R>0, such that;

|G(f)(k)| ≤ E
|k|2

for sufficiently large k, Moreover, we can choose E =
(4|| df

dx
||∞+D)

δ
.

The first claim is the same, replacing moderate decrease with mod-
erate decrease n. The second claim is the same, replacing moderate
decrease with moderate decrease n, with the modification that we can
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choose E =
2n|| df

dx
||∞

δ
+ 2Dn

nδ
.

Let f ∈ C(R≥0) be analytic, with {f, df
dx
} of moderate decrease, such

that limx→0f = 0 and limx→0
df
dx

= M , then, for ε > 0, there exists
Eε ∈ R>0 such that, for sufficiently large k;

|G(f)(k)| ≤ Eε
|k|2 + ε

|k|

where Eε = 2val df
dx

(Lε)|| dfdx ||∞, Lε ∈ R>0

The same claim holds with just f ∈ C1(R>0) instead of analytic.

Proof. As f is of moderate decrease and limx→0f(x) = 0, we have that
f ∈ L1(R>0) and lim|x|→∞f(x) = 0. Similarly, df

dx
∈ L1(R>0) and df

dx
is

continuous. We have, using integration by parts, that;

G( df
dx

)(k) =
∫∞
0

df
dx

(y)e−ikydy

= [f(y)e−iky]∞0 + ik
∫∞
0
f(y)e−ikydy

= ik
∫∞
0
f(y)e−ikydy

= ikG(f)(k)

so that, for |k| > 1;

|G(f)(k)| ≤ |G( df
dx

)(k)|
|k| , (†)

As df
dx

is of moderate decrease, for any ε > 0, we can find Nε ∈ N
such that;

|G( df
dx

)(k)−
∫ Nε
0

df
dx

(y)e−ikydy| < ε (∗)

As df
dx
|0,Nε is continuous and non-oscillatory, by the proof of Lemma

0.9 in [10], using underflow, we can find {Dε, Eε} ⊂ R>0, such that, for
all |k| > Dε, we have that;

|
∫ Nε
0

df
dx

(y)e−ikydy| < Eε
|k| , (∗∗)

It is easy to see from the proof, that {Dε, Eε} can be chosen uniformly
in ε. Then, from (∗), (∗∗), and the triangle inequality, we obtain that,
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for |k| > Dε;

|G( df
dx

)(k)|

≤ |G( df
dx

)(k)−
∫ Nε
0

df
dx

(y)e−ikydy|+ |
∫ Nε
0

df
dx

(y)e−ikydy|

< ε+ Eε
|k|

so that, as {Dε, Eε} were uniform and ε was arbitrary, we obtain that;

|G( df
dx

)(k)| < E
|k| , for |k| > D

and, from (†), for |k| > D, that;

|G(f)(k)| ≤ |G( df
dx

)(k)|
|k| < E

|k|2

The choice of E is the same as in the proof of Lemma 0.12. For the
second claim, the proof up to (†) is the same. After choosing N ∈ N ,
we have that df

dx
|(0,N) is non-oscillatory, and, moreover, there are at

most N
δ

monotone intervals. As in (∗∗), and inspection of the proof in
[10], we get;

|
∫ N
0

df
dx
e−ikydy| < EN

|k|

where EN ≤ 2NC
δ

and C = maxx∈R>0 | dfdx |.
Choosing N > 1, as df

dx
is of moderate decrease, we can assume that

| df
dx
| ≤ D

x2
, for x > N . Then, using the proof in [10] again, and the

definition of oscillatory, we have that, for sufficiently large |k|;

|
∫∞
N

df
dx
e−ikydy| < ( 2

|k|
∑

yi>N
D
y2i

)

≤ ( 2
|k|

∑
n∈Z≥0

D
(yi0+nδ)

2 )

≤ 2D
δ|k|

∫∞
yi0

dx
x2

= 2D
δ|k|yi0

≤ 2D
δ|k|N

where yi0 ≥ N and yi0 ≤ yi, for all yi ≥ N . It follows that;
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|G( df
dx

)(k)| = |
∫ N
0

df
dx
e−ikydy +

∫∞
N

df
dx
e−ikydy|

≤ |
∫ N
0

df
dx
e−ikydy|+ |

∫∞
N

df
dx
e−ikydy|

≤ EN
|k| + 2D

δ|k|N

≤ 2
|k|(

NC
δ

+ D
δN

)

It follows, using (†), that;

|G(f)(k)| ≤ |G( df
dx

)(k)|
|k| < EN

|k|2

where EN = 2(NC
δ

+ D
δN

)

As in Lemma 0.12, we can choose E as in the final claim of the two
parts.

For the next claim, the modification for the first part is the same. In
the second part, choose N ≥ n, rather than N > 1 in the proof, and
replace D with Dn, to get EN = 2(NC

δ
+ Dn

δN
), then, taking N = n, we

obtain E = 2(nC
δ

+ Dn
δn

).

The proof of the penultimate claim is similar to that of Lemma 0.11,
we can use the proof up to (†) of this Lemma, to obtain, for |k| > 1;

|G(f)(k)| ≤ |G( df
dx

)(k)|
|k| , (AA)

As in the proof of Lemma 0.11, we can find {Eε, Lε} such that, for
sufficiently large k;

|G( df
dx

)| ≤ Eε
|k| + ε (BB)

where Eε = 2val df
dx

(Lε)|| dfdx ||∞.

Combining (AA) and (BB), we obtain that, for sufficiently large k;

|G(f)(k)| ≤ Eε
|k|2 + ε

|k|

For the final claim, when f ∈ C1(R>0), we use (AA) again. Then,
we use the Stone-Weierstrass approximation theorem, to find a poly-
nomial p ε

2
such that | df

dx
− p ε

2
| ≤ δ on [0, Lε], and Lεδ ≤ ε

2
. As p′ε

2
has
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finitely many zeros on [0, Lε], we have that, for sufficiently large k;

|
∫ Lε
0

df
dx

(y)e−ikydy| ≤ ε
2

+ |
∫ Lε
0
p ε

2
e−ikydy|

≤ ε
2

+ Cε
|k|

so that, for sufficiently large k;

|
∫∞
0

df
dx

(y)e−ikydy| ≤ |
∫∞
Lε

df
dx

(y)e−ikydy|+ ε
2

+ Cε
|k|

≤ ε
2

+ ε
2

+ Cε
|k|

≤ ε+ Cε
|k|

Then;

|G(f)(k)| ≤ |
∫∞
0

df
dx

(y)e−ikydy|
|k|

≤ ε
|k| + Cε

|k|2

�

Definition 0.14. We say that a family W = {fv : v ∈ V }, with
fv ∈ C(R>0) and V ⊂ Rn open, is of moderate decrease if there ex-
ists constants Dv ∈ R>0 with |fv(x)| ≤ Dv

|x|2 for |x| > 1. We say that

a family W = {fv : v ∈ V }, with fv ∈ C(R>0) and V ⊂ Rn open,
is of moderate decrease nv if there exists constants Dv ∈ R>0 with
|fv(x)| ≤ Dv

|x|2 for |x| > nv, where n : V → R>0 is continuous. We

say that the family {fv : v ∈ V } is non-oscillatory or uniformly non-
oscillatory if there are finitely many points {yi,v : 1 ≤ i ≤ n} ⊂ R
for which fv|(yi,v ,yi+1,v) is monotone, 1 ≤ i ≤ n− 1, and f |(−∞,y1,v) and
f |(yn,v ,∞) is monotone, the number of points being independent of v.
We denote by val(W ) the minimum number of such points. We de-
note by val(W |[0,n] the minimum number restricted to a finite interval
[0, n]. We say that a family W = {fv : v ∈ V }, with fv ∈ C(R>0)
is oscillatory if there exists a sequence {yi,v : i ∈ N} ⊂ R, for which
f |(0,y1,v) is monotone, and f |(yi,v ,yi+1,v) is monotone, i ∈ N , and there
exists δv > 0, with y1 > δv and yi+1 − yi > δv, for i ∈ N . We say
that the family is uniformly non-oscillatory if the constants δv can be
chosen independently of v, that is a single δ > 0 works for each fv.
We call a family W excellent if it is oscillatory with the property that
there exist nv such that valfv(nv) = val(W ) is independent of v and the
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spacing of fv|(nv ,∞) may also be chosen independently of v. We denote
by ||W ||∞ the best uniform bound for ||fv||∞, if it exists.

Lemma 0.15. Let a family W = {fv : v ∈ V } be of moderate decrease,
with W non-oscillatory, and limx→0fv(x) = Mv, with Mv ∈ R, then
we have that, there exists constants Ev ∈ R>0, such that;

|G(fv)(k)| ≤ Ev
|k|

for sufficiently large |k|, independent of v. Moreover, we can choose;

Ev = 2||fv||∞val(W )

Let a family W = {fv : v ∈ V } be of moderate decrease and oscilla-
tory, and limx→0fv(x) = Mv, with Mv ∈ R, then, similarly;

we have that, there exists constants Ev ∈ R>0, such that;

|G(f)(k)| ≤ Ev
|k|

for sufficiently large |k|. Moreover, we can choose

Ev = (4||fv ||∞+Dv)
δv

where Dv and δv are given in Definition 0.14.

The first claim is the same, replacing moderate decrease with mod-
erate decrease nv. The second claim is the same, replacing moderate
decrease with moderate decrease nv, with the modification that we can

choose Ev = 2nv ||fv ||∞
δv

+ 2Dv
nvδv

. We can also choose;

Ev = 2valfv(nv)||fv||∞ + 2Dv
nvδv

If the family is excellent, we can take;

Ev = 2val(W )||fv||∞ + 2Dv
nvδ

Let a family W be of moderate decrease and analytic, such that V is
closed and bounded, limx→0fv = Mv. Then, given ε > 0, we can choose
Eε ∈ R>0 independent of v such that, for sufficiently large k;
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|G(f)(k)| ≤ Eε
|k| + ε

with Eε = 2val(W |[0,Lε]||W ||∞, f ∈ W .

The same claim holds replacing analytic in the family W by contin-
uous.

Proof. As each fv is of moderate decrease and limx→0fv(x) = Mv, we
have that each fv ∈ L1(R>0) and lim|x|→∞fv(x) = 0.

As each fv is of moderate decrease, for any ε > 0, we can find
Nε,v ∈ N such that;

|G(fv)(k)−
∫ Nε,v
0

fv(y)e−ikydy| < ε (∗)

As each fv|0,Nε,v is continuous and non-oscillatory, by the proof of
Lemma 0.9 in [10], quantifying over the nonstandard parameter space
∗V , linking the parameters with Nε,v, and using underflow again, we
can find {Dε, Eε,v} ⊂ R>0, such that, for all |k| > Dε, we have that;

|
∫ Nε,v
0

fv(y)e−ikydy| < Eε,v
|k| , (∗∗)

It is easy to see from the proof, that {Dε, Eε,v} can be chosen uni-
formly in ε, as the number of monotone intervals in the interval (0, Nε,v)
is always bounded by val(W ). Splitting the calculation into real and
imaginary components, it is again straightfoward to see that it is pos-
sible to choose Eε,v with Eε,v = 2||fv||∞val(W ). Again, note that the
infinitesimal correction existing after the use of underflow, drops out
after taking the standard part, for each fv. Then, from (∗), (∗∗), and
the triangle inequality, we obtain that, for |k| > Dε;

|G(fv)(k)|

≤ |G(fv)(k)−
∫ Nε,v
0

fv(y)e−ikydy|+ |
∫ Nε,v
0

fv(y)e−ikydy|

< ε+
Eε,v
|k|

so that, as {Dε, Eε,v} were uniform and ε was arbitrary, we obtain
that;

|G(fv)(k)| < Ev
|k| , for sufficiently large |k|, independently of v.
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For the second claim, after choosing N ∈ N , we have that each
fv|(0,N) is non-oscillatory, and, moreover, there are at most N

δv
mono-

tone intervals. As in (∗∗), and inspection of the proof in [10], we get;

|
∫ N
0
fve
−ikydy| < EN

|k|

for sufficiently large |k|, independent of v, where EN = 2NCv
δv

and

Cv = maxx∈R>0|fv|.
Choosing N > 1, as each fv is of moderate decrease, we can assume

that |fv| ≤ Dv
x2

, for x > N . Then, using the proof in [10] again, and
the definition of oscillatory, we have that, for sufficiently large |k|, in-
dependent of v;

|
∫∞
N
fve
−ikydy| < ( 2

|k|
∑

yi,v>N
Dv
y2i,v

)

≤ ( 2
|k|

∑
n∈Z≥0

Dv
(yi0,v+nδv)

2 )

≤ 2Dv
δv |k|

∫∞
yi0 ,v

dx
x2

= 2Dv
δv |k|yi0,v

≤ 2Dv
δv |k|N

where yi0,v ≥ N and yi0,v ≤ yi,v , for all yi,v ≥ N . It follows that;

|G(fv)(k)| = |
∫ N
0
fve
−ikydy +

∫∞
N
fve
−ikydy|

≤ |
∫ N
0
fve
−ikydy|+ |

∫∞
N
fve
−ikydy|

≤ EN
|k| + 2Dv

δv |k|N

≤ 2
|k|(

NCv
δv

+ Dv
δvN

)

It follows, using (†), that;

|G(fv)(k) ≤ EN
|k|

where EN = 2(NCv
δv

+ Dv
Nδv

)

In particular, choosing N = 2, we can take;
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E = E2 = 2(2Cv
δv

+ Dv
2δv

) = (4Cv+Dv)
δv

= (4||fv ||∞+Dv)
δv

For the next claim, the modification for the first part is the same. In
the second part, choose N ≥ nv, rather than N > 1 in the proof, then,
taking N = nv, we obtain E = Env = 2(nvCv

δv
+ Dv

nvδv
)

For the next two claims, replace the nv
δv

monotone intervals on (0, nv)

with valfv(nv). Then note that in an excellent family, we can replace
valfv(nv) by val(W ) and δv by δ.

For the penultimate claim, as V is compact we have, by continu-
ity, that supv∈V |||fv|x2||∞ = D exists, so that uniformly, |f | ≤ D

x2
, for

|x| > 1. It follows that;

|
∫∞
n
fve
−iky(y)dy|

≤
∫∞
n

D
x2
dx

≤ D
n

≤ ε

for n ≥ D
ε
, uniformly in v ∈ V . In particular, choosing Lε = D

ε
, we

have that there exists a uniform bound val(W |[0,Lε]) for the number of
zeros of f ′v|[0,Lε]. By continuity and the fact that V is compact, we can
find a uniform bound ||W ||∞ for ||fv||∞. It follows, as in Lemma 0.12,
taking care to quantify over w, when using the underflow argument,
that, for sufficiently large k;

|
∫ Lε
0
fv(y)e−ikydy| ≤ Eε

|k|

where Eε = 2val(W |[0,Lε])||W ||∞

As in Lemma 0.12, we have that;

|G(fv)(k)| ≤ Eε
|k| + ε

for sufficiently large k, v ∈ V , as required.

For the final claim, we use the last proof to find Lε with;
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|
∫∞
Lε
fve
−iky(y)dy|

≤ ε
2

(FF )

uniformly in v. As the family is continuous, and V is closed and
bounded, we can find a polynomial p(x, v) such that;

|f(x, v)− p(x, v)| < δ

for v ∈ V and x ∈ [0, Lε]. By the usual compactness argument, there
exists a uniform bound in the number of zeros of p′v restricted to [0, Lε],
and a uniform bound for ||pv||∞ on [0, Lε. By the same argument as
above, we have that;

|
∫ Lε
0
pv(y)e−ikydy| ≤ Eε

|k|

where Eε = 2val(pv|[0,Lε])||pv||∞

Choosing δ ≤ ε
2Lε

, we have that;

|
∫ Lε
0
fv(y)e−ikydy| ≤ Eε

|k| + ε
2

so that, using (FF );

|G(fv)| ≤ Eε
|k| + ε

2
+ ε

2

≤ Eε
|k| + ε

as required.
�

Lemma 0.16. Let a family W = {fv : v ∈ V } be of moderate de-
crease such that the family W ′ = { df

dxv
: v ∈ V } is of moderate decrease

and non-oscillatory, with limx→0fv(x) = 0, limx→0
dfv
dx

(x) = Mv, with
Mv ∈ R, for v ∈ V , then we have that, there exists constants Ev ∈ R>0,
such that;

|G(fv)(k)| ≤ Ev
|k|2

for sufficiently large k, independent of v. Moreover, we can choose
Ev = 2||dfv

dx
||∞val(W ′)
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Let the families W = {fv : v ∈ V } and W ′ = { df
dxv

: v ∈ V } be of
moderate decrease with W ′ oscillatory as well, with limx→0fv(x) = 0,
limx→0

dfv
dx

(x) = Mv, with Mv ∈ R, then, similarly, we have that, there
exists constants Ev ∈ R>0, such that;

|G(fv)(k)| ≤ Ev
|k|2

for sufficiently large k, independent of v. Moreover, we can choose;

Ev =
(4|| dfv

dx
||∞+Dv)

δv

where Dv and δv are given in Definition 0.14.

The first claim is the same, replacing moderate decrease with mod-
erate decrease nv. The second claim is the same, replacing moderate
decrease with moderate decrease nv, with the modification that we can

choose Ev =
2nv ||

dfv
dx
||∞

δv
+ 2Dv

nvδv
.

Let the families W = {fv : v ∈ V } and W ′ = { df
dxv

: v ∈ V } be
of moderate decrease and analytic, such that V is closed and bounded,
limx→0fv = 0, limx→0

dfv
dx

(x) = Mv, with Mv ∈ R . Then, given ε > 0,
we can choose Eε ∈ R>0 independent of v such that, for sufficiently
large k;

|G(f)(k)| ≤ Eε
|k|2 + ε

|k|

with Eε = 2val(W ′|[0,Lε]||W ′||∞, df
dx
∈ W ′.

The same claim holds replacing analytic in the families W,W ′ by
continuous.

Proof. As each fv is of moderate decrease and limx→0fv(x) = 0, we
have that each fv ∈ L1(R>0) and lim|x|→∞fv(x) = 0. Similarly, each
dfv
dx
∈ L1(R>0) and each dfv

dx
is continuous. We have, using integration

by parts, that;

G(dfv
dx

)(k) =
∫∞
0

dfv
dx

(y)e−ikydy

= [fv(y)e−iky]∞0 + ik
∫∞
0
fv(y)e−ikydy
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= ik
∫∞
0
fv(y)e−ikydy

= ikG(fv)(k)

so that, for |k| > 1;

|G(fv)(k)| ≤ |G( dfv
dx

)(k)|
|k| , (†)

As dfv
dx

is of moderate decrease, for any ε > 0, we can find Nε,v ∈ N
such that;

|G(dfv
dx

)(k)−
∫ Nε,v
0

dfv
dx

(y)e−ikydy| < ε (∗)

As dfv
dx
|0,Nε,v is continuous and non-oscillatory, by the proof of Lemma

0.9 in [10], using underflow and quantifying over the nonstandard pa-
rameter space again, linked to the parametersNε,v, we can find {Dε, Eε,v} ⊂
R>0, such that, for all |k| > Dε, we have that;

|
∫ Nε,v
0

dfv
dx

(y)e−ikydy| < Eε,v
|k| , (∗∗)

Again, as in the proof of Lemma 0.15, {Dε, Eε,v} can be chosen uni-
formly in ε. Then, from (∗), (∗∗), and the triangle inequality, we obtain
that, for |k| > Dε;

|G(dfv
dx

)(k)|

≤ |G(dfv
dx

)(k)−
∫ Nε,v
0

dfv
dx

(y)e−ikydy|+ |
∫ Nε,v
0

dfv
dx

(y)e−ikydy|

< ε+
Eε,v
|k|

so that, as {Dε, Eε,v} were uniform and ε was arbitrary, we obtain
that;

|G(dfv
dx

)(k)| < Ev
|k| , for |k| > D, independent of v

and, from (†), for |k| > D, that;

|G(fv)(k)| ≤ |G( dfv
dx

)(k)|
|k| < Ev

|k|2

where the choice of Ev is the same as in the proof of Lemma 0.15.
For the second claim, the proof up to (†) is the same. After choosing
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N ∈ N , we have that each dfv
dx
|(0,N) is non-oscillatory, and, moreover,

there are at most N
δv

monotone intervals. As in (∗∗), and inspection of

the proof in [10], we get;

|
∫ N
0

dfv
dx
e−ikydy| < EN

|k|

where EN ≤ 2NCv
δv

and Cv = maxx∈R>0|dfvdx |.
Choosing N > 1, as dfv

dx
is of moderate decrease, we can assume that

|dfv
dx
| ≤ Dv

x2
, for x > N . Then, using the proof in [10] again, and the

definition of oscillatory, we have that, for sufficiently large |k|, inde-
pendent of v;

|
∫∞
N

dfv
dx
e−ikydy| < ( 2

|k|
∑

yi,v>N
Dv
y2i,v

)

≤ ( 2
|k|

∑
n∈Z≥0

Dv
(yi0,v+nδv)

2 )

≤ 2Dv
δv |k|

∫∞
yi0 ,v

dx
x2

= 2Dv
δv |k|yi0 ,v

≤ 2Dv
δv |k|N

where yi0,v ≥ N and yi0,v ≤ yi,v, for all yi,v ≥ N . It follows that;

|G(dfv
dx

)(k)| = |
∫ N
0

df
dx
e−ikydy +

∫∞
N

dfv
dx
e−ikydy|

≤ |
∫ N
0

dfv
dx
e−ikydy|+ |

∫∞
N

dfv
dx
e−ikydy|

≤ EN
|k| + 2Dv

δv |k|N

≤ 2
|k|(

NCv
δv

+ Dv
δvN

)

It follows, using (†), that;

|G(fv)(k)| ≤ |G( dfv
dx

)(k)|
|k| < Ev

|k|2

where Ev = 2(NCv
δv

+ Dv
δvN

)

As in Lemma 0.15, we can choose Ev as in the final claim of the two
parts.
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For the penultimate claim, the modification for the first part is the
same. In the second part, choose N ≥ nv, rather than N > 1 in the
proof, then, taking N = nv, we obtain Ev = 2(nvCv

δv
+ Dv

nvδv
)

For the final claims, we can use integration by parts, uniformly in v,
together with the fact that fv is of moderate decrease and limx→0fv =
0, to show that, for |k| > 1;

|G(fv)(k)| ≤ |G( dfv
dx

)|
|k| (HH)

Then use the proof in Lemma 0.15 to find Lε with;

|
∫∞
Lε

df
dxv

(y)e−ikydy|

≤ ε (GG)

uniformly in v. As the family W ′ is analytic, and V is closed and
bounded, by the usual compactness argument, there exists a uniform
bound in the number of zeros of f ′′v restricted to [0, Lε], and a uniform
bound for || df

dx
||∞ on [0, Lε. By the same argument as above, we have

that;

|
∫ Lε
0

df
dxv

(y)e−ikydy| ≤ Eε
|k|

where Eε = 2val(f ′v|[0,Lε])||f ′v||∞

Using (GG), we have that, for sufficiently large k;

|
∫∞
0

df
dxv

(y)e−ikydy| ≤ Eε
|k| + ε

so that, using (HH);

|G(fv)| ≤ Eε
|k|2 + ε

|k|

as required.

If we replace analytic by continuous, then (GG), (HH) are the same,
with ε

2
replacing ε. We use the Stone-Weierstrass approximation theo-

rem to find a family of polynomials p(y, v) with;
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|p(y, v)− dfv
dx

(y)| ≤ δ on [0, Lε]

and choose δ ≤ ε
2Lε

, so that;

|
∫ Lε
0

dfv
dx

(y)e−ikydy| ≤ ε
2

+ |
∫ Lε
0
pv(y)e−ikydy|+ ε

2
(SS)

By the usual argument, for sufficiently large k;

|
∫ Lε
0
pv(y)e−ikydy| ≤ Eε

|k| (MM)

where Eε = 2valpv(Lε)||pv||∞.

so that, using (SS), (MM);

|
∫ Lε
0

dfv
dx

(y)e−ikydy| ≤ Eε
|k| + ε

2

and, using (GG)

|
∫∞
0

dfv
dx

(y)e−ikydy| ≤ Eε
|k| + ε

2
+ ε

2

= Eε
|k| + ε

Applying (HH), we then have that, for sufficiently large k, uniformly
in v;

|G(fv)| = |
∫∞
0
fv(y)e−ikydy|

≤ Eε
|k|2 + ε

|k|

as required.

�

Definition 0.17. We call a power series
∑∞

n=0 anx
n strongly analytic

if, for sufficiently large n;

|an| ≤ C
n!(n+1)!

for some C ∈ R>0

Lemma 0.18. There is a one to one correspondence between functions
f : S1 → S1 which are analytic on the circle and functions f : R → R
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which are analytic and analytic at infinity. There is a one to one
correspondence between functions f : S3 → S3 which are analytic on
the three sphere and functions f : R3 → R which are analytic and
analytic at infinity. If f : R → R is analytic and analytic at infinity,
then so are the derivatives f (n), for n ≥ 1. Moreover, f is eventually

monotone and non-zero, and eventually all the derivatives f ′

f

(n)
, n ≥ 0

have finitely many zeroes and are monotone. If w : R → R is strongly
analytic and has the property that w(x)ex

2 ∈ L1(R), then F(w) is
analytic and analytic at infinity, where F is the Fourier transform.

Proof. For the first claim, if g : S1 → S1 is analytic, then define
Φ(g) : R → R by;

Φ(g)(x) = g(2tan−1( 1
x
))

with the principal branch in the range (0, π
2
) for x > 0 and the

branch in the range (π
2
, π), for x < 0 and tan−1(∞) = π

2
. We have that

Φ(g)( 1
x
) = g(2tan−1(x)) and, for 0 < x < 1;

tan−1(x) =
∫ x
0

dy
1+y2

=
∫ x
0

(
∑∞

n=0(−1)ny2n)dx

=
∑∞

n=0(−1)n x
2n+1

2n+1

and, for −1 < x < 0;

tan−1(x) = π +
∑∞

n=0(−1)n x
2n+1

2n+1

so that;

g(2tan−1(x)) = g(2
∑∞

n=0(−1)n x
2n+1

2n+1
), for 0 < x < 1

g(2tan−1(x)) = g(2π + 2
∑∞

n=0(−1)n x
2n+1

2n+1
)

= g(2
∑∞

n=0(−1)n x
2n+1

2n+1
), for −1 < x < 0

g(tan−1(0)) = g(0)

and so Φ(g)( 1
x
) is analytic for |x| < 1, and Φ(g) is analytic at infinity.

We have that, for |x| < 1;
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tan−1( 1
x
) = cot−1(x) = π

2
− tan−1(x)

so that, g(2tan−1( 1
x
)) is analytic for |x| < 1. Similar proofs can be

shown for 1
2
< |x| < ∞, by considering tan−1(x) for 0 < |x| < 2, so

that Φ(g)(x) is analytic. Conversely, given h : R → R analytic and
analytic at infinity, we can define Φ−1(h)(θ) = h( 1

tan( θ
2
)
), 0 ≤ θ ≤ 2π,

and it is similarly checked that Φ−1(h) : S1 → S1 is analytic. For the
second claim, we can use the three spherical coordinates;

x0 = cos(α)

x1 = sin(α)cos(β)

x2 = sin(α)sin(β)cos(γ)

x3 = sin(α)sin(β)sin(γ)

0 ≤ α, β ≤ π, 0 ≤ γ ≤ 2π

with with the stereographic volume tangent to the three sphere at
(1, 0, 0, 0), Then, the point with coordinates (α, β, γ), for α 6= π

2
corre-

sponds to the point;

1
cos(α)

(sin(α)cos(β), sin(α)sin(β)cos(γ), sin(α)sin(β)sin(γ))

= (tan(α)cos(β), tan(α)sin(β)cos(γ), tan(α)sin(β)sin(γ)

and we can define;

Φ−1(f)(α, β, γ) = f(tan(α)cos(β), tan(α)sin(β)cos(γ), tan(α)sin(β)sin(γ))

If f is analytic and analytic at infinity, then it is easily checked that
Φ−1(f) has a unique extension to an analytic function on the three
sphere, by taking limits on the closed subset α = π

2
. One needs to

check that Φ is invertible, the details are left to the reader.

The third claim is well known. If f is analytic at infinity, then
f( 1

x
) = g(x) for g analytic in a neighborhood Bε(0). We have that, for

x 6= 0;
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f ′( 1
x
) = limh→0

f( 1
x+h

)−f( 1
x
)

1
x+h
− 1
x

= limh→0
g(x+h)−g(x)

1
x+h
− 1
x

= limh→0
g(x+h)−g(x)
− h

(x+h)x

= −g′(x)x2

which is analytic in the neighborhood Bε(0), so that f ′ is analytic
at infinity. It follows that f ′ has finitely many zeroes on R and f is
eventually monotone and non-zero, as f is analytic. We can therefore
define f ′

f
eventually, f ′

f
has finitely many zeroes as f ′ is analytic at

infinity. We compute;

f ′

f

′
= f ′′f−f ′2

f2

which again has finitely many zeroes eventually, as f ′′f − f ′2 is an-
alytic at infinity. It follows that f ′

f
is eventually monotone. It is easy

to see that, for n ≥ 0, (f
′

f
)(n) = p(f,f ′,...f (n+1))

f2n
, where p(x0, x1, . . . , xn+1)

is a polynomial. Clearly, then, p(f, f ′, . . . f (n+1)) is analytic at infinity,

so has finitely many zeroes eventually and then f ′

f

(n−1)
is eventually

monotone, for n ≥ 1.

For the fifth claim, observe that w(x)e|x| ≤ w(x)ex
2
, for |x| ≥ 1, so

that F(w)(y) is analytic on R, by the Paley-Wiener theorem, as it has
an analytic continuation G(z) to the strip |Im(z)| < 1. Define;

H(z) = 1√
2π

∫∞
−∞w(x)e

−ix
z dx (z 6= 0)

H(0) = 0

H is well defined as if z = a+ ib, z 6= 0;

H(z) = 1√
2π

∫∞
−∞w(x)e

−ix
a+ibdx

= 1√
2π

∫∞
−∞w(x)e

−ix(a−ib)
a2+b2 dx

= 1√
2π

∫∞
−∞w(x)e

bx
a2+b2 e

−ixa
a2+b2 dx (∗)
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We have that |w(x)e
bx

a2+b2 | ≤ |w(x)ex
2|, for |x| > |b|

a2+b2
, so that

w(x)e
bx

a2+b2 ∈ L1(R) and the integral (∗) exists. We have that;

H ′(z) = 1√
2π

∫∞
−∞w(x)e

−ix
z

ix
z2
dx (z 6= 0)

= 1√
2π

∫∞
−∞w(x)e

bx
a2+b2 ix

z2
e
−ixa
a2+b2 dx (∗∗)

Similarly, |w(x)e
bx

a2+b2 ix
z2
| ≤ |w(x)e

x2

z2
|, for |x| ≥ max(2, 2|b|

a2+b2
), so that

w(x)e
bx

a2+b2 ix
z2
∈ L1(R), and the integral in (∗∗) exists again. It follows

that H(z) is analytic except possibly at 0, in particularly it defines a
real analytic function on Bε(0) \ {0}. We have that
limh→0,h∈RH(h) = 0

by the Riemann-Lebesgue lemma, so that H is continuous on Bε(0).
If w is analytic, we can assume that w =

∑∞
n=0 anx

n, for x ∈ R, so
that, using the DCT;

H(h) = 1√
2π

∫∞
−∞w(x)e

−ix
h dx

= 1√
2π

∫∞
−∞(

∑∞
n=0 anx

n)e
−ix
h dx

= 1√
2π
limR(h)→∞

∫ R(h)

−R(h)
(
∑∞

n=0 anx
n)e

−ix
h dx

= 1√
2π
limR(h)→∞

∑∞
n=0 an

∫ R(h)

−R(h)
xn)e

−ix
h dx

= 1√
2π
limR(h)→∞

∑∞
n=0 anIn,R(h)

where, using integration by parts, for n ≥ 1;

In,R(h) =
∫ R(h)

−R(h)
xne

−ix
h dx

= [ihxne
−ix
h ]

R(h)
−R(h) −

∫ R(h)

−R(h)
nih

∫ R(h)

−R(h)
xn−1e

−ix
h dx

= ih(R(h)ne
−iR(h)

h − (−R(h))ne
iR(h)
h )− nihIn−1,R(h)

so that, for n ≥ 2, n even;

In,R(h) = ihR(h)n(−2isin(R(h)
h

))− nihIn−1,R(h)
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for n ≥ 1, n odd;

In,R(h) = ihR(h)n(2cos(R(h)
h

))− nihIn−1,R(h)

I0,R(h) =
∫ R(h)

−R(h)
e
−ix
h dx = ih(−2isin(R(h)

h
)

Let R(h) = 2mπh, so that R(h)
h

= 2mπ, where m ∈ N sin(R(h)
h

) = 0,

cos(R(h)
h

) = 1. Then, for n ≥ 2, n even;

In,m = −nihIn−1,m

for n ≥ 1, n odd;

In,m = 2ih(2mπh)n − nihIn−1,m

I0,m = 0

It follows that, for n even, n ≥ 2;

In,m = −nihIn−1,m

= −nih[2ih(2mπh)n−1 − (n− 1)ihIn−2,m]

= hn+1(2n(2mπ)n−1)− h2n(n− 1)In−2,m

and, for n odd n ≥ 3;

In,m = 2ih(2mπh)n − nihIn−1,m

= 2ih(2mπh)n − nih[−(n− 1)ihIn−2,m]

= 2ih(2mπh)n − nih[−(n− 1)ihIn−2,m]

= hn+1(2i(2mπ)n)− h2(n(n− 1)In−2,m)

with;

I1,m = 2ih(2mπh) = h2(4imπ)

I0,m = 0
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We claim that, for n ≥ 1, In,m = c(n,m)hn+1, where c(n,m) is a
complex polynomial in the variables n,m. By induction on odd n,
n ≥ 1, it is true for n = 1, then, for n ≥ 3;

In,m = hn+1(2i(2mπ)n)− h2(n(n− 1)In−2,m)

= hn+1(2i(2mπ)n)− h2(n(n− 1)c(n− 2,m)hn−1)

= [2i(2mπ)n − n(n− 1)c(n− 2,m)]hn+1

= c(n,m)hn+1

where c(n,m) = 2i(2mπ)n − n(n− 1)c(n− 2,m) is a complex poly-
nomial in the variables n,m again.

By induction on even n, n ≥ 2, we have that;

I2,m = h3(8mπ)

so true for n = 2 and;

In,m = hn+1(2n(2mπ)n−1)− h2n(n− 1)c(n− 2,m)hn−1

= [2n(2mπ)n−1 − n(n− 1)c(n− 2,m)]hn+1

= c(n,m)hn+1

where c(n,m) = 2n(2mπ)n−1 − n(n − 1)c(n − 2,m) is a complex
polynomial in the variables n,m again.

It follows that;

H(h) = 1√
2π
limm→∞

∑∞
n=0 anIn,m

= 1√
2π
limm→∞

∑∞
n=1 anIn,m

= 1√
2π
limm→∞

∑∞
n=1 anc(n,m)hn+1, (∗)

For n odd, n ≥ 3;
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c(n,m) = 4imπn! + 2i
∑n−3

2
k=0 (−1)k n!

(n−2k)!(2mπ)n−2k

and, for n even, n ≥ 4;

c(n,m) = −8mπn! + 2
∑n−4

2
k=0 (−1)k n!

(n−1−2k)!(2mπ)n−1−2k

so that |c(n,m)| ≤ (2mπ)n(n+ 1)!

and, with the assumption of strong analyticity;

|anc(n,m)| ≤ (2mπ)n

n!

|
∑∞

n=1 ancn,mh
n| ≤

∑∞
n=1

(2mπ|h|)n
n!

≤ e2mπ|h| − 1

so that the functions fm =
∑∞

n=1 anc(n,m)hn+1 are analytic on
B(0, 1)

The convergence of fm is pointwise, as for given h ∈ B(0, 1), h 6= 0
we have that;

F(w)( 1
h
) = 1√

2π
limm→∞

∫ 2mπh

−2mπhw(x)e
−ix
h dx

and fm(0) = 0, for m ∈ N

We have that fm are uniformly bounded, as for h ∈ B(0, 1), h 6= 0,
we have that;

|fm(h)| = |
∫ 2mπh

−2mπhw(x)e
−ix
h dx|

≤
∫ 2mπh

−2mπh |w(x)|dx

≤ ||w||1

By Montel’s theorem the functions fm are uniformly convergent, so
the limit is analytic on B(0, 1) and w is analytic at infinity.

�

Lemma 0.19. If f : R3 → R is analytic and analytic at infinity then

so are the partial derivatives ∂i+j+k

∂xi∂yj∂zk
, (i, j, k) ∈ Z3

≥0. If f : R3 → R
is analytic and analytic at infinity, then for 0 ≤ θ ≤ π, 0 ≤ φ < 2π,
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R > 0, the polar representation f(R, θ, φ) of f(k) is analytic and an-
alytic at infinity, uniformly in (θ, φ). Moreover val(fθ,φ) is uniformly

bounded. If l ∈ R3, with f(R, θ, φ, l) = f(k−l), then again, f(R, θ, φ, l)
is analytic and analytic at infinity, uniformly in (θ, φ, l), with val(fθ,φ,l)

uniformly bounded. For θ 6= cos−1( l3
l1

), φ 6= tan−1( l2
l1

), the polar repre-

sentation of g(k, l) = f(k−l)
|k−l| is analytic at infinity, uniformly in (θ, φ, l),

with val(gθ,φ,l) uniformly bounded. The polar representation of the com-

ponents of u(k) = k
|k| are analytic, analytic at infinity, uniformly in

(θ, φ), with val(uθ,φ) uniformly bounded. If h(l) is analytic and ana-

lytic at infinity, and the components of f(k) are analytic, analytic at
infinity, uniformly in (θ, φ), with val(uθ,φ) uniformly bounded, then,
the polar representation of;

[f(k−l)|k−l| ×
h(l)

|l| ] � u(k)

is analytic and analytic at infinity. Moreover val(fθ,φ,l) is uniformly
bounded. In particularly, the family is non-oscillatory and excellent.

Proof. For the first claim, it is sufficient to prove that ∂f
∂x

is analytic

and analytic at infinity. The claim that ∂f
∂x

is analytic is clear. Without
loss of generality, suppose that;

f( ε1
x
, ε2
y
, ε3
z

) = g(x, y, z)

with g analytic, and ε1 6= 0, ε2 6= 0, ε3 6= 0, the general case can be
proved by rotating coordinates. Then;

−∂f
∂x

ε1
x2

+ ∂f
∂y

+ ∂f
∂z

= ∂g
∂x

∂f
∂x
− ∂f

∂y
ε2
y2

+ ∂f
∂z

= ∂g
∂y

∂f
∂x

+ ∂f
∂y
− ∂f

∂z
ε3
z2

= ∂g
∂z

and;

M(∂f
∂x
, ∂f
∂y
, ∂f
∂z

) = ( ∂g
∂x
, ∂g
∂y
, ∂g
∂z

)

with (M)11 = − ε1
x2

, (M)22 = − ε2
y2

, (M)33 = − ε3
z2
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(M)ij = 1, 1 ≤ i < j ≤ 3.

so that;

(∂f
∂x
, ∂f
∂y
, ∂f
∂z

) = M
−1

( ∂g
∂x
, ∂g
∂y
, ∂g
∂z

)

with { ∂g
∂x
, ∂g
∂y
, ∂g
∂z
} analytic in a neighborhood of (0, 0, 0). We have

that;

M
−1

= 1
det(M)

adj(M)t

= x2y2z2

−ε1ε2ε3+2x2y2z2+ε1y2z2+ε2x2z2+ε3x2y2
N

where;

N11 = ε2ε3
y2z2

N22 = ε1ε3
x2z2

N33 = ε1ε2
x2y2

N12 = N21 = ε3
z2

+ 1

N13 = N31 = ε2
y2

+ 1

N23 = N32 = ε1
x2

+ 1

Clearing denominators, and using Newton’s expansion, with ε1ε2ε3 6=
0, it is clear that the components of M

−1
are locally analytic at (0, 0, 0),

so that {∂f
∂x
|( ε1
x
,
ε2
y
,
ε3
z
),
∂f
∂y
|( ε1
x
,
ε2
y
,
ε3
z
),
∂f
∂z
|( ε1
x
,
ε2
y
,
ε3
z
)} are locally analytic at

(0, 0, 0) In particularly, ∂f
∂x

is analytic at infinity.

For the second claim, if f is analytic, with power series expan-
sion at 0 given by

∑
i,j,k≥0 aijkx

iyjzk, then making the substitutions

x = Rsin(θ)cos(φ), y = Rsin(θ)sin(φ), z = Rcos(θ), we obtain;∑
i,j,k≥0 aijk(Rsin(θ)cos(φ))i(Rsin(θ)sin(φ))j(Rcos(θ))k

=
∑

i,j,k≥0 aijksin
i+j(θ)sinj(φ)cosj(φ)cosk(θ)Ri+j+k
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=
∑

l≥0 bl,θ,φR
l

where, for l ≥ 0, bl,θ,φ =
∑

i+j+k=l aijksin
i+j(θ)sinj(φ)cosj(φ)cosk(θ),

so that f(R, θ, φ) is analytic, uniformly in {θ, φ} around 0. If (R0, θ0, φ0)
is fixed, x0 = R0sin(θ0)cos(φ0), y0 = R0sin(θ0)sin(φ0), z0 = R0cos(θ0),
with local power series expansion;∑

i,j,k≥0 aijk(x− x0)i(y − y0)j(z − z0)k

making the substitutions again, we obtain;∑
i,j,k≥0 aijk(Rsin(θ0)cos(φ0)−R0sin(θ0)cos(φ0))

i(Rsin(θ0)sin(φ0)

−R0sin(θ0)sin(φ0))
j(Rcos(θ0)−R0cos(θ0))

k

=
∑

i,j,k≥0 aijksin
i+j(θ0)sin

j(φ0)cos
k(φ0)cos

k(θ0)(R−R0)
i+j+k

=
∑

l≥0 bl,θ0,φ0(R−R0)
l

where bl =
∑

i+j+k=l aijksin
i+j(θ0)sin

j(φ0)cos
j(φ0)cos

k(θ0)

so that fθ0,φ0 is locally analytic around R0. Similarly, if f is analytic
at ∞ with (x0, y0, z0) ∈ P 2(R) and power series expansion;∑

i,j,k≥0 aijkx
iyjzk

for f(x0
x
, y0
y
, z0
z

), then, letting x0 = sin(θ0)cos(φ0), y0 = sin(θ0)sin(φ0),

z0 = cos(θ0), we obtain an expansion for;

f( sin(θ0)cos(φ0)
x

, sin(θ0)sin(φ0)
y

, cos(θ0)
z

)

so that;

fθ0,φ0(
1
R

) = f( sin(θ0)cos(φ0)
R

, sin(θ0)sin(φ0)
R

, cos(θ0)
R

)

=
∑

i,j,k≥0 aijkR
i+j+k

=
∑

l≥0 blR
l

where bl =
∑

i+j+k=l aijksin
i+j(θ0)sin

j(φ0)cos
j(φ0)cos

k(θ0)
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For the uniformity claim, let Z ⊂ P 3(R) be the zero locus of f(x, y, z) =
0 and define a relation R ⊂ P 3(R)× P 2(R) by;

R(x, l) iff x ∈ l ∩ Z

where l is a line passing through the origin of R3. Considering the
projection pr : P 3(R)×P 2(R)→ P 2(R), restricted to R. By the previ-
ous result, that fθ,φ is analytic and analytic at infinity, and Lemma 0.46,
we have that pr|R is a finite cover. Moreover R is closed and locally an-
alytic in P 3(R)×P 2(R) of dimension 2. In particularly, R is compact.
Let W ⊂ R3 × P 2(R) be the variety defined by W (y, l) iff y ∈ l, so
W has dimension 3, and let W be its closure in P 3(R)×P 2(R). Then
pr factors through W . By real Weierstrass preparation, see [1], we can
present the local power series S(X, Y, Z) =

∑
i,j,k≥0 aijkX

iY jZk defin-

ing R ⊂ W at (0, 0, 0) in the form S(X, Y, Z) = G(X, Y, Z)H(X, Y, Z),
with G(0, 0, 0) 6= 0 and H(X, Y, Z) = Zd+c1(X, Y )Zd−1+ . . . cd(X, Y ),
where ci(X, Y ) ∈ R[[X, Y ]], for 1 ≤ i ≤ d, ci(0, 0) = 0, and d =
ord(S(0, 0, Z)). Then on the set G 6= 0, we have the cover has degree
at most d, and, by compactness, we can find a finite sequence of open
sets U1, . . . Ur, for which pr|Ui has degree di, so that the total degree
of the cover is at most rmax1≤i≤rdi, (Q).

By the proof of the above, we have that f is analytic at infinity, in
the coordinates (R, θ, φ), in the sense that;

f( 1
R
, θ, φ) = g(R, θ, φ)

where g is analytic in (R, θ, φ) in a neighborhood of (0, θ0, φ0 for fixed
(θ0, φ0). Differentiating, we obtain that;

− 1
R2

∂f
∂R

= ∂g
∂R

so that;

∂f
∂R
|( 1
R
,θ,φ) = −R2 ∂g

∂R

where ∂g
∂R

and −R2 ∂g
∂R

are analytic in (R, θ, φ) in a neighborhood of

(0, θ0, φ0 for fixed (θ0, φ0), so that ∂f
∂R

is analytic at infinity, in the co-
ordinates (R, θ, φ). The proof above also shows that f is analytic, in
the coordinates (R, θ, φ), and so is ∂f

∂R
. Let;
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Coneθ0 = {(x, y, z) : x = rsin(θ)cos(φ), y = rsin(θ)sin(φ), z =
rcos(θ), r ∈ R, 0 ≤ θ ≤ θ0, 0 ≤ φ ≤ 2π}

so that ∂f
∂R

is analytic on the cone and at infinity, or in the restricted

coordinates. Let Zθ0 be the zero set of ∂f
∂R

on the compactification of
the coordinates P 1(R) × S1(R) × [0, θ0]. Then we can follow through
the argument of (Q), to obtain a bound on the cardinality of zeros of
∂f
∂R

for 0 ≤ θ ≤ θ0, 0 ≤ φ ≤ 2π. We can carry out a similar argument
for Coneθ0,π, letting θ0 ≤ θ ≤ π. In particularly val(f) is bounded as
{θ, φ} varies. For the next claim, we have that;

f(R, θ, φ, l) = f(Rsin(θ)cos(φ)− l1, Rsin(θ)sin(φ)− l2, Rcos(θ)− l3)

so at the coordinate (R0, θ0, φ0);

f(R, θ0, φ0, l) = f(Rsin(θ0)cos(φ0)−R0sin(θ0)cos(φ0)+R0sin(θ0)cos(φ0)−
l1,

Rsin(θ0)sin(φ0)−R0sin(θ0)cos(φ0)+R0sin(θ0)cos(φ0)−l2, Rcos(θ0)

−R0cos(θ0) +R0cos(θ0 − l3)

=
∑

i,j,k≥0 aijk,l(Rsin(θ0)cos(φ0)−R0sin(θ0)cos(φ0))
i(Rsin(θ0)sin(φ0)−

R0sin(θ0)cos(φ0))
j(Rcos(θ0)−R0cos(θ0))

k

where
∑

i,j,k≥0 aijk,l(x−m1,0 + l1)
i(y −m2,0 + l2)

j(z −m3,0 + l3)
k

is the analytic expansion for f around m0 − l, with;

m0 = (R0sin(θ0)cos(φ0), R0sin(θ0)cos(φ0), R0cos(θ0))

For the next claim, it is easily shown that f is analytic and an-
alytic at infinity precisely when f extends to a real analytic map
f : P 3(R)→ R. The components of the translation map Tl;R3 → R3

defined by T (k) = k − l, for l ∈ R3 are analytic. Tl extends to an
analytic map of P (R3), given in coordinates (x, y, z, w) by;

Tl([x : y : z : w]) = ([x− wl1, y − wl2, z − wl3, w])
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On the chart x 6= 0, the map Tl is given by;

(y, z, w) 7→ [1 : y : z : w] 7→ [1− wl1, y − wl2, z − wl3, w]

7→ (y−wl2
1−wl1 ,

z−wl3
1−wl1 ,

w
1−wl1 )

which, without loss of generality, assuming l1 6= 0, l2 6= 0, l3 6= 0, is
analytic for |w| < min( 1

|l1 ,
1
|l2| ,

1
|l3|), by Newton’s theorem, in particular

at w = 0. The same is true for the charts y 6= 0 and z 6= 0. It follows the
components of Tl extend to analytic maps of P 3(R). By composition,
we then know that f ◦ Tl is real analytic on P 3(R), so that fl is ana-
lytic and analytic at infinity. Repeating the argument above, it follows
that fθ,φ,l is analytic and analytic at infinity, uniformly in {θ, φ, l}. For

the uniformity claim, we replace P 2(R) in the argument above by the
Grassmanian of lines Gr(P 3(R)), let Z ⊂ P 3(R) be the zero locus of
f(x, y, z) = 0 again and define the relation R ⊂ P 3(R)×Gr(P 3(R)) by;

R(x, l) iff x ∈ l ∩ Z

where l is a line in P 3(R). Consider the projection pr : P 3(R) ×
Gr(P 3(R))→ Gr(P 3(R)), restricted to R. By the previous result, that
fθ,φ,l is analytic and analytic at infinity, and Lemma 0.46 again, we have
that pr|R is a finite cover. Moreover R is closed and locally analytic
in P 3(R)× Gr(P 3(R)) of dimension 4. In particularly, R is compact.
Let W ⊂ P (R3) × Gr(P 3(R)) be the variety defined by W (y, l) iff
y ∈ l, so W has dimension 5, and let W be its closure in P (R3) ×
Gr(P 3(R)). Then pr factors through W . By real Weierstrass prepara-
tion, see [1], we can present the local power series S(X, Y, Z, U, V ) =∑

i,j,k,l,m≥0 aijklmX
iY jZkU lV m defining R ⊂ W at (0, 0, 0, 0, 0) in the

form S(X, Y, Z, U, V ) = G(X, Y, Z, U, V )H(X, Y, Z, U, V ), with
G(0, 0, 0, 0, 0) 6= 0 and H(X, Y, Z, U, V ) = V d + c1(X, Y, Z, U)V d−1 +
. . . cd(X, Y, Z, U), where cd(X, Y, U, V ) ∈ R[[X, Y, U, V ]], for 1 ≤ i ≤ d,
ci(0, 0, 0, 0) = 0, and d = ord(S(0, 0, 0, 0, V )). Then on the set G 6= 0,
we have the cover has degree at most d, and, by compactness, we can
find a finite sequence of open sets U1, . . . Ur, for which pr|Ui has de-
gree di, so that the total degree of the cover is at most rmax1≤i≤rdi,
(QQ). For the next claim, we can again show that ∂f

∂R
is analytic on

Coneθ0 × R3 in the variables (r, θ, φ, l). We can embed Coneθ0 × R3

into P 1(R)× [0, θ0]× S1 × P (R3) into P 3(R)× P 3(R) via the maps;
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(r, θ, φ, l) 7→ ([r : 1], θ, φ, [l1 : l2 : l3 : 1])

([u, v], θ, φ, [l1 : l2 : l3 : l4]) 7→ ([ul4sin(θ)cos(φ)−l1v : ul4sin(θ)sin(φ)

−l2v : ul4cos(θ)− l3v; l4v], [l1 : l2 : l3 : l4]) (E)

We have that;

∂f
∂R

= ∂f
∂x

x
R

+ ∂f
∂y

y
R

+ ∂f
∂z

z
R

By the first claim, {∂f
∂x
, ∂f
∂y
, ∂f
∂z
} are analytic at infinity in P 3(R). We

have that sign(xyz)x
R

extends to a map on P 3(R) by;

[x : y : z : w] 7→ sign(xyz)x
R

as, for t ∈ R6=0;

sign((tx)(ty)(tz))tx

((tx)2+(ty)2+(tz)2)
1
2

= sign(t)sign(xyz)tx
|t|R

= sign(xyz)x
R

On the chart x 6= 0;

[1 : y, z, w] 7→ sign(yz)

(1+y2+z2)
1
2

we have that, using Newton’s theorem, the map is analytic on the
connected components of the region y 6= 0, z 6= 0. By considering the
map;

[x : y : z : w] 7→ sign((x−y)(y−z)(z−x))x
R

we can similarly prove local analyticity on the connected components
of the region x 6= 0, y 6= 1, y 6= z, x 6= z, until we obtain analyticity
everywhere except x = y = z = 0. The same considerations apply to;

sign(xyz)y
R

, sign(xyz)z
R

, sign((x−y)(y−z)(z−x))y
R

and sign((x−y)(y−z)(z−x))z
R

so that as;

sign(xyz)∂f
R

= ∂f
∂x

sign(xyz)x
R

+ ∂f
∂y

sign(xyz)y
R

+ ∂f
∂z

sign(xyz)z
R
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we can obtain generically analytic extensions of;

{sign(xyz) ∂f
∂R
, sign((x− y)(y − z)(z − x)) ∂f

∂R
}

to P 3(R). We can define a map Θ1 : P 3(R)× P 3(R)→ R by;

Θ1([x : y : z : w], [l1 : l2 : l3 : l4]) = sign(xyz) ∂f
∂R

([x : y : z : w])

and a map Θ2 : P 3(R)× P 3(R)→ R by;

Θ2([x : y : z : w], [l1 : l2 : l3 : l4]) = sign((x− y)(y − z)(z − x))

∂f
∂R

([x : y : z : w])

and compose {Θ1,Θ2} with the map in (E) to obtain analytic pro-
jective extensions of {sign(xyz) ∂f

∂R
, sign((x − y)(y − z)(z − x)) ∂f

∂R
}

on the cone Coneθ0 in the variables {θ, φ, l}. Fibring the extension
over P 3(R), and using an argument similar to Q, applying Weier-
strass preparation to the generically analytic sets sign(xyz) ∂f

∂R
= 0 and

sign((x− y)(y− z)(z−x)) ∂f
∂R

= 0, we can obtain generic uniformity in

the cardinality of the zeros of sign(xyz) ∂f
∂R

(θ, φ, l) and sign((x−y)(y−
z)(z − x)) ∂f

∂R
. As ∂f

∂R
differs from sign(xyz)∂f

∂R
and sign((x−y)(y−z)(z−x))∂f

∂R
,

possibly by a minus sign, on the connected regions, by the covering
property, we obtain uniformity in the cardinality of zeros of ∂f

∂R
. We

then obtain uniformity in val(fθ,φ,l). We have that, with the restric-

tions on (θ, φ, l), that;

f(k−l)
|k−l| = 0 iff f(k − l) = 0

so that g(k, l) has a uniformly finite number of zeros in the polar
representation (R, θ, φ, l). We have that;

∂
∂R

( 1
|k−l|) = − 1

2|k−l|3 2(k − l) � k̂ = − (k−l)�k
|k−l|3|k|

so that;

∂g
∂R

=
∂f
∂R

|k−l| − f
(k−l)�k
|k−l|3|k| (U)

With the restriction on the parameters, this has zeros when;
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∂f
∂R
|k − l|2|k| = f(k − l) � k (U)′

We have that sign(xyz)

|k| extends to P 3(R) \ (0, 0, 0) by;

[x : y : z : w] 7→ sign(xyz)w
R

as;

[tx : ty : tz : tw] 7→ sign((tx)(ty)(tz))tw
|t|R

= sign(t)tsign(xyz)w
|t|R

= sign(xyz)w
R

The shift Tl(k) = k − l, extends to P 3(R) by;

Tl([x : y : z : w]) = [x− wl1, y − wl2, z − wl3, w]

so that sign((x−l1)(y−l2)(z−l3))
|k−l| extends to P 3(R). We have that sign(xyz) k

|k| :

R3 → S2(R) extends to P 3(R) by;

[x : y : z : w] 7→ sign(xyz)(x,y,z)
|(x,y,z)|

as;

[tx : ty : tz : tw] 7→ sign(t)tsign(xyz)(x,y,z)
|t||(x,y,z)|

= sign(xyz)(x,y,z)
|(x,y,z)|

Similarly, sign(xyz) k
|k|3 : R3 → R3 extends to P 3(R) by;

[x : y : z : w] 7→ sign(xyz)(x,y,z)w2

|(x,y,z)|3

as;

[tx : ty : tz : tw] 7→ sign(t)t3sign(xyz)(x,y,z)w2

|t|3|(x,y,z)|

= sign(xyz)(x,y,z)w2

|(x,y,z)|3
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so that, as before, sign((x− l1)(y− l2)(z− l3)) k−l
|k−l|3 extends. Taking

the dot product;

sign((x− l1)(y − l2)(z − l3)xyz) k−l�k
|k−l|3|k| (V )

extends to P 3(R). It follows that, by (U), (V );

∂g
∂R
sign((x− l1)(y − l2)(z − l3))

agrees with;

=
∂f
∂R
sign((x−l1)(y−l2)(z−l3))

|k−l| − fsign((x−l1)(y−l2)(z−l3)xyz)(k−l)�k
|k−l|3|k| (X)

on the region sign(xyz) > 0, and ∂g
∂R

agrees with ∂g
∂R
sign((x− l1)(y−

l2)(z − l3)), on the region sign((x− l1)(y− l2)(z − l3)) > 0, so that ∂g
∂R

agrees with the term (X) on the region Vl = sign(xyz(x−l1)(y−l2)(z−
l3) > 0. By using the same trick, utilising sign((x− y)(y − z)(z − x))
instead of sign(xyz), we can create a new term (X)′ such that ∂g

∂R

agrees with the term (X)′ on Wl = sign((x− y)(y− z)(z − x)(x− y−
l1 + l2)(y − z − l2 + l3)(z − x− l3 + l1)). Continuing in this way, using
linear maps and hyperplane arrangements, it is clear we can create a
finite number m of terms, and regions Wl,i, for 1 ≤ i ≤ m, such that,

generically in l, ∂g
∂R

agrees with one of the terms on the region Wl,i

and R3 \ l = ∪1≤i≤mWl,i. Adding regions, if necessary, to cover the
non generic locus if necessary, and noting that the fixed locus of linear
maps is a point, we can assume that R3 \ {l} = ∪1≤i≤mWl,i, for all

l ∈ R3. Each of the terms, similar to (X) extends projectively, even
at l, and are generically analytic. By the covering property, we can
use compactness and the Weierstrass preparation argument, to show
that ∂g

∂R
has finitely many zeros, uniformly in {θ, φ, l}, in particular,

for fixed {θ, φ, l} gθ,φ,l is non oscillatory, with a uniform bound on
the valency, val(gθ,φ,l). Note that gl does actually extend to a map

gl : P 3(R) → P 1(R), defining it to be the point at infinity, in case
k = l, but it is not analytic at l. However, we can assume that the
zero locus of ∂g

∂R
does not include l in the extension, unless fl(k) and

∂fl
∂R

have high order zeros along ll at l. We can use the formulation (U)′

to resolve this case. As f(k− l) is analytic and analytic at infinity, the
same argument proves that, with the restriction on fixed {θ, φ, l}, gθ,φ,l
is analytic and analytic at infinity. This follows as the line l defined
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by {θ, φ} will intersect the hyperplane at infinity, inside a region Wl,i

where the term is analytic, and we can use restriction of variables. The
components of u(k) are just (sin(θ)sin(φ), sin(θ)cos(φ), cos(θ)), which
are constant on any line defined by {θ, φ}, so trivially analytic and an-
alytic at infinity, with the valency bounded. For the final claim, letting

{h1, h2, h3} denote the components of h(l)

|l| , {f1, f2, f3} the components

of f(k,l)

|k−l| , {u1, u2, u3} the components of u we have that;

[f(k−l)|k−l| ×
h
|l| ]�u(k) = u1(k)f2(k, l)h3(l)−u1(k)f3(k, l)h2(l)+u2(k)f3(k, l)h1(l)

−u2(k)f1(k, l)h3(l) + u3(k)f1(k, l)h2(l)− u3(k)f2(k, l)h1(l)

and we have proved the claims above for {f1, f2, f3, u1, u2, u3}. Con-
sidering the products fiuj, 1 ≤ i ≤ j ≤ 3, it is clear the above argument
can be extended to prove the corresponding analytic and analytic at
infinity claims, with the uniform bound in valence. We are then left
with a sum;

h1(l)H1(k, l) + h2(x)(l)H2(k, l) + h3(l)H3(k, l) (ZZ)

in which, for l 6= 0, {h1, h2, h3} are rational functions without poles,
and {H1, H2, H3} are uniformly analytic and analytic at infinity, with
a valency bound, and the usual restrictions on {θ, φ, l}. As the compo-
nents of h are analytic and analytic at infinity, we can extend {h1, h2, h3}
to P 3(R) \ {0}, in the variables l, so that they are analytic at infinity.
Let W ⊂ P 3(R)× P 3(R) be the variety defined by;

W (l, k) iff l 6= 0 and k ∈ P 3(R) \ l0,l

where l0,l is the line passing through 0 and l. We then obtain a map;

Θ : W → R

defined by (ZZ), and, as before, we can extend it to Θ : P 3(R) ×
P 3(R)→ P 1(R).

Generic analyticity gives the uniformity in analytic, analytic at in-
finity and valency claims, over the parameters {θ, φ, l}, noting that the
proof is the same, taking the derivative ∂

∂R
, which is linear in the co-

efficients hi, 1 ≤ i ≤ 3. In particularly, the family, with the restriction
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on parameters is non-oscillatory and excellent.

�

Definition 0.20. Given a closed interval [a, b] ⊂ R, with f defining a
real analytic function on an open neighborhood of [a, b], we define the
analytic degree of f to be the maximum number of intersections between
the graph of f and a line y = cx+ d restricted to (a, b).

Lemma 0.21. Definition 0.20 is well defined. If f has n inflexions in
[a, b], that is points x0 for which f ′′(x0) = 0, then f has analytic de-
gree at most n+2. For a non-oscillatory excellent family whose second
derivative has valency n, restricted to [a, b], the analytic degree of any
function in the family is at most n+ 2.

Proof. Suppose that f has m ≥ 3 distinct intersections with a line l,
which we order as a ≤ x1 < . . . < xm ≤ b. Considering (xi, xi+1, xi+2),
with 1 ≤ i ≤ m − 2, by the IVT, we can find points {yi,1, yi,2} with
xi < yi < xi+1 and xi+1 < yi,2 < xi+2 such that (f − l)′(yi,1) =
(f−l)′(yi,2) = 0, that is f ′(yi,1) = f ′(yi,2) = c. Applying the IVT again,
we can find zi with yi,1 < zi < yi,2, such that (f − l)′′(zi) = 0, that is
f ′′(zi) = 0. In particularly, as the intervals (yi,1, yi,2) and (yi+1,1, yi+1,2)
are disjoint, zi 6= zi+1 and we can find m − 2 inflexions of f in the
interval [a, b]. If f is analytic, so is f ′′, so, as [a, b] is closed, f ′′ has
finitely many m0 zeroes on [a, b], in particularly it can only have at
most m0 + 2 intersections with a line. It follows the definition 0.20 is
well defined. The following claim is then clear.

�

Definition 0.22. For δ1, δ2 > 0, we define the set Wδ1,δ2,l0 ⊂ [0, π] ×
[−π,−π]×R3 by;

Wδ1,δ2,l0(θ, φ, l) iff |θ − θl| ≥ δ2, |φ− φl| ≥ δ2, l ∈ Ann(0, δ1, l0)

where Ann(0, δ1, l0) is the closed annulus δ1 ≤ |l| ≤ l0, θl = cos−1( l3
l
),

φl = tan−1( l2
l1

)

Lemma 0.23. For fixed l ∈ R3, t ∈ R>0, we have that the polar rep-

resentation of ei(|k−l|)ct, k ∈ R3, is given by;

eirctν(r,θ,φ,l), r ∈ R>0, 0 ≤ θ < π, −π ≤ φ ≤ π
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where;

limr→∞ν(r, θ, φ, l) = 1

uniformly in {θ, φ}. Moreover, for θ 6= cos−1( l3
l
), φ 6= tan−1( l2

l1
), the

real and imaginary parts of eirctν(r,θ,φ,l) are oscillatory.

If f is analytic and analytic at infinity, of moderate decrease, then
fcos(rctν(r, θ, φ, l)) and fsin(rctν(r, θ, φ, l)), for l 6= 0, θ 6= cos−1( l3

l
),

φ 6= tan−1( l2
l1

) are non-oscillatory when restricted to any finite interval

[0, L) and have the property that, for any ε > 0, there exists Lε,θ,φ l ∈ R
such that;

|
∫
r>Lε,θ,φ,l

fcos(rctν(r, θ, φ, l))dr| < ε

Moreover, for the final family in Lemma 0.19 indexed by (θ, φ, l) with
the above restriction, which is excellent and non-oscillatory, the fam-
ilies defined by fθ,φ,lcos(rctν(r, θ, φ, l)) and fθ,φ,lsin(rctν(r, θ, φ, l)) are
also excellent and non oscillatory, restricted to a finite interval [0, Ll0 ],
and when we restrict the parameters (θ, φ, l) to Wδ1,δ2,l0.

Moreover, for any given ε > 0, there exists L, uniform in (θ, φ, l),
with the restriction (θ, φ, l) ∈ Wδ1,δ2,l0, such that;

|
∫
r>L

fθ,φ,lcos(rctν(r, θ, φ, l))dr| < ε

The same results hold for ei(|k−l|−|l|)ct.

Proof. Making the substitution, k1 = rsin(θ)cos(φ), k2 = rsin(θ)sin(φ),
k3 = rcos(θ), we obtain;

ei(|k−l)ct = ei[(rsin(θ)cos(φ)−l1)
2+(rsin(θ)sin(φ)−l2)2+(rcos(θ)−l3)2]

1
2 ct

= ei(r
2−(2l1rsin(θ)cos(φ)+2l2rsin(θ)sin(φ)+2l3rcos(θ))+l2)

1
2 ct

= eirctν(r,θ,φ,l)

where;
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ν(r, θ, φ, l) = (1− 1
r
(2l1sin(θ)cos(φ) + 2l2sin(θ)sin(φ) + 2l3cos(θ)) +

l2

r2
)
1
2

It is clear, as |2l1sin(θ)cos(φ)+2l2sin(θ)sin(φ)+2l3cos(θ)| ≤ 2(|l1|+
|l2| + |l3|), that limr→∞ν(r, θ, φ, l) = 1, uniformly in {θ, φ}. For the
next claim, we show that cos(rctν(r, θ, φ, l)) is oscillatory, leaving the
other case to the reader. We have that;

∂cos(rctν(r,θ,φ,l))
∂r

= 0

iff −sin(rctν(r, θ, φ, l))(ctν(r, θ, φ, l) + rct∂ν(r,θ,φ,l)
∂r

) = 0

iff sin(rctν(r, θ, φ, l)) = 0 or ctν(r, θ, φ, l) + rct∂ν(r,θ,φ,l)
∂r

= 0

iff rctν(r, θ, φ, l) = π
2

+ nπ, (n ∈ Z)

or ctν(r, θ, φ, l) + rct
2ν(r,θ,φ,l)

( 1
r2
γ(θ, φ, l)− 2l2

r3
) = 0

where;

γ(θ, φ, l) = 2l1sin(θ)cos(φ) + 2l2sin(θ)sin(φ) + 2l3cos(θ)

We have;

limr→∞[ctν(r, θ, φ, l) + rct
2ν(r,θ,φ,l)

( 1
r2
γ(θ, φ, l)− 2l2

r3
)] = ct 6= 0

so that, by continuity, the zeros of;

ctν(r, θ, φ, l) + rct
2ν(r,θ,φ,l)

( 1
r2
γ(θ, φ, l)− 2l2

r3
)

are located in a compact interval [0, K], for some K ∈ R>0. We
have, for r 6= 0, that;

ν(r, θ, φ, l) = 0 iff rν(r, θ, φ, l) = 0

iff |k − l| = 0

iff k = l
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which implies that θ = cos−1( l3
l
), φ = tan−1( l2

l1
). It follows that,

with the assumption on {θ, φ}, we have that, for r 6= 0;

ctν(r, θ, φ, l) + rct
2ν(r,θ,φ,l)

( 1
r2
γ(θ, φ, l)− 2l2

r3
)

is locally analytic, for r 6= 0. Clearing denominators, we have for
r 6= 0, that;

ctν(r, θ, φ, l) + rct
2ν(r,θ,φ,l)

( 1
r2
γ(θ, φ, l)− 2l2

r3
) = 0

iff ctν(r, θ, φ, l)r3 + rct
2ν(r,θ,φ,l)

(rγ(θ, φ, l)− 2l2) = 0

which is an analytic relation, so it can only have a finite number of ze-
ros located in the interval [0, K], (∗). We have that limr→∞rctν(r, θ, φ, l) =
∞ and limr→0rctν(r, θ, φ, l) = −ctl, so, by the intermediate value the-
orem, we can find an infinite number of solutions to rctν(r, θ, φ, l) =
π
2

+ nπ, n ∈ Z, located in R>0. As;

limr→∞[ctν(r, θ, φ, l) + rct
2ν(r,θ,φ,l)

( 1
r2
γ(θ, φ, l)− 2l2

r3
)] = ct

and;

limr→0[ctν(r, θ, φ, l) + rct
2ν(r,θ,φ,l)

( 1
r2
γ(θ, φ, l)− 2l2

r3
)]

= limr→0
∂rctν(r,θ,φ,l)

∂r

= limr→0
∂ct|k(r,θ,φ)−l|

∂r

is finite, we have that ∂rctν(r,θ,φ,l)
∂r

is bounded by M ∈ R>0 on R>0.

Using the mean value theorem, if rn is a solution to rctν(r, θ, φ, l) =
π
2

+ nπ, and rm is a solution to rctν(r, θ, φ, l) = π
2

+mπ, then

|rn − rm| ≥
|(π

2
+nπ)−(π

2
+mπ)|

M

= |(n−m)|π
M

≥ π
M

, (n 6= m) (A)

By the observation (∗), and the fact that;
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[ctν(r, θ, φ, l) + rct
2ν(r,θ,φ,l)

( 1
r2
γ(θ, φ, l)− 2l2

r3
)]

is monotone on (K,∞), there can be at most a finite number {ni1 , . . . , nip}
for which there exist multiple solutions rn,nij ∈ R>0 to rctν(r, θ, φ, l) =
π
2

+ niπ. Let Z denote the {ri : i ∈ N} for which there exists

a solution to rctν(r, θ, φ, l) = π
2

+ nπ, n ∈ Z, and Z0 the finite

set consisting of solutions to rctν(r, θ, φ, l) = π
2

+ nijπ, 1 ≤ j ≤
p and the zeros on [0, K], corresponding to (∗). Ordering Z ∪ Z0

as a set {ri : i ∈ N}, it is clear that cos(rctν(r, θ, φ, l))|(ri,ri+1) is
monotone. Choosing δ = min( π

M
, d(Z \ Z0, Z0), Sep(Z0)) > 0, where

Sep(Z0) = min(d(r, r′) : {r, r′} ⊂ Z0, r 6= r′), we obtain the result that
cos(rctν(r, θ, φ, l)) is oscillatory.

For the next claim (fcos(rctν(r, θ, φ, l))′ is analytic on [0, L], so
has finitely many zeros, in which case fcos(rctν(r, θ, φ, l))|[0,L] is non-
oscillatory. As f is of moderate decrease, there exists a constant
C ∈ R>0 for which |f | ≤ C

r2
, for r > 1. It follows that;∫

r>M
|fcos(rctν(r, θ, φ, l)|dr

≤
∫
r>M

C
r2
dr

= C
M

< ε

for M > C
ε

If there is no bound on the valency of zeros to (fθ,φ,lcos(rctν(r, θ, φ, l)))′

on (0, Ll0), then we can find closed sets Vn+1 ⊂ Vn ⊂ Wδ1,δ2,l0 , where;

Vn = {l ∈ Wδ1,δ2,l0 : Card((fθ,φ,lcos(rctν(r, θ, φ, l)))′ = 0

∩(0, Ll0)) ≥ n}

such that Vn 6= ∅. As Vn is closed, it follows, we can find l0 ∈ ∩n∈NVn,
for which (fθ,φ,lcos(rctν(r, θ, φ, l)))′ has infinite zeros on [0, Ll0 ], which
contradicts the definition of analytic. It follows that the family re-
stricted to [0, Ll0 ] is excellent and non-oscillatory, when we restrict the
parameters in this way.
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For the penultimate claim, we have with the restrictions on {θ, φ, l},
that;

|f(k)| ≤ C
|k|4

|h(l)| ≤M

|l| ≥ δ0

|hl|l | ≤
M
δ0

|u(k)| = 1

|k − l| ≥ lsin(δ2) ≥ δ1sin(δ2)

|f(k−l)|k−l| | ≤
C

δ1sin(δ2)|k−l|4

|[f(k−l)|k−l| ×
h(l)

|l| ] � u(k)|

≤ |f(k−l)|k−l| ||
h(l)

|l| |

≤ C
δ1sin(δ2)|k−l|4

M
δ0

≤ C
δ1sin(δ2)(R−l0)4

M
δ0

, for R ≥ l0

so that;

|
∫
r>L

fθ,φ,lcos(rctν(r, θ, φ, l))dr|

≤
∫
r>L
|fθ,φ,l|dr

≤
∫
r>L

C
δ1sin(δ2)(R−l0)4

M
δ0
dr, for L ≥ l0

= [ C
δ1sin(δ2)(R−l0)3

M
−3δ0 ]∞L

= C
δ1sin(δ2)(L−l0)3

M
3δ0

< ε

for L− l0 ≥ ( MC
3δ0δ1sin(δ2)ε

)
1
3
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For the final claim, if we want to do the calculation for;

ei(|k−l|−|l|)ct = ei(|k−l|)cte−i|l|ct

we can absorb the constant term e−i|l|ct into the term f of the hy-
potheses, which will not effect any of the conditions analytic, analytic
at infinity or moderate decrease, see also Lemma 0.24.

�

Lemma 0.24. With notation as in Lemmas 0.23 and 0.7, if;

α(k, l, t) = α(R, θ, φ, l, t) = iP1,1

2π2 [(b11,l(R, θ, φ)+
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|)×

(d
′
11(l) + d

′
12(l)
l

)] � ul(R, θ, φ, l)]µ(R, θ, φ, l, t)sin(θ)

and;

β(k, l, t) = β(R, θ, φ, l, t) = −iQ0,0

2π2 [(b11,l(R, θ, φ)+
b12,l(R,θ,φ)

|(Rsin(θ)cos(φ),Rsin(θ)sin(φ),Rcos(θ))−l|)×

(d
′
11(l) + d

′
12(l)
l

)] � ul(R, θ, φ, l)]µ(R, θ, φ, l, t)sin(θ)

then;

α(R, θ, φ, l, t) = α1(R, θ, φ, l, t)µ(R, θ, φ, l, t) = e−ilctα1(R, θ, φ, l, t)e
iRctν(R,θ,φ,l)

β(R, θ, φ, l, t) = β1(R, θ, φ, l, t)µ(R, θ, φ, l, t) = e−ilctβ1(R, θ, φ, l, t)e
iRctν(R,θ,φ,l)

For fixed l 6= 0 and θ 6= cos−1( l3
l
), φ 6= tan−1( l2

l1
), if the real and

imaginary components of e−ilctα1(R, θ, φ, l, t) satisfy the conditions of
Lemma 0.23, then the real and imaginary components of α are oscilla-
tory. Similarly, if the real and imaginary components of;

{e−ilctβ1(R, θ, φ, l, t), e−ilctR∂β1(R,θ,φ,l,t)
∂R

, icte−ilctRβ1(R, θ, φ, l, t)(ν(R, θ, φ, l)+

R∂ν(R,θ,φ,l)
∂R

)}

satisfy the conditions of Lemma 0.23, then the real and imaginary

components of ∂Rβ(R,θ,φ,l,t)
∂R

are oscillatory.

Proof. We have that;
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Re(α) = Re(e−ilctα1e
iRctν) = Re(e−ilctα1cos(Rctν))+Re(ie−ilctα1sin(Rctν))

= Re(e−ilctα1)cos(Rctν) + Im(e−ilctα1)sin(Rctν)

Im(α) = Im(e−ilctα1e
iRctν) = Im(e−ilctα1cos(Rctν))+Im(ie−ilctα1sin(Rctν))

= Im(e−ilctα1)cos(Rctν) +Re(e−ilctα1)sin(Rctν)

so the first claim, follows from Lemma 0.23.

We also have that;

Re(∂(Rβ)
∂R

) = Re(∂(Re
−ilctβ1eiRctν)

∂R
) = Re(e−ilctβ1e

iRctν)+Re(R∂(e−ilctβ1eiRctν)
∂R

)

= Re(e−ilctβ1e
iRctν)+Re(e−ilctR∂β1

R
eiRctν)+Re(icte−ilctRβ1(ν+R ∂ν

∂R
)eiRctν)

Im(∂(Rβ)
∂R

) = Im(∂(Re
−ilctβ1eiRctν)

∂R
) = Re(e−ilctβ1e

iRctν)+Re(R∂(e−ilctβ1eiRctν)
∂R

)

= Im(e−ilctβ1e
iRctν)+Re(e−ilctR∂β1

R
eiRctν)+Re(icte−ilctRβ1(ν+R ∂ν

∂R
)eiRctν)

and the second claim follows, using the previous calculation and
Lemma 0.23.

�

Definition 0.25. We say that f ∈ C(R \ {0}) is of moderate decrease
if there exists a constant D ∈ R>0 with |f(x)| ≤ D

|x|2 for |x| > 1.

We say that f ∈ C(R \ {0}) is of very moderate decrease if there ex-
ists a constant D ∈ R>0 with |f(x)| ≤ D

|x| for |x| > 1.We say that

f ∈ C(R \ {0}) is non-oscillatory if there are finitely many points
{yi : 1 ≤ i ≤ n} ⊂ R for which f |(yi,yi+1) is monotone, 1 ≤ i ≤ n − 1,
and f |(−∞,y1) and f |(yn,∞) is monotone. We say that f ∈ C(R \ {0})
is symmetrically asymptotic if f and df

dx
are of moderate decrease, df

dx
is

non-oscillatory, {f, df
dx
} ⊂ L1((−ε, ε)), and for ε > 0;

limy→0−f(y) = limy→0+f(y) = M

and

limy→0−
df
dx

(y) = −limy→0+
df
dx

(y) = L (∗)

where L ∈ {+∞,−∞}, M ∈ R. We say that f ∈ C(R \ {0}) is light
symmetrically asymptotic if f and df

dx
are of very moderate decrease, f
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and df
dx

are non-oscillatory, {f, df
dx
} ⊂ L1((−ε, ε)), and for ε > 0, the

condition (∗) holds.

Lemma 0.26. Let f be symmetrically asymptotic, then we have that,
for any δ > 0, there exist constants {Cδ, Dδ} ⊂ R>0, such that;

|F(f)(k)| ≤ δ
|k| + Cδ

|k|2 , for |k| > Dδ

Proof. As f is symmetrically asymptotic, we have that limx→0−f(x) =
limx→0+f(x) = M , where M ∈ R. In either case, we can apply inte-
gration by parts, to obtain (†) in Lemma 0.11. The step (∗) follows
from the fact that df

dx
is of moderate decrease. As df

dx
is non-oscillatory,

we can find x0 < 0 < x1, with df
dx
|x0,0 and df

dx
|0,x0 monotone. In par-

ticular, for any δ > 0, we can find x0 < y0 < 0 < y1 < x1 such
that

∫
(y0,y1)

| df
dx

(y)|dy < δ((2π)
1
2 ) and df

dx
(y0) = L1,0,

df
dx

(y1 = L2,0, with

{L1,0, L2,0} ⊂ R. Then;

| 1

(2π)
1
2

∫ Nε
−Nε

df
dx

(y)e−ikydy − 1

(2π)
1
2

∫
(−Nε,y0)∪(y1,Nε)

df
dx

(y)e−ikydy|

≤ 1

(2π)
1
2

∫
(y0,y1)

| df
dx

(y)|dy

< δ

Again, by the proof of Lemma 0.9 in [10], using underflow, we can
find {Dε,y0,y1 , Eε,y0,y1} ⊂ R>0, such that, for all |k| > Dε,y0,y1 , we have
that;

| 1

(2π)
1
2

∫
(−Nε,y0)∪(y1,Nε)

df
dx

(y)e−ikydy| < Eε,y0,y1
|k| , (∗∗)

It is easy to see from the proof, that {Dε,y0,y1 , Eε,y0,y1} can be chosen
uniformly in ε, so that using the triangle inequality again, we obtain;

|F( df
dx

)(k)| ≤ ε+ δ +
Eε,y0,y1
|k|

for |k| > Dε,y0,y1

As ε was arbitrary, and Eε,y0,y1 is uniform in ε, we obtain that;

|F( df
dx

)(k)| ≤ δ +
Ey0,y1
|k|
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for |k| > Dy0,y1 .

so that, using (†) again;

|F(f)(k)| ≤ δ
|k| +

Ey0,y1
|k|2 , (†)

= δ
|k| + Cδ

|k|2

for |k| > Dδ, where Cδ = Ey0,y1 and Dδ = Dy0,y1 .

�

Lemma 0.27. Let f ∈ C(R) and df
dx
∈ C(R) be of very moderate de-

crease, with f and df
dx

non-oscillatory, then defining the Fourier trans-
form by;

F(f)(k) = 1

(2π)
1
2
limr→∞

∫ r
−r f(y)e−ikydy (k 6= 0)

F( df
dx

)(k) = 1

(2π)
1
2
limr→∞

∫ r
−r

df
dx

(y)e−ikydy (k 6= 0)

we have that F(f) and F( df
dx

) are bounded and there exists a constant
G ∈ R>0, such that;

|F(f)(k)| ≤ G
|k|2

for sufficiently large k.

Proof. As f is of very moderate decrease, we have that f is continuous
and lim|x|→∞f(x) = 0. Similarly, df

dx
is continuous and lim|x|→∞

df
dx

= 0.
As lim|x|→∞f(x) = 0, and f is non-oscillatory, we have that, for k 6= 0,
the indefinite integral;

limr→∞
∫ r
−r f(y)e−ikydy

= limr→∞
∫ r
−r f(y)cos(ky)dy − ilimr→∞

∫ r
−r f(y)sin(ky)dy

exists. As f is of very moderate decrease and non-oscillatory, we have
that |f(x)| ≤ D

|x| , for |x| > E, and monotone in the intervals (−∞, E)

and (E,∞). Using the method of [10], letting K = max(|f ||[−E,E]), we
have that;
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|limr→∞
∫ r
−r f(y)cos(ky)dy| ≤ 2KE + 2K

∫ E+ π
2|k|

E
Dcos(|k|(y−E))

y
dy

|limr→∞
∫ r
−r f(y)sin(ky)dy| ≤ 2KE + 2K

∫ E+ π
2|y|

E
Dcos(|k|(y−E))

y
dy

so that;

|limr→∞
∫ r
−r f(y)e−ikydy| ≤ 4KE + 4K

∫ E+ π
2|k|

E
Dcos(|k|(y−E))

y
dy

= 4KE + 4KD([−sin(|k|(y−E))
|k| ]

E+ π
2|k|

E −
∫ E+ π

2|k|
E

sin(|k|(y−E))
y2

dy)

= 4KE + 4KD( 1
|k|(E+ π

2|k| )
−
∫ E+ π

2|k|
E

sin(|k|(y−E))
y2

dy)

≤ 4KE + 4KD( 1
E|k|+π

2
+
∫∞
E

1
y2
dy)

≤ 4KE + 4KD( 2
π

+ 1
E

) = N

so that F(f)(k) and, similarly, F( df
dx

)(k) are bounded, for k 6= 0, (1).
We have, using integration by parts, that;

F( df
dx

)(k) = 1

(2π)
1
2
limr→∞

∫ r
−r

df
dx

(y)e−ikydy

= 1

(2π)
1
2
limr→∞([f(y)e−iky]r−r + ik

∫ r
−r f(y)e−ikydy)

= 1

(2π)
1
2

[f(y)e−iky]∞−∞ + ik 1

(2π)
1
2
limr→∞

∫ r
−r f(y)e−ikydy

= ikF(f)(k)

so that, for |k| > 1;

|F(f)(k)| ≤ |F( df
dx

)(k)|
|k| , (†)

As df
dx

is continuous and non-oscillatory, by the proof of Lemma 0.9
in [10], using underflow, for r ∈ R>0, we can find {Fr, Gr} ⊂ R>0, such
that, for all |k| > Fr, we have that;

| 1

(2π)
1
2

∫ r
−r

df
dx

(y)e−ikydy| < Gr
|k| , (∗∗)

1F(f)(k) and F( dfdx )(k) are differentiable for k 6= 0, limit interchange?
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It is easy to see from the proof, that {Fr, Gr} can be chosen uni-
formly in r. Then, from (∗∗), we obtain that, for |k| > F ;

|F( df
dx

)(k)| < G
|k| , for |k| > F

and, from (†), for |k| > max(F, 1), that;

|F(f)(k)| ≤ |F( df
dx

)(k)|
|k| < G

|k|2

�

Definition 0.28. Let f ∈ C3(R), with f, f ′, f ′′ and f ′′′ bounded, then
we define an approximating sequence {fm : m ∈ N} by the require-
ments;

(i). fm ∈ C2(R), for m ∈ N .

(ii). fm|[−m,m] = f |[−m,m].

(iii). fm is of uniform moderate decay, in the sense that there exists
a constant C ∈ R>0, independent of m, with;

|fm(x)| ≤ C
|x|2 , for x ∈ (−∞,−m− 1

m
) ∪ (m+ 1

m
,∞)

(iv). There exists constants {D,E} ⊂ R>0, with
∫ m
−m− 1

m
|fm(x)|dx ≤

D
m

and
∫ m+ 1

m

m
|fm(x)|dx ≤ D

m
.

Lemma 0.29. Let f ∈ C(R) and df
dx
∈ C(R) be of very moderate

decrease, with f and df
dx

non-oscillatory. Let {fm;m ∈ N} be an ap-
proximating sequence. Let F be the ordinary Fourier transform, defined
for each fm, then the sequence {F(fm) : m ∈ N} converges pointwise
and uniformly to F(f) on R \ {0}, where F(f) is defined in Lemma
0.27.

Proof. For g ∈ C(R) and n ∈ N , define;

Fn(g)(k) = 1

(2π)
1
2

∫ n
−n f(y)e−ikydy

For k ∈ R \ {0}, {m,n} ⊂ N , and m ≥ n, ε > 0,δ > 0, we have;

|F(f)(k)−F(fm)(k)| ≤ |F(f)(k)−Fn(f)(k)|+|Fm(f)(k)−Fm(fm)(k)|
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+|Fm(fm)(k)−F(fm)(k)|

= |F(f)(k)−Fm(f)(k)|+ |Fm(fm)(k)−F(fm)(k)|

≤ |F(f)(k)−Fm(f)(k)|+
∫ −m
−∞ |fm(x)|dx+ |+

∫∞
m
|fm(x)|dx

= |F(f)(k)−Fm(f)(k)|+
∫ −m− 1

m

−∞ |fm(x)dx+
∫ −m
−m− 1

m
|fm(x)|dx

+
∫ m+ 1

m

m
|fm(x)dx+

∫∞
m+ 1

m
|fm(x)|dx

≤ |F(f)(k)−Fm(f)(k)|+ D+E
m

+
∫ −m− 1

m

−∞
C
x2
dx+

∫∞
m+ 1

m

C
x2
dx

≤ |F(f)(k)−Fm(f)(k)|+ D+E
m

+ 2C
m+ 1

m

≤ |F(f)(k)−Fm(f)(k)|+ 2C+D+E
m

≤ ε + δ, for m ≥ max(m(ε), 2C+D+E
δ

). As ε > 0 and δ > 0 were
arbitrary, we obtain the result.

�

Lemma 0.30. If m ∈ R>0 is sufficiently large, {a0, a1, a2} ⊂ R, there
exists h ∈ R[x] of degree 5, with the property that;

h(m) = a0, h′(m) = a1, h′′(m) = a2, (i)

h(m+ 1
m

) = h′(m+ 1
m

) = h′′(m+ 1
m

) = 0 (ii)

|h[m,m+ 1
m
]| ≤ C

for some C ∈ R>0, independent of m sufficiently large, and, if
h′′′(m) > 0, h′′′(x)|[m,m+ 1

m
] > 0, if h′′′(m) < 0, h′′′|[m,m+ 1

m
] < 0. In

particularly;∫ m+ 1
m

m
|h′′′(x)|dx = |a2|

Proof. If p(x) is any polynomial, we have that h(x) = (x−(m+ 1
m

))3p(x)
satisfies condition (ii). Then;

h′(x) = 3(x− (m+ 1
m

))2p(x) + (x− (m+ 1
m

))3p′(x)

h′′(x) = 6(x−(m+ 1
m

))p(x)+6(x−(m+ 1
m

))2p′(x)+(x−(m+ 1
m

))3p′′(x)
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h′′′(x) = 6p(x) + 18(x− (m+ 1
m

))p′(x) + 9(x− (m+ 1
m

))2p′′(x)

so we can satisfy (i), by requiring that;

(a). −p(m)
m3 = a0

(b). 3p(m)
m2 − p′(m)

m3 = a1

(c). −6p(m)
m

+ 6p′(m)
m2 − p′′(m)

m3 = a2

which has the solution;

p(m) = −a0m3, p′(m) = −3a0m
4 − a1m

3, p′′(m) = −12a0m
5 −

6a1m
4 − a2m3

and can be satisfied by the polynomial;

p(x) = 1
2
(−12a0m

5 − 6a1m
4 − a2m3)(x−m)2

+(−3a0m
4 − a1m3)(x−m) + (−a0m3)

= 1
2
(−12a0m

5− 6a1m
4− a2m3)x2 + (−m(−12a0m

5− 6a1m
4− a2m3)

+(−3a0m
4 − a1m3))x+ (m

2

2
(−12a0m5 − 6a1m

4 − a2m3)

−m(−3a0m
4 − a1m3)− a0m3)

= (−6a0m
5 − 3a1m

4 − a2
2
m3)x2 + (12a0m

6 + 6a1m
5 + a2m

4 − 3a0m
4

−a1m3)x+ (−6a0m
7 − 3a1m

6 − a2
2
m5 + 3a0m

5 + a1m
4 − a0m3)

= (−6a0m
5 − 3a1m

4 − a2
2
m3)x2 + (12a0m

6 + 6a1m
5 + (a2 − 3a0)m

4

−a1m3)x+(−6a0m
7−3a1m

6 +(3a0− a2
2

)m5 +3a0m
5 +a1m

4−a0m3)

= ax2 + bx+ c (∗)

so that;

h′′′(x) = 6(ax2+bx+c)+18(x−(m+ 1
m

))(2ax+b)+9(x−(m+ 1
m

))22a
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= (60a)x2 +(24b−72a(m+ 1
m

))x+(6c−18(m+ 1
m

)b+18a(m+ 1
m

)2)

and, using the computation (∗)

h′′′(x) = (60(−6a0m
5) +O(m4))x2 + (24.12a0m

6 − 72m(−6a0m
5)

+O(m5))x+ (6.− 6a0m
7− 18m(12a0m

6) + 18m2(−6a0m
5) +O(m6))

= (−360a0m
5 +O(m4))x2 + (740a0m

6 +O(m5))x+

(−360a0m
7 +O(m6))

which, by the quadratic formula, has roots when;

x =
−740a0m6+

√
7402a20m

12−4(−360a0m5)(−360a0m7)

2.−360a0m5 +O(1)

= 740m
720

+ 170m
720

+O(1)

= 19m
24

+O(1) or 91m
72

+O(1)

We have that m > 19m
24

and m+ 1
m
< 91m

72
iff m >

√
72
19

, and, clearly,

we can ignore the O(1) term for m sufficiently large. In particularly,
for sufficiently large m, h′′′(x) has no roots in the interval [m,m+ 1

m
],

so h′′′|[m,m+ 1
m
] > 0 or h′′′|[m,m+ 1

m
] < 0.

We calculate that;

|h[m,m+ 1
m
]| = |(x− (m+ 1

m
))3p(x)|[m,m+ 1

m
]|

≤ 1
m3 |p(x)|[m,m+ 1

m
]

= 1
m3 |[12(−12a0m

5 − 6a1m
4 − a2m3)(x−m)2

+(−3a0m
4 − a1m3)(x−m) + (−a0m3)]|[m,m+ 1

m
]

≤ 1
m3 [1

2
|−12a0m

5−6a1m
4−a2m3| 1

m2 +|−3a0m
4−a1m3| 1

m
+|−a0m3|]

≤ 12|a0|m5+6|a1|m4+|a2|m3|
m5 + 3|a0|m4+|a1|m3

m4 + |a0|m3

m3

≤ 12|a0|+ 6|a1|+ |a2|+ 3|a0|+ |a1|+ |a0| (m > 1)
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≤ 16|a0|+ 7|a1|+ |a2|

For the final claim, we have, as h′′′|[m,m+ 1
m
] > 0 or h′′′|[m,m+ 1

m
] < 0,

that, using the fundamental theorem of calculus;∫ m+ 1
m

m
|h′′′(x)|dx = |

∫ m+ 1
m

m
h′′′(x)dx|

= |h′′(m+ 1
m

)− h′′(m)| = | − h′′(m)| = |a2|
�

Lemma 0.31. If m ∈ R>0, {a0, a1, a2, a3} ⊂ R, there exists h ∈
C3(R), with the property that;

h(m) = a0, h′(m) = a1, h′′(m) = a2, h′′′(m) = a3, (i)

h(m+ 1
m

) = h′(m+ 1
m

) = h′′(m+ 1
m

) = h′′′(m+ 1
m

) = 0 (ii)

|h|[m,m+ 1
m
] ≤ C

where C ∈ R>0 is independent of m > 1, and, if a3 > 0, h′′′(x)|[m,m+ 1
m
] ≥

0, a3 < 0, h′′′(x)|[m,m+ 1
m
] ≤ 0. In particularly;∫ m+ 1

m

m
|h′′′(x)|dx = |a2|

Proof. Let g(x) be a polynomial, then it is clear that the polynomial
h1(x) = (x − (m + 1

m
)ng(x), for n ≥ 4, has the property (ii), that

h1(m + 1
m

) = h′1(m + 1
m

) = h′′1(m + 1
m

) = h′′′1 (m + 1
m

) = 0. The condi-
tion (i), then amounts to the equations;

(i)′ g(m)
(−1)nmn = a0

(ii)′ ng(m)
(−1)n−1mn−1 + g′(m)

(−1)nmn = a1

(iii)′ n(n−1)g(m)
(−1)n−2mn−2 + 2ng′(m)

(−1)n−1mn−1 + g′′(m)
(−1)nmn = a2

(iv)′ n(n−1)(n−2)g(m)
(−1)n−3mn−3 + 3n(n−1)g′(m)

(−1)n−2mn−2 + 3ng′′(m)
(−1)n−1mn−1 + g′′′(m)

(−1)nmn = a3

which we can solve, by requiring that;

(i)′′ g(m) = (−1)na0m
n
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(ii)′′ g′(m) = (−1)na1m
n + (−1)na0nm

n+1

(iii)′′ g′′(m) = (−1)na2m
n + 2(−1)nna1m

n+1 + (−1)nn(n+ 1)a0m
n+2

(iv)′′ g′′′(m) = (−1)na3m
n+ 3n(−1)na2m

n+1 + (−1)na1n(n+ 3)mn+2

+n(n+ 1)(n+ 2)(−1)na0m
n+3 (∗)

Let;

g1(x) = ((−1)na3m
n + 3n(−1)na2m

n+1 + (−1)na1n(n+ 3)mn+2

+n(n+1)(n+2)(−1)na0m
n+3)(x−m)3+((−1)na2m

n+2(−1)nna1m
n+1

+(−1)nn(n+ 1)a0m
n+2)(x−m)2 + ((−1)na1m

n + (−1)na0nm
n+1)

(x−m) + ((−1)na0m
n)

Then g1(x) satisfies (∗), and so does any function of the form g2(x)+
g1(x) where;

g2(m) = g′2(m) = g′′2(m) = g′′′2 (m) = 0

provided g2 ∈ C3(R). In this case, if;

h(x) = (x− (m+ 1
m

)n(g2(x) + g1(x))

then h satisfies (i), (ii). We have that;

|x− (m+ 1
m

)ng1(x)|[m,m+ 1
m
] ≤ 1

mn
(|g2|[m,m+ 1

m
] + |g1|[m,m+ 1

m
])

≤ 1
mn

(|g2|[m,m+ 1
m
]+

1
mn
|((−1)na3m

n+3n(−1)na2m
n+1+(−1)na1n(n+

3)mn+2

+n(n+ 1)(n+ 2)(−1)na0m
n+3) 1

m3 + ((−1)na2m
n + 2(−1)nna1m

n+1

+(−1)nn(n+ 1)a0m
n+2) 1

m2 + ((−1)na1m
n + (−1)na0nm

n+1)

1
m

+ ((−1)na0m
n)|
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= |((−1)na3m
n + 3n(−1)na2m

n+1 + (−1)na1n(n+ 3)mn+2

+n(n+1)(n+2)(−1)na0m
n+3) 1

mn+3 +((−1)na2m
n+2(−1)nna1m

n+1

+(−1)nn(n+ 1)a0m
n+2) 1

mn+2 + ((−1)na1m
n + (−1)na0nm

n+1)

1
mn+1 + ((−1)na0)|

≤ |a3|+ 3n|a2|+ n(n+ 3)|a1|+ n(n+ 1)(n+ 2)|a0|+ |a2|+ 2n|a1|+
n(n+ 1)|a0|+ |a1|+ n|a0|+ |a0|, (m ≥ 1)

= 1
mn

(|g2|[m,m+ 1
m
] +(n+1)(n2 +3n+1)|a0|+(n2 +5n+1)|a1 +(3n+

1)|a2|+ |a3| = F (F )

where F ∈ R>0 is independent of m. Using the product rule, the
condition that h′′′(x) = 0 in the interval (m,m+ 1

m
), is given by;

n(n− 1)(n− 2)(x− (m+ 1
m

))n−3(g2 + g1)(x) + 3n(n− 1)(x− (m+
1
m

))n−2(g2 + g1)
′(x)

+3n(x− (m+ 1
m

))n−1(g2 +g1)
′′(x) + (x− (m+ 1

m
))n(g2 +g1)

′′′(x) = 0

which, dividing by (x− (m+ 1
m

))n−3, reduces to;

n(n− 1)(n− 2)(g2 + g1)(x) + 3n(n− 1)(x− (m+ 1
m

))(g2 + g1)
′(x)+

3n(x− (m+ 1
m

))2(g2 + g1)
′′(x) + (x− (m+ 1

m
))3(g2 + g1)

′′′(x) = 0

and;

n(n− 1)(n− 2)g2(x) + 3n(n− 1)(x− (m+ 1
m

))g′2(x) + 3n(x− (m+
1
m

))2g′′2(x)

+(x − (m + 1
m

))3g′′′2 (x) = −(n(n − 1)(n − 2)g1(x) + 3n(n − 1)(x −
(m+ 1

m
))g′1(x)

+3n(x− (m+ 1
m

))2g′′1(x) + (x− (m+ 1
m

))3g′′′1 (x)) (A)

Without loss of generality, assuming that;
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−(n(n−1)(n−2)g1(x) + 3n(n−1)(x− (m+ 1
m

))g′1(x) + 3n(x− (m+
1
m

))2g′′1(x)

+(x− (m+ 1
m

))3g′′′1 (x))|m = −(n(n− 1)(n− 2)a0 − 3n(n−1)a1
m

+ 3na2
m2

− a3
m3 ≥ 0

we can choose an analytic function φ(x) on [m,m+ 1
m

] with;

(a). φ(x) ≤ −(n(n− 1)(n− 2)g1(x) + 3n(n− 1)(x− (m+ 1
m

))g′1(x) +

3n(x− (m+ 1
m

))2g′′1(x)

+(x− (m+ 1
m

))3g′′′1 (x))

(b). φ(m) = 0

The third order differential equation for g2;

n(n− 1)(n− 2)g2(x) + 3n(n− 1)(x− (m+ 1
m

))g′2(x) + 3n(x− (m+
1
m

))2g′′2(x)

+(x− (m+ 1
m

))3g′′′2 (x) = φ(x), on [m, 1 +m] (B)

with the requirement that g2(m) = g′2(m) = g′′2(m) = 0, has a so-
lution in C3([m,m + 1

m
)) by Peano’s existence theorem. By the fact

(b), we must have that g′′′2 (m) = 0. Writing the power series for φ on
[m,m+ 1

m
], as;

φ(x) =
∑∞

j=0 bj(x− (m+ 1
m

))j

we can use the method of equating coefficients, to obtain a particular
solution, with;

g2,part(x) =
∑∞

j=0 aj,part(x− (m+ 1
m

))j, with;

aj,part =
bj

n(n−1)(n−2)+3n(n−1)j+3nj(j−1)+j(j−1)(j−2) , (j ≥ 3)

a2,part = b2
n(n−1)(n−2)+6n(n−1)+3n

a1,part = b1
n(n−1)(n−2)+3n(n−1) a0,part =

b0
n(n−1)(n−2)
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so that g2,part is analytic as |aj,0| ≤ |bj |
n(n−1)(n−2) for j ≥ 0.

To solve the homogenous Euler equation;

n(n− 1)(n− 2)g2(x) + 3n(n− 1)(x− (m+ 1
m

))g′2(x) + 3n(x− (m+
1
m

))2g′′2(x)

+(x− (m+ 1
m

))3g′′′2 (x) = 0 on [m,m+ 1
m

]

we can make the substitution y = m+ 1
m
−x, to reduce to the equa-

tion;

n(n−1)(n−2)g2,m(y)+3n(n−1)yg′2,m(y)+3ny2g′′2,m(y)+y3g′′′2,m(y) = 0

on [0, 1
m

]

with g2,m(y) = g2(m + 1
m
− y). Making the further substitution

y = eu, and letting r2,m(u) = g2,m(eu), we have that;

r′2,m(u) = g′2,m(eu)eu

r′′2,m(u) = g′′2,m(eu)e2u + g′2,m(eu)eu

r′′′2,m(u) = g′′′2,m(e3u) + 3g′′2,m(eu)e2u + g′2,m(eu)eu

so that;

n(n − 1)(n − 2)g2,m(eu) + 3n(n − 1)eug′2,m(eu) + 3ne2ug′′2,m(eu) +

e3ug′′′2,m(eu)

= n(n−1)(n−2)r2,m(u)+3n(n−1)eu(r′2,m(u)e−u)+3ne2u((r′′2,m(u)−
g′2,m(eu)eu)e−2u)

+e3u((r′′′2,m(u)− 3g′′2,m(eu)e2u − g′2,m(eu)eu)e−3u)

= n(n−1)(n−2)r2,m(u)+3n(n−1)r′2,m(u)+3nr′′2,m(u)−3ng′2,m(eu)eu+

r′′′2,m(u)− 3g′′2,m(eu)e2u

−g′2,m(eu)eu
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= n(n− 1)(n− 2)r2,m(u) + 3n(n− 1)r′2,m(u) + 3nr′′2,m(u) + r′′′2,m(u)−
(3n+ 1)g′2,m(eu)eu − 3g′′2,m(eu)e2u

= n(n− 1)(n− 2)r2,m(u) + 3n(n− 1)r′2,m(u) + 3nr′′2,m(u) + r′′′2,m(u)−
(3n+ 1)r′2,m(u)

−3e2u((r′′2,m(u)− g′2,m(eu)eu)e−2u)

= n(n−1)(n−2)r2,m(u)+(3n2−6n−1)r′2,m(u)+3nr′′2,m(u)+r′′′2,m(u)−
3r′′2,m(u) + 3g′2,m(eu)eu

= n(n− 1)(n− 2)r2,m(u) + (3n2− 6n− 1)r′2,m(u) + 3(n− 1)r′′2,m(u) +
r′′′2,m(u) + 3r′2,m(u)

= n(n− 1)(n− 2)r2,m(u) + (3n2− 6n+ 2)r′2,m(u) + (3n− 3)r′′2,m(u) +
r′′′2,m(u) = 0 (C)

We have that;

(λ3 + 3(n− 1)λ2 + (3n2− 6n+ 2)λ+n(n− 1)(n− 2))′ = 3λ2 + 6(n−
1)λ+ (3n2 − 6n+ 2)

which has roots when λ = −(n − 1) + 1√
3
, so that, for large n, the

characteristic polynomial of (C) has exactly one real root λ1 and 2
complex conjugate non-real roots, {λ2 + iλ3, λ2 − iλ3}. It follows, the
general solution of (C) is given by;

r2,m(u) = A1e
λ1u + A2e

λ2u+iλ3 + A3e
λ2u−iλ3

where {A1, A2, A3} ⊂ C, and, we can obtain a real solution, fitting
the corresponding initial conditions, of the form;

r2,m(u) = B1e
λ1u +B2e

λ2ucos(λ3u) +B3e
λ2usin(λ3u)

where {B1, B2, B3} ⊂ R. It follows that;

g2,m(y) = r2,m(ln(y))

g2(x) = g2,m(m+ 1
m
−x)+g2,part(x) = r2,m(ln(m+ 1

m
−x))+g2,part(x)
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= B1e
λ1ln(m+ 1

m
−x) +B2e

λ2ln(m+ 1
m
−x)cos(λ3ln(m+ 1

m
− x))

+B3e
λ2ln(m+ 1

m
−x)sin(λ3ln(m+ 1

m
− x)) + g2,part(x) (on [m,m+ 1

m
])

We have that;

λ1|λ2 + iλ3|2 = −n(n− 1)(n− 2)

λ1 + λ2 + iλ3 + λ2 − iλ3 = λ1 + 2λ2 = −3(n− 1)

Computing the highest degree in n term of the characteristic poly-
nomial, we obtain that, for λ = αn;

α3n3 + 3n(αn)2 + 3n2(αn) + n3 = n3(α + 3)3 = 0

so that α = −3, λ1 = −3n + O(1) and 2λ2 = −3(n − 1) − (−3n +
O(1)) = 3−O(1) = O(1)

Then, if B1 = 0, we can see that g2(x) has at most a 1
xO(1) singularity

at (m+ 1
m

), which we can achieve with a 2-parameter family choice for
the initial conditions of {φ(m), φ′(m), φ′′(m)}. If;

−(n(n− 1)(n− 2)a0 − 3n(n−1)a1
m

+ 3na2
m2 − a3

m3 6= 0

we can clearly achieve this, while satisfying (a), (b). If;

−(n(n− 1)(n− 2)a0 − 3n(n−1)a1
m

+ 3na2
m2 − a3

m3 = 0

by requiring the the additional property (c);

φ′(m) < −(n(n − 1)(n − 2)g1(x) + 3n(n − 1)(x − (m + 1
m

))g′1(x) +

3n(x− (m+ 1
m

))2g′′1(x)

+(x− (m+ 1
m

))3g′′′1 (x))′|m

we can clearly satisfy (a), (b) as well.

Then, as, for sufficiently large n;

limx→0(
B2xn

xO(1) sin(λ3ln(x)) + B3xn

xO(1) cos(λ3ln(x)))
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= limx→0(
B2xn

xO(1) sin(λ3ln(x)) + B3xn

xO(1) cos(λ3ln(x)))′

= limx→0(
B2xn

xO(1) sin(λ3ln(x)) + B3xn

xO(1) cos(λ3ln(x)))′′

= limx→0(
B2xn

xO(1) sin(λ3ln(x)) + B3xn

xO(1) cos(λ3ln(x)))′′′ = 0

we obtain that (x−(m+ 1
m

))ng2(x) extends to a solution in C3([m,m+
1
m

]), and (x − (m + 1
m

))n(g2 + g1)(x) ∈ C3([m,m + 1
m

]). By the fact

(a), (A) has no solutions in (m,m+ 1
m

), so that h′′′(x) ≥ 0.

We have that;

|(x−(m+ 1
m

)ng2(x)|[m,m+ 1
m
] = |(x−(m+ 1

m
)n(B2e

λ2ln(m+ 1
m
−x)cos(λ3ln(m+

1
m
− x))

+B3e
λ2ln(m+ 1

m
−x)sin(λ3ln(m+ 1

m
− x)) + g2,part(x))|

≤ |B2|mλ2−n + |B3|mλ2−n +m−n|g2,part(x)|

Noting the right hand side of (a) is bounded by O(mn) on [m,m+ 1
m

],

we can also choose φ(x) and g2,part(x) to be of O(mn) on [m,m + 1
m

],
irrespective of the choice of initial conditions {φ(m), φ′(m), φ′′(m)}.
We have that φ′(m) = O(mn+1), in the special case, so that choosing
{B2, B3} sufficiently small, noting;

(x− (m+ 1
m

)n(B2e
λ2ln(m+ 1

m
−x)cos(λ3ln(m+ 1

m
− x))

+B3e
λ2ln(m+ 1

m
−x)sin(λ3ln(m+ 1

m
−x)))′|m = O(max(B2m

n−λ2−1, B3m
n−λ2−1))

we can assume that;

|(x− (m+ 1
m

)ng2(x)|[m,m+ 1
m
] ≤ D

where D ∈ R>0 is independent of m, so that, using (F );

|h(x)|[m,m+ 1
m
] ≤ |(x−(m+ 1

m
)ng1(x)|[m,m+ 1

m
]+|(x−(m+ 1

m
)ng2(x)|[m,m+ 1

m
] ≤

F +D

For the final claim, we have, as h′′′|[m,m+ 1
m
] ≥ 0 or h′′′|[m,m+ 1

m
] ≤ 0,

that, using the fundamental theorem of calculus, that;
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m

m
|h′′′(x)|dx = |

∫ m+ 1
m

m
h′′′(x)dx|

= |h′′(m+ 1
m

)− h′′(m)| = | − h′′(m)| = |a2|

�

Lemma 0.32. Let f be as in Definition 0.28, then there exists an ap-
proximating sequence {fm : m ∈ N}. Moreover, for sufficiently large
m, |F(fm)(k)| ≤ Cm

|k|3 , for |k| > 1, where C ∈ R>0, independent of m.

Proof. Define fm by setting;

fm(x) = f(x) for x ∈ [−m,m]

fm(x) = h1,m(x), for x ∈ [−m− 1
m
,−m]

fm(x) = h2,m(x), for x ∈ [m,m+ 1
m

]

fm(x) = 0, for x ∈ (−∞,−m− 1
m

]

fm(x) = 0, for x ∈ [m,∞)

where {h1,m, h2,m} are the polynomials of degree 5, generated by the
data a1,m,0 = f(−m), a1,m,1 = f ′(−m), a1,m,2 = f ′′(−m), a2,m,0 =
f(m), a2,m,1 = f ′(m), a2,m,2 = f ′′(m), guaranteed by Lemma 0.30 (or
Lemma 0.31. By the construction of Lemma 0.30, we have that (i) in
Definition 0.28 holds. By the definition, we have (ii). As fm is identi-
cally zero on −∞,−m− 1

m
]∪ [m,∞), we have that (iii) holds. By the

proof of Lemma 0.30, we have that;

max(|h1,m|[m,m+ 1
m
]|, |h2,m|[−m− 1

m
,−m]|) ≤ 16||f ||∞ + 7||f ′||∞ + ||f ′′||∞

It follows that;∫ −m
−m− 1

m
|fm(x)|dx ≤ (16||f ||∞+ 7||f ′||∞+ ||f ′′||∞)(−m− (−m− 1

m
))

≤ D
m∫ m+ 1
m

m
|fm(x)|dx ≤ (16||f ||∞ + 7||f ′||∞ + ||f ′′||∞)((m+ 1

m
)−m)

≤ E
m
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where D = E = (16||f ||∞ + 7||f ′||∞ + ||f ′′||∞)

proving (iv). For the second claim, we have that;

F(f ′′′m)(k) = 1

(2π)
1
2

∫∞
−∞ f

′′′
m(x)e−ikxdx

= 1

(2π)
1
2

([f ′′m(x)e−ikx]∞−∞ − ik
∫∞
−∞ f

′′
m(x)e−ikxdx

= −ik
(2π)

1
2

([f ′m(x)e−ikx]∞−∞ − ik
∫∞
−∞ f

′
m(x)e−ikxdx)

= −k2

(2π)
1
2

([fm(x)e−ikx]∞−∞ − ik
∫∞
−∞ fm(x)e−ikxdx)

= ik3

(2π)
1
2

∫∞
−∞ fm(x)e−ikxdx)

so that, for |k| > 1;

|F(fm)(k)| = | 1

(2π)
1
2

∫∞
−∞ fm(x)e−ikxdx|

=
| 1

(2π)
1
2

∫∞
−∞ f ′′′m (x)e−ikxdx|

|k|3

≤ 1

|k|3(2π)
1
2

∫∞
−∞ |f

′′′
m(x)e−ikx|dx

= 1

|k|3(2π)
1
2

∫∞
−∞ |f

′′′
m(x)|dx

= 1

|k|3(2π)
1
2

(
∫ −m
−m− 1

m
|h′′′1,m(x)|dx+

∫ m
−m |f

′′′(x)|dx+
∫ m+ 1

m

m
|h′′′2,m(x)|dx)

≤ 1

|k|3(2π)
1
2

(|f ′′(−m)|+ 2m|f ′′′|∞ + |f ′′(m))

≤ 1

|k|3(2π)
1
2

(2||f ′′||∞ + 2m||f ′′′||∞)

≤ 1

|k|3(2π)
1
2

(2m+ 2m||f ′′′||∞), (m > ||f ′′||∞

= Cm
|k|3

where C = 1

(2π)
1
2

(2 + 2||f ′′′||∞)

�

Lemma 0.33. Let f ∈ C3(R), with f and df
dx

non-oscillatory and
of very moderate decrease, with {f, f ′, f ′′, f ′′′} bounded, then F(f) ∈
L1(R), and we have that;
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f(x) = F−1(F(f))(x)

where, for g ∈ L1(R);

F−1(g)(x) = 1

(2π)
1
2

∫∞
−∞ g(k)eikxdk

Proof. By Lemma 0.27, we have that there exists C ∈ R>0, with
|F(f)(k)| ≤ C

|k|2 , for sufficiently large k, (∗). As f is of very mod-

erate decrease, we have that |f |2 ≤ D
|x|2 , for |x| > 1, so that, as

f ∈ C0(R), we have that f ∈ L2(R). It follows that F(f) ∈ L2(R),
and F(f)|[−n,n] ∈ L1(R), for any n ∈ N , (∗∗). Combining (∗), (∗∗),
we obtain that F(f) ∈ L1(R). Let {fm : m ∈ N} be the ap-
proximating sequence, given by Lemma 0.32, then, as fm ∈ L1(R),
F(fm) is continuous and, by Lemma 0.29, converges uniformly to F(f)
on R \ {0}. It follows that F(f) ∈ C0(R \ {0}). As fm ∈ C2(R)
and f ′′m ∈ L1(R), we have that there exists constants Dm ∈ R>0,
such that |F(fm)(k) ≤ Dm

|k|2 , for sufficiently large k. Moreover, as

xnfm(x) ∈ L1(R), for n ∈ N , F(fm) ∈ C∞(R). It follows, the Fourier
inversion theorem fm = F−1(F(fm)), (∗ ∗ ∗), holds for each fm, see
the proof in [13]. By Lemma 0.29, we have that, for k ∈ R \ {0},
|F(f)(k) − F(fm)(k)| ≤ E

m
. Then, for n ∈ N , m ∈ N , with m = n

3
2 ,

using Lemma 0.32, we have, for x ∈ R, that;

|F−1(F(f))(x)−F−1(F(fm))(x)| = |F−1(F(f)(k)−F(fm)(k))|

= 1

(2π)
1
2
|
∫ n
−n(F(f)(k)−F(fm)(k))eikxdk+

∫
|k|>n(F(f)(k)−F(fm)(k))eikxdk|

≤ 1

(2π)
1
2

(
∫ n
−n |F(f)(k)−F(fm)(k)|dk+

∫
|k|>n |F(f)(k)|dk+

∫
|k|>n |F(fm)(k)|dk)

≤ 1

(2π)
1
2

(2nE
m

+
∫
|k|>n

C
|k|2dk +

∫
|k|>n

Cm
|k|3 dk)

≤ 1

(2π)
1
2

( 2n

n
3
2

+ 2C
n

+ Cn
3
2

n2 )

< ε

for sufficiently large n, so that, as ε > 0 was arbitrary, for x ∈ R;

limm→∞F−1(F(fm))(x) = F−1F(f)(x), (∗ ∗ ∗∗)
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and, by Definition 0.28, (∗ ∗ ∗), (∗ ∗ ∗∗);

f(x) = limm→∞fm(x) = limm→∞F−1(F(fm))(x) = F−1F(f)(x)

�

Remarks 0.34. The previous lemma proves an inversion theorem for
non-oscillatory functions with very moderate decrease. Such functions
belong to L2(R) and an analogous result for Fourier series can be found
in [2], where convergence is proved almost everywhere rather than ev-
erywhere. The corresponding result for transforms is that;

If f ∈ Lp(R), p ∈ (1, 2], then;

f(x) = limR→∞
1
2π

∫
|k|≤RF(f)(k)eixkdk

for almost every x ∈ R.

There is also a converse result, which can be found in [7], but is left
as an exercise;

If f ∈ L1(R) ∩ C0(R) and |F(f)(k)| ≤ A
|k| , for all k 6= 0, and

A ∈ R≥0, then;

f(x) = limR→∞
1
2π

∫
|k|≤RF(f)(k)eixkdk

for every x ∈ R.

Lemma 0.35. Let f ∈ C(R>0) and df
dx
∈ C(R>0) be of very mod-

erate decrease, with f and df
dx

non-oscillatory, and limx→0f(x) = 0,

limx→0
df
dx

= M , with M ∈ R, then defining the half Fourier transform
G by;

G(f)(k) = limr→∞
∫ r
0
f(y)e−ikydy (k 6= 0)

G( df
dx

)(k) = limr→∞
∫ r
0
df
dx

(y)e−ikydy (k 6= 0)

we have that G(f) and G( df
dx

) are bounded for |k| ≥ k0 > 0, and there
exists a constant G ∈ R>0, such that;

|G(f)(k)| ≤ G
|k|2

for sufficiently large k.
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Proof. As f is of very moderate decrease, and limx→0f(x) = 0, we have
that f is bounded and limx→∞f(x) = 0. Similarly, df

dx
is bounded and

limx→∞
df
dx

= 0. As limx→∞f(x) = 0, and f is non-oscillatory, we have
that, for k 6= 0, the indefinite integral;

limr→∞
∫ r
0
f(y)e−ikydy

= limr→∞
∫ r
0
f(y)cos(ky)dy − ilimr→∞

∫ r
0
f(y)sin(ky)dy

exists. As f is of very moderate decrease and non-oscillatory, we
have that |f(x)| ≤ D

x
, for x > E, with E ∈ R>0, and monotone in the

interval (E,∞). Using the method of [10], letting K = max(|f ||(0,E]),
we have that;

|limr→∞
∫ r
−r f(y)cos(ky)dy| ≤ KE+(|

∫ π
2|k|+

nkπ

|k|
E

Dcos(ky)
y

dy|+|
∫ π

2|k|+
(nk+1)π

|k|
π

2|k|+
nkπ

|k|

Dcos(ky)
y

dy|)

≤ KE + D
E

( π
2|k| + nkπ

|k| − E) +
∫ E+ π

|k|
E

Dsin(|k|(y−E))
y

dy

≤ KE + Dπ
E|k| +

∫ E+ π
|k|

E
Dsin(|k|(y−E))

y
dy

|limr→∞
∫ r
−r f(y)sin(ky)dy| ≤ KE+(|

∫ mkπ

|k|
E

Dsin(ky)
y

dy|+|
∫ (mk+1)π

|k|
mkπ

|k|

Dsin(ky)
y

dy|)

≤ KE + D
E

(mkπ|k| − E) +
∫ E+ π

|k|
E

Dsin(|k|(y−E))
y

dy

≤ KE + Dπ
E|k| +

∫ E+ π
|k|

E
Dsin(|k|(y−E))

y
dy

where nk = µn( π
2|k| +

nπ
|k| ≥ E : n ∈ Z≥0) and mk = µn(nπ|k| ≥ E : n ∈

Z≥0)

so that;

|limr→∞
∫ r
0
f(y)e−ikydy| ≤ 2KE + 2Dπ

E|k| + 2
∫ E+ π

|k|
E

Dsin(|k|(y−E))
y

dy

= 2KE + 2Dπ
E|k| + 2D([−cos(|k|(y−E))

|k|y ]
E+ π
|k|

E −
∫ E+ π

|k|
E

cos(|k|(y−E))
y2

dy)

= 2KE + 2Dπ
E|k| + 2D( 1

|k|(E+ π
|k| )

+ 1
E|k| +

∫ E+ π
|k|

E
cos(|k|(y−E))

y2
dy)

≤ 2KE + 2Dπ
E|k| + 2D( 1

E|k|+π + 1
E|k| +

∫∞
E

1
y2
dy)
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≤ 2KE + 2Dπ
E|k| + 2D( 2

E|k| + 1
E

) = Nk

Alternatively, letting F = max(|f ||(0,∞), we have that;

|limr→∞
∫ r
−r f(y)cos(ky)dy| ≤ FE+(|

∫ π
2|k|+

nkπ

|k|
E Fcos(ky)dy|+|

∫ π
2|k|+

(nk+1)π

|k|
π

2|k|+
nkπ

|k|
Fcos(ky)dy|)

≤ FE + F ( π
2|k| + nkπ

|k| − E) +
∫ E+ π

|k|
E Fsin(|k|(y − E))dy

≤ FE + Fπ
2|k| +

∫ E+ π
|k|

E Fsin(|k|(y − E))dy

≤ FE + Fπ
2|k| +

∫ E+ π
|k|

E Fdy

≤ FE + Fπ
2|k| + Fπ

|k|

= FE + 3Fπ
2|k|

|limr→∞
∫ r
−r f(y)sin(ky)dy| ≤ FE+(|

∫ mkπ

|k|
E Fsin(ky)dy|+|

∫ (mk+1)π

|k|
mkπ

|k|
Fsin(ky)dy|)

≤ FE + F (mkπ|k| − E) +
∫ E+ π

|k|
E Fsin(|k|(y − E))dy

≤ FE + Fπ
2|k| +

∫ E+ π
|k|

E Fsin(|k|(y − E))dy

≤ FE + Fπ
2|k| + Fπ

|k|

= FE + 3Fπ
2|k|

so that;

|limr→∞
∫ r
0
f(y)e−ikydy| ≤ 2FE + 3Fπ

|k| = Mk

In either case, G(f)(k) and, similarly, G( df
dx

)(k) are bounded, for
|k| > k0 > 0, (2).

We have, using integration by parts, that;

G( df
dx

)(k) = limr→∞
∫ r
0
df
dx

(y)e−ikydy

= limr→∞([f(y)e−iky]r0 + ik
∫ r
0
f(y)e−ikydy)

2G(f)(k) and G( dfdx )(k) need not be differentiable or even continuous for k 6= 0,

but see Lemma 0.33 for continuity on R \ {0} with stronger assumptions.
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= [f(y)e−iky]∞0 + iklimr→∞
∫ r
0
f(y)e−ikydy

= ikG(f)(k)

so that, for |k| > 1;

|G(f)(k)| ≤ |G( df
dx

)(k)|
|k| , (†)

As df
dx

is continuous, non-oscillatory and bounded, by the proof of
Lemma 0.9 in [10], using underflow, for r ∈ R>0, we can find {Fr, Gr} ⊂
R>0, such that, for all |k| > Fr, we have that;

|
∫ r
0
df
dx

(y)e−ikydy| < Gr
|k| , (∗∗)

It is easy to see from the proof, that {Fr, Gr} can be chosen uni-
formly in r. Then, from (∗∗), we obtain that, for |k| > F ;

|G( df
dx

)(k)| < G
|k| , for |k| > F

and, from (†), for |k| > max(F, 1), that;

|G(f)(k)| ≤ |G( df
dx

)(k)|
|k| < G

|k|2

�

Definition 0.36. We say that h : R → C is near analytic if for
any δ > 0, 0 < ε < L, there exists g1 analytic on (ε, L), such that
|h(y) − g1(y)| < δ, and for any δ > 0, −L < −ε < 0, there exists g2
analytic on (−L,−ε), such that |h(y)− g2(y)| < δ

Lemma 0.37. If f satisfies the conditions of Lemma 0.33 or Lemma
0.38, then F(f) is near analytic. If f satisfies the conditions of Lemma
0.38, then kF(f)(k) and d

dk
(kF(f)(k)) are near analytic.

Proof. By the proof of Lemma 0.33, we have that F(f) ∈ C0(R \ {0}).
By the Stone-Weierstrass approximation theorem, we can find a poly-
nomial pε,L,δ such that |F(f)(y)−pε,L,δ(y)| < δ, for y ∈ [ε, L]. Similarly,
we can find a polynomial p−ε,−L,δ such that |F(f)(y) − p−ε,−L,δ(y)| <
δ, for y ∈ [−L,−ε]. In particularly, as pε,L,δ and p−ε,−L,δ are ana-
lytic on (ε, L) and (−L,−ε) respectively, F(f) is near analytic. The
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same proof applies if f satisfies the conditions of Lemma 0.38. Simi-
larly, in Lemma 0.38, we have that kF(f)(k) ∈ C1(R \ {0}), so that
kF(f)(k) ∈ C0(R \ {0}) and d

dk
(kF(f)(k)) ∈ C0(R \ {0}), so we can

apply the above proof again.

�

Lemma 0.38. Let f satisfy the conditions of Lemma 0.33 with the

extra assumption that f ∈ C4(R), { df
dx
, d

2f
dx2
, d

3f
dx3
, d

4f
dx4
} are of moderate

decrease, then kF(f)(k) ∈ C1(R \ {0}), limk→0kF(f)(k) = 0, for any
given ε > 0, there exists δ > 0, such that;

max(|
∫ δ
0
kF(f)dk|, |

∫ δ
0
d(kF(f))

dk
dk|) < ε

Proof. We have that, for k 6= 0, as df
dx

is of moderate decrease, f is of
very moderate decrease and non-oscillatory, and using integration by
parts;

F( df
dx

)(k) = 1

(2π)
1
2

∫
R

df
dx

(y)e−ikydy

= 1

(2π)
1
2
limr→∞

∫ r
−r

df
dx

(y)e−ikydy

= 1

(2π)
1
2
limr→∞([fe−iky]r−r + ik

∫ r
−r f(y)e−ikydy)

= ikF(f)(k)

so that, for k 6= 0, kF(f)(k) = −iF( df
dx

)(k). It follows that, using
the MCT, the FTC and the fact that f is of very moderate decrease;

limk→0kF(f)(k) = −ilimk→0F( df
dx

)(k)

= − i

(2π)
1
2
limk→0

∫
R

df
dx

(y)e−ikydy

= − i

(2π)
1
2

∫
R

df
dx

(y)dy

= − i

(2π)
1
2

[f ]∞−∞

= 0

As f ∈ C4(R), we have that x df
dx
∈ C3(R). Moreover, as {f, df

dx
, d

2f
dx2
, d

3f
dx3
}

are of very moderate decrease, we have that;



102 TRISTRAM DE PIRO

|x df
dx
| ≤ C0

| d
dx

(x df
dx

)| = | df
dx

+ xd
2f
dx2
| ≤ C1

|d
2(x df

dx
)

dx2
| = |2d2f

dx2
+ xd

3f
dx3
| ≤ C2

|d
3(xf)
dx3
| = |3d3f

dx3
+ xd

4f
dx4
| ≤ C3

so that {x df
dx
,
d(x df

dx
)

dx
,
d2(x df

dx
)

dx2
,
d3(x df

dx
)

dx3
} are bounded. By Lemma 0.32,

there exists an approximating sequence gm, m ∈ N , for x df
dx

, with the
properties that;

(i). gm ∈ C2(R).

(ii). gm|[−m,m] = x df
dx
|[−m,m]

(iii).
∫
m<|x|<m+ 1

m
|gm(x)|dx ≤ D

m

(iv). gm||x|>m+ 1
m

= 0

Then fm = gm
x

is an approximating sequence for df
dx

, with the prop-
erties that;

(i)′. fm ∈ C2(R).

(ii)′. fm|[−m,m] = df
dx
|[−m,m]

(iii)′.
∫
m<|x|<m+ 1

m
|fm(x)|dx ≤ D

m2

(iv)′. fm||x|>m+ 1
m

= 0

Following through the proof of Lemma 0.33, we have that F(fm)
converges uniformly to F( df

dx
) on R \ {0} and F( df

dx
) ∈ C(R \ {0}). As

x2fm = xgm and xgm ∈ L1(R), we have that F(fm is twice differen-
tiable, in particularly F(fm) ∈ C1(R). As f is analytic at infinity, so
is df

dx
. Moreover, as df

dx
is of very moderate decrease, | df

dx
| 1
z
| = |g(z)| ≤

C|z|2, so that g(z)
z

has a removable singularity at 0 and x df
dx

is analytic
at infinity and non-oscillatory. We have that, for {m,n} ⊂ N , m ≥ n,
differentiating under the integral sign, using the MCT, property (iv)
of an approximating sequence, and the fact that x df

dx
is of moderate
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decrease and non-oscillatory, for k 6= 0, α < |k| < β;

|dF(fm)
dk
− dF(fn)

dk
|

= 1

(2π)
1
2
| d
dk

∫
R fm(y)e−ikydy − d

dk

∫
R fn(y)e−ikydy|

= 1

(2π)
1
2
|
∫
R−iyfm(y)e−ikydy −

∫
R−iyfn(y)e−ikydy|

≤ 1

(2π)
1
2
|
∫
R(gm − gn)(y)e−iky|dy

≤ 1

(2π)
1
2

(
∫
m<|y|<m+ 1

m
|gm|(y)dy+

∫
n<|y|<n+ 1

n
|gn|(y)dy+|

∫
n<|y|<m y

df
dx

(y)e−ikydy|)

≤ D
m

+ D
n

+ C(k)
n

(∗)

where C(k) is uniformly bounded in the interval α < |k| < β, so that

the sequence {dF(fm)
dk

: m ∈ N} is uniformly Cauchy on the interval
α < |k| < β and converges uniformly on R \ {0}. As F(fm) converges
uniformly to F( df

dx
) on R \ {0}, it follows that F( df

dx
) ∈ C1(R \ {0}).

As F(f) ∈ L2(R), we have that;

|
∫ δ
0
kF(f)(k)dk| ≤ (

∫ δ
0
k2dk)

1
2 ||F(f)||L2(R)

≤ δ
3
2√
3
||F(f)||L2(R)

< ε

for δ < (
√
3ε

||F(f)||L2(R)
)
2
3

We have that dF(fm)
dk

= −iF(gm) and, as x df
dx
∈ L2(R), by a simi-

lar calculation to (∗), {gm : m ∈ N} is a Cauchy sequence with re-

spect to the L2-norm, so that dF(fm)
dk

is Cauchy in L2(R). As F is

an L2-isometry, using the fact that the limit d
dk

(F( df
dx

)(k)) is of mod-

erate decrease, by Lemma 0.27 and the fact that x df
dx

and d
dx

(x df
dx

)
are of very moderate decrease and non-oscillatory, we can ignore the
tail and use uniform convergence implying L2-convergence on sets of
the form 0 < k0 < |k| < k1. It follows that the pointwise limit
d
dk

(F( df
dx

)(k)) ∈ L2(R) and d
dk

(kF(f)(k)) ∈ L2(R) as well. We then
have that;

|
∫ δ
0

d
dk

(kF(f)(k))dk| ≤ δ
3
2√
3
|| d
dk
kF(f)(k)||L2(R)
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< ε

for δ < (
√
3ε

|| d
dk

(kF(f)(k))||L2(R)

)
2
3

�

Lemma 0.39. Let f be light symmetrically asymptotic, then defining
F(f) and F( df

dx
) as in Lemma 0.27, we have that, for any δ > 0, there

exist constants {Cδ, Dδ} ⊂ R>0, such that;

|F(f)(k)| ≤ δ
|k| + Cδ

|k|2 , for |k| > Dδ

Proof. The proof is a simple generalisation of the proofs of Lemmas
0.26 and 0.27. �

Definition 0.40. Polars Attempt We say that g ∈ C∞(R3) is polar
non-oscillatory if, for 0 ≤ θ < π, −π < φ ≤ π, we have that, for
gθ,φ, there exist finitely many point {ri,θ,φ : 1 ≤ i ≤ n} ⊂ R>0, for
which gθ,φ|(ri,θ,φ,ri+1,θ,φ) is monotone, 2 ≤ i ≤ n−2, and gθ,φ|(0,r1,θ,φ) and
gθ,φ|(rn,θ,φ,∞) is monotone. We say that g is polar decaying if, for 0 ≤
θ < π, −π < φ ≤ π, we have that, there exist constants {C,D} ⊂ R>0,
such that |gθ,φ(r)| ≤ D

r3
, for |r| ≥ C.

Lemma 0.41. If g is polar non-oscillatory and decaying, we can define;

F(g)(k) = 1

(2π)
3
2
limR→∞

∫ R
0

∫ π
0

∫ π
−π r

2sin(θ)g(r, θ, φ)e−ir(k1sin(θ)cos(φ)+k2sin(θ)sin(φ)+k3cos(θ))drdθdφ

in polar coordinates, x1 = rsin(θ)cos(φ), x2 = rsin(θ)sin(φ), x3 =
rcos(θ).

where F(g)(k) = 1

(2π)
3
2

∫
R3 g(x)e−ik�xdx

is usually defined for g ∈ L1(R3).

Proof. We can assume that n is minimal with this property, in which
case, the points {ri,θ,φ : 1 ≤ i ≤ n} ⊂ R>0 are local maxima or min-

ima, and, as g ∈ C∞(R3), we have that ∂g
∂r
|(ri,θ,φ,θ,φ) = 0. By the

implicit function theorem, we can find smooth maps λi : S2(1) → R3,
1 ≤ i ≤ n, such that Im(λi) ⊂ ∂f

∂r
= 0 and {ri,θ,φ : 0 ≤ θ < π,−π <

φ ≤ π} = Im(λi). As S2(1) is compact, we have that prr(Im(λi))
defines a closed bounded interval Ii ⊂ mathcalR>0. Moreover, it is
straightforward to see, as each gθ,φ is a function, that Ii ∩ Ij = ∅, for
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1 ≤ i < j ≤ n. Let m = max(
⋃

1≤i≤n Ii). Then gθ,φ|(m,∞) is monotone
and, if M = max(|f ||B(0,m)), as g is decaying, we have that |g| ≤M , so

that g is bounded. Let k ∈ R3, with k 6= 0, then there exists an open
Uk ⊂ (0, π) × (−π, π) with k � (sin(θ)cos(φ), sin(θ)sin(φ), cos(θ)) =
νθ,φ 6= 0, for (θ, φ) ∈ Uk. Let fθ,φ = r2sin(θ)gθ,φ, then |fθ,φ| ≤ D

r
, for

r > C, and the same remarks above, apply to fθ,φ, as to gθ,φ.

As limr→∞fθ,φ(r) = 0, we have that the indefinite integral;

limr→∞
∫ r
0
fθ,φ(r)e−ir(k1sin(θ)cos(φ)+k2sin(θ)sin(φ)+k3cos(θ))dr

= limr→∞
∫ r
0
fθ,φ(r)e−irνθ,φdr

= limr→∞
∫ r
0
fθ,φ(r)cos(rνθ,φ)dr − ilimr→∞

∫ r
0
fθ,φ(r)sin(rνθ,φ)dr

exists. As fθ,φ is monotone, and |fθ,φ|(r) ≤ D
r

, for r > max(m,C) =
E, using the method of [10], letting K = max(|f ||B(0,E)), we have that;

|limR→∞
∫ R
0
fθ,φ(r)cos(rνθ,φ)dr| ≤ KE+K

∫ E+ π
2|νθ,φ|

E
Dcos(|νθ,φ|(r−E))

r
dr

|limR→∞
∫ R
0
fθ,φ(r)sin(rνθ,φ)dr| ≤ KE+K

∫ E+ π
2|νθ,φ|

E
Dcos(|νθ,φ|(r−E))

r
dr

so that;

|limR→∞
∫ r
0
fθ,φ(r)e−irνθ,φdr| ≤ 2KE+2K

∫ E+ π
2|νθ,φ|

E
Dcos(|νθ,φ|(r−E))

r
dr

= 2KE + 2KD([
−sin(|νθ,φ|(r−E))

|νθ,φ|
]
E+ π

2|νθ,φ|

E −
∫ E+ π

2|νθ,φ|

E
sin(|νθ,φ|(r−E))

r2
dr)

= 2KE + 2KD( 1
|νθ,φ|(E+ π

2|νθ,φ|
)
−
∫ E+ π

2|νθ,φ|

E
sin(|νθ,φ|(r−E))

r2
dr)

≤ 2KE + 2KD( 1
E|νθ,φ|+π

2
+
∫∞
E

1
r2
dr)

≤ 2KE + 2KD( 2
π

+ 1
E

) = N

uniformly, for (θ, φ) ∈ Uk, so that, using the dominated convergence
theorem;

limR→∞
∫ R
0

∫ π
0

∫ π
−π f(r, θ, φ)e−ir(k1sin(θ)cos(φ)+k2sin(θ)sin(φ)+k3cos(θ))drdθdφ
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exists, and;

|limR→∞
∫ R
0

∫ π
0

∫ π
−π f(r, θ, φ)e−ir(k1sin(θ)cos(φ)+k2sin(θ)sin(φ)+k3cos(θ))drdrdθdφ|

≤
∫ π
0

∫ π
−π |(limR→∞

∫ R
0
f(r, θ, φ)dr|)dθdφ

≤ 2Nπ2

�

Definition 0.42. Cartesian We say that g ∈ C∞(R3) is Cartesian
non-oscillatory if, for (x, y) ⊂ R2, there exist finitely many point
{zi,x,y : 1 ≤ i ≤ n} ⊂ R, for which gx,y|(zi,x,y ,zi+1,x,y) is monotone,
2 ≤ i ≤ n−2, and gx,y|(−∞,z1,x,y) and gx,y|(zn,x,y ,∞) is monotone, and, for
fixed (x, y) ∈ R2, with (x, y) 6= (0, 0), the ordering of {grx,ry(zi,rx,ry) :
1 ≤ i ≤ n} changes, uniformly in (x, y), at most a finite number of
times, with r ∈ R. We say that g ∈ C∞(R3) is slightly decaying if
there exists a constant C ∈ R>0 with |g(x)| ≤ C

|x| , for |x| > 1.

Remarks 0.43. The components of a causal field E, obtained us-
ing Jefimenko’s equations, are slightly decaying (and Cartesian non-
oscillatory?) if the charge and current (ρ, J) have compact support.

Definition 0.44. We say that f : R → R is analytic at infinity, if
f( 1

x
) has a convergent power series expansion for |x| < ε, ε > 0. We

say that f is eventually monotone, if there exists y0 ∈ R>0 such that
f |(−∞,−y0) and f |(y0,∞) are monotone. We say that f : R3 → R is
analytic and analytic at infinity, if;

(i). f is analytic on R3.

(ii) f(x0
x
, y0
y
, z0
z

) has a convergent power series expansion for |x| <
ε(x0,y0,z0), ε(x0,y0,z0) > 0, some (x0 : y0 : z0) ∈ P 2(R), where x =
(x, y, z), x0 6= 0, y0 6= 0, z0 6= 0.

(iii). For every linear transformation T of R3, (i), (ii) hold for f ◦T .

We say that f is analytic at infinity if (ii) holds and (iii) with the
restriction that T ∈ O(3), the orthogonal group.

Lemma 0.45. f : R → R is analytic at infinity iff f extends to
f : P 1(R) → R analytic on an open neighborhood of the point at in-
finity. f : R3 → R is analytic and analytic at infinity iff f extends
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to f : P 3(R) → R such that f is analytic on P 3(R) and constant
on P 3(R) \ R3. f : R3 → R is analytic at infinity iff f extends to
f : P 3(R) → R such that f is analytic on an open neighborhood U of
P 3(R) \ R3 and constant on P 3(R) \ R3.

Proof. The first claim follows by observing that if f is analytic at in-
finity, we can extend f to P 1(R by defining f(∞) = g(0, where g is
the analytic power series for f( 1

x
). On the chart [1 : w], we have, for

w 6= 0, that f([1 : w]) = f( 1
w

) = g(w), and for w = 0, f([1 : 0]) =

f(∞) = g(0), so f is analytic in a neighborhood U of the point at
infinity. Conversely, if f is analytic, then f( 1

x
) = f([ 1

x
: 1]) = f([1 : x])

is analytic on a neighborhood of 0.

Secondly, observe that if (ii) is satisfied, then for a pair (x′0, y
′
0, z
′
0),

(x0, y0, z0), with x′0 6= 0, y′0 6= 0, z′0 6= 0, x0 6= 0, y0 6= 0, z0 6= 0, then;

limw→0f(x0
w
, y0
w
, z0
w

) = limw→0gx0x1x2(w,w,w)

= gx0x1x2(0, 0, 0)

limw→0f(
x′0
w
,
y′0
w
,
z′0
w

) = limw→0f(
x′0x0
wx0

,
y′0y0
wy0

,
z′0z0
wz0

)

= limw→0f( x0
w
x0
x′0

, y0
w
y0
y′0

, z0
w
z0
z′0

)

= limw→0gx0x1x2(w
x0
x′0
, w y0

y′0
, w z0

z′0
)

= gx0x1x2(0, 0, 0)

so that f has a well defined limit at [x0 : y0 : z0 : 0] for any triple
x0 6= 0, y0 6= 0, z0 6= 0.

By (iii), the same is true for f ◦T , where T is a linear transformation,
so that f has a well defined limit on P 3(R) \ R3 and we can define an
extension f : P 3(R)→ P 3(R) which is constant on the boundary. We
have, by (ii), that, for w 6= 0;

f([1 : y : z : w]) = f( 1
w
, y
w
, z
w

)

= f( 1
w
, 1
w
y
, 1
w
z

)
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= g111(w,
w
y
, w
z
)

and f([1 : y : z : 0]) = g111(0, 0, 0), so that f([1 : y : z : w]) is analytic
for y 6= 0 and z 6= 0. It follows that f is analytic on the set U \ Z where
S = (X = 0)∪(Y = 0)∪(Z = 0), where U is open in P 3(R). Similarly,
by (iii), f ◦ T = f ◦ T is analytic on V \ S, where V is open, so that
f is analytic on T−1(V ) \ T−1(S). As the sets U \ T (S) for U an open
neighborhood cover P 3(R) \ [0 : 0 : 0 : 1], it follows that f is analytic
on P 3 \ [0 : 0 : 0 : 1]. By (i), f is analytic on P 3(R). Conversely, if f
is analytic on P 3(R), constant on the boundary P 3(R) \ R3, let f be
its restriction to R3. Obviously (i) is satisfied. Choose (x0, y0, z0) with
x0 6= 0, y0 6= 0, z0 6= 0, then, for x 6= 0, y 6= 0, z 6= 0;

f(x0
x
, y0
y
, z0
z

) = f([x0yz : y0xz : z0xy : xyz])

= f([1 : y0xz
x0yz

: z0xy
x0yz

: xyz
x0yz

])

= f([1 : y0x
x0y

: z0x
x0z

: x
x0

])

= g( y0x
x0y
, z0x
x0z
, x
x0

)

where g is analytic. So that f(x0
x
, y0
y
, z0
z

) is analytic for x 6= 0, y 6= 0,

z 6= 0. We have that, for any linear transformation T of R3, f ◦ T is
analytic, so that;

f ◦ T (x0
x
, y0
y
, z0
z

) = f(t11
x0
x

+ t12
y0
y

+ t13
z0
z
, t21

x0
x

+ t22
y0
y

+ t23
z0
z
,

t31
x0
x

+ t32
y0
y

+ t33
z0
z

)

= f( t11x0yz+t12y0xz+t13z0xy
xyz

, t21x0yz+t22y0xz+t23z0xy
xyz

, t31x0yz+t32y0xz+t33z0xy
xyz

)

= f([t11x0yz + t12y0xz + t13z0xy : t21x0yz + t22y0xz + t23z0xy :

t31x0yz + t32y0xz + t33z0xy : xyz])

= f([1 : t21x0yz+t22y0xz+t23z0xy
t11x0yz+t12y0xz+t13z0xy

: t31x0yz+t32y0xz+t33z0xy
t11x0yz+t12y0xz+t13z0xy

: xyz
t11x0yz+t12y0xz+t13z0xy

])

which is analytic for t11x0yz + t12y0xz + t13z0xy 6= 0, and consider-
ing the other charts, analytic for t21x0yz + t22y0xz + t23z0xy 6= 0 and
t31x0yz+t32y0xz+t33z0xy 6= 0, which as T is invertible occurs if yz 6= 0
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xz 6= 0, xy 6= 0 iff x 6= 0, y 6= 0, z 6= 0, so that f(x0
x
, y0
y
, z0
z

) is ana-

lytic if T−1(x 6= 0), T−1(y 6= 0), T−1(z 6= 0), and as T was arbitrary,
f(x0

x
, y0
y
, z0
z

) is analytic except at (0, 0, 0). By complexifying and using

Laurent series, using the fact the limit at (0, 0, 0) exists, f(x0
x
, y0
y
, z0
z

) is

analytic. So (ii) holds. We can verify (iii) by verifying (ii) for f ◦ T ,
which we can do by repeating the argument for (ii) and using the fact
f ◦ T is analytic. The second claim is left to the reader.

�

Lemma 0.46. If f : R → R, f 6= 0 is analytic and analytic at infin-
ity, then it has finitely many zeroes. If f : R → R, df

dx
is analytic and

analytic at infinity, and f 6= c, where c ∈ R, then f is non-oscillatory.
If f : R → R, f is analytic for |x| > a, where a ∈ R≥0, analytic at
infinity, and f ||x|>a 6= 0 then f has finitely many zeroes in the region

|x| > a + 1. If f : R → R, df
dx

is analytic for |x| > a, analytic at
infinity, and f ||x|>a 6= c, where c ∈ R, then f is eventually monotone.
If f : R3 → R, f 6= 0 is analytic and analytic at infinity, then, for any
line l ⊂ R3, f |l is either zero or has finitely many zeroes, moreover
the number of zeros is uniformly bounded, independently of the choice
of l. If f : R3 → R, ∂f

∂x
is analytic and analytic at infinity, and if

∂f
∂x
6= 0, then, for (y, z) ∈ R2, fy,z is non-oscillatory. If f : R3 → R,

∂f
∂x

is analytic for |x| > a, analytic at infinity, and ∂f
∂x
||x|>a 6= 0, then,

for (y, z) ∈ R2, fy,z is eventually monotone. A similar statement holds

for {∂f
∂y
, ∂f
∂z
}, with fx,z and fx,y replacing fy,z respectively.

Proof. For the first claim, suppose that f has infinitely many zeroes.
Then we can find a sequence {yi; i ∈ N} with f(yi) = 0. If the se-
quence is bounded, then by the Bolzano-Weierstrass Theorem, we can
find a subsequence {yik ; k ∈ N}, with f(yik) = 0, converging to y ∈ R.
By continuity, we have that f(y) = 0 and y is a limit point of ze-
roes. As f is analytic, by the identity theorem, it must be identically
zero, contradicting the hypothesis. If the sequence is unbounded, then
we can find a subsequence {yik ; k ∈ N}, with f(yik) = 0, such that
limk→∞yik = ∞ or limk→∞yik = −∞. As f is analytic at ∞, we can
find ε > 0, such that f(y) = 0 for |y| > 1

ε
. By the identity theorem

again, f is identically zero, contradicting the hypothesis. It follows that
f has finitely many zeroes. For the second claim, as df

dx
6= 0, by the

first part, there exist finitely many points {y1, . . . , yn}, with df
dx
|yi = 0,

for 1 ≤ i ≤ n, and with yi < yi+1, for 1 ≤ i ≤ n − 1. In partic-
ularly, we have that f |(−∞,y1), f |(yn,∞) and f |(yi,yi+1) is monotone for
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1 ≤ i ≤ n−1, so that f is non-oscillatory. For the third claim, suppose
that f has infinitely many zeroes in the region |x| > a+ 1, then we can
find a sequence {yi; i ∈ N} with f(yi) = 0 and |yi > a + 1. As above,
if the sequence is bounded, we can find a subsequence {yik ; k ∈ N},
with f(yik) = 0, converging to y ∈ R, with |y| ≥ a + 1 > a. As
f is analytic for |x| > a, by the identity theorem, it must be identi-
cally zero in the region |x| > a, contradicting the hypothesis. If the
sequence is unbounded, by the same argument as above, f must be
identically zero in the region |x| > a, contradicting the hypothesis.
It follows that f has finitely many zeroes in the region |x| > a + 1.
For the fourth claim, as df

dx
||x|>a 6= 0, by the first part, there exist

finitely many points {y1, . . . , yn}, with df
dx
|yi = 0, and |yi| > a + 1, for

1 ≤ i ≤ n. Choose y0 > max1≤i≤n(|yi|), then df
dx
||x|>y0 6= 0, so that

f ||x|>y0 is monotone. For the fifth claim, we have, by Lemma 0.45 that

f extends to f analytic on P 3(R), constant on P 3(R) \ R3. If l is a
line in P 3(R) such that, without loss of generality, l ∩R3 6= ∅, passing
through p = [ε0 : ε1 : ε2 : 1], we can choose a chart U centred at p, with
the line l corresponding to x = y = 0 and such that f is analytic on U ,
defined by a convergent power series

∑
i,j,k≥0 aijkx

iyjzk. Substituting

x = y = 0, we obtain a convergent power series on l ∩ U , so that f |l
is analytic at infinity. By a similar argument f |l is analytic, so that
by the first claim, f |l is either zero or has finitely many zeroes. For
the uniformity claim, let Z be the zero locus of f and consider the
relation R ⊂ P 3(R)×G1,3(R) given by R(x, l) iff x ∈ Z ∩ l, where G1,3

is the Grassmannian of lines in P 3(R). By the previous proof R is a
generically finite cover of G1,3(R), with fibres possibly equal to P 1(R).
Using the method of Lemma 0.19, we can apply Weierstrass prepara-
tion and compactness to get a uniform bound. For the sixth claim, the

first part is proved in Lemma 0.19?,
∂fy0,z0
∂x

is given by the restriction

of ∂f
∂x

to the line y = y0, z = z0, so by the previous claim, has finitely

many zeroes. For the seventh claim, the restriction of ∂f
∂x

to lines l is
analytic at infinity, in particularly, by the above, it cannot have an
unbounded infinite sequence of zeroes so fy,z is eventually monotone.
The last claim follows by symmetry.

�

Definition 0.47. We say that g : R3 → R is of very moderate de-
crease, if, there exists constants C ∈ R>0 and sıR>0, with;

|g(x)| ≤ C
|x|
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for |x| > s, x ∈ R3

We say that f : R3 ×R → R is of uniform very moderate decrease,
if, for all t ∈ R, there exists a constants D ∈ R>0 and s ∈ R0, uniform
in t, with;

|f(x, t)| ≤ D
|x|

for |x| > s, x ∈ R3

We say that f : R3×R → R is of very moderate decrease, if, for all
t ∈ R, there exists a constants D ∈ R>0 and st ∈ R0, with;

|f(x, t)| ≤ D
|x|

for |x| > st, x ∈ R3

Lemma 0.48. The components of the causal fields E and B, obtained
using Jefimenko’s equations, are of uniform very moderate decrease
and analytic for |x| > r, and analytic at infinity, if, first, the charge
and current (ρ, J) are compactly supported and uniformly bounded with
t ∈ R on a volume V ⊂ B(0, w), where w ∈ R>0, secondly, the charge
ρ and the components ji of the current J , for 1 ≤ i ≤ 3, are smooth
and,third, the charge ρ and the components ji of the current J , for
1 ≤ i ≤ 3 are analytic in t. If the initial conditions ρ0 ∈ S(R3),∂ρ

∂t
|t=0 ∈

S(R3), with ρ defined on R4 by Kirchoff’s formula, then ρ ∈ C∞(R4)
and if ρ0 and ∂ρ

∂t
|t=0 have compact support, then for t ∈ R, ρt has

compact support, in particularly ρt ∈ S(R3). If the current J is defined
as in [14], with the conditions in the last clause, then, after subtracting
a harmonic, time independent, current J0(x), the components ji ∈
C∞(R4), 1 ≤ i ≤ 3, and for each t ∈ R, ji,t has compact support and
ji,t ∈ S(R3). Suppose that the charge ρ, obeys the wave equations on
R4, with the current J defined as in [14], and with the initial conditions
ρ0 ∈ S(R3),∂ρ

∂t
|t=0 ∈ S(R3) and with compact support. Then the fields

{E,B} are well defined by Jefimenko’s equations, as a limit of fields
{(Ew, Bw) : w ∈ R>0, w 6= c} and the components are of uniform
very moderate decrease. If the components of the initial conditions
ρ0 ∈ S(R3) and ∂ρ

∂t
|t=0 ∈ S(R3) have compact support in B(0, w),

w ∈ R>0, and the partial derivatives { ∂i+j+k+lρ
∂xi∂yj∂zk∂tl

: (i, j, k, l) ∈ Z4
≥0} are

analytic in t, then the fields {E,B} are analytic for |x| > w, uniformly
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in t, and analytic at infinity. If the components of the initial conditions
ρ0 ∈ S(R3) and ∂ρ

∂t
|t=0 ∈ S(R3), then the above results hold without the

compact support claims, and if {ρ0, (∂ρ∂t )0 are analytic, then the fields

{E,B} are analytic for |x| > w, uniformly in t, and analytic at infinity.
.

Proof. For the first claim, we have that;

|E(r, t)| = 1
4πε0
|
∫
V
ρ(r′,tr )̂r
|r−r′|2 dτ

′ +
∫
V
ρ̇(r′,tr )̂r
c|r−r′| dτ

′ −
∫
V

J̇(r′,tr)
c2|r−r′|dτ

′|

≤ 1
4πε0

(
∫
V

C1

|r−r′|2dτ
′ +

∫
V

C2

c|r−r′|dτ
′ +

∫
V

C3

c2|r−r′|dτ
′)

= 1
4πε0|r|(

∫
V

C1|r|
|r−r′|2dτ

′ +
∫
V

C2|r|
c|r−r′|dτ

′ +
∫
V

C3|r|
c2|r−r′|dτ

′)

= 1
4πε0|r|(

∫
V
C1|r−r′+r′|
|r−r′|2 dτ ′ +

∫
V
C2|r−r′+r′|
c|r−r′| dτ ′ +

∫
V
C3|r−r′+r′|
c2|r−r′| dτ

′)

≤ 1
4πε0|r|(

∫
V

C1

|r−r′|dτ
′+

∫
V

C1|r′|
|r−r′|2dτ

′+
∫
V
C2

c
dτ ′+

∫
V

C2|r′|
c|r−r′|dτ

′+
∫
V
C3

c2
dτ ′

+
∫
V

C3|r′|
c2|r−r′|dτ

′

≤ 1
4πε0|r|(

∫
V
C1

w
dτ ′ +

∫
V
C1w
w2 dτ

′ +
∫
V
C2

c
dτ ′ +

∫
V
C2w
cw
dτ ′ +

∫
V
C3

c2
dτ ′

+
∫
V
C3w
c2w

dτ ′)

≤ vol(V )
4πε0|r|(

C1

w
+ C1

w
+ C2

c
+ C2

c
+ C3

c2
+ C3

c2
)

= D
r

where {C1, C2, C3} ⊂ R>0 are uniform bounds for {ρ, ρ̇, |J |} on V ,
|r| > 2w and;

D = vol(V )
4πε0| (

2C1

w
+ 2C2

c
+ 2C3

c2
)

We have that, for 1 ≤ i ≤ 3, |ei| ≤ |E| ≤ D
r

, for |r| > 2w, so the

components of E are of very moderate decrease.

We have, following the method above, that, for |r| > 2w;

B(r, t) = µ0
2π
|
∫
V
J(r′,tr)×r̂
|r−r′|2 dτ ′ +

∫
V
J̇(r′,tr)×r̂
c|r−r′| dτ |

≤ µ0
2π

(
∫
V

C3

|r−r′|2dτ
′ +

∫
V

C4

c|r−r′|dτ
′)
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≤ E
|r

where C4 ∈ R>0 is a uniform bound for |J̇ | on V , |r > 2w, and;

E = µ0vol(V )
2π

(2C3

w
+ 2C4

c
)

Again, we have that, for 1 ≤ i ≤ 3, |bi| ≤ |B| ≤ E
r

, for |r| > 2w, so

the components of B are of very moderate decrease.

For the second claim, expand in coordinates (x, y, z) around a point

(x0, y0, z0), with |x0| > w, and |x− x0| < |x0|−w
4

. Then, using Newton’s
expansion;

(1 + y)−
1
2 =

∑∞
n=0

(−1)n(2n)!
2nn!

yn, |y| < 1

and the fact that if |x−x0| < |x0|−w
4

< |x0−r′|
4

, then |x−x0| < |x0−r′|√
2

,

so that;

| |x−x0|
2

|x0−r′|2 + 2(x−x0)�(x0−r′)
|x0−r′|2 | ≤ |x−x0|2

|x0−r′|2 + |2(x−x0)�(x0−r
′)

|x0−r′|2 |

< 1
2

+ 2|x−x0|
|x0−r′|

< 1
2

+ 1
2

= 1

it follows;

1
4πε0

∫
V
j̇1(r′,tr)
c2|r−r′|dτ

′

= 1
4πε0

∫
V

j̇1(r′,tr)

c2[(x−r′1)2+(y−r′2)2+(z−r′3)2]
1
2
dτ ′

= 1
4πε0

∫
V

j̇1(r′,tr)

c2[(x−x0+x0−r′1)2+(y−y0+y0−r′2)2+(z−z0+z0−r′3)2]
1
2
dτ ′

= 1
4πε0

∫
V

j̇1(r′,tr)

c2[|x−x0|2+|x0−r′|2+2(x−x0)�(x0−r′)]
1
2
dτ ′

= 1
4πε0

∫
V

j̇1(r′,tr)

c2|x0−r′|[1+ |x−x0|
2

|x0−r′|2
+

2(x−x0)�(x0−r′)
|x0−r′|2

]
1
2
dτ ′

= 1
4πε0c2

∫
V
j̇1(r′,tr)
|x0−r′| (

∑∞
n=0

(−1)n(2n)!
2nn!

( |x−x0|
2

|x0−r′|2 + 2(x−x0)�(x0−r′)
|x0−r′|2 )n)dτ ′

We have that;
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V
| j̇1(r

′,tr)
|x0−r′| (

(−1)n(2n)!
2nn!

( |x−x0|
2

|x0−r′|2 + 2(x−x0)�(x0−r′)
|x0−r′|2 )n)|dτ ′

≤ (2n)!
2nn!

∫
V
|j̇1(r′,tr)|
|x0|−w

∑n
m=0C

n
m(

(
|x0−w

4
)2

(|x0|−w)2 )n−m(
2(
|x0|−w

4
)

x0−w )mdτ ′

= (2n)!
2nn!

∫
V
|j̇1(r′,tr)|
|x0|−w

∑n
m=0C

n
m( 1

16
)n−m(1

2
)mdτ ′

≤ (2n)!
2nn!(|x0|−w)

∫
V
|j̇1(r′, tr)|( 9

16
)ndτ ′

≤ C1(2n)!(
9
16

)n

2nn!(|x0|−w)

and, using Newton’s expansion;

(1− y)−
1
2 =

∑∞
n=0

(2n)!
2nn!

yn, |y| < 1

we have that;∑∞
n=0

C1(2n)!(
9
16

)n

2nn!|x0|−w = C1

|x0|−w
1

(1− 9
16

)
1
2

= 4C1√
7(|x0|−w)

so that, applying the DCT, we have that;

1
4πε0

∫
V
j̇1(r′,tr)
c2|r−r′|dτ

′

= 1
4πε0c2

∑∞
n=0

(−1)n(2n)!
2nn!

∫
V
j̇1(r′,tr)
|x0−r′| (

|x−x0|2
|x0−r′|2 + 2(x−x0)�(x0−r′)

|x0−r′|2 )ndτ ′ (†)

and integrating the coefficients of (x1 − x1,0)i(x2 − x2,0)j(x3 − x3,0)k
(i, j, k) ∈ Z3

≥0, in the expansion (†), to obtain constants aijk ∈ R,
(i, j, k) ∈ Z3

≥0, we see that the series;∑
(i,j,k)∈Z3

≥0
aijk(x1 − x1,0)i(x2 − x2,0)j(x3 − x3,0)k

is absolutely convergent for |x− x0| < |x0|−w
4

.

For the third claim, assuming that {x, y, z, x0, y0, z0} ⊂ R \ {0}, we
have that;

1
|r−r′| |(x0x , y0y , z0z ) = 1

[(
x0
x
−r′1)2+(

y0
y
−r′2)2+(

z0
z
−r′3)2]

1
2

= x

x0[(1−
r′1x
x0

)2+(
y0x
x0y
−
r′2x
x0

)2+(
z0x
x0z
−
r′3x
x0

)2]
1
2

= x

x0[1+x[−
2r′1
x0
−

2r′2
x0

(x
y
)(
y0
x0

)−
2r′3
x0

(x
z
)(
z0
x0

)]+x2(
|r′|2
x20

)+(x
y
)2(

y0
x0

)2+(x
z
)2(

z0
x0

)2]
1
2

(A)
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= y

y0[(
x0y
y0x
−
r′1y
y0

)2+(1−
r′2y
y0

)2+(
z0y
y0z
−
r′3y
y0

)2]
1
2

= y

y0[1+y(−
2r′2
y0
−

2r′1
y0

( y
x
)(
x0
y0

)−
2r′3
y0

( y
z
)(
z0
y0

))+y2(
|r′|2
y20

)+( y
x
)2(

x0
y0

)2+( y
z
)2(

z0
y0

)2]
1
2

(B)

= z

z0[(
x0z
z0x
−
r′1z
z0

)2+(
y0z
z0y
−
r′2z
z0

)2+(1−
r′3z
z0

)2]
1
2

= z

z0[1+z(−
2r′3
z0
−

2r′1
z0

( z
x
)(
x0
z0

)−
2r′2
z0

( z
y
)(
y0
z0

))+z2(
|r′|2
z20

)+( z
x
)2(

x0
z0

)2+( z
y
)2(

y0
z0

)2]
1
2

(C)

If 0 < ε < 1, and |x
y
| <
√

1− ε|x0
y0
| and |x

z
| <
√
ε|x0
z0
|, then

α(x, y, z) = (x
y
)2( y0

x0
)2 + (x

z
)2( z0

x0
)2 < 1

and if;

|x| < min( |x0|
√
1−α√
2w

, |x0|(1−α)
12w

)

then, in (A);

x[−2r′1
x0
− 2r′2

x0
(x
y
)( y0
x0

)− 2r′3
x0

(x
z
)( z0
x0

)]+x2( |r
′|2
x20

)+(x
y
)2( y0

x0
)2+(x

z
)2( z0

x0
)2 < 1

(D)

Similarly, if 0 < δ < 1, and | y
x
| <
√

1− δ| y0
x0
| and |y

z
| <
√
δ|y0
z0
|, then

β(x, y, z) = ( y
x
)2(x0

y0
)2 + (y

z
)2( z0

y0
)2 < 1

and if;

|y| < min( |y0|
√
1−β√
2w

, |y0|(1−β)
12w

)

then, in (B);

y(−2r′2
y0
− 2r′1

y0
( y
x
)(x0
y0

)− 2r′3
y0

(y
z
)( z0
y0

))+y2( |r
′|2
y20

)+( y
x
)2(x0

y0
)2+(y

z
)2( z0

y0
)2 < 1

(E)

and, if 0 < θ < 1, and | z
x
| <
√

1− θ| z0
x0
| and | z

y
| <
√
θ| z0
y0
|, then

γ(x, y, z) = (x
y
)2( y0

x0
)2 + (x

z
)2( z0

x0
)2 < 1
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and if;

|z| < min( |z0|
√
1−θ√

2w
, |z0|(1−θ)

12w
)

then, in (C);

z(−2r′3
z0
− 2r′1

z0
( z
x
)(x0
z0

)− 2r′2
z0

( z
y
)(y0
z0

))+z2( |r
′|2
z20

)+( z
x
)2(x0

z0
)2+( z

y
)2(y0

z0
)2 < 1

(F )

In case (D), we can expand (A) using Newton’s theorem, as;

x
x0

∑∞
n=0

(−1)n(2n)!
2nn!

[x[−2r′1
x0
−2r′2

x0
(x
y
)( y0
x0

)−2r′3
x0

(x
z
)( z0
x0

)]+x2( |r
′|2
x20

)+(x
y
)2( y0

x0
)2

+(x
z
)2( z0

x0
)2]n

=
∑

i+j+k≥0 aijkx
i(x
y
)j(x

z
)k

with |x
y
| <
√

1− ε|x0
y0
| and |x

z
| <
√
ε|x0
z0
|, (∗). If |x| > x1 > 0, then if;

|y| >
|x|| y0

x0
|

√
1−ε

implies that;

|y| >
x1| y0x0 |√

1−ε

and, for m ∈ N , we can obtain an expansion of 1
y

in the region;

x1| y0x0 |√
1−ε < |y| <

mx1| y0x0 |√
1−ε

by noting that, with c =
x1(1+m)| y0

x0
|

2
√
1−ε , |y − c| < c, so that;

1
y

= 1
c+y−c = 1

c(1+
(y−c)
c

)

= 1
c

∑∞
n=0(−1)n (y−c)n

cn

= 1
x1(1+m)| y0x0

|

2
√
1−ε

∑∞
n=0(−1)n

(y−(
x1(1+m)| y0x0

|

2
√
1−ε ))n

(
x1(1+m)| y0x0

|

2
√
1−ε )n

.....................
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In case (E), we can expand (B) as;

y
y0

∑∞
n=0

(−1)n(2n)!
2nn!

[y(−2r′2
y0
−2r′1

y0
( y
x
)(x0
y0

)−2r′3
y0

(y
z
)( z0
y0

))+y2( |r
′|2
y20

)+( y
x
)2(x0

y0
)2

+(y
z
)2( z0

y0
)2]n

=
∑

i+j+k≥0 bijky
i( y
x
)j(y

z
)k

with | y
x
| <
√

1− δ| y0
x0
| and |y

z
| <
√
δ|y0
z0
|

In case (F ), we can expand (C) as;

z
z0

∑∞
n=0

(−1)n(2n)!
2nn!

[z(−2r′3
z0
−2r′1

z0
( z
x
)(x0
z0

)−2r′2
z0

( z
y
)(y0
z0

))+z2( |r
′|2
z20

)+( z
x
)2(x0

z0
)2

+( z
y
)2(y0

z0
)2]n

=
∑

i+j+k≥0 cijkz
i( z
x
)j( z

y
)k

with | z
x
| <
√

1− θ| z0
x0
| and | z

y
| <
√
θ| z0
y0
|

........................
For the fourth claim, suppose the initial conditions ρ0 ∈ S(R3),∂ρ

∂t
|t=0 ∈

S(R3), have compact support, with ρ defined on R4 by Kirchoff’s for-
mula;

For t > 0;

ρ(x, t) = 1
4πc2t2

∫
δB(x,ct)

(tg(y) + ρ0(y) +Dρ0(y) � (y − x))dS(y)

and, for t < 0;

ρ(x, t) = 1
4πc2t2

∫
δB(x,−ct)(tg(y) + ρ0(y) +Dρ0(y) � (y − x))dS(y)

then, see [?] and the construction in [14], we have that, for x ∈ R3;

limt→0+ρ(x, t) = ρ(x, 0)

limt→0+
∂ρ
∂t

(x, t) = g(x)

limt→0+ρ(x,−t) = ρ(x, 0)
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limt→0+
∂ρ
∂t

(x,−t) = −g(x)

where g((x)) = ∂ρ
∂t
|t=0, so that;

limt→0−ρ(x, t) = ρ(x, 0)

limt→0−
∂ρ
∂t

(x, t) = limt→0+ − ∂ρ
∂t

(x,−t)

= −− g(x)

= g(x)

In particular;

limt→0ρ(x, t) = ρ(x, 0)

limt→0
∂ρ
∂t

(x, t) = g(x)

Using the fact that ρ0 ∈ S(R3), g(x) ∈ S(R3), the transform method,
see Lemma 0.4 and uniqueness of the wave equation solution, given the
2 initial conditions, we have for t > 0;

ρ(x, t) = 1

(2π)
3
2

∫
R3(b(k)eikct + d(k)e−ikct)eik�xdk

ρ(x,−t) = 1

(2π)
3
2

∫
R3(b

−(k)eikct + d−(k)e−ikct)eik�xdk (X)

where;

b(k) = 1
2
(F(ρ0)(k) + 1

ikc
F(g)(k))

d(k) = 1
2
(F(ρ0)(k)− 1

ikc
F(g)(k))

b−(k) = 1
2
(F(ρ0)(k) + 1

ikc
F(−g)(k))

= 1
2
(F(ρ0)(k)− 1

ikc
F(g)(k))

d−(k) = 1
2
(F(ρ0)(k)− 1

ikc
F(−g)(k))

= 1
2
(F(ρ0)(k) + 1

ikc
F(g)(k))
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see also earlier in the paper, so that, for t < 0;

ρ(x, t) = 1

(2π)
3
2

∫
R3(b

−(k)e−ikct + d−(k)eikct)eik�xdk (Y )

Differentiating under the integral sign in (X), we have that, for t > 0;

∂i+j+kρ
∂xi∂yj∂zk

(x, t) = 1

(2π)
3
2

∫
R3((ik1)

i(ik2)
j(ik3)

kb(k)eikct+(ik1)
i(ik2)

j(ik3)
kd(k)e−ikct)eik�xdk

where (ik1)
i(ik2)

j(ik3)
kb(k) ∈ S(R3) and (ik1)

i(ik2)
j(ik3)

kd(k) ∈
S(R3), so that;

limt→0+
∂i+j+kρ
∂xi∂yj∂zk

(x, t)

= limt→0+
1

(2π)
3
2

∫
R3((ik1)

i(ik2)
j(ik3)

kb(k)eikct+(ik1)
i(ik2)

j(ik3)
kd(k)e−ikct)eik�xdk

= 1

(2π)
3
2

∫
R3((ik1)

i(ik2)
j(ik3)

kb(k) + (ik1)
i(ik2)

j(ik3)
kd(k))eik�xdk

= 1

(2π)
3
2

∫
R3(ik1)

i(ik2)
j(ik3)

kF(ρ0)(k)eik�xdk

= ∂i+j+kρ
∂xi∂yj∂zk

(x, 0) (X)′

Similarly, differentiating under the integral sign in (Y ), using the
fact that b−(k) + d−(k) = F(ρ0)(k);

limt→0−
∂i+j+kρ
∂xi∂yj∂zk

(x, t) = ∂i+j+kρ
∂xi∂yj∂zk

(x, 0) (Y ′)

and combining (X)′, (Y )′, we obtain that;

limt→0
∂i+j+kρ
∂xi∂yj∂zk

(x, t) = ∂i+j+kρ
∂xi∂yj∂zk

(x, 0)

By a similar argument, differentiating under the integral sign, and
using the facts that b(k)ikc−d(kikc = F(g)(k) −ikcb−(k)+ikcd−(k) =
F(g)(k);

limt→0
∂i+j+k+1ρ
∂xi∂yj∂zk∂t

(x, t) = ∂i+j+kg
∂xi∂yj∂zk

(x, 0)

Similarly, using the fact that ρ0 ∈ S(R3), {b(k), d(k)} ⊂ L1(R3), so
we can apply the inversion theorem, we have that;

limt→0+
∂i+j+k+2ρ

∂xi∂yj∂zk∂t2
(x, t)
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= limt→0+
1

(2π)
3
2

∫
R3(ik1)

i(ik2)
j(ik3)

k(−k2c2)b(k)eikct

+(ik1)
i(ik2)

j(ik3)
k(−k2c2)d(k)e−ikct)eik�xdk

= 1

(2π)
3
2

∫
R3(ik1)

i(ik2)
j(ik3)

k(−k2c2)(b(k) + d(k))eik�xdk

= 1

(2π)
3
2

∫
R3(ik1)

i(ik2)
j(ik3)

k(−k2c2)(F(ρ0)(k)eik�xdk

= 1

(2π)
3
2

∫
R3 c

2(F(∂
i+j+k52(ρ0)
∂xi∂yj∂zk

)(k)eik�xdk

= c2 ∂
i+j+k52(ρ0)
∂xi∂yj∂zk

(x)

and;

limt→0−
∂i+j+k+2ρ

∂xi∂yj∂zk∂t2
(x, t) = ∂i+j+kc252(ρ0)

∂xi∂yj∂zk
(x)

As ρ|t>0, ρ|t<0 obey the wave equation, so do the partial derivatives
∂i+j+k+l

∂xi∂yj∂zk∂tl
|t>0, so that, for l ≥ 1, l even, t 6= 0;

∂i+j+k+lρ
∂xi∂yj∂zk∂tl

|t6=0 = cl(52)
l
2 ( ∂i+j+kρ

∂xi∂yj∂zk
)|t6=0

and, for l ≥ 1, l odd, t 6= 0;

∂i+j+k+lρ
∂xi∂yj∂zk∂tl

|t6=0 = cl−1(52)
l−1
2 ( ∂i+j+k+1ρ

∂xi∂yj∂zk∂t
)|t6=0

and, using the above, for l even;

limt→0
∂i+j+k+lρ(x,t)
∂xi∂yj∂zk∂tl

= cl(52)
l
2 ( ∂i+j+kρ0

∂xi∂yj∂zk
)

and, for l odd;

limt→0
∂i+j+k+lρ(x,t)
∂xi∂yj∂zk∂tl

= cl−1(52)
l−1
2 ( ∂i+j+kg

∂xi∂yj∂zk
)

In particularly, as all the partial derivatives of ρ extend continuously
to the boundary t = 0, we have that ρ ∈ C∞(R4), and the wave equa-

tion is satisfied at t = 0, ∂2ρ
∂t2

= c2 52 (ρ), (3). By Kirchoff’s formula,

3 It is relatively straightforward calculation to check, using the integral repre-

sentation of a solution to the wave equation, 52(f) − 1
c2
∂2f
∂t2 = 0 in R3 × [0,∞),

generated by the initial data (g, h), that limt→0+
∂i+j+k+lft
∂xi∂xj∂zk∂tl

= (c252)
i
2
∂i+j+k+lg
∂xi∂xj∂zk

for i even and that limt→0+
∂i+j+k+lft
∂xi∂xj∂zk∂tl

= (c252)
i−1
2

∂i+j+k+lh
∂xi∂xj∂zk

for i odd. By
uniqueness of the wave equation with specified initial conditions (g, h), the same
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must be true for Kirchoff’s representation. The same result holds for the backward
wave equation with initial data (g,−h), so the limit of the partial derivatives is
same for t > 0 as t < 0. We have, if;

ρ(x, t) = 1
4πc2t2

∫
δB(x,ct)

(tg(y) + ρ0(y) +Dρ0(y) � (y − x))dS(y) (t > 0)

ρ(x, t) = 1
4πc2t2

∫
δB(x,−ct)(tg(y) + ρ0(y) +Dρ0(y) � (y − x))dS(y) (t < 0)

Then, for t > 0, ρ(x, t) = ρ(x,−t) iff;

1
4πc2t2

∫
δB(x,ct)

(tg(y) + ρ0(y) +Dρ0(y) � (y − x))dS(y)

= 1
4πc2t2

∫
δB(x,ct)

(−tg(y) + ρ0(y) +Dρ0(y) � (y − x))dS(y)

iff 1
4πc2t2

∫
δB(x,ct)

2tg(y)dS(y) = 0

iff
∫
δB(x,ct)

g(y)dS(y) = 0

iff g(y) = 0

as if g(y0) 6= 0, without loss of generality, by continuity, we can choose t0 > 0
sufficiently small with g|δB(y0,ct)

> 0, so that
∫
δB(y0,ct0)

g(y)dS(y) > 0

and, for t > 0, ρ(x, t) = −ρ(x,−t) iff;

1
4πc2t2

∫
δB(x,ct)

(tg(y) + ρ0(y) +Dρ0(y) � (y − x))dS(y)

= 1
4πc2t2

∫
δB(x,ct)

(tg(y)− ρ0(y)−Dρ0(y) � (y − x))dS(y)

iff 1
4πc2t2

∫
δB(x,ct)

2[ρ0(y) +Dρ0(y) � (y − x)]dS(y) = 0

iff
∫
δB(x,ct)

[ρ0(y) +Dρ0(y) � (y − x)]dS(y) = 0

iff
∫
δB(x,ct)

ρ0(y)dS(y) + ct
∫
δB(x,ct)

5(ρ0) � dS = 0

iff
∫
δB(x,ct)

ρ0(y)dS(y) + ct
∫
B(x,ct)

div(5(ρ0))dV (y) = 0

iff
∫
δB(x,ct)

ρ0(y)dS(y) + ct
∫
B(x,ct)

52(ρ0)dV (y) = 0

iff ρ0(y) = 0

as if ρ0(y0) 6= 0, by continity, without loss of generality, there exists ε > 0, such
that, for sufficiently small t0;∫

δB(y0,ct0)
ρ0(y)dS(y) > 4πεc2t20

and, if M is a uniform bound on 52(ρ0)
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see [4] and [14] and the above, we had for t > 0;

ρ(x, t) = 1
4πc2t2

∫
δB(x,ct)

(tg(y) + ρ0(y) +Dρ0(y) � (y − x))dS(y)

and, for t < 0;

ρ(x, t) = 1
4πc2t2

∫
δB(x,−ct)(tg(y) + ρ0(y) +Dρ0(y) � (y − x))dS(y)

In particular, for fixed t0 ∈ R, as ρ0 and g have compact support, we
can see that δB(x, c|t0|) ∩ Supp(ρ0, g,Dρ0) = ∅, for |x0| > Ct0 , where
Ct0 ∈ R>0, so that ρt0 has compact support as well. As ρt0 ∈ C∞(R3),
we then have that ρt0 ∈ S(R3).

For the fifth claim, with;

J(x, t) = −c2
∫ t
−∞5(ρ)ds

see [14] for the existence of the integral. We have, differentiating un-
der the integral sign, and using the fundamental theorem of calculus,
that, for (i, j, k) ∈ Z3

≥0;

∂i+j+kj1
∂xi∂yj∂zk

= −c2
∫ t
−∞

∂i+j+k+1ρ
∂xi+1∂yj∂zk

ds (Z)

∂i+j+k+1j1
∂xi∂yj∂zk∂t

= −c2 ∂i+j+k+1ρ
∂xi+1∂yj∂zk

and for l ≥ 2;

∂i+j+k+lj1
∂xi∂yj∂zk∂tl

= −c2 ∂i+j+k+1ρ
∂xi+1∂yj∂zk∂tl−1

As ( ∂i+j+kρ
∂xi∂yj∂zk

)0 ∈ S(R3), and ∂i+j+kρ
∂xi∂yj∂zk

satisfies the wave equation on

R4, by the proof in [14], we have that the integral (Z) is well defined.
Then, as ρ ∈ C∞(R4), we have that j1 ∈ C∞(R4). A similar argument
shows that the components {j2, j3} ⊂ C∞(R4). By the fundamental

|ct0
∫
B(y0,ct0)

52(ρ0)dV (y)| < 4Mπc4t40
3

so that, if 4πεc2t20 >
4Mπc4t40

3 iff 3ε
Mc2 > t20, we can choose 0 < t0 <

(3ε)
1
2√

Mc
, to

obtain;∫
δB(y0,ct0)

ρ0(y)dS(y) + ct0
∫
B(y0,ct0)

52(ρ0)dV (y) > 0

In either case, we can reflect a solution for t ≥ 0 to obtain a smooth solution on
R4.
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theorem of calculus, we have that;

∂J
∂t

= −c25 (ρ)

By the previous claim, for t0 ∈ R, ρt0 has compact support, so

that (5(ρ))t0 has compact support and (∂J
∂t

)t0 has compact support. It
is clear from the above that the compact support Vt of ρt and (5(ρ))t
varies continuously with t, so on the interval (t0−ε, t0+ε), (∂J

∂t
)|(t0−ε,t0+ε)

has compact support Wt0,ε in R4.
J satisfies the wave equation on R4, as, using the fundamental the-

orem of calculus and the fact that 5(ρ) satisfies the wave equation;

�2(J) = 52(J) + 1
c2
∂2J
∂t2

= −c2(
∫ t
−∞5

2(5(ρ))ds) + 1
c2

(−c2 ∂5(ρ)
∂t

)

= −c2(
∫ t
−∞−

1
c2
∂25(ρ)
∂t2

ds)− ∂5(ρ)
∂t

= ∂5(ρ)
∂t

)− ∂5(ρ)
∂t

= 0

By the connecting relation;

5ρ+ 1
c2
∂J
∂t

= 0

we have that ∂J
∂t

vanishes outside Supp(ρt), and for any x ∈ R3, there
exists two uniformly bounded intervals [t1,x,−, t2,x,−], [t1,x,+, t2,x,+], for
which x ∈ Supp(ρt), for t ∈ [t1,x,−, t2,x,−] ∪ [t1,x,+, t2,x,+]. Using the
fact that Supp(ρt) is moving and 5(ρ) satisfies the wave equation, so
uniformly bounded, we can define;

J0(x) =
∫ t2,x,−
t1,x,−

∂J
∂t
dt+

∫ t2,x,+
t1,x,+

∂J
∂t
dt

=
∫∞
−∞

∂J
∂t
dt (the ultimate value of J(x, t))

with J0 bounded. On any ball B(0, r), we have that J − J0 even-
tually vanishes, and, as div(J) − div(J0) = 0 ultimately on the ball,
and div(J) = −∂ρ

∂t
= 0, ultimately, otherwise charge would build up,
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we have that div(J0) = 0. It follows that (ρ, J − J0) satisfies the con-
tinuity equation., and the linkage relation;

5ρ+ 1
c2
∂(J−J0)

∂t
= 0

is still satisfied, as J0 is time independent. On any ball B(0, r), we
have that ultimately J − J0 = 0, so that, as �2(J) = 0 and J0 is time
independent, ultimately;

52(J0) = �2(J0) = �2(J) = 0

and J0 is harmonic. As the components 5(ρ)i, for 1 ≤ i ≤ 3, satisfy
the wave equation, we have that that there exists constants Ci ∈ R>0,
for which | 5 (ρ)i(x, t)| ≤ Ci

|t| for 1 ≤ i ≤ 3, so that;

| 5 (ρ)(x, t)| ≤
√
C2

1+C
2
2+C

2
3

|t|

and;

|J0(x)| = |
∫ t2,x,−
t1,x,− −c

25 (ρ)dt+
∫ t2,x,+
t1,x,+

−c25 (ρ)dt|

≤ c2[(t2,x,− − t1,x,−) + (t2,x,+ − t1,x,+)]| 5 (ρ)|[t1,x,−,t2,x,−]∪[t1,x,−,t2,x,−]|

≤ c2(t2,x,− − t1,x,−)

√
C2

1+C
2
2+C

2
3

|t1,x,−| + c2(t2,x,+ − t1,x,+)

√
C2

1+C
2
2+C

2
3

|t1,x,+|

≤ C
|x|

as the intervals [t1,x,−, t2,x,−], [t1,x,+, t2,x,+] are uniformly bounded,
and the hitting times {t1,x,−, t1,x,+} are proportional to the distance x.
It follows, as bounded harmonic functions are constant, that J0 = 0,
and J has compact supports.

The same results hold for w 6= c. If w 6= c, using Jefimenko’s equa-
tions, we can prove the existence of fields (Ew, Bw), for which the com-
ponents depending on Jw have compact support at time t, the support

increasing as w → c and uniformly bounded. ?∂J
∂t

obeys a wave equa-

tion (with speed w)?. Also true that if (E,B) are defined from (ρ, J),

using Jefimenko’s equations, then (∂E
∂t
, ∂B
∂t

) are defined from (∂ρ
∂t
, ∂J
∂t

)
using Jefimenko’s equations, provided the causal solution exists.
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For the sixth claim, following the method of [14], and the results in
this paper, we can construct charge and current configurations (ρw, Jw)

for w ∈ R>0, w 6= c, such that �2
w(ρw) = 0, �2

w(Jw) = 0,5(ρ)+ 1
w2

∂J
∂t

=

0, ∂ρ
∂t

= −5 �J , with the same initial conditions (f, g) and support V .
All the arguments for charge and current we have used for c, hold in
the case w 6= c, being careful to replace c with w in the definitions. In
this case, the fields (Ew, Bw) generated by Jefimenko’s equations are
well defined for t ∈ R, with respect to charge, as, for given x0, the locus

of {x : B(x,wtr) ∩ V 6= ∅} is bounded, because wtr = w(t − |x−x0|
c

)
contains the factor w

c
6= 1, and for current, a similar idea, the proof be-

ing the same, as the current obeys the wave equation and has compact
support, receding at speed w. Then, we have that (ρw, Jw, Ew, Bw)
satisfy Maxwell’s equations. If we use Kirchoff’s formula for ∂ρ

∂t
, with

initial conditions (∂ρ
∂t
|0, ∂

2ρ
∂2t
|0) = (∂ρ

∂t
|0,−c2(52ρ)|0);

∂ρ
∂t

(x, t) = 1
4πc2t2

∫
δB(x,ct)

(t∂
2ρ
∂t2
|0) + ∂ρ

∂t 0
(y)+

D(∂ρ
∂t
|0)(y) � (y − x))dS(y) (t > 0)

∂ρ
∂t

(x, t) = 1
4πc2t2

∫
δB(x,−ct)(t

∂2ρ
∂t2
|0) + ∂ρ

∂t
|0(y)

+D(∂ρ
∂t
|0)(y) � (y − x))dS(y) (t < 0)

We then have, using Jefimenko’s equations;

( 1
4πε0

∫
V
ρ̇(r′,tr )̂r
|r−r′| dτ

′)1 = 1
4πε0

∫
V
∂ρ
∂t

(r′, t− |r−r
′|

c
)
(r1−r′1)
c|r−r′|2dτ

′

= 1
4πε0

∫
V

[ 1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,c(t− |r−r

′|
c

))
(t− |r−r

′|
c

)(∂
2ρ
∂t2

)(y, 0) + ∂ρ
∂t

(y, 0)

+D(∂ρ
∂t

)(y, 0) � (y − r′)]dS(y)
(r1−r′1)
c|r−r′|2dτ

′

+ 1
4πε0

∫
V

[ 1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,−c(t− |r−r

′|
c

))
(t− |r−r

′|
c

)(∂
2ρ
∂t2

)(y, 0) + ∂ρ
∂t

(y, 0)

+D(∂ρ
∂t

)(y, 0) � (y − r′)]dS(y)
(r1−r′1)
c|r−r′|2dτ

′

We can use then use the asymmetry (r1 − r′1) r1 = 0, r′′1 = −r′1,
together with the symmetry, in the integral;
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δB(r′,−c(t− |r−r

′|
c

))
((t− |r−r

′|
c

)(∂
2(ρ)
∂t2

)(y, 0)dS(y) =
∫
δB(r′′,−c(t− |r−r

′|
c

))
((t−

|r−r′|
c

)(∂
2(ρ)
∂t2

)(y, 0)dS(y) (t = 0)

and vanishing in the integral of
∫
δB(r′,−c(t− |r−r

′|
c

))
D(∂ρ

∂t
|0)(y) � tzdS(y)

for large r′, see Lemma 0.49, and the 1

4πc2(t− |r−r
′|

c
)2

decay in the re-

maining term, to show that limw→c(ρw, Jw, Ew, Bw) exists and define
(ρc, J c, Ec, Bc) as limw→c(ρw, Jw, Ew, Bw), for the original charge and
current combination (ρc, J c). It is clear that (ρc, J c, Ec, Bc) satisfies
Maxwell’s equations, and the configuration (Ec, Bc) is defined by Je-
fimenko’s equations as an indefinite integral. A detailed exposition of
this claim is the the subject of the following.

We are mainly interested in the case w = c, but most of the calcula-
tions can be adapted to the case w 6= c, the important point being to
keep the factor c in Jefimenko’s equations, (4). Unless otherwise stated
though, w = c. We can assume by the above and the proof in [14],
that ρ ∈ C∞(R4), for the components ji, 1 ≤ i ≤ 3, ji ∈ C∞(R4), for
t ∈ R, ρt and ji,t have compact support, and the components ji satisfy
the wave equation �2ji = 0, 1 ≤ i ≤ 3. It follows that the derivatives
∂ρ
∂t
∈ C∞(R4) and ∂ji

∂t
∈ C∞(R4), 1 ≤ i ≤ 3, that ∂ρ

∂t
and ∂ji

∂t
, 1 ≤ i ≤ 3

obey the wave equation and, for t ∈ R, ∂ρ
∂t t

and
∂ji,t
∂t

, 1 ≤ i ≤ 3 have

compact support. The fields {E,B} defined by Jefimenko’s equations
are given by;

E(r, t) = 1
4πε0

∫
V
ρ(r′,tr )̂r
|r−r′|2 dτ

′ +
∫
V
ρ̇(r′,tr )̂r
c|r−r′| dτ

′ −
∫
V

J̇(r′,tr)
c2|r−r′|dτ

′

B(r, t) = µ0
2π

∫
V
J(r′,tr)×r̂
|r−r′|2 dτ ′ +

∫
V
J̇(r′,tr)×r̂
c|r−r′| dτ

We have using Kirchoff’s formula, that, for t > 0;

ρ(x, t) = 1
4πc2t2

∫
δB(x,ct)

(tg(y) + ρ0(y) +Dρ0(y) � (y − x))dS(y)

4 There may be a point that particles travelling at speed c in the base frame
would contradict special relativity, but it is not clear with an extended charge
distribution that there are any individual particles. In any case, the associated
charge and current configuration (ρ, J) exists and seems to define fields (E,B)
satisfying Maxwell’s equations with special properties, at least in the case w > c.
The case when inertial frames travel at speeds w > c is developed in [11].
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and, for t < 0;

ρ(x, t) = 1
4πc2t2

∫
δB(x,−ct)(tg(y) + ρ0(y) +Dρ0(y) � (y − x))dS(y)

so that;

( 1
4πε0

∫
V
ρ(r′,tr )̂r
|r−r′|2 dτ

′)1 = 1
4πε0

∫
V

ρ(r′,t− |r−r
′|

c
)(r1−r′1)

c|r−r′|3 dτ ′

= 1
4πε0

∫
V

[ 1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,c(t− |r−r

′|
c

))
((t− |r−r

′|
c

)∂ρ(y,0)
∂t

+ ρ(y, 0)

+Dρ(y, 0) � (y − r′))dS(y)

+ 1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,−c(t− |r−r

′|
c

))
((t− |r−r

′|
c

)∂ρ(y,0)
∂t

+ ρ(y, 0)

+Dρ(y, 0) � (y − r′))dS(y)]
(r1−r′1)
c|r−r′|3dτ

′

Let;

W1 = {r′ : δB(r′, c(t− |r−r
′|

c
)) ∩B(0, w) 6= ∅}

W2 = {r′ : δB(r′,−c(t− |r−r
′|

c
) ∩B(0, w) 6= ∅}

With the convention (∗) below, if t > 0, we require that c(t− |r−r
′|

c
) >

0 iff |r − r′| < ct, so that W1 ⊂ B(0, ct), if t > 0 and W1 = ∅ if t ≤ 0.

Similarly, we require that −c(t − |r−r
′|

c
> 0 iff |r − r′| > ct, so that, if

t ≥ 0, W2 ⊂ R3 \B(0, ct) and if t < 0, we obtain no restriction on W2.
In either case, we clearly have, by smoothness of the data, continuity
and the fact that B(0, ct) is bounded for t > 0, that;

| 1
4πε0

∫
W1

[ 1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,c(t− |r−r

′|
c

))
((t− |r−r

′|
c

)∂ρ(y,0)
∂t

+ ρ(y, 0)

+Dρ(y, 0) � (y − r′))dS(y)]
(r1−r′1)
c|r−r′|3dτ

′|

≤
∫
B(0,ct)

Ct| (r1−r
′
1)

c|r−r′|3 |dτ
′

≤ Ct
c

∫
B(0,ct)

1
|r−r′|2dτ

′

≤ Ct
c

∫
B(0,ct)

1
|r′|2dτ

′

≤ Ct
c

∫ π
0

∫ π
−π

∫ ct
0

1
r2
r2|sin(θ)|drdθdφ
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≤ 2π2Ct
c

∫ ct
0
dr

≤ 2π2tCt

so that;

( 1
4πε0

∫
V
ρ(r′,tr )̂r
|r−r′|2 dτ

′)1 = f1(r, t)

+
∫
W2

1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,−c(t− |r−r

′|
c

))
((t− |r−r

′|
c

)∂ρ(y,0)
∂t

+ ρ(y, 0)

+Dρ(y, 0) � (y − r′))dS(y)]
(r1−r′1)
c|r−r′|3dτ

′

We can assume in the calculation that r 6= 0, by changing coordi-
nates with a translation given by r0, see below for the corresponding

time translation, as we can define a new pair (ρr0 , J
r0

) by ρr0(x, s) =

ρ(x − r0, s) and J
r0

(x, s) = J(x − r0, s), for (x, s) ∈ R4. The new

pair (ρr0 , J
r0

) inherits the properties of (ρ, J), in particular we have

that ρr0 ∈ C∞(R4), the components of J
r0

, jr0i ∈ C∞(R4), 1 ≤ i ≤ 3,

�2(ρr0) = 0, for 1 ≤ i ≤ 3, the continuity equation ∂ρr0

∂t
= − 5 �J

r0

holds, and the connecting relation 5(ρr0) + 1
c2
∂J

r0

∂t
= 0. Moreover,

we can use Kirchoff’s formula with the initial data for (ρr0 , J
r0

) given

by (ρr00 , (
∂ρr0

∂t
)0, J

r0
0 , (

∂J
r0

∂t
)0) and we have that, making the substitution

r′′ = r0 + r′ ;

( 1
4πε0

∫
V
ρ(r′,tr )̂r

|0−r′|2 dτ
′)1 = ( 1

4πε0

∫
V
ρ(r′′−r0,t′r )̂r
|r0−r′′|2 dτ ′′)1 =

= ( 1
4πε0

∫
V
ρr0 (r′′,t′r )̂r
|r0−r′′|2 dτ

′′)1

for the corresponding retarded time t′r = t − |r0−r
′′|

c
, and, similarly,

for the corresponding terms in Jefimenko’s equations.

We have, for r′ 6= 0, r 6= 0, that;

δB(r′,−c(t− |r−r
′|

c
) ∩B(0, w) 6= ∅

iff |r′ − [−c(t− |r−r
′|

c
)] r

′

|r′| | ≤ w

iff |r′|r′|+ (ct− |r − r′|)r′| ≤ w|r′|
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iff |r′|||r′|+ (ct− |r − r′|)| ≤ w|r′|

iff ||r′|+ ct− |r − r′|| ≤ w

iff −w − ct ≤ |r′| − |r − r′| ≤ w − ct

so that, if t > 0;

W2 = {r′ : −w − ct ≤ |r′| − |r − r′| ≤ w − ct} ∩ R3 \B(0, ct)

and, if t ≤ 0;

W2 = {r′ : −w − ct ≤ |r′| − |r − r′| ≤ w − ct}

Letting;

N = maxy∈B(0,w)(|(∂ρ∂t )0|, |ρ0|, |Dρ0|, |(Dρ)0|)

so that, for r′ ∈ W2, using the fact the initial data is supported in
B(0, w);∫

δB(r′,−c(t− |r−r
′|

c
))
|∂ρ(y,0)

∂t
|dS(y) ≤ 4πw2M∫

δB(r′,−c(t− |r−r
′|

c
))
|ρ(y, 0)|dS(y) ≤ 4πw2M∫

δB(r′,−c(t− |r−r
′|

c
))
|Dρ(y, 0)�(y−r′))|dS(y) ≤

∫
δB(r′,−c(t− |r−r

′|
c

))∩B(0,w)
M |(y−

r′)|dS(y)

≤ 4πw2M | − c(t− |r−r
′|

c
)|

we have that, for s sufficiently large;

|
∫
W2\B(0,s)

1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,−c(t− |r−r

′|
c

))
((t− |r−r

′|
c

)∂ρ(y,0)
∂t

+ ρ(y, 0)

+Dρ(y, 0) � (y − r′))dS(y)]
(r1−r′1)
c|r−r′|3dτ

′|

≤
∫
W2\B(0,s)

1

4πc2|t− |r−r
′|

c
|2

(4πw2M |t− |r−r
′|

c
|+ 4πw2M

+4πw2M | − c(t− |r−r
′|

c
)|) 1

c|r−r′|2dτ
′
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= w2M
∫
W2\B(0,s)

( 1

c3|t− |r−r
′|

c
|
+ 1

c3|t− |r−r
′|

c
|2

+ 1

c2|t− |r−r
′|

c
|
) 1
|r−r′|2dτ

′

We have that, for s sufficiently large;∫
W2\B(0,s)

1

|t− |r−r
′|

c
||r−r′|2

dτ ′ =
∫
W2

1

|t− (|r|2−2r�r′+|r′|2)
1
2

c
|(|r|2−2r�r′+|r′|2)

dτ ′

=
∫
W2\B(0,s)

1

|r′|3| t|r|′−
(
|r|2
|r′|2

−2 r�r
′

|r′|2
+1)

1
2

c
|( |r|

2

|r′|2
−2 r�r′
|r′|2

+1)

dτ ′

and, for |r′| > max(t, 4|r|);

1

|r′|3| t|r|′−
(
|r|2
|r′|2

−2 r�r
′

|r′|2
+1)

1
2

c
|( |r|

2

|r′|2
−2 r�r′
|r′|2

+1)

≤ c
(2c+4)|r′|3

so that;∫
W2\B(0,max(t,4|r|))

1

|t− |r−r
′|

c
||r−r′|2

dτ ′ ≤
∫
W2\B(0,max(t,4|r))

c
(2c+4)|r′|3dτ

′

Similarly;∫
W2\B(0,max(

√
t,4|r|))

1

|t− |r−r
′|

c
|2|r−r′|2

dτ ′ ≤
∫
W2\B(0,max(

√
t,4|r))

c
(2c+8)|r′|4dτ

′

so that;

|
∫
W2\B(0,max(t,

√
t,4|r|))

1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,−c(t− |r−r

′|
c

))
((t− |r−r

′|
c

)∂ρ(y,0)
∂t

+ρ(y, 0) +Dρ(y, 0) � (y − r′))dS(y)]
(r1−r′1)
c|r−r′|3dτ

′|

≤ w2M
∫
W2\B(0,max(t,

√
t,4|r))(

(c+1)
c2(2c+4)|r′|3 + 1

c2(2c+8)|r′|4 )dτ ′

As above, we have that;

( 1
4πε0

∫
W2∩B(0,max(t,

√
t,4|r))

ρ(r′,tr )̂r
|r−r′|2 dτ

′)1 is finite and we claim that∫
W2\B(0,max(t,

√
t,4|r))(

(c+1)
c2(2c+4)|r′|3 + 1

c2(2c+8)|r′|4 )dτ ′

is finite as well. In order to see this, note that up to a bounded region,
W2 is contained in a family of real quadratic surfaces, parametrised by
a finite interval [−β, β] ⊃ [−w − ct, w − ct] degenerating to the plane
|r′| = |r − r′|, if 0 ∈ [−w − ct, w − ct], (5). Compactifying in P (R3)×

5 Noting, that for d ∈ R6=0, |r′| sufficiently large, with the interval (−β, β) sym-
metric, we have that, denoting by |r′| − |r− r′| = |d|, the union of |r′| − |r− r′| = d
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and |r′| − |r − r′| = −d;

|r′| − |r − r′| = |d| or |r′|+ |r − r′| = |d|

iff |r − r′|2 = |r′|2 − 2|d||r′|+ |d|2

so that, as |r′|+ |r − r′| = |d| is bounded in R3;

|r′| − |r − r′| = |d|

iff |r − r′|2 = |r′|2 − 2|d||r′|+ |d|2

iff R2 − (2r1r
′
1 + 2r2r

′
2 + 2r3r

′
3) + |r′|2 = |r′|2 − 2|d||r′|+ d2

iff −(2r1r
′
1 + 2r2r

′
2 + 2r3r

′
3)− (|d|2 −R2) = −2|d||r′|

iff [(2r1r
′
1 + 2r2r

′
2 + 2r3r

′
3) + (|d|2 −R2)]2 = 4|d|2(r′21 + r′22 + r′23 )

iff 4(r1r
′
1 + r2r

′
2 + r3r

′
3)2 + 4(r1r

′
1 + r2r

′
2 + r3r

′
3)(|d|2 −R2) + (|d|2 −R2)2

= 4d2(r′21 + r′22 + r′23 )

where R = |r|. Note that the degenerate case of a single two dimensional plane
in R3 corresponds to the idealised case when the initial charge distribution ρ0 is
supported at a single point.

In coordinates (x, y, z), if we intersect a real generic quadratic surface defined by;

αx2 + βy2 + γz2 + δxy + εxz + ζyz + ηx+ θy + ιz + κ = 0, (∗)

where {α, β, γ, δ, ε, θ, η, ξ, η, ι, κ} ⊂ R, with a real generic plane λx+µy+νz = ξ,

we obtain that x = ξ
λ −

µ
λy −

ν
λz, so that substituting in (∗);

α( ξλ −
µ
λy −

ν
λz)

2 + βy2 + γz2 + δ( ξλ −
µ
λy −

ν
λz)y + ε( ξλ −

µ
λy −

ν
λz)z + ζyz+

η( ξλ −
µ
λy −

ν
λz) + θy + ιz + κ = 0

which defines a real quadratic curve in the coordinates (y, z). If the curve
is generic and unbounded, it cannot be a parabola, a circle or an ellipse, so by
the classification of conic sections, must be a hyperbola. By a result in [16], the
standard form of a hyperbola is given by;

y2

a2 −
z2

b2 = (ya + z
b )(ya −

z
b ) = 1

so that by a further change of coordinates ξ = y
a + z

b , η = y
a −

z
b , we can write

this in the standard form ξη = 1, with asymptotes ξ = 0, η = 0, defining a curve C ′

with asymptotes {l′1, l′2}. If the original hyperbola C has asymptotes {l1, l2}, and
is defined using a set of coefficients {ci : 1 ≤ i ≤ 5}, with a fixed bound |ci| ≤ f ,
f ∈ R>0, then there exists a linear transformation T : R2 → R2 and a shift map
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S : R2 → R2 such that (ST )(C ′) = C, (ST )(l′1) = l1, (ST )(l′2) = l2. If x ∈ C ′ and

x′ is the nearest point to x on l′1∪ l′2, then |x−x′| <
√
2
|x for |x| > 2. It follows that;

|(ST )(x)− (ST )(x′)| ≤ ||T |||x− x′|

< ||T ||
√
2
|x|

= ||T ||
√
2

|(ST )−1(ST )x|

so that for y ∈ C, we have that, for the nearest point y′ ∈ l1 ∪ l2;

|y − y′| <
√
2||T ||

|(ST )−1y|

≤
√
2||T ||(||T ||+1)

|y

provided |(ST )−1y| ≥ max(|s|, 2), (∗), where s defines S, as;

|y| = |(ST )(ST )−1(y)

= |T (ST )−1 + s|

≤ (||T ||+ 1)|(ST )−1(y|

provided |(ST )−1y| ≥ |s|, in which case;

|(ST )−1(y| ≥ |y|
||T ||+1

and;

1
|(ST )−1(y|) ≤

(||T ||+1)
|y|

We can achieve the condition (∗) with |y| ≥ ||T ||(|T−1s|+max(2, |s|)), as;

|(ST )−1y| ≥ max(|s|, 2)

iff |T−1(y)− T−1s| ≥ max(|s|, 2)

which we can achieve if |T−1(y)| ≥ |T−1s|+max(|s|, 2)

but as |y| ≤ ||T |||T−1(y)|

we have that, |T−1(y)| ≥ |y|
||T || , so if |y| ≥ ||T ||(|T−1s| + max(2, |s|)), then

|T−1(y)| ≥ |T−1s|+max(|s|, 2)

We then obtain that, for y ∈ C, for the nearest point y′ ∈ l1 ∪ l2;
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[−β, β], and using the implicit function theorem, we could choose a fi-
nite cover {U1, . . . , Un} of R2\B(0, 1)× [−β, β] and a sequence of maps
fi : Ui → W2 \B(0,max(t,

√
t, 4|r)) with constants Ci ∈ R>0 such that

|fi(x, t′)| ≥ Ci|x|, |det(Jac(fi))| is bounded uniformly in t′ by constants
Ni ∈ R>0, and the maps fi cover W2 \B(0,max(t,

√
t, 4|r)). We then

have that;

|
∫
W2\B(0,max(t,

√
t,4|r))(

(c+1)
c2(2c+4)|r′|3 + 1

c2(2c+8)|r′|4 )dτ ′|

≤
∑n

i=1 |
∫
Ui
f ∗i ( (c+1)

c2(2c+4)|r′|3 + 1
c2(2c+8)|r′|4 )|det(Jac(fi))|dxdxydt′

≤
∑n

i=1

∫
Ui
Ni(

(c+1)

C3
i c

2(2c+3)|(x,y)|3 + 1
C3
i c

2(2c+8)|(x,y)|4 )dxdydt′

≤
∑n

i=1
2Niβ
C3
i

∫
R2\B(0,1)

( (c+1)
c2(2c+3)|(x,y)|3 + 1

c2(2c+8)|(x,y)|4 )dxdy

≤
∑n

i=1
4πNiβ
C3
i

∫
r>1

( (c+1)r
c2(2c+3)r3

+ r
c2(2c+8)r4

)dr

=
∑n

i=1
4πNiβ
C3
i

∫
r>1

( (c+1)
c2(2c+3)r2

+ 1
c2(2c+8)r3

)dr

=
∑n

i=1
4πNiβ
C3
i

( (c+1)
c2(2c+3)

+ 1
2c2(2c+8)

)

This proves that ( 1
4πε0

∫
V
ρ(r′,tr )̂r
|r−r′|2 dτ

′)1 is finite and well defined.

We then have that, using Kirchoff’s formula for ∂ρ
∂t

, with initial con-

ditions (∂ρ
∂t
|0, ∂

2ρ
∂2t
|0) = (∂ρ

∂t
|0,−c2(52ρ)|0);

∂ρ
∂t

(x, t) = 1
4πc2t2

∫
δB(x,ct)

(t∂
2ρ
∂t2
|0) + ∂ρ

∂t 0
(y)+

D(∂ρ
∂t
|0)(y) � (y − x))dS(y) (t > 0)

∂ρ
∂t

(x, t) = 1
4πc2t2

∫
δB(x,−ct)(t

∂2ρ
∂t2
|0) + ∂ρ

∂t
|0(y)

+D(∂ρ
∂t
|0)(y) � (y − x))dS(y) (t < 0)

that, using Jefimenko’s equations;

|y − y′| ≤ E
|y

for |y| ≥ D, where D = ||T ||(|T−1s|+max(2, |s|)), E =
√

2||T ||(||T ||+ 1).
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( 1
4πε0

∫
V
ρ̇(r′,tr )̂r
|r−r′| dτ

′)1 = 1
4πε0

∫
V
∂ρ
∂t

(r′, t− |r−r
′|

c
)
(r1−r′1)
c|r−r′|2dτ

′

= 1
4πε0

∫
V

[ 1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,c(t− |r−r

′|
c

))
(t− |r−r

′|
c

)(∂
2ρ
∂t2

)(y, 0) + ∂ρ
∂t

(y, 0)

+D(∂ρ
∂t

)(y, 0) � (y − r′)]dS(y)
(r1−r′1)
c|r−r′|2dτ

′

+ 1
4πε0

∫
V

[ 1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,−c(t− |r−r

′|
c

))
(t− |r−r

′|
c

)(∂
2ρ
∂t2

)(y, 0) + ∂ρ
∂t

(y, 0)

+D(∂ρ
∂t

)(y, 0) � (y − r′)]dS(y)
(r1−r′1)
c|r−r′|2dτ

′ (QQ)

with the convention that δB(x0, r0) = ∅, when r0 ≤ 0, (∗), using the

fact that, for fixed t ∈ R<0, t− |r−r
′|

c
< 0, and for t ∈ R≥0, t− |r−r

′|
c

= 0
iff r′ ∈ δB(r, ct), with dτ ′(δB(r, ct)) = 0. Without loss of generality,

we have that {(∂2ρ
∂2t

)0, (
∂ρ
∂t

)0, ρ0, (Dρ)0(D
∂ρ
∂t

)0} are supported on B(0, w),
for some w ∈ R>0, and, using continuity, we let;

M = maxy∈B(0,w)(|(∂
2ρ
∂t2

)0|, |(∂ρ∂t )|0|, |D(∂ρ
∂t

)|0|)

We can change the time coordinate, as we can define a new pair

(ρt, J
t
) by ρt(x, s) = ρ(x, s+t) and J

t
(x, s) = J(x, s+t), for (x, s) ∈ R4.

The new pair (ρt, J
t
) inherits the properties of (ρ, J), in particular

we have that ρt ∈ C∞(R4), the components of J
t
, jti ∈ C∞(R4),

1 ≤ i ≤ 3, �2(ρt) = 0, �2jti = 0, for 1 ≤ i ≤ 3, the continuity equation
∂ρt

∂t
= − 5 �J

t
holds, and the connecting relation 5(ρt) + 1

c2
∂J

t

∂t
= 0.

Moreover, we can use Kirchoff’s formula with the initial data for (ρt, J
t
)

given by (ρt0, (
∂ρt

∂t
)0, J

t

0, (
∂J

t

∂t
)0) = (ρt, (

∂ρ
∂t

)t, J t, (
∂J
∂t

)t) and we have that;

( 1
4πε0

∫
V
ρ̇(r′,tr )̂r
c|r−r′| dτ

′)1 = ( 1
4πε0

∫
V
ρ̇t(r′,t′r )̂r
c|r−r′| dτ

′)1

for the corresponding retarded time t′r = − |r−r
′|

c
, and, similarly, for

the corresponding terms in Jefimenko’s equations.

We can assume in this calculation, that r is disjoint from the a

ball B(0, s) containing the support of {(∂2ρ
∂t2

)0, (
∂ρ
∂t

)|0, D(∂ρ
∂t

)|0}. This
is because, if t is fixed, then we have for a sufficiently large t′ >
t, that r is disjoint from a ball B(x0, s) containing the support of

{(∂2ρ
∂t2

)t′ , (
∂ρ
∂t

)|t′ , D(∂ρ
∂t

)|t′}. Then, using the uniqueness property, we
have that ρ(x, t) is determined by the shifted initial conditions

{(∂2ρ
∂t2

)t′ , (
∂ρ
∂t

)|t′ , D(∂ρ
∂t

)|t′}. By a change of coordinates, x′ = x+x0, and
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considering ρx0 , we can assume that x0 = 0, r is disjoint from B(0, s),

with the support of {(∂2ρ
∂t2

)t′ , (
∂ρ
∂t

)|t′ , D(∂ρ
∂t

)|t′} contained in B(0, s). By

a further change of coordinates, t′′ = t+ t′, and considering ρt
′
, we can

assume that t′ = 0, with the original t moving to t− t′, so that we can
assume t < 0, but we can’t assume that t = 0.

It follows, as t < 0, that in (QQ), we can ignore the term;

( 1
4πε0

∫
V
ρ̇(r′,tr )̂r
|r−r′| dτ

′)1 = 1
4πε0

∫
V
∂ρ
∂t

(r′, t− |r−r
′|

c
)
(r1−r′1)
c|r−r′|2dτ

′

= 1
4πε0

∫
V

[ 1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,c(t− |r−r

′|
c

))
(t− |r−r

′|
c

)(∂
2ρ
∂t2

)(y, 0) + ∂ρ
∂t

(y, 0)

+D(∂ρ
∂t

)(y, 0) � (y − r′)]dS(y)
(r1−r′1)
c|r−r′|2dτ

′

and, we are left, simplifying the radius, from (QQ) with;

+ 1
4πε0

∫
V

[ 1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,−ct+|r−r′|)(t−

|r−r′|
c

)(∂
2ρ
∂t2

)(y, 0) + ∂ρ
∂t

(y, 0)

+D(∂ρ
∂t

)(y, 0) � (y − r′)]dS(y)
(r1−r′1)
c|r−r′|2dτ

′ (QQQ)

If d ∈ B(0, s), we let;

Vd,t = {r′ ∈ R3 : d ∈ δB(r′,−ct+ |r − r′|)}

= {r′ ∈ R3 : |d− r′| = −ct+ |r − r′|}

so that, in (QQQ), we have that V =
⋃
d∈B(0,s) Vd,t

As B(0, s) is open, we can choose δd > 0 such that B(d, δd) ⊂ B(0, s).
By the calculation above, we can assume that the real unbounded hy-
persurface Vd,t is a real quadratic surface and, by the calculation be-
low, that the asymptotic cone Zd,t is a union of lines parametrised over
a finite interval. For a line l appearing in the asymptotic cone, fix-
ing 0 < ε < δd, and r(ε) sufficiently large, we can assume that for
r′ ∈ l ∩ (R3 \B(0, r(ε))), there exists r′′ ∈ Vd,t with r′ − r′′| < ε, see
footnote 5, so that;

δB(r′,−ct+ |r− r′|)∩B(0, s) = (δB(r′′,−ct+ |r− r′|) + (r′− r′′))∩
B(0, s)
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and, as d
′
= d+ (r′− r′′) ∈ B(d, δd) ⊂ B(0, s), that δB(r′,−ct+ |r−

r′|) ∩ B(0, s) 6= ∅ and passes through d
′ ∈ B(0, s) with |d′ − d| < ε.

Let Pd be the plane passing through d, with Pd perpendicular to l and
intersecting l at pd. Let T

d
′ be the tangent plane to δB(r′,−ct+ |r−r′|)

at d
′
, intersecting l at p

d
′ , so that we can assume, for sufficiently large

r(ε), that |pd − pd′ | < ε. Let r′opp = pd − (r′ − pd = 2pd − r′. Then,

for sufficiently large r(ε), we have that r′opp ∈ l ∩ (R3 \B(0, r(ε))),

δB(r′opp,−ct+|r−r′opp|)∩B(0, s) 6= ∅ and passes through d
′
opp ∈ B(0, s)

with |d′opp − d
′| < ε. We have that;

(i). Using the facts that |∂ρ
∂t
|0| ≤M on B(0, s), the surface measure

of δB(r′,−ct + |r − r′|) ∩ B(0, s) is at most 2πs2, r′opp = 2pd − r′, we
have, for sufficiently large r(ε), that;

| 1
4πε0

[ 1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,−ct+|r−r′|)(t−

|r−r′|
c

)(∂
2ρ
∂t2

)(y, 0)]dS(y)
(r1−r′1)
c|r−r′|2

+ 1
4πε0

[ 1

4πc2(t− |r−r
′
opp|
c

)2

∫
δB(r′opp,−ct+|r−r′opp|)

(t− |r−r
′
opp|
c

)(∂
2ρ
∂t2

)(y, 0)]dS(y)
(r1−r′1,opp)
c|r−r′opp|2

|

= | 1
4πε0

[ 1

4πc2(t− |r−r
′|

c
)

(r1−r′1)
c|r−r′|2

∫
δB(r′,−ct+|r−r′|)(

∂2ρ
∂t2

)(y, 0)]dS(y)

+ 1
4πε0

[ 1

4πc2(t− |r−r
′
opp|
c

)

(r1−r′1,opp)
c|r−r′opp|2

∫
δB(r′opp,−ct+|r−r′opp|)

(∂
2ρ
∂t2

)(y, 0)]dS(y)|

= |[ 1
4πε0

[ 1

4πc2(t− |r−r
′|

c
)

(r1−r′1)
c|r−r′|2 + 1

4πε0
1

4πc2(t− |r−r
′
opp|
c

)

(r1−r′1,opp)
c|r−r′opp|2

]
∫
δB(r′,−ct+|r−r′|)(

∂2ρ
∂t2

)(y, 0)]dS(y)

+[ 1
4πε0

1

4πc2(t− |r−r
′
opp|
c

)

(r1−r′1,opp)
c|r−r′opp|2

](
∫
δB(r′opp,−ct+|r−r′opp|)

(∂
2ρ
∂t2

)(y, 0)dS(y)

−
∫
δB(r′,−ct+|r−r′|)(

∂2ρ
∂t2

)(y, 0)dS(y))|

= | 1
16π2ε0c3

[
(r1−r′1)((t−

|r−r′opp|
c

)|r−r′opp|2−(t−
|r−r′|
c

)|r−r′|2)

(t− |r−r
′|

c
)|r−r′|2(t− |r−r

′
opp|
c

)|r−r′opp|2
+

(r1−r′1)+(r1−r′1,opp)

(t− |r−r
′
opp|
c

)|r−r′opp|2
]∫

δB(r′,−ct+|r−r′|)(
∂2ρ
∂t2

)(y, 0)]dS(y) + [ 1
4πε0

1

4πc2(t− |r−r
′
opp|
c

)

(r1−r′1,opp)
c|r−r′opp|2

]

(
∫
δB(r′opp,−ct+|r−r′opp|)

(∂
2ρ
∂t2

)(y, 0)dS(y)−
∫
δB(r′,−ct+|r−r′|)(

∂2ρ
∂t2

)(y, 0)dS(y))|

= | 1
16π2ε0c3

[
(r1−r′1)((t−

|r+r′−2p
d
|

c
)|r+r′−2pd|

2−(t− |r−r
′|

c
)|r−r′|2)

(t− |r−r
′|

c
)|r−r′|2(t−

|r+r′−2p
d
|

c
)|r+r′−2pd|2

+
2r1−2pd,1

(t−
|r+r′−2p

d
|

c
)|r+r′−2pd|2

]∫
δB(r′,−ct+|r−r′|)(

∂2ρ
∂t2

)(y, 0)]dS(y) + [ 1
4πε0

1

4πc2(t−
|r+r′−2p

d
|

c
)

(r1+r′1−2pd,1)
c|r+r′−2pd|2

]
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(
∫
δB(r′opp,−ct+|r−r′opp|)

(∂
2ρ
∂t2

)(y, 0)dS(y)−
∫
δB(r′,−ct+|r−r′|)(

∂2ρ
∂t2

)(y, 0)dS(y))|

≤ Ms2

8πε0c3
| (r1−r

′
1)((t−

|r+r′−2p
d
|

c
)|r+r′−2pd|

2−(t− |r−r
′|

c
)|r−r′|2)

(t− |r−r
′|

c
)|r−r′|2(t−

|r+r′−2p
d
|

c
)|r+r′−2pd|2

|+ Ms2

8πε0c3
| 2r1−2pd,1

(t−
|r+r′−2p

d
|

c
)|r+r′−2pd|2

|

+| 1
4πε0

1

4πc2(t−
|r+r′−2p

d
|

c
)

(r1+r′1−2pd,1)
c|r+r′−2pd|2

|

|
∫
δB(r′opp,−ct+|r−r′opp|)

(∂
2ρ
∂t2

)(y, 0)dS(y)−
∫
δB(r′,−ct+|r−r′|)(

∂2ρ
∂t2

)(y, 0)dS(y)|

≤ Ms2

πε0c3|r′|3 + Ms2

2πε0c4|r′|3 + 1
16π2ε0c3

1

|(t−
|r+r′−2p

d
|

c
)||r+r′−2pd|

|
∫
δB(r′opp,−ct+|r−r′opp|)

(∂
2ρ
∂t2

)(y, 0)dS(y)−
∫
δB(r′,−ct+|r−r′|)(

∂2ρ
∂t2

)(y, 0)dS(y)|

(P )

(following the method in (ii), noting the O(|r′|3) term cancels in the

first long term to obtain O(|r′|)O(|r′|2)
O(|r′|6) = 1

O(|r′|3))

Change coordinates, so that the azimuth angle θ of the sphere δB(r′,−ct+
|r − r′|), is centred on the line passing through {r′, d′}, giving coordi-
nates;

r′ + sin(θ)cos(φ)x+ sin(θ)sin(φ)y + cos(θ)(d
′ − r′)

(0 ≤ θ ≤ π,−π ≤ φ ≤ π)

for a choice of orthogonal vectors {x, y, d′ − r′} with modulus −ct+
|r−r′|. Similarly, choose the azimuth angle θopp of the sphere δB(r′opp,−ct+
|r−r′opp|), is centred on the line passing through {r′opp, d

′
opp}, giving co-

ordinates;

r′ + sin(θopp)cos(φopp)xopp + sin(θopp)sin(φopp)yopp + cos(θopp)(d
′
opp−

r′opp)

(0 ≤ θopp ≤ π,−π ≤ φopp ≤ π)

for a choice of orthogonal vectors {xopp, yopp, d
′
opp− r′opp} with modu-

lus −ct+|r−r′opp|. We have, for points {q′, q′opp} of intersection between

B(0, s) and δB(r′,−ct+ |r− r′|), B(0, s) and δB(r′opp,−ct+ |r− r′opp|)
that;
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θ(q′) ' sin(θ(q′)) ≤ 2s
−ct+|r−r′|

θopp(q
′
opp) ' sin(θopp(q

′
opp)) ≤ 2s

−ct+|r−r′opp|
(TT )

and, for sufficiently large r(ε), choosing {x, y, xopp, yopp} compatibly,
we may assume that;

|q′ − q′opp| ≤ 2ε

for {q′, q′opp} defined by coordinates θ = θopp, φ = φopp with 0 ≤ θ ≤
max(θmax, θmax,opp), where;

θmax = max0≤φ≤2πθ(q
′)

for q′ in B(0, s)∩ δB(r′,−ct+ |r− r′|), with coordinates {θ, φ}, and;

θmax,opp = max0≤φ≤2πθopp(q
′
opp)

for q′opp inB(0, s)∩δB(r′opp,−ct+|r−r′opp|), with coordinates {θopp, φopp}

It follows that, for sufficiently large r(ε), using the surface measure
dS = r2sin(θ), the fact (TT ) and r2(1− cos(1

r
)) = O(1), and footnote

5, for sufficiently large r;

|
∫
δB(r′opp,−ct+|r−r′opp|)

(∂
2ρ
∂t2

)(y, 0)dS(y)−
∫
δB(r′,−ct+|r−r′|)(

∂2ρ
∂t2

)(y, 0)dS(y)|

≤ 2ε|5(((∂
2ρ
∂t2

)0))|B(0,s)|2π2(−ct+|r−r′opp|)2
∫ max(θmax,θmax,opp)
0

sin(θ)dθ

= 2ε|5(((∂
2ρ
∂t2

)0))|B(0,s)|2π2(−ct+|r−r′opp|)2(1−cos(max(θmax, θmax,opp)))

≤ Cε

≤ D
|r′+1|

where {C,D} ⊂ R>0.

It follows from (P ), for sufficiently large r(ε), following the method
of (ii), that;

| 1
4πε0

[ 1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,−ct+|r−r′|)(t−

|r−r′|
c

)(∂
2ρ
∂t2

)(y, 0)]dS(y)
(r1−r′1)
c|r−r′|2
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+ 1
4πε0

[ 1

4πc2(t− |r−r
′
opp|
c

)2

∫
δB(r′opp,−ct+|r−r′opp|)

(t− |r−r
′
opp|
c

)(∂
2ρ
∂t2

)(y, 0)]dS(y)
(r1−r′1,opp)
c|r−r′opp|2

|

≤ Ms2

πε0c3|r′|3 + Ms2

2πε0c4|r′|3 + 1
16π2ε0c3

D
|r′+1|

1

|(t−
|r+r′−2p

d
|

c
)||r+r′−2pd|

≤ E1

|r′|3

where E1 ∈ R>0.

(ii). Using the facts that |∂ρ
∂t
|0| ≤M on B(0, s), the surface measure

of δB(r′,−ct + |r − r′|) ∩ B(0, s) is at most 2πs2, r′opp = 2pd − r′, we
have, for sufficiently large r(ε), that;

| 1
4πε0

[ 1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,−ct+|r−r′|)(

∂ρ
∂t

(y, 0))]dS(y)
(r1−r′1)
c|r−r′|2

+ 1
4πε0

[ 1

4πc2(t− |r−r
′
opp|
c

)2

∫
δB(r′opp,−ct+|r−r′opp|)

(∂ρ
∂t

(y, 0))]dS(y)
(r1−r′1,opp)
c|r−r′opp|2

|

≤ 1
4πε0c

2πMs2

4πc2(t− |r−r
′|

c
)2|r−r′|

+ 1
4πε0c

2πMs2

4πc2(t− |r−r
′
opp|
c

)2|r−r′opp|

= Ms2

8πcε0(ct−|r−r′|)2|r−r′| + Ms2

8πcε0(ct−|r1+r′|)2|r1+r′|

= Ms2

8πcε0|r−r′|3| ct
|r−r′|+1|2 + Ms2

8πcε0|r1+r′|3|( ct
|r1+r′|

−1)|2

≤ Ms2

4πcε0|r−r′|3 + Ms2

8πcε0|r1+r′|3

≤ 3Ms2

8πcε0|r′|3

= E2

|r′|3

where r1 = r − 2pd, E2 ∈ R>0.

(iii). We have that;

| 1
4πε0

[ 1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0) � (y − r′)]dS(y)

(r1−r′1)
c|r−r′|2

+ 1
4πε0

[ 1

4πc2(t− |r−r
′
opp|
c

)2

∫
δB(r′opp,−ct+|r−r′opp|)

D(∂ρ
∂t

)(y, 0)�(y−r′opp)]dS(y)
(r1−r′1,opp)
c|r−r′opp|2

|

= | 1
4πε0

[ 1

4πc2(t− |r−r
′|

c
)2

(−ct+|r−r′|)
∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0)�(z(y))]dS(y)

(r1−r′1)
c|r−r′|2
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+ 1
4πε0

[ 1

4πc2(t− |r−r
′
opp|
c

)2
(−ct+ |r− r′opp|)

∫
δB(r′opp,−ct+|r−r′opp|)

D(∂ρ
∂t

)(y, 0) �

(zopp(y)]dS(y)
(r1−r′1,opp)
c|r−r′opp|2

|

≤ 1
4πε0c

(−ct+|r−r′)
4πc2(t− |r−r

′|
c

)2|r−r′|
|
∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0) � z(y)dS(y)|

+ 1
4πε0c

(−ct+|r−r′opp)

4πc2(t− |r−r
′
opp|
c

)2|r−r′opp|
|
∫
δB(r′opp,−ct+|r−r′opp|)

D(∂ρ
∂t

)(y, 0)�zopp(y)dS(y)|

(NN)

Letting z0 = (d
′−r′)

−ct+|r−r′| , so that |z0| = 1, R the surface measure of

δB(r′,−ct+ |r−r′|)∩B(0, s), using Lemma 0.49, following the method
of (i), we have that, for sufficiently large r(ε);

|
∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0) � z(y)dS(y)|

= |
∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0)�(z(y)−z0)dS(y)+

∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0)�

z0dS(y)|

≤ |
∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0)�(z(y)−z0)dS(y)|+|[

∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0)]�

z0dS(y)|

≤ Rmaxy∈B(0,s)|D(∂ρ
∂t

)(y, 0)||z(y)−z0|+|
∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0)dS(y)�

z0|

≤ RMmaxy∈B(0,s)|z(y)− z0|+ |z0||
∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0)dS(y)|

≤ RM |(1− cos(θmax, sin(θmax)|+ |
∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0)dS(y)

−
∫
Pd
D(∂ρ

∂t
)(y, 0)dS(y)|+ |

∫
Pd
D(∂ρ

∂t
)(y, 0)dS(y)|

=
√

2RM(1−cos(θmax))
1
2 +|

∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0)dS(y)−

∫
Pd
D(∂ρ

∂t
)(y, 0)dS(y)|

≤ RMFθmax +Gε

≤ 2sH
−ct+|r−r′| + W

|1+r′|

= A1

−ct+|r−r′| + B1

|1+r′|
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where {F,G,W,H,A1, B1} ⊂ R>0. Similarly, there exist {A2, B2} ⊂
R>0, such that

|
∫
δB(r′opp,−ct+|r−r′opp|)

D(∂ρ
∂t

)(y, 0) � z(y)dS(y)| ≤ A2

−ct+|r−r′op|
+ B2

|1+r′op|

= A2

−ct+|r+r′−2pd|
+ B2

|1+2pd−r
′|

so that, from (NN), following the method of (ii)

| 1
4πε0

[ 1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0) � (y − r′)]dS(y)

(r1−r′1)
c|r−r′|2

+ 1
4πε0

[ 1

4πc2(t− |r−r
′
opp|
c

)2

∫
δB(r′opp,−ct+|r−r′opp|)

D(∂ρ
∂t

)(y, 0)�(y−r′opp)]dS(y)
(r1−r′1,opp)
c|r−r′opp|2

|

≤ 1
4πε0c

(−ct+|r−r′)
4πc2(t− |r−r

′|
c

)2|r−r′|
( A1

−ct+|r−r′| + B1

|1+r′|)

+ 1
4πε0c

(−ct+|r−r′opp)

4πc2(t− |r−r
′
opp|
c

)2|r−r′opp|
( A2

−ct+|r+r′−2pd|
+ B2

|1+2pd−r
′|)

= 1
16π2ε0c2

1

|(t− |r−r
′|

c
)||r−r′|

( A1

−ct+|r−r′| + B1

|1+r′|)

+ 1
16π2ε0c2

1

|t− |r−r
′
opp|
c

||r−r′opp|
( A2

−ct+|r+r′−2pd|
+ B2

|1+2pd−r
′|)

≤ E3

|r′|3

where E3 ∈ R>0 ((i), (ii), (iii))

By the calculation below, we can assume that the asymptotic cone
Zd,t of the real unbounded hypersurface Vd,t is a union of lines parametrised
over a finite interval [α, β]. It follows that we can define maps θ1 :
R× [α, β)→ Zd,t, θ2 : R× [α, β)→ Zd,t, such that for fixed γ ∈ [α, β),
θ1(r, γ) ∈ lγ,d,1, θ2(r, γ) ∈ lγ,d,2, r ∈ R, where the intersection curve Cγ,d
has the two real asymptotes {lγ,d,1, lγ,d,2}, and, such that, for i ∈ {1, 2};

(i). θi(0, γ) = pd,γ,i, (using the notation above)

(ii). θi(r, γ)opp = θ1(−r, γ)

(iii). There existRi ⊂ R>0 with θi diffeomorphisms outside [−Ri, Ri]×
[α, β), with the partial derivatives uniformly bounded.

(iv). Im(θ1|R\[−R1,R1]×[α,β) ∩ Im(θ2|R\[−R2,R2]×[α,β)) = ∅
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(v). For r2 > r1 > Ri, |θi(r2, γ)− θi(r1, γ)| = r2 − r1

It follows from (iii), (v) that the pullback;

θ1|∗R\[−R1,R1]×[α,β)(dLeb|Zd,t) = |∂θ1
∂r
× ∂θ1

∂γ
|drdγ = f(r, γ)drdγ

has the property that f(r, γ) has order O(r), uniformly in γ and
f(r, γ) = f(−r, γ), for r ∈ R>0. For R ∈ R>0, with R > Ri, can define
the regions SR,i ⊂ R× [α, β), by;

SR,i = {(r′, γ) : Ri ≤ |r′| ≤ R, γ ∈ [α, β)}

with corresponding regions θi(SR,i) ⊂ Zd,t

Then, by the calculation above, letting;

H(r′) = 1
4πε0

[ 1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0)�(y−r′)]dS(y)

(r1−r′1)
c|r−r′|2

we have that, for r > Ri;

|θ∗1H(r, γ) + θ∗1H(−r, γ)| ≤ C
r3

|f(r, γ)| ≤ Dr

|(θ∗1H(r, γ) + θ∗1H(−r, γ))f(r, γ)| ≤ CD
r2

and;

limR→∞,R>Ri
∫
θi(SR,i)

H(r′)dr′ = limR→∞,R>Ri
∫
SR,i

(θ∗1H)(r, γ)f(r, γ)drdγ

= limR→∞,R>Ri
∫
[α,β)

[
∫ R
Ri
θ∗1H(r, γ)f(r, γ)dr+

∫ −Ri
−R θ∗1H(r, γ)f(r, γ)dr]dγ

= limR→∞,R>Ri
∫
[α,β)

[
∫ R
Ri
θ∗1H(r, γ)f(r, γ)dr+

∫ −Ri
−R θ∗1H(−r, γ)f(−r, γ)dr]dγ

= limR→∞,R>Ri
∫
[α,β)

∫ R
Ri

(θ∗1H(r, γ) + θ∗1H(−r, γ))f(r, γ)drdγ

=
∫
[α,β)

∫∞
Ri

(θ∗1H(r, γ) + θ∗1H(−r, γ))f(r, γ)drdγ

where, letting G(γ) =
∫∞
Ri

(θ∗1H(r, γ) + θ∗1H(−r, γ))f(r, γ)dr;

|G(γ)| ≤
∫∞
Ri

CD
r2
dr = [−CD

r
]∞Ri
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= CD
Ri

so that;

limR→∞,R>Ri
∫
[α,β)

∫∞
Ri

(θ∗1H(r, γ)+θ∗1H(−r, γ))f(r, γ)drdγ =
∫
[α,β)

G(γ)dγ

exists and;

|limR→∞,R>Ri
∫
[α,β)

∫∞
Ri

(θ∗1H(r, γ)+θ∗1H(−r, γ))f(r, γ)drdγ| ≤ CD(β−α)
Ri

It follows;

limR→∞,R>Ri
∫
θi(SR,i)

H(r′)dr′

exisrs, and;

|limR→∞,R>Ri
∫
θi(SR,i)

H(r′)dr′| ≤ CD(β−α)
Ri

as well. (UU)

..... Let the lines appearing in the asymptotic cone Zd,t, parametrised
by [α, β), correspond to the system of hyperplanes Hγ, γ ∈ [α, β) with
fixed locus Qd,t. Then, for x ∈ Vd,t \Qd,t, |x| sufficiently large, let xnear
be the nearest point on the asymptotic line ld,t,γ, and xopp be the near-
est point on Vd,t∩Hα to (xnear)opp. By a simple adaptation of the above
argument ((i), (ii), (iii)), we have that, for |r′| sufficiently large, there
exists C ∈ R>0, with;

|h(r′) + h(r′opp)| ≤ C
|r′|3

where h(r′) = ( 1
4πε0

ρ̇(r′,tr )̂r
|r−r′| )1

(Follow argument of (UU), using the facts, that for sufficiently large
|r′|, dVd,t ' dZd,t, dVd,t = g(r′)dZd,t, with g(r′) ' g(r′opp), for the sur-
face measures on Vd,t and Zd,t respectfully, as;

∂θ1
∂r

(r′, γ) ' ∂θ1
∂r

(r′opp, γ)

for the appropriate parametrisation θ1, so that;
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|h(r′)g(r′)dZd,t + h(r′opp)g(r′opp)dZd,t|

≤ |(h(r′) + h(r′opp))g(r′)dZd,t|+ |h(r′opp)(g(r′opp)− g(r′))dZd,t|

= O( 1
R3 )O(R)drdγ +O( 1

R2 )O( 1
R

)drdγ = O( 1
R2 )drdγ.

Same idea for asymptotic cones defined below in Lemma 0.51, re-
flecting the branch at infinity.)

................... If t = 0, then W2 = {r′ : −w ≤ |r′|− |r− r′| ≤ w}, and,
by the calculation in footnote 5, we can, for sufficiently large r′, char-
acterise W2 as a family of quadratic surfaces, parametrised by [0, w],
degenerating to the plane r′ = |r−r′|. We denote by W s

2 , for 0 ≤ s ≤ w
the locus;

{r′ : |r′| − |r − r′| = s} ∪ {r′ : |r′| − |r − r′| = −s}

characterised, for s 6= 0, by the quadratic real surface Vs in footnote
5, with W0 being the plane {r′ : |r′| = |r−r′|}. Fixing s0 6= 0, for a real
generic hyperplane Hs0 , using footnote 5, the intersection Vs0 ∩Hs0 is
a real unbounded generic quadratic curve Cs0 ⊂ Hs0 . In particularly,
by the classification of real quadratic curves as conic sections, Cs0 is
generic hyperbolic and has two real asymptotes {ls0,1, ls0,2}. If we take
a generic real 1-dimensional pencil of hyperplanes {Hs0,r : r ∈ R}, such
that

⋃
r∈RHs0,r = R3, with base locus ls0 , then clearly;⋃

r∈R(Vs0 ∩Hs0,r) = Vs0

and, using O-minimality, there exists finitely many open bounded
intervals {Ij : 1 ≤ j ≤ n} for which Vs0 ∩Hs0,r is finite, r ∈

⋃
1≤j≤n Ij.

Let Ps0 = R \
⋃

1≤j≤n Ij, and we still have that;⋃
r∈Ps0

(Vs0 ∩Hs0,r) = Vs0

We define the two dimensional asymptotic cone Zs0 of Vs0 to be⋃
r∈Ps0

ls0,r,1 ∪ ls0,r,2 where the intersection curve Cs0,r has the two real

asymptotes {ls0,r,1, ls0,r,2}. By choosing the base locus ls0 to intersect
Vs0 in a finite number of points and noting that for a sufficiently generic
family, Vs0 ∩ Hs0,r ∩W = 0, in coordinates [X, Y, Z,W ], where Vs0 is
the projective closure of Vs0 in P (R3), is mobile, and compact, so can
be paramertised analytically by a finite interval. we can assume that
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Ps0 is a finite interval Is0 when parametrising Zs0 and Vs0 , so that;⋃
r∈Is0

(Vs0 ∩Hs0,r) = Vs0

Let dτ ′s0 be the surface measure on Zs0 obtained from the pullback
of Lebesgue measure with the inclusion of Zs0 in R3 and, similarly,
let dτ ′s0,r,1 and dτ ′s0,r,2 be the line measures on ls0,r,1 and ls0,r,2, obtained
from the pullback of Lebesgue measure, and let dτ ′s0,r,1,2 be the union of
the measures on ls0,r,1 ∪ ls0,r,2. ................ If t1 < t2, with {t1, t2} ⊂ R,
and {Vt1 , Vt2} denote the compact supports of {ρt1 , ρt2}, then as the
supports vary continuously, and J t and ρt are compactly supported
for each t ∈ [t1, t2], J t and ρt are uniformly compacted supported for
t ∈ [t1, t2] in a ball B(0, p), for some p ∈ R>0. In particularly;∫

Vt1
ρt1dV =

∫
B(0,p)

ρt1dV∫
Vt2
ρt2dV =

∫
B(0,p)

ρt2dV

For t ∈ [t1, t2], using the continuity equation, the divergence theo-
rem and the fact J t is uniformly compacted supported for t ∈ [t1, t2] in
B(0, p), we have that;

d
dt

(
∫
B(0,p)

ρtdV ) =
∫
B(0,p)

∂ρ
∂t
dV

=
∫
B(0,p)

div(J)tdV

=
∫
δB(0,p)

J t � dSdV

= 0

so that;∫
B(0,p)

ρt1dV =
∫
B(0,p)

ρt2dV∫
Vt1
ρt1dV =

∫
Vt2
ρt2dV
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In particularly, d
dt

(
∫
Vt
ρtdV ) = 0, (6). The same argument applies

for ∂ρ
∂t

, with associated current J1 = −c2 5 (ρ) and compact supports

Wt, t ∈ R, obeying the wave equation �2(J1) = 0. It follows from the
Reynold’s transport theorem, (7), the divergence theorem and the fact
that J1 vanishes outside Wt and Vt, that;

6

In fact, the result is true for (ρ, J) satisfying the continuity equation, when
J fails to have compact support, and the components ji, for 1 ≤ i ≤ 3, are
uniformly of rapid decay, in the sense, that for any finite interval [t1, t2], there

exists constants C1,2,i,n ∈ R>0 such that |ji(x, t)| ≤ C1,i,2,n

|x|n for t ∈ [t1, t2]

and |x| > 1. In order to see this, suppose that on a finite interval (t1, t2), ρ
is supported uniformly on B(0, p). and d

dt

∫
Vt
ρdV 6= 0, for some t ∈ [t1, t2].

Then there exists an interval (t0 − ε, t0 + ε) ⊂ (t1, t2), such that, without
loss of generality, d

dt

∫
Vt
ρdV |(t0−ε,t0+ε) > 0, and, by the intermediate value

theorem, we can assume that
∫
Vt
ρdV |(t0−ε,t0+ε) is strictly increasing, with∫

Vt0+ε
ρt0+εdV −

∫
Vt0

ρt0dV > δ > 0, (∗). Using the hypotheses on J , we can

choose r > p sufficienly large such that for t ∈ (t0− ε, t0 + ε), |
∫
δB(0,r)

J t �dS| < δ1,

and by the continuity equation, for t ∈ (t0 − ε, t0 + ε);

| ddt
∫
B(0,r)

pdV | = |
∫
B(0,r)

∂ρ
∂t dV |

= | −
∫
B(0,r)

div(J)dV |

= |
∫
δB(0,r)

J � dS|

< δ1

and the intermediate value theorem;

|
∫
B(0,r)

pt0+εdV −
∫
B(0,r)

pt0dV | < δ1ε

so choosing δ1 = δ
2ε , we obtain that;

|
∫
B(0,r)

pt0+εdV −
∫
B(0,r)

pt0dV | = |
∫
Vt0+ε

pt0+εdV −
∫
Vt0

pt0dV |

< δ
2

which contradicts (∗).

7 The Reynolds transport theorem is true in this case, but is not the usual form,
as, due to the failure of analyticity, there can be jumps in the support. There is
also an issue with using the formula ρv = J , when substituting for the velocity of
the area element. This could be resolved in [15].
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Vt
52(ρ)dV = 1

c2

∫
Vt

∂2ρ
∂t2
dV

= 1
c2

( d
dt

(
∫
Vt

∂ρ
∂t
dV )−

∫
Vt
div(J1))

= − 1
c2

∫
Vt
div(J1)dV

= − 1
c2

∫
δVt
J1 � dS

= 0

In particular, at t = 0, we can assume that;∫
V0
52(ρ0)dV =

∫
V0

(
∑3

i=1(
∂2ρ
∂x2i

)0)dV = 0 (O), (8).

We can define antiderivatives, by letting;

pa(x, t) =
∫ t
−∞ p(x, s)ds

J
a
(x, t) =

∫ t
−∞ J(x, s)ds (if the integral exists)

As is easily checked, if p ∈ C∞(R4) and the components ji ∈
C∞(R4), 1 ≤ i ≤ 3, then ρa ∈ C∞(R4) and the components jai ∈
C∞(R4), for 1 ≤ i ≤ 3. The wave equation holds for ρa and J

a
, as,

using the fundamental theorem of calculus, differentiating under the
integral sign, the result about he left hand limit in [14], and using the
fact that ρ satisfies the wave equation;

�2(ρa) =
∫ t
−∞5

2(ρ)ds− 1
c2
∂ρ
∂t

=
∫ t
−∞

1
c2
∂2ρ
∂t2
ds− 1

c2
∂ρ
∂t

8 Note that you can also deduce this, using the divergence theorem, and the
fact that 5(ρ0) vanishes on δV0;∫

V0
52(ρ0)dV =

∫
δV0
5 � (5(ρ0))dV

=
∫
δV0
5(ρ0) � dS

= 0
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= 1
c2
∂ρ
∂t
− 1

c2
∂ρ
∂t

= 0

and;

�2(J
a
) =

∫ t
−∞5

2(J)ds− 1
c2
∂J
∂t

=
∫ t
−∞

1
c2
∂2J
∂t2
ds− 1

c2
∂J
∂t

= 1
c2
∂J
∂t
− 1

c2
∂J
∂t

= 0

Differentiating under the integral sign and using the fundamental
theorem of calculus, the fact that the continuity equation holds for
(ρ, J), the continuity equation holds as;

∂ρa

∂t
+5 � J

a

= ρ+
∫ t
−∞5 � Jds

= ρ+
∫ t
−∞+

∫ t
−∞−

∂ρ
∂s
ds

= ρ− ρ = 0

and, differentiating under the integral sign, using the fundamental
calculus of calculus and the connecting relation for (ρ, J), the connect-
ing relation holds;

5(ρa) + 1
c2
∂J

a

∂t

=
∫ t
−∞5(ρ)ds+ 1

c2
J

=
∫ t
−∞−

1
c2
∂J
∂t
ds+ 1

c2
J

= − 1
c2
J + 1

c2
J
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= 0,(9)

....... Then the fields {E,B} are well defined by Jefimenko’s equa-
tions and the components are of uniform very moderate decrease.

�

Lemma 0.49. Cancellation Lemma

Let g ∈ C∞(R3) with compact support V ⊂ R3, then for a hyper-
plane H ⊂ R3, we have that;∫

V ∩H5(g)dµ = 0

where µ is Lebesgue measure on V ∩H.

Proof. With out loss of generality, we can assume that V = B(0, r), for
some r ∈ R>0 and H is a hyperplane passing through 0, with the equa-
tion αx+βy+γz = 0. Assume first that {α, β, γ} ⊂ R are distinct and
non zero. Let pr12, pr13, pr23 be the projections onto the coordinates
(x, y), (x, z), (y, z). Let;

9 We don’t necessarily have that (ρa, J
a
) has compact supports. On a finite

interval [t1, t2], for sufficiently large x, we have ∂ρa

∂t = ρ = 0, and;

52(ρa) = 1
c2
∂2ρa

∂2t

= 0

Let h(x) define ρa for sufficiently large x, then, as R3 =
⋃
t∈R Supp(ρt)

c;

52(h(x)) = �2(h(x)) = 0

everywhere. We can repeat the argument for the antiderivative J
a

to obtain
c(x) defining J

a
for sufficiently large x. so, as R3 =

⋃
t∈R Supp(J t)

c, we have that

52(c(x)) = �2(c(x)) = 0, and, clearly, for the pair (h(x), c(x)), we have that;

div(c(x)) = −∂h∂t = 0

5(h)(x) = −c2 ∂c(x)∂t

= 0

and (ρa − h(x), J
a − c(x)) has compact supports and inherits all the properties

above for (ρa, J
a
).
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g12(x, y) = g(x, y, z(x, y)) = g(x, y,−αx
γ
− βy

γ
)

g13(x, z) = g(x, y(x, z), z) = g(x,−αx
β
− γz

β
, z)

g23(y, z) = g(x(y, z), y, z) = g(−βy
α
− γz

α
, y, z)

Then, by the chain rule;

∂g12
∂x
|(x,y) = ( ∂g

∂x
+ ∂g

∂y
− α

γ
∂g
∂z

)(x,y,z(x,y))

∂g12
∂y
|(x,y) = ( ∂g

∂x
+ ∂g

∂y
− β

γ
∂g
∂z

)(x,y,z(x,y))

so that;

β
γ
∂g12
∂x
|(x,y) − α

γ
∂g12
∂x
|(x,y) = (β−α)

γ
( ∂g
∂x

+ ∂g
∂y

)|(x,y,z(x,y))

and;

( ∂g
∂x

+ ∂g
∂y

)|(x,y,z(x,y)) = γ
(β−α)(

β
γ
∂g12
∂x
|(x,y) − α

γ
∂g12
∂x
|(x,y))

and, a similar calculation holds for {g13, g23}. It follows that, using
Fubini’s theorem, the fundamental theorem of calculus and the fact
that g12 vanishes on δ(pr12(V ∩H));

∫
V ∩H( ∂g

∂x
+ ∂g
∂y

)dµ =
∫
pr12(V ∩H)

( β
β−α

∂g12
∂x
− α

β−α
∂g12
∂x

)|(x,y)c12(α, β, γ)dxdy

= 0

where c12(α, β, γ) ∈ R is non-zero. Similarly, using {pr13, pr23};∫
V ∩H( ∂g

∂x
+ ∂g

∂z
)dµ =

∫
V ∩H(∂g

∂y
+ ∂g

∂z
)dµ

so that;∫
V ∩H

∂g
∂x
dµ = −

∫
V ∩H

∂g
∂y
dµ =

∫
V ∩H

∂g
∂z

= −
∫
V ∩H

∂g
∂x
dµ

and;∫
V ∩H

∂g
∂x
dµ = 0
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Similarly;∫
V ∩H

∂g
∂y
dµ =

∫
V ∩H

∂g
∂z
dµ = 0

and;∫
V ∩H5(g)dµ = 0

By continuity, the result holds for any hyperplane H as the initial
assumption was generic.

�

Lemma 0.50. Uniqueness of Representation of Arcs

Suppose that x ∈ R3 \B(0, s) such that δB(x, r) ∩B(0, s) 6= ∅, then
there exists a unique 0 ≤ w ≤ s such that B(0, w) intersects B(x, r)
at a single point px,r, with the property that the spheres δB(x, r) and

δB(0, w) share a tangent plane at px,r.

Proof. Suppose that 0 /∈ B(x, r). Let l be the line connecting the
points {0, x}, intersecting the sphere δB(0, s) at q. Then q ∈ B(x, r),
otherwise δB(x, r) ∩ B(0, s) = ∅. We have that δB(x, r) ∩ B(0, s)
partitions B(0, s) into 2 disjoint, connected regions, and the regions
containing 0 and q are distinct. It follows that the line l between 0
and q intersects B(x, r) at the point px,r ∈ B(0, s). Choose 0 ≤ w ≤ s

such that δB(0, w) passes through px,r. Then, as the tangent planes to

the spheres δB(0, w) and δB(x, r) at px,r are both perpendicular to l
and pass through px,r, they must coincide. Suppose that the spheres

δB(0, w) and δB(x, r) share a further intersection point p′ with the
properties that the tangent planes at p′ coincide, then the lines l and
l′, where l′ connects the points {0, p′}, both pass through 0 and x, so
must coincide and p′ ∈ l. Then, as px,r and p′ are distinct, it follows
that p′ /∈ δB(x, r).

�

Lemma 0.51. Fix 0 < w ≤ s and with r /∈ B(0, s), t < 0, let Vw(x)
be the locus defined by;

B(0, w) intersects B(x,−ct + |x − r|) at a single point px, with the
property that the spheres δB(x,−ct + |x − r|) and δB(0, w) share a
tangent plane at px,r.
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Then, Vw(x) ⊂ V 1
w(x, where;

V 1
w(x) ≡ ∃λ∃y[(|y| = w) ∧ ((|x− y| = −ct+ |x− r|)

∨(|x− y| = ct+ |x− r|) ∨ (|x− y|+ |x− r| = −ct)) ∧ x = λy]

and V 1
w(x) is generically a double cover of δB(0, w), and there exists

parallel planes {P1, P2} ⊂ R3, such that, either;

V 1
w(x) is bounded

when (P1 ∩ δB(0, w)) = (P2 ∩ δB(0, w)) = ∅, or;

V 1
w(x) blows up at an exceptional locus Za ⊂ δB(0, w)

where Za = (P1 ∩ δB(0, w)) ∪ (P2 ∩ δB(0, w)) is the union of 2
circles on δB(0, w). For specific, non-generic w, these circles can co-
incide, but, in the generic case, when Za has two components, Vw(x)
basically has two asymptotic cones among Cone1(0, P1 ∩ δB(0, w)) and
Cone2(0, P2∩δB(0, w)) corresponding to distinct {P1, P2}, with a single
pair of infinite opposite branches along asymptotes, which are bounded
translations of the lines of the cones. The cover splits into a bounded
and unbounded component centred along the asymptotes. In a special
case of this generic behaviour, again corresponding to specific w, V 1

w(x)
can blow up along one component of Za and remain bounded over the
other component. There is another special case, due to a specific link
between t and r, which can occur for non generic w, but it exhibits
similar behaviour to the generic case.

Proof. By the proof of Lemma 0.50, we have that;

Vw(x) ≡ ∃λ 6=0∃y[(|y| = w) ∧ (|x− y| = −ct+ |x− r|) ∧ x = λy]

Making the substitutions x = λy and |y| = w, we have that;

|x− y| = −ct+ |x− r| ⇐⇒ |λy − y| = −ct+ |λy − r|

⇐⇒ |λ− 1||y| = −ct+ |λy − r|

⇐⇒ w|λ− 1| = −ct+ |λy − r|
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=⇒ w2(λ− 1)2 = c2t2 + (λy1 − r1)2 + (λy2 − r2)2 + (λy3 − r3)2

−2ct|λy − r|

=⇒ 4c2t2[(λy1 − r1)2 + (λy2 − r2)2 + (λy3 − r3)2]

= [w2(λ− 1)2 − c2t2 − (λy1 − r1)2 − (λy2 − r2)2 − (λy3 − r3)2]2

⇐⇒ 4c2t2[λ2w2−2λy �r+ |r|2] = [−2λw2+w2−c2t2+2λy �r−|r|2]2

⇐⇒ λ2(4c2t2w2 − (2y � r − 2w2)2) + λ(−8c2t2y � r − 2(2y � r − 2w2)

(w2 − c2t2 − |r|2)) + (4c2t2|r|2 − (w2 − c2t2 − |r|2)2) = 0 (AA)

If we reverse the two =⇒ steps, we obtain the alternatives;

w2(λ− 1)2 = c2t2 + (λy1 − r1)2 + (λy2 − r2)2 + (λy3 − r3)2

+2ct|λy − r|

and w|λ− 1| = ct+ |λy − r| or w|λ− 1| = −ct− |λy − r|

which gives;

|x− y| = ct+ |x− r| or |x− y|+ |x− r| = −ct

so that the condition (AA) defines the admissible λ in the formula;

V 1
w(x) ≡ ∃λ 6=0∃y[(|y| = w) ∧ ((|x− y| = −ct+ |x− r|)

∨(|x− y| = ct+ |x− r|) ∨ (|x− y|+ |x− r| = −ct)) ∧ x = λy]

with Vw(x) ⊂ V 1
w(x). By the quadratic formula, we have that, if

a 6= 0;

λ = −b+/−
√
b2−4ac

2a
= γ1

a
or γ2

a

where;

a = 4c2t2w2 − (2y � r − 2w2)2
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b = −8c2t2y � r − 2(2y � r − 2w2)(w2 − c2t2 − |r|2)

c = 4c2t2|r|2 − (w2 − c2t2 − |r|2)2 (QQ), (10).

Let;

a(z) = 4c2t2w2 − (2z − 2w2)2

b(z) = −8c2t2z − 2(2z − 2w2)(w2 − c2t2 − |r|2)

c(z) = 4c2t2|r|2 − (w2 − c2t2 − |r|2)2

Then a(z) ∈ R[z] is a polynomial of degree 2, b(z) ∈ R[z] is a poly-
nomial of degree 1 iff;

−8c2t2 − 4(w2 − c2t2 − |r|2) 6= 0

iff 4|r|2 − 4c2t2 − 4w2 6= 0

iff |r| 6=
√

4w2+4c2t2

4

iff |r| 6=
√
w2 + c2t2

and c(z) is a constant. We have that c(z) = 0

iff 4c2t2|r|2 − (w2 − c2t2 − |r|2)2 = 0

10Generically the two roots corresponding to λ must provide one of the three
alternatives;

(i). |x− y| = −ct+ |x− r|

(ii). |x− y| = ct+ |x− r|

(iii). |x− y|+ |x− r| = −ct

for the corresponding x = λy. Clearly the points on V 1
w(x) corresponding to case

(iii) are bounded, so if we obtain any infinite points, they must correspond to cases
(i) or (ii). By Lemma 0.55, the infinite points on opposite sides of the asymptotic
line which we find below, must correspond to both cases (i) and (ii). To obtain
cancellation, we therefore need to include the opposite time −t in the calculation,
which we can do by considering ρ̇+ ρ̇−2t, where ρ̇s(x, t) = ρ̇(x, t− s).
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iff |r|2 =
2w2+2c2t2+/−

√
(2c2t2+2w2)2−4(w2−c2t2)2

2

iff |r|2 = w2 + c2t2 + /−
√

(c2t2 + w2)2 − (w2 − c2t2)2

|r|2 = w2 + c2t2 + /−
√

4w2c2t2

iff |r|2 = w2 + c2t2 + 2wct = (w + ct)2 or |r|2 = w2 + c2t2 − 2wct =
(w − ct)2

iff |r| = |w + ct| or |r| = |w − ct| = w − ct

which can happen, with roots at 0 and − b
a
, the finite point, calcu-

lated in (∗) below being 0. However, we consider the generic case when
c(z) 6= 0, leaving further consideration of the other case to the reader.

Let;

Za = {x ∈ δB(0, w) : a(y � r) = 0}

Zb = {x ∈ δB(0, w) : b(y � r) = 0}

As a(z) has degree 2, we have, by the quadratic formula, that;

a = 4c2t2w2− (2y � r− 2w2)2 = 0 iff y � r =
w2+/−w2

√
1− 4(1−c2t2)

w2

2
(PP )

which has at most 2 real solutions, corresponding to at most 2 (pos-
sibly empty) parallel intersection circles of the sphere δB(0, w) with
parallel planes {P1,a, P2,a}. We will consider the generic case with two
nonempty parallel circles, {C1,a, C2,a}, which are not points, leaving the
other cases to the reader, so that Za = C1,a ∪ C2,a, (11). We have that
b(z) has degree at most 1, with at most 1 real solution, corresponding
to at most 1 (possibly empty) intersection circle Cb of the sphere with
a plane Pb, parallel to P1,a and P2,a. Again, we will consider the generic

11 The case when a has repeated roots, by the formula (PP ) occurs when

1 − 4(1−c2t2)
w2 = 0, iff w2 = 4(1 − c2t2), we can exclude this case by assuming

t2 > 1
c by moving the initial conditions sufficiently far enough in advance of t and

changing coordinates. Alternatively, we can obtain at most 2 possible solutions for
w, which will account for a set of measure zero in the final integration, see footnote
refcoincides. Observe that when a has two real roots, they cannot be maxima or
minima, so a will change sign on opposite sides of the intersection circles C1,a and
C2,a.
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case when Cb is nonempty and not a point, leaving the other cases to
the reader. We have that Cb coincides with one of the circles C1,a or
C2,a iff a = b = 0;

iff (w2 − c2t2 − r2)(4w2 − 4y � r) = 8c2t2y � r and (PP ) holds

iff (w2−c2t2−r2)(4w2−4(
w2+/−w2

√
1− 4(1−c2t2)

w2

2
)) = 8c2t2(

w2+/−w2

√
1− 4(1−c2t2)

w2

2
)

which can happen, in which case Vw(x does not blow up along Cb.
Again, we leave this case to the interested reader.

For y ∈ δB(0, w) \ Za, we have that p(λ, y, r) = 0, where p(z, y, r) ∈
R[z] is a polynomial of degree 2, with coefficients in {y, r}, having at
most 2 real roots.

Using the fact that;

|y � r| ≤ |y||r| = wr

|a| ≤ (4c2t2w2 + (2wr + 2w2)2) = C1

|b| ≤ 8c2t2wr + 2(2wr + 2w2)(w2 + c2t2 + r2) = C2

|c| ≤ 4c2t2r2 + (w2 + c2t2 + r2)2 = C3

where {C1, C2, C3} ⊂ R>0. Denoting the possible real roots of
p(λ, y, r) by {γ1

a
, γ2
a
}, we have;

max(|γ1|, |γ2|) ≤ |b|+|
√
b2−4ac|
2

≤ C2+
√
C2

2+4C1C3

2
= C4

where C4 ⊂ R>0. Then, if;

|a| = |4c2t2w2 − (2y � r − 2w2)2| > ε > 0

it follows;

max(|γ1
a
|, |γ2

a
|) ≤ C4

ε
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In particular Vw(x) can only blow up along the exceptional locus Za,
(12).

In the generic case, with C1,a 6= ∅, C2,a 6= ∅, C1,a 6= C2,a, not points,
we define the 2 asymptotic cones of Vw(x) by;

Cone(C1,a) =
⋃
y∈C1,a

l0,y

Cone(C2,a) =
⋃
y∈C2,a

l0,y

where l0,y is the line joining 0 and y ∈ Ci,a, for i ∈ {1, 2}.

We have that Cone(C1,a) ∩ Cone(C2,a) = ∅ unless pr∗(C1,a) = C2,a,
where pr∗ is the orthogonal projection defined by the perpendicular
line l passing through 0, perpendicular to the parallel planes P1,a and
P2,a, onto P2,a, in which case Cone(C1,a) = Cone(C2,a). Again, we
consider this generic case, leaving the case Cone(C1,a) = Cone(C2,a)
to the reader.

We obtain no real roots, iff b2 − 4ac < 0

iff [−8c2t2y � r − 2(2y � r − 2w2)(w2 − c2t2 − |r|2)]2

−4[4c2t2w2 − (2y � r − 2w2)2][4c2t2|r|2 − (w2 − c2t2 − |r|2)2] < 0

iff q(y � r) < 0, where q ∈ R[x] is a polynomial of degree at most
2, which by continuity determines an open set Yw ⊂ R3, so that
Xw = Yw ∩ δB(0, w) is open. We can exclude Xw from our calcula-
tions as the fibre is empty, and assume b2 − 4ac ≥ 0.

We obtain a repeated real root at −b
2a

iff;

b2 − 4ac = 0

iff [−8c2t2y � r − 2(2y � r − 2w2)(w2 − c2t2 − |r|2)]2

−4[4c2t2w2 − (2y � r − 2w2)2][4c2t2|r|2 − (w2 − c2t2 − |r|2)2] = 0

12 We can also note that if C1,a = C2,a = ∅ then |a| > ε0 on δB(0, w), and

max(|γ1a |, |
γ2
a |) ≤

C4

ε0
= C5, where C5 ∈ R>0, Vw(x) ⊂ B(0, C5w) and Vw(x) is

bounded.
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which again determines 2 intersection circles Zrep ⊂ B(0, w), parallel
to the circles Za ∪ Zb. Again, we consider the generic case that Zrep is
distinct from Za ∪ Zb, leaving the other cases to the reader, (13).

13 If Za and Zb are distinct, with Zrep = Za, then b2 − 4ac = 0 and a = 0, so
b = 0, so that Za and Zb have an intersection, which is a contradiction. Similarily,
if Za and Zb are distinct, with Zrep = Zb, then b2 − 4ac = 0 and b = 0, so ac = 0,
and c = 0, the blow up behaviour along Za being similar to the generic case. If
Zb ⊂ Za with Zb ⊂ Zrep, then, we must have that a = b = 0, and;

−4w2(w2−c2t2−|r|2)
−8c2t2−4(w2−c2t2−|r|2) =

w2+/w2
√

1− 4(1−c2t2)

w2

2

which, for fixed {t, |r|} has at most 8 solutions for w, (∗). Suppose that the
spheres δB(x,−ct + |x − r|) and δB(0, w) share a tangent plane at px,r, for some
0 < w < s, so that the line l0,px,r passes through x. Without loss of generality,

suppose that |px,r| < |x| px,r =
|px,r|
|x| x. Assume x 6= r and consider the function

fx defined, for small λ by;

fx(λ) = −ct+ |x+ λx− r| − |x+ λx− px,r|

= −ct+ |x+ λx− r| − |(1 + λ)x− |px,r||x| x|

= −ct+ |x+ λx− r| − (1 + λ− |px,r||x| )|x|

= −ct+ |x+ λx− r| − (1 + λ)|x|+ |px,r|

= −ct+[((1+λ)x1−r1)2+((1+λ)x2−r2)2+((1+λ)x3−r3)2]
1
2−(1+λ)|x|+|px,r|

= −ct+ gx(λ)− (1 + λ)|x|+ |px,r|

in coordinates x = (x1, x2, x3), r = (r1, r2, r3), with fx(0) =
−ct+ |x− r| − |x− px,r| = 0, gx(0) = |x− r|. Then;

df
dλ = 1

2gx(λ)
(2((1 +λ)x1− r1)x1 + 2((1 +λ)x2− r2)x2 + 2((1 +λ)x3− r3)x3)−|x|

= 1
gx(λ)

< (1 + λ)x− r, x > −|x|

= 1
gx(λ)

[(1 + λ)|x|2− < r, x >]− |x|

so that df
dλ (0) = 0

iff

|x|2− < r, x >=< x, x− r >= |x|||x− r|

which implies that r ∈ l0,x. Excluding this solution, as fx is analytic, by

O-minimality, for ε > 0, we can assume that fx = 0 ∩ [−ε, ε] is a finite union of
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points and intervals. No interval can contain 0, as then df
dλ (0) = 0, so that fx 6= 0

on some set of the form (−ε, ε) \ {0}. In particularly, this implies that we can
obtain tangency of δB(x1,−ct + |x1 − r|) with δB(0, px,r,1) for mobile points x1
and px,r,1 along the line l0,px,r . If x = r or r ∈ l0,x, we either have |x| < |r|,
in which case, it is clear we can move x along l0,x and obtain mobile points, or

|x| > |r|, in which case we can move x through r towards 0, and eventually obtain
mobile points, (∗∗). From (∗∗), the possible 0 < w < s can represent arcs with the
property that;

B(x,−ct+ |x− r|) intersects B(0, s)

and such that the spheres δB(x,−ct+ |x−r|) and δB(0, w) share a tangent plane
at px,r, see Lemma 0.51, is not discrete. It follows that the case (∗) accounts for
a set of measure zero in the final parametrisation and doesn’t effect the finiteness
of the integral. When w − ct = |r|, y = w, r = (w − ct) y|y = (1 − ct

w )y, (∗ ∗ ∗), we

obtain, as above, that there exist solutions to Vw(x for |x| ≥ |r|, x ∈ l0,y. This

corresponds to the case a(y � r) = b(y � r) = c(y � r) = 0, where;

a(z) = 4c2t2w2 − (2z − 2w2)2

b(z) = −8c2t2z − 2(2z − 2w2)(w2 − c2t2 − |r|2)

c(z) = 4c2t2|r|2 − (w2 − c2t2 − |r|2)2

We have from (∗ ∗ ∗) that;

y � r = y � (1− ct
w )y

= (1− ct
w )|y|2

= (1− ct
w )w2

= w(w − ct)

so that;

a(y � r) = a(w(w − ct))

= 4c2t2w2 − (2w(w − ct)− 2w2)2

= 0

b(y � r) = b(w(w − ct))

= −8c2t2w(w − ct)− 2(2w(w − ct)− 2w2)(w2 − c2t2 − |r|2)
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Assuming b2 − 4ac ≥ 0, we obtain that γ1 = 0 or γ2 = 0 iff;

√
b2 − 4ac = b or

√
b2 − 4ac = −b iff (b2 − 4ac) = b2

iff 4ac = 0

iff a = 0 or c = 0

iff 4c2t2w2 − (2y � r− 2w2)2 = 0 or 4c2t2|r|2 − (w2 − c2t2 − |r|2)2 = 0

iff y � r =
w2+/−w2

√
1− 4(1−c2t2)

w2

2
or 4c2t2r2 − (w2 − c2t2 − r2)2 = 0

iff y � r =
w2+/−w2

√
1− 4(1−c2t2)

w2

2
or r = |w + ct| or r = w − ct

iff Case 1. y � r =
w2+/−w2

√
1− 4(1−c2t2)

w2

2

or Case 2. r = |w + ct| or r = w − ct

In Case 2, for a 6= 0, we obtain exactly 2 real roots −b
a

and 0, uni-
formly in y.

In Case 1, with b 6= 0, we have, using Newton’s expansion of (1+y)
1
2 ,

for |y| < 1, that;

lima→0
−b+
√
b2−4ac
2a

= lima→0
−b+b(1− 4ac

b2
)
1
2

2a

= lima→0

−b+b(1+ y
2
+
∑∞
n=2

(−1)n−1(2n−2)!

22n−1n!(n−1)!
yn)

2a
|y=− 4ac

b2

= −8c2t2w(w − ct)− 2(2w(w − ct)− 2w2)(w2 − c2t2 − (w − ct)2)

= 0

c(y � r) = c(w(w − ct))

= 4c2t2(w − ct)2 − (w2 − c2t2 − (w − ct)2)2

= 0
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= lima→0

b(− 4ac
b2

)

2
+b

∑∞
n=2

(−1)n−1(2n−2)!

22n−1n!(n−1)!
(− 4ac

b2
)n

2a

= lima→0
1
2
[−2c

b
+
∑∞

n=2
(−1)2n−1(2n−2)!
22n−1n!(n−1)!

(4c)nan−1

b2n−1 ]

= −c
b

(∗)

and, with b 6= 0;

lima→0
−b−
√
b2−4ac
2a

= lima→0
−b−b(1− 4ac

b2
)
1
2

2a

= lima→0

−b−b(1+ y
2
+
∑∞
n=2

(−1)n−1(2n−2)!

22n−1n!(n−1)!
yn)

2a
|y=− 4ac

b2

= lima→0

−2b−
b(− 4ac

b2
)

2
−b

∑∞
n=2

(−1)n−1(2n−2)!

22n−1n!(n−1)!
(− 4ac

b2
)n

2a

= lima→0[− b
a

+ c
b
− 1

2

∑∞
n=2

(−1)2n−1(2n−2)!
22n−1n!(n−1)!

(4c)nan−1

b2n−1 ]

= lima→0(− b
a

+ c
b
) (∗∗), (14)

Letting pi,a denote the centres of the blow up circle Si,a, 1 ≤ i ≤ 2,

and qi,a = l0,pi,a ∩ δB(0, w), if y ∈ Si,a, we let Si,y,a denote the great

circle passing through y and qi,a. Then, without loss of generality, we
have that the region;

14 This is a first order approximation for Vw(x). We introduce the angle θ below
and consider the leading term − b

a which blows up as a → 0. Strictly speaking,

letting d = − 1
2 [
∑∞
n=2

(−1)2n−1(2n−2)!
22n−1n!(n−1)!

(4c)nan−1

b2n−1 ], we have that;

− b
a + c

b + d = − b
a (1− ca

b2 −
da
b )

If we define bnew(θ) = b(θ)(1− ca
b2 −

da
b )(θ), with a(0) = 0, so that;

bnew(0) = b(0)

b′new(θ) = b′(θ)(1− ca
b2 −

da
b )(θ) + b(θ)( 2ca

b3 −
c′a
b2 −

ca′

b2 + da
b2 −

d′a
b −

da′

b )

b′new(0) = b′(0) + b(0)(− c(0)a
′(0)

b2(0) −
d(0)a′(0)
b(0) )

= b′(0)− c(0)a′(0)
b(0) − d(0)a′(0)

the proof goes through replacing the instances of {b(0), b′(0)} with
{bnew(0), b′new(0)}, which are all finite.
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a > 0 ∩B(0, w) =
⋃
y∈S1,a

(S1,y,a ∩ a > 0)

a < 0 ∩B(0, w) =
⋃
y∈S1,a

(S1,y,a ∩ a < 0)

with a < 0 situated between the intersections S1,a and S2,a, a > 0
situated above and below the intersections S1,a and S2,a on δB(0, w),
and blow ups of opposite signs, see footnote 13, along S1,y,a at y
and the corresponding opposite point y′ ∈ S1,y,a ∩ S1,a and points
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y′′, y′′′ ⊂ S1,y,a ∩ S2,a, (15).

15 In this case, Cone1,a and Cone2,a have the following asymptotic property.
Fix y ∈ S1,a, and form the plane Q1,y,a determined by l0,y and the tangent to the

great circle S1,y,a at y, so that S1,y,a ⊂ Q1,y,a. For a fixed y′ ∈ S1,y,a, \y, let θ
denote the angle between l0,y and l0,y′ in the plane Q1,y,a and let a(θ) = a(y′),

b(θ) = b(y′). Considering the first order approximation − b
a for Vw(x) along S1,y,a,

defining Vw,1(x), we have that |x| = − b(θ)wa(θ) . Let pr∗ be the orthogonal projection

from Q1,y,a onto l0,y, and let pr∗(x) ∈ l0,y be the corresponding point, so that

pr∗(x) is the nearest point to x on l0,y, with x = |x − pr∗(x)| and R = |pr∗(x)|.
By elementary trigonometry, assuming θ > 0, we have that;

x = | − b(θ)wsin(θ)
a(θ) |, R = | − b(θ)wcos(θ)

a(θ) |, x
R = tan(θ) (∗)

As the circles S1,a and S2,a are distinct and non-empty, we can factor a as
(y � r − α)(y � r − β), where S1,a is defined by (y � r = α) ∩ δB(0, w), S2,a is defined
by (y � r = β) ∩ δB(0, w). Rotating coordinates so that y is situated at (w, 0, 0), y′

at (wcos(θ), wsin(θ), 0), we have that;

wr1 − α = 0

where r = (r1, r2, r3), and, without loss of generality, we can assume that r2 6= 0,.
This follows as if we rotate y to (w, 0, 0), y′ to (wcos(θ), wsin(θ), 0), with r2 = 0,
rotate y to (0, w, 0) and y′ to (0, wcos(θ), wsin(θ)) with r3 = 0, and rotate y to
(0, 0, w) and y′ to (wsin(θ), 0, wcos(θ)) with r1 = 0, then r ∈ l0,y, which we can ex-
clude, as it accounts for a set of measure zero in the final integration. It follows that;

a(θ) = (wcos(θ)r1 + wsin(θ)r2 − α)γ(θ) = (wαcos(θ)w + wsin(θ)r2 − α)γ(θ)

= (α(cos(θ)− 1) + wsin(θ)r2)γ(θ) (∗∗)

with γ(0) 6= 0, so that, from (∗),(∗∗);

cos(θ) = | − a(θ)R
b(θ)w |

= | − R
b(θ)w ||[(α(cos(θ)− 1) + wsin(θ)r2)γ(θ)]| (L)

so that, using the power series expansions cos(θ) = 1+O(θ2), sin(θ) = θ+O(θ3);

1 +O(θ2) = − R
b(θ)w (αO(θ2) + wr2θ +O(θ3)γ(θ)

and, rearranging;

θ = |−b(0)Rr2
|( 1
|γ(0)| +O(θ)) (D)

so θ = O( 1
R ) (∗ ∗ ∗)
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so that, from (∗), (∗ ∗ ∗);

tan(θ) = O( 1
R )

x = Rtan(θ) = O(1)

and, as |x|cos(θ) = R = |pr∗(x)|, we have that;

|x| − |pr∗(x)| = R
cos(θ) −R

= R(1 + θ2

2 +O(θ4))−R

= O(θ2)

= O( 1
R2 )

From (D);

θ = |−b(0)Rr2
|( 1
|γ(0)| +O(θ)) (D)

= | −b(0)γ(0)Rr2
|(1 +O(θ))

so that;

θ(1 +O(θ))−1 = θ(1 +O(θ)) = | −b(0)γ(0)Rr2
|

|| −b(0)γ(0)Rr2
| − θ| ≤ |θ(1 +O(θ))− θ| = O(θ2) = O( 1

R2 )

so that;

|| − b(0)
θγ(0)r2

| −R| ≤ O( 1
R2 )O(Rθ ) = O( 1

R2 )O(R2) = O(1)

We have that, using (L);

x = Rtan(θ) = | − wb(θ)sin(θ)
[(α(cos(θ)−1)+wsin(θ)r2)γ(θ)] |

and using L’Hopital’s rule;

limθ→0x = | − limθ→0(wb(θ)sin(θ))
′

limθ→0[(α(cos(θ)−1)+wsin(θ)r2)γ(θ)]′ |

= | − limθ→0(wb
′(θ)sin(θ)+wb(θ)cos(θ))

limθ→0[(−αsin(θ)+wcos(θ)r2)γ(θ)+((α(cos(θ)−1)+wsin(θ)r2))γ′(θ)] |

= | − wb(0)
wr2γ(0)

|

= | − b(0)
r2γ(0)

|

so that the line formed by the translation of l0,y by a perpendicular distance of

| − b(0)
r2γ(0)

| in the plane Q1,y,a is actually an asymptote. Moreover, as x is analytic
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If y ∈ S1,a is fixed, with corresponding {S1,y,a, Q1,y,a}, then as b 6= 0
along C1,a, we can assume that for small enough |θ| < δ, see footnote

15, |b(θ)| > ε, uniformly in y ∈ S1,a, so that | −c
b(θ)
| ≤ |c|

ε
, and the root

found in (∗) has a maximum value M , varying |θ| < δ and y ∈ S1,a.

For the root x(θ) = − b(θ)
a(θ)

+ c
b(θ)

w, defined by (∗∗), we can assume that

in θ, x− | b(0)r2γ(0)
| = O(θ) = O( 1

R ).

We also have, using (L), and L’Hopital’s rule twice, that;

|limθ→0(− b(0)
θr2γ(0)

−R)|

= |limθ→0|(− b(0)
r2θγ(0)

|+ | b(θ)wcos(θ)
[α(cos(θ)−1)+wsin(θ)r2]γ(θ) |)|

= limθ→0|−b(0)γ(θ)[α(cos(θ)−1)+wsin(θ)r2]+b(θ)wr2cos(θ)θγ(0)r2γ(0)γ(θ)θ[α(cos(θ)−1)+wsin(θ)r2] |

= limθ→0|−b(0)γ
′(θ)[α(cos(θ)−1)+wsin(θ)r2]−b(0)γ(θ)[−αsin(θ)+wcos(θ)r2]+b′(θ)wr2γ(0)cos(θ)θ+b(θ)wr2γ(0)[cos(θ)−θsin(θ)]

γ(0)γ′(θ)θ[α(cos(θ)−1)+wsin(θ)r2]+γ(0)γ(θ)[α(cos(θ)−1)+wsin(θ)r2−αθsin(θ)+wcos(θ)θr2] |

= limθ→0|E(θ)
F (θ) |

where;

E(θ) = −b(0)γ′′(θ)[α(cos(θ)− 1) + wsin(θ)r2]− 2b(0)γ′(θ)[−αsin(θ)

+wcos(θ)r2]− b(0)γ(θ)[−αcos(θ)− wsin(θ)r2] + b′′(θ)wr2γ(0)θcos(θ)

+2b′(θ)wr2γ(0)[cos(θ)− θsin(θ)] + b(θ)wr2γ(0)[−2sin(θ)− θcos(θ)]

F (θ) = γ(0)γ′′(θ)θ[α(cos(θ)− 1) + wsin(θ)r2] + γ(0)γ′(θ)[α(cos(θ)− 1)

+wsin(θ)r2] + γ(0)γ′(θ)θ[−αsin(θ) + wcos(θ)r2] + γ(0)γ′(θ)[α(cos(θ)− 1)

+wsin(θ)r2 − αθsin(θ) + wcos(θ)θr2] + γ(0)γ(θ)[−2αsin(θ) + 2wcos(θ)r2

−αθcos(θ)− wsin(θ)θr2]

so that;

|limθ→0(− b(0)
r2θγ(0)

−R)| = |−2b(0)γ
′(0)wr2+b(0)γ(0)α+2b′(0)wr2γ(0)

2γ(0)2wr2
|

It follows, as −b(0)
r2θγ(0)

−R is analytic in θ, that;

|| −b(0)r2θγ(0)
| −R| − |−2b(0)γ

′(0)wr2+b(0)γ(0)α+2b′(0)wr2γ(0)
2γ(0)2wr2

| = O(θ) = O( 1
R )
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for sufficiently small δ, |x| > Mw, and we can unambigiously define
x(θ)opp = x(−θ), (16).

Returning to the case notation above, we have that, Case 3, a = b =

0 iff (1− c2t2 − r2) = 8c2t2y�r
4w2−4y�r

iff (1− c2t2 − r2) =
8c2t2(

w2+/−w2
√

1− 4(1−c2t2)
w2

2
)

4w2−4(
w2+/−w2

√
1− 4(1−c2t2)

w2
2

)

corresponding to specific values of w, a situation considered in the
footnote above. We have that Vw(x) is bounded over one of the compo-
nents of Za and exhibits a blow up behaviour over the other component.

In Case 1, not Case 3, as we have seen in the above footnotes, we
obtain two components, with one component having a pair of infinite
opposite branches parallel to the lines in the asymptotic cones, and a
bounded component corresponding to −c

b
over the singular locus Za.

In Case 2, we again, by a similar calculation to (∗), obtain two com-
ponents, with one component having a pair of infinite opposite branches
parallel to the lines in the asymptotic cones, and a bounded component
corresponding to the root 0.

�

Lemma 0.52. Cancellation along asymptotes

We have that, along the line l0,y,sh, the integrals;

(i) 1
4πε0

[ 1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,−ct+|r−r′|)(t−

|r−r′|
c

)(∂
2ρ
∂t2

)(y, 0)]dS(y)
(r1−r′1)
c|r−r′|2

+ 1
4πε0

[ 1

4πc2(−t− |r−r
′
opp|
c

)2

∫
δB(r′opp,ct+|r−r′opp|)

(−t− |r−r
′
opp|
c

)(∂
2ρ
∂t2

)(y, 0)]dS(y)
(r1−r′1,opp)
c|r−r′opp|2

16 By the calculation in footnote 15, we have that {x, xopp} vary as O( 1
θ ) with

the angle θ. Moreover, by Lemma 0.55, for sufficiently small θ, if x corresponds to
−ct, then xopp corresponds to ct. By the definition of V 1

w(x), B(x,−ct + |x − r)
and B(xopp, ct + |xopp − r) pass through {y′, y′′} ⊂ B(0, w), touching δB(0, w),
with |y − y′| = 2w|θ| = O( 1

R ) and centred on ”oppposite” sides of B(0, w). As the
boundaries δB(x,−ct + |x − r) and δB(xopp,−ct + |xopp − r) limit to the tangent
planes of y′ and y′′ for sufficiently large {x, xopp} and the points y′ and y′′ approach
each other as we increase R, this will be enough to obtain cancellation in the
indefinite integral, following the method above. Moreover, by the calculation in
footnote 15, we can assume that x and xopp in the limit as θ → 0 approach the
same line consisting of a bounded translate of the line l0,y in the plane Q1,y,a
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(ii) 1
4πε0

[ 1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,−ct+|r−r′|)(

∂ρ
∂t

(y, 0))]dS(y)
(r1−r′1)
c|r−r′|2

+ 1
4πε0

[ 1

4πc2(−t− |r−r
′
opp|
c

)2

∫
δB(r′opp,ct+|r−r′opp|)

(∂ρ
∂t

(y, 0))]dS(y)
(r1−r′1,opp)
c|r−r′opp|2

(iii) 1
4πε0

[ 1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0)�(y−r′)]dS(y)

(r1−r′1)
c|r−r′|2

+ 1
4πε0

[ 1

4πc2(−t− |r−r
′
opp|
c

)2

∫
δB(r′opp,ct+|r−r′opp|)

D(∂ρ
∂t

)(y, 0)�(y−r′opp)]dS(y)
(r1−r′1,opp)
c|r−r′opp|2

are O( 1
R3 ), with R = |r′|

Proof. Using the notation in Lemma 0.51, we consider the restriction
of Vw(x) to a cover of S1,y,a, for y ∈ S1,a. For r′′(θ) ∈ Vw(x)|S1,y,a

, let
r′ be the nearest point to r′′ on the asymptote l0,y,sh, where l0,y,sh is

a shift of l0,y by the perpendicular distance cy = | −b(0)
r2γ(0)

| in the plane

S1,y,a. Then, by the result of Lemma 0.51, we have, for any 0 < ε < 1,
that;

|r′′(θ)− r′(θ)| < ε = O( 1
R

)

for sufficiently small θ, with |r′(θ) − vy| = R and |vy| = |cy| and
|r′′(θ)| − |pr∗(r′′(θ))| < E

R2 , where |pr∗(r′′(θ))| = |r′(θ) − vy| = R, so
that, for sufficiently small θ(R) or large R(θ);

R− 1 < R− E
R2 < |r′′(θ)| < R + E

R2 < R + 1

R− 2 < R− 1− ε < |r′(θ)| < R + 1 + ε < R + 2

We also have that, by the result of Lemma 0.51, that, for sufficiently
small θ(R), 0 < ε′ < 1;

|r′′(θ)| − |( −b(0)
θr2γ(0)

)| = |r′′(θ)| − |pr∗(r′′(θ))|+ |pr∗(r′′(θ))| − |( −b(0)
θr2γ(0)

)|

< E
R2 + ε′ + εy

= E
R2 +O( 1

R
) + εy

< 2ε′ + εy

where εy = |−2b(0)γ
′(0)wr2+b(0)γ(0)α+2b′(0)wr2γ(0)

2γ(0)2wr2
|

and similarly;
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|r′′(θ)opp| − |( −b(0)
−θr2γ(0))|

= |r′′(θ)| − |pr∗(r′′(θ)opp)|+ |pr∗(r′′(θ)opp)| − |( b(0)
θr2γ(0)

)|

< E
R2 + ε′ + εy

< 2ε′ + εy

so that;

|r′′(θ)| − |r′′(θ)opp| = |r′′(θ)| − |( b(0)
θr2γ(0)

)|+ |( b(0)
θr2γ(0)

)| − |r′′(θ)opp|

≤ 4ε′ + 2εy

= O( 1
R

) + 2εy

and;

|r′(θ)|−|r′(θ)opp| = (|r′(θ)|−|r′′(θ)|)+(|r′′(θ)|−|r′′(θ)opp|)+(|r′′(θ)opp|−

|r′(θ)opp|)

≤ (|r′(θ)− r′′(θ)|) + (|r′′(θ)| − |r′′(θ)opp|) + (|r′′(θ)opp − r′(θ)opp|)

≤ 4ε′ + 2εy + 2ε

= O( 1
R

) + 2εy

In particularly, as, by Pythagoras’ Theorem;

|r′(θ)|2 + |cy|2 = |pr∗(r′(θ))|2

|r′(θ)opp|2 + |cy|2 = |pr∗(r′(θ)opp)|2

we have;

= (|pr∗(r′(θ))|2 − |cy|2)
1
2 − (|pr∗(r′(θ)opp)|2 − |cy|2)

1
2

= |r′(θ)| − |r′(θ)opp|
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≤ 4ε′ + 2ε+ 2εy

so that, using Newton’s expansion;

|pr∗(r′(θ))|(1− |cy |2
|pr∗(r′(θ))|2 )

1
2 − |pr∗(r′(θ)opp)|(1− |cy |2

|pr∗(r′(θ)opp)|2 )
1
2

≤ 4ε′ + 2ε+ 2εy

|pr∗(r′(θ))| − |pr∗(r′(θ)opp)| ≤ 4ε′ + 2ε+O( 1
R2 ) + 2εy

and we can assume that for sufficiently small θ;

pr∗(r′(θ)) = −pr∗(r′(θ)opp) + ε+ wy

with |ε| < 4ε′ + 3ε, |wy| = 2εy, and;

−r′(θ) = −(vy + pr∗(r′(θ)))

= −vy − pr∗(r′(θ))

= −vy + pr∗(r′(θ)opp)− ε− wy

= −vy + (r′(θ)opp − vy)− ε− wy

= r′(θ)opp − 2vy − ε− wy

= r′(θ)opp − (2vy + wy) +O( 1
R

)

' r′(θ)opp − (2vy + wy)

For the asymptote l0,y,sh, with r′ ∈ l0,y,sh, |r′| = R, sufficiently large,
there exists a unique r′′ ∈ Vw(x), with pr∗(r′′) = r′, where pr1 is the
orthogonal projection onto l0,y,sh in the plane Q1,y,a. If |pr∗(r′′)| = S,

then |r′′ − r′| = O( 1
S

), |r′′ − pr∗(r′′)| = O( 1
S2 ), so that;

S − 1
S

+O( 1
S2 ) ≤ R ≤ S + 1

S
+O( 1

S2 )

so that |r′′ − r′| = O( 1
R

) = O( 1
S

). We have that;
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δB(r′,−ct+ |r− r′|)∩B(0, s) = (δB(r′′,−ct+ |r− r′|) + (r′− r′′))∩
B(0, s)

' (δB(r′′,−ct+ |r − r′′|) + (r′ − r′′)) ∩B(0, s)

with a radial adjustment of at most |r′−r′′|, and δB(r′′,−ct+|r−r′′|)
passes through y′′ with |y′′ − y| = wθ = O( 1

S
) = O( 1

R
). It follows

that δB(r′,−ct + |r − r′|) passes through y′ with |y′′ − y′| = O( 1
R

),

|y − y′| = O( 1
R

). Similarly, we have that for the pair {r′opp, r′′opp};

r′opp = (2vy + wy)− r′ +O( 1
S

)

= (2vy + wy)− r′ +O( 1
R

)

= 2zy − r′ +O( 1
R

)

where zy = 1
2
(2vy +wy), so that |r′′opp− r′opp| = O( 1

R
) = O( 1

S
). More-

over;

δB(r′opp, ct+ |r− r′opp|)∩B(0, s) = (δB(r′′opp, ct+ |r− r′opp|) + (r′opp−
r′′opp)) ∩B(0, s)

' (δB(r′′opp, ct+ |r − r′′opp|) + (r′opp − r′′opp)) ∩B(0, s)

with a radial adjustment of at most |r′opp−r′′opp|, and δB(r′′opp, ct+|r−
r′′opp|) passes through y′′opp with |y′′opp − y| = wθ = O( 1

S
) = O( 1

R
). It fol-

lows that δB(r′opp, ct+ |r−r′opp|) passes through y′opp with |y′′opp−y′opp| =
O( 1

R
), |y − y′opp| = O( 1

R
).

We have that;

(i). Using the facts that |∂ρ
∂t
|0| ≤M on B(0, s), the surface measure

of δB(r′,−ct+ |r−r′|)∩B(0, s) is at most 2πs2, r′opp = 2zy−r′+O( 1
R

),
we have, for sufficiently large R = |r′|, that;

| 1
4πε0

[ 1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,−ct+|r−r′|)(t−

|r−r′|
c

)(∂
2ρ
∂t2

)(y, 0)]dS(y)
(r1−r′1)
c|r−r′|2

+ 1
4πε0

[ 1

4πc2(−t− |r−r
′
opp|
c

)2

∫
δB(r′opp,ct+|r−r′opp|)

(−t− |r−r
′
opp|
c

)(∂
2ρ
∂t2

)(y, 0)]dS(y)
(r1−r′1,opp)
c|r−r′opp|2

|

= | 1
4πε0

[ 1

4πc2(t− |r−r
′|

c
)

(r1−r′1)
c|r−r′|2

∫
δB(r′,−ct+|r−r′|)(

∂2ρ
∂t2

)(y, 0)]dS(y)
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+ 1
4πε0

[ 1

4πc2(−t− |r−r
′
opp|
c

)

(r1−r′1,opp)
c|r−r′opp|2

∫
δB(r′opp,ct+|r−r′opp|)

(∂
2ρ
∂t2

)(y, 0)]dS(y)|

= |[ 1
4πε0

[ 1

4πc2(t− |r−r
′|

c
)

(r1−r′1)
c|r−r′|2 + 1

4πε0
1

4πc2(−t− |r−r
′
opp|
c

)

(r1−r′1,opp)
c|r−r′opp|2

]
∫
δB(r′,−ct+|r−r′|)(

∂2ρ
∂t2

)(y, 0)]dS(y)

+[ 1
4πε0

1

4πc2(−t− |r−r
′
opp|
c

)

(r1−r′1,opp)
c|r−r′opp|2

](
∫
δB(r′opp,ct+|r−r′opp|)

(∂
2ρ
∂t2

)(y, 0)dS(y)

−
∫
δB(r′,−ct+|r−r′|)(

∂2ρ
∂t2

)(y, 0)dS(y))|

= | 1
16π2ε0c3

[
(r1−r′1)((−t−

|r−r′opp|
c

)|r−r′opp|2−(t−
|r−r′|
c

)|r−r′|2)

(t− |r−r
′|

c
)|r−r′|2(−t− |r−r

′
opp|
c

)|r−r′opp|2
+

(r1−r′1)+(r1−r′1,opp)

(−t− |r−r
′
opp|
c

)|r−r′opp|2
]∫

δB(r′,−ct+|r−r′|)(
∂2ρ
∂t2

)(y, 0)]dS(y) + [ 1
4πε0

1

4πc2(−t− |r−r
′
opp|
c

)

(r1−r′1,opp)
c|r−r′opp|2

]

(
∫
δB(r′opp,ct+|r−r′opp|)

(∂
2ρ
∂t2

)(y, 0)dS(y)−
∫
δB(r′,−ct+|r−r′|)(

∂2ρ
∂t2

)(y, 0)dS(y))|

= | 1
16π2ε0c3

[
(r1−r′1)((−t−

|r+r′−2p
d
|

c
)|r+r′−2zy+O( 1

R
)|2−(t− |r−r

′|
c

)|r−r′|2)

(t− |r−r
′|

c
)|r−r′|2(−t−

|r+r′−2zy+O( 1
R

)|
c

)|r+r′−2zy+O( 1
R
)|2

+
2r1−2zy,1+O( 1

R
)

(−t−
|r+r′−2zy+O( 1

R
)|

c
)|r+r′−2zy+O( 1

R
)|2

]∫
δB(r′,−ct+|r−r′|)(

∂2ρ
∂t2

)(y, 0)]dS(y)+[ 1
4πε0

1

4πc2(−t−
|r+r′−2zy+O( 1

R
)|

c
)

(r1+r′1−2zy,1+O( 1
R
))

c|r+r′−2zy+O( 1
R
)|2 ]

(
∫
δB(r′opp,ct+|r−r′opp|)

(∂
2ρ
∂t2

)(y, 0)dS(y)−
∫
δB(r′,−ct+|r−r′|)(

∂2ρ
∂t2

)(y, 0)dS(y))|

≤ Ms2

8πε0c3
| (r1−r

′
1)((−t−

|r+r′−2zy+O( 1
R

)|
c

)|r+r′−2zy+O( 1
R
)|2−(t− |r−r

′|
c

)|r−r′|2)

(t− |r−r
′|

c
)|r−r′|2(−t−

|r+r′−2zy+O( 1
R

)|
c

)|r+r′−2zy+O( 1
R
)|2

|

+ Ms2

8πε0c3
| 2r1−2zy,1+O( 1

R
)

(t−
|r+r′−2zy+O( 1

R
)|

c
)|r+r′−2zy+O( 1

R
)|2
|+| 1

4πε0
1

4πc2(−t−
|r+r′−2zy+O( 1

R
)|

c
)

(r1+r′1−2zy,1+O( 1
R
))

c|r+r′−2zy+O( 1
R
)|2 |

|
∫
δB(r′opp,ct+|r−r′opp|)

(∂
2ρ
∂t2

)(y, 0)dS(y)−
∫
δB(r′,−ct+|r−r′|)(

∂2ρ
∂t2

)(y, 0)dS(y)|

≤ Ms2

πε0c3|r′|3 + Ms2

2πε0c4|r′|3 + 1
16π2ε0c3

1

|(−t−
|r+r′−2zy+O( 1

R
)|

c
)||r+r′−2zy+O( 1

R
)|

|
∫
δB(r′opp,−ct+|r−r′opp|)

(∂
2ρ
∂t2

)(y, 0)dS(y)−
∫
δB(r′,−ct+|r−r′|)(

∂2ρ
∂t2

)(y, 0)dS(y)|

(P )

where, we follow the method in (ii) below, noting the O(|r′|3) term

cancels in the first long term to obtain O(|r′|)O(|r′|2)
O(|r′|6) = 1

O(|r′|3) .

Change coordinates, so that the azimuth angle θ of the sphere δB(r′,−ct+
|r − r′|) is centred on the line passing through {r′, y′}, giving coordi-
nates;
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r′ + sin(θ)cos(φ)x+ sin(θ)sin(φ)y + cos(θ)(y′ − r′)

(0 ≤ θ ≤ π,−π ≤ φ ≤ π)

for a choice of orthogonal vectors {x, y, y′ − r′} with modulus −ct+
|r−r′|. Similarly, choose the azimuth angle θopp of the sphere δB(r′opp, ct+
|r− r′opp|) is centred on the line passing through {r′opp, y′opp}, giving co-
ordinates;

r′ + sin(θopp)cos(φopp)xopp + sin(θopp)sin(φopp)yopp + cos(θopp)(y
′
opp−

r′opp)

(0 ≤ θopp ≤ π,−π ≤ φopp ≤ π)

for a choice of orthogonal vectors {xopp, yopp, y′opp− r′opp} with modu-
lus ct+ |r− r′opp|. We have, for points {q′, q′opp} of intersection between

B(0, s) and δB(r′,−ct+|r−r′|), B(0, s) and δB(r′opp, ct+|r−r′opp|) that;

θ(q′) ' sin(θ(q′)) ≤ 2s
−ct+|r−r′|

θopp(q
′
opp) ' sin(θopp(q

′
opp)) ≤ 2s

ct+|r−r′opp|
(TT )

Let {m,m′,m′opp} be perpendicular lines to the asymptotic line l

containing {r′, r′opp} with centre zy +O( 1
R

), passing through the points
{y, y′, y′opp}, with p = m ∩ l, p′ = m′ ∩ l, p′opp = m′opp ∩ l. Let
{P, P ′, P ′opp} be planes passing through {y, y′, y′opp}, perpendicular to
the lines formed by translating l by the vectors {y′ − p′, y′opp − p′opp}
respectively. Let v = |y − p|, v′ = |y′ − p′|, v′opp = |y′opp − p′opp|,
k′ = |r′ − p′|, k′opp = |r′opp − p′opp, then by elementary trigonometry, the
angles {α′, α′opp} between the lines {l, ly′,r′} and {l, ly′opp,r′opp} are given
by;

α′ ' tan(α′) = v′

k′
= |y′−p′|
|r′−p′|

α′opp ' tan(α′opp) =
v′opp
k′opp

=
|y′opp−p′opp|
|r′opp−p′opp|

= O( 1
R

) (LM)

We have, for vectors {u, v, w}, that;

|u− w| ≥ |u− v| − |w − v|
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so that;

|r′ − p′| ≥ |r′ − zy| − |p′ − zy|

|r′opp − p′opp| ≥ |r′opp − zy| − |p′opp − zy|

= |r′ − zy +O( 1
R

)| − |p′opp − zy|

and, moreover;

|r′| − |zy| ≤ |r′ − zy| = |r′opp − zy +O( 1
R

)| ≤ |r′|+ |zy|

so that;

|r′ − zy| = O(R), |r′opp − zy| = O(R)

where R = |r′|, and, using (LM), α = O( 1
R

), α′ = O( 1
R

). Then, it
is clear that that the maximal distance between points q′ on the arc
δB(r′,−ct + |r − r′|) ∩ B(0, s) and the orthogonal projections pr2(q′)
onto the plane P ′ is at most α′s = O( 1

R
), and similarly, the maximal

distance between points q′opp on the arc δB(r′,= ct+ |r−r′opp|)∩B(0, s)

and the orthogonal projections pr2(q′opp) onto the plane P ′opp is at most

α′opps = O( 1
R

). Similarly, as the orthogonal distances between P ′ and

P ′opp is |y′ − y′opp| = O( 1
R

), we can, for sufficiently large R, choose
{x, y, xopp, yopp} compatibly, such that, uniformly;

|q′ − q′opp| = O( 1
R

) = ε(R)

for {q′, q′opp} defined by coordinates θ = θopp, φ = φopp with 0 ≤ θ ≤
max(θmax, θmax,opp), where;

θmax = max0≤φ≤2πθ(q
′) = O( 1

R
)

for q′ in B(0, s)∩ δB(r′,−ct+ |r− r′|), with coordinates {θ, φ}, and;

θmax,opp = max0≤φ≤2πθopp(q
′
opp) = O( 1

R

for q′opp inB(0, s)∩δB(r′opp, ct+|r−r′opp|), with coordinates {θopp, φopp}

It follows that, for sufficiently large R, using the surface measure
dS = r2sin(θ), the fact (TT ) and r2(1− cos(1

r
)) = O(1), and footnote
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5, for sufficiently large r;

|
∫
δB(r′opp,ct+|r−r′opp|)

(∂
2ρ
∂t2

)(y, 0)dS(y)−
∫
δB(r′,−ct+|r−r′|)(

∂2ρ
∂t2

)(y, 0)dS(y)|

≤ 2ε(R)|5(((∂
2ρ
∂t2

)0))|B(0,s)|2π2(ct+|r−r′opp|)2
∫ max(θmax,θmax,opp)
0

sin(θ)dθ

= 2ε(R)|5(((∂
2ρ
∂t2

)0))|B(0,s)|2π2(ct+|r−r′opp|)2(1−cos(max(θmax, θmax,opp)))

≤ Cε(R)

≤ D
|r′|

where {C,D} ⊂ R>0.

It follows from (P ), for sufficiently large r(ε), following the method
of (ii), that;

| 1
4πε0

[ 1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,−ct+|r−r′|)(t−

|r−r′|
c

)(∂
2ρ
∂t2

)(y, 0)]dS(y)
(r1−r′1)
c|r−r′|2

+ 1
4πε0

[ 1

4πc2(−t− |r−r
′
opp|
c

)2

∫
δB(r′opp,ct+|r−r′opp|)

(−t− |r−r
′
opp|
c

)(∂
2ρ
∂t2

)(y, 0)]dS(y)
(r1−r′1,opp)
c|r−r′opp|2

|

≤ Ms2

πε0c3|r′|3 + Ms2

2πε0c4|r′|3 + 1
16π2ε0c3

D
|r′|

1

|(−t−
|r+r′−2zy+O( 1

R
)|

c
)||r+r′−2zy |

≤ E1

|r′|3

where E1 ∈ R>0.

(ii). Using the facts that |∂ρ
∂t
|0| ≤M on B(0, s), the surface measure

of δB(r′,−ct+ |r−r′|)∩B(0, s) is at most 2πs2, r′opp = 2zy−r′+O( 1
R

),
we have, for sufficiently large R = |r′, that;

| 1
4πε0

[ 1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,−ct+|r−r′|)(

∂ρ
∂t

(y, 0))]dS(y)
(r1−r′1)
c|r−r′|2

+ 1
4πε0

[ 1

4πc2(−t− |r−r
′
opp|
c

)2

∫
δB(r′opp,ct+|r−r′opp|)

(∂ρ
∂t

(y, 0))]dS(y)
(r1−r′1,opp)
c|r−r′opp|2

|

≤ 1
4πε0c

2πMs2

4πc2(t− |r−r
′|

c
)2|r−r′|

+ 1
4πε0c

2πMs2

4πc2(−t− |r−r
′
opp|
c

)2|r−r′opp|

= Ms2

8πcε0(ct−|r−r′|)2|r−r′| + Ms2

8πcε0(−ct−|r1+r′|)2|r1+r′|

= Ms2

8πcε0|r−r′|3| ct
|r−r′|+1|2 + Ms2

8πcε0|r1+r′|3|( −ct
|r1+r′|

−1)|2
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≤ Ms2

4πcε0|r−r′|3 + Ms2

8πcε0|r1+r′|3

≤ 3Ms2

8πcε0|r′|3

= E2

|r′|3

where r1 = r − 2zy +O( 1
R

), E2 ∈ R>0.

(iii). We have that;

| 1
4πε0

[ 1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0) � (y − r′)]dS(y)

(r1−r′1)
c|r−r′|2

+ 1
4πε0

[ 1

4πc2(−t− |r−r
′
opp|
c

)2

∫
δB(r′opp,ct+|r−r′opp|)

D(∂ρ
∂t

)(y, 0)�(y−r′opp)]dS(y)
(r1−r′1,opp)
c|r−r′opp|2

|

= | 1
4πε0

[ 1

4πc2(t− |r−r
′|

c
)2

(−ct+|r−r′|)
∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0)�(z(y))]dS(y)

(r1−r′1)
c|r−r′|2

+ 1
4πε0

[ 1

4πc2(−t− |r−r
′
opp|
c

)2
(ct+ |r− r′opp|)

∫
δB(r′opp,−ct+|r−r′opp|)

D(∂ρ
∂t

)(y, 0) �

(zopp(y)]dS(y)
(r1−r′1,opp)
c|r−r′opp|2

|

≤ 1
4πε0c

(−ct+|r−r′)
4πc2(t− |r−r

′|
c

)2|r−r′|
|
∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0) � z(y)dS(y)|

+ 1
4πε0c

(ct+|r−r′opp)

4πc2(−t− |r−r
′
opp|
c

)2|r−r′opp|
|
∫
δB(r′opp,ct+|r−r′opp|)

D(∂ρ
∂t

)(y, 0)�zopp(y)dS(y)|

(NN)

Letting z0 = (y′−r′)
−ct+|r−r′| , so that |z0| = 1, R the surface measure of

δB(r′,−ct+ |r−r′|)∩B(0, s), using Lemma 0.49, following the method
of (i), we have that, for sufficiently large R;

|
∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0) � z(y)dS(y)|

= |
∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0)�(z(y)−z0)dS(y)+

∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0)�

z0dS(y)|

≤ |
∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0)�(z(y)−z0)dS(y)|+|[

∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0)]�

z0dS(y)|
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≤ Rmaxy∈B(0,s)|D(∂ρ
∂t

)(y, 0)||z(y)−z0|+|
∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0)dS(y)�

z0|

≤ RMmaxy∈B(0,s)|z(y)− z0|+ |z0||
∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0)dS(y)|

≤ RM |(1− cos(θmax), sin(θmax)|+ |
∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0)dS(y)

−
∫
P ′
D(∂ρ

∂t
)(y, 0)dS(y)|+ |

∫
P ′
D(∂ρ

∂t
)(y, 0)dS(y)|

=
√

2RM(1−cos(θmax))
1
2 +|

∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0)dS(y)−

∫
Pd
D(∂ρ

∂t
)(y, 0)dS(y)|

≤ RMFθmax +O( 1
R

)

≤ 2sH
−ct+|r−r′| + W

|r′|

= A1

−ct+|r−r′| + B1

|r′|

where {F,G,W,H,A1, B1} ⊂ R>0. Similarly, using P ′opp, there exist
{A2, B2} ⊂ R>0, such that

|
∫
δB(r′opp,ct+|r−r′opp|)

D(∂ρ
∂t

)(y, 0) � z(y)dS(y)| ≤ A2

ct+|r−r′opp|
+ B2

|1+r′opp|

= A2

ct+|r+r′−2zy+O( 1
R
)| + B2

|2zy−r′|+O( 1
R
)

so that, from (NN), following the method of (ii)

| 1
4πε0

[ 1

4πc2(t− |r−r
′|

c
)2

∫
δB(r′,−ct+|r−r′|)D(∂ρ

∂t
)(y, 0) � (y − r′)]dS(y)

(r1−r′1)
c|r−r′|2

+ 1
4πε0

[ 1

4πc2(−t− |r−r
′
opp|
c

)2

∫
δB(r′opp,ct+|r−r′opp|)

D(∂ρ
∂t

)(y, 0)�(y−r′opp)]dS(y)
(r1−r′1,opp)
c|r−r′opp|2

|

≤ 1
4πε0c

(−ct+|r−r′)
4πc2(t− |r−r

′|
c

)2|r−r′|
( A1

−ct+|r−r′| + B1

|1+r′|)

+ 1
4πε0c

(ct+|r−r′opp)

4πc2(−t− |r−r
′
opp|
c

)2|r−r′opp|
( A2

ct+|r+r′−2zy+O( 1
R
)| + B2

|1+2zy−r′+O( 1
R
)|)

= 1
16π2ε0c2

1

|(t− |r−r
′|

c
)||r−r′|

( A1

−ct+|r−r′| + B1

|1+r′|)

+ 1
16π2ε0c2

1

|−t− |r−r
′
opp|
c

||r−r′opp|
( A2

ct+|r+r′−2zy+O( 1
R
)| + B2

|1+2zy−r′+O( 1
R
)|)

≤ E3

|r′|3
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where E3 ∈ R>0 ((i), (ii), (iii))

�

Definition 0.53. For the blow up circles {S1,a, S2,a}, we define the cor-
responding shifted asymptotic cones {SCone(S1,a), SCone(S2,a)} by;

SCone(S1,a) =
⋃
y∈S1,a

l0,y,sh

SCone(S2,a) =
⋃
y∈S2,a

l0,y,sh

Fix base points y1,a ∈ S1,a and y2,a ∈ S2,a, the circles having centres
{c1,a, c2,a} with radii {r1,a, r2,a} and points on the circle {z1,a, z2,a}, such
that lci,a,yi,a and lci,a,zi,a are perpendicular for 1 ≤ i ≤ 2 then we can

define parameterisations β1 : [0, 2π)→ S1,a, β2 : [0, 2π)→ S2,a, by;

βi(γ) = ci,a + ri,a(yi,a − ci,a)cos(γ) + ri,a(zi,a − ci,a)sin(γ)

We define the maps {θ1, θ2}, θi : R × (0, 2π) → SCone(Si,a), 1 ≤
i ≤ 2, by;

θi(r, γ) = zβi(γ) + r
w
βi(γ)

where, for y ∈ Si,a, uy has modulus | −b(y)
r2γ(y)

| with uy ∈ S1,y,a perpen-

dicular to y ∈ l0,y.

Lemma 0.54. Cancellation along the shifted asymptotic cone and Vw(x)

Proof. Using the notation above, we have that, for i ∈ {1, 2}

(i). θi(0, γ) = uβi(γ)

(ii). θi(r, γ)opp = θi(−r, γ) +O(1
r
), for sufficiently large r > 0, (17).

17 As, by the above, if r′ = θi(r, γ), then;

r′opp = −(r′ − vβi(γ)) + wβi(γ) + vβi(γ) +O( 1
R );

= −r′ + (2vβi(γ) + wβi(γ)) +O( 1
r )

so that |r′ − zβi(γ)| = |r′opp − zβi(γ)|+O( 1
r )

where zβi(γ) = 1
2 (2vβi(γ) + wβi(γ)) and zβi(γ) ∈ l0,βi(γ),sh.
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(iii). There existRi ⊂ R>0 with θi diffeomorphisms outside [−Ri, Ri]×
[0, 2π), with the partial derivatives uniformly bounded.

(iv). Im(θ1|R\[−R1,R1]×[0,2π) ∩ Im(θ2|R\[−R2,R2]×[0,2π)) = ∅

(v). For r2 > r1 > Ri, |θi(r2, γ) − θi(r1, γ)| = r2 − r1, and for
r2 < r1 < −Ri, |θi(r2, γ)− θi(r1, γ)| = r1 − r2

It follows from (iii), (v) that, for 1 ≤ i ≤ 2, the pullbacks;

θi|∗R\[−R1,R1]×[0,2π)(dLeb|SCone(Si,a)) = |∂θ1
∂r
× ∂θ1

∂γ
|drdγ = f(r, γ)drdγ

has the property that f(r, γ) has order O(r), uniformly in γ and
f(r, γ) = f(−r, γ), for r ∈ R>0. For R ∈ R>0, with R > Ri, we can
define the regions SR,i ⊂ R× [α, β), by;

SR,i = {(r′, γ) : Ri ≤ |r′| ≤ R, γ ∈ [α, β)}

with corresponding regions θi(SR,i) ⊂ SCone(Si,a)

Then, by the calculation above, using fact (ii), Lemma 0.52 and the
mean value theorem, letting;

H+(r′) = ( 1
4πε0

ρ̇(r′,tr )̂r
|r−r′| )1

H−(r′) = ( 1
4πε0

ρ̇(r′,−tr )̂r
|r−r′| )1

where by tr we mean t − |r−r
′|

c
and by −tr we mean −t − |r−r

′|
c

, we
have that, for r > Ri;

|θ∗1H+(r, γ) + θ∗1H
−(−r, γ)|

= |H+(r′) +H−(r′opp +O(1
r
))|

≤ |H+(r′) +H−(r′opp)|+ |H−(r′opp +O(1
r
))−H−(r′opp)|

≤ C
r3

+ |H−(r′opp +O(1
r
))−H−(r′opp)|

= C
r3

+ |DH−(r′1) �O(1
r
)|
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≤ C
r3

+ E
r
| 5 (H−)(r′1)| (Y Y )

where |r′1 − r′opp| = O(1
r
)

We have that;

| 5 (H−)(r′1)| ≤
√

3max1≤i≤3(
∂H−

∂r′i
)|r′1

and;

∂H−

∂r′i
|r′1 = 1

4πε0
[[( ∂ρ̇

∂r′i
(r′,−tr) + ∂2ρ

∂2t
(r′,−tr) (ri−r

′
i)

c|r−ri| )]
r1−r′1
|r−r′|2 −

ρ̇(r′,−tr)
|r−r′|2 +

2ρ̇(r′,−tr)|r1−r′1|2
|r−r′|3 ]|r′1

so that, using the fact that |ρ̇| ≤M for some M ∈ R>0;

|∂H
∂r′i
|r′1| ≤ [

| ∂ρ̇
∂r′
i
(r′,−tr)|+| 1c

∂2ρ

∂2t
(r′,−tr)|

4πε0|r−r′| + M
4πε0|r−r′|2 + ρ̇(r′,−tr)

2πε0|r−r′| ]|r′1

We have that ρ obeys the wave equation 52(ρ) + 1
c2
∂2ρ
∂2t

= 0, de-

termined by the initial conditions {ρ0, (∂ρ∂t )0}, so that ρ̇ obeys the

same wave equation determined by the initial conditions {(∂ρ
∂t

)0,−c252

(ρ0)}, ∂2ρ
∂t2

obeys the wave equation determined by the initial conditions

{−c2 52 (ρ0),−c2 52 (∂ρ0
∂t

)}, ∂ρ̇
∂r′i

, 1 ≤ i ≤ 3, obeys the wave equation

determined by the initial conditions { ∂2ρ0
∂t∂r′i

,−c252 (∂ρ0
∂ri

)}.

Using Kirchoff’s formula, it follows that there exist {D1i, E1i, D2, E2, D3, E3} ⊂
R>0, for 1 ≤ i ≤ 3, such that, for sufficiently large |r′|;

| ∂ρ̇
∂r′i
|r′,−tr ≤ D1i

−t− |r−r
′|

c

≤ E1i

|r′|

|∂2ρ
∂t2
|r′,−tr ≤ D2

−t− |r−r
′|

c

≤ E2

|r′|

|ρ̇|r′,−tr ≤ D3

−t− |r−r
′|

c

≤ E3

|r′|

so that, for sufficiently large |r′|, there exists {G,H,Ki} ⊂ R>0, for
1 ≤ i ≤ 3;

|∂H
∂r′i
|r′1| ≤ [ 1

4πε0|r−r′|(
E1i

|r′| + E2

|r′| + M
|r−r′|2 + 2E3

|r′| )]|r′1
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≤ [ G
4πε0|r′|(

E1i

|r′| + E2

|r′| + MH
|r′|2 + 2E3

|r′| )]|r′1

≤ Ki
|r′|2 |r′1

= Ki
|r′1|2

and, for some {X, Y, Z} ⊂ R>0;

| 5 (H)(r′1)| ≤
√
3max1≤i≤3Ki
|r′1|2

=
√
3max1≤i≤3Ki

|r′opp+O( 1
r
)|2

≤ X
|r′opp|2

≤ Y
|r′|2

≤ Z
r2

so that, from (Y Y )

|θ∗1H+(r, γ) + θ∗1H
−(−r, γ)|

≤ C
r3

+ E
r
Z
r2

= C+EZ
r3

(∗)

We also have;

|f(r, γ)| ≤ Dr

|(θ∗1H+(r, γ) + θ∗1H
−(−r, γ))f(r, γ)| ≤ (C+F )D

r2

where {D,F} ⊂ R>0, F = EZ, so that;

limR→∞,R>Ri
∫
θi(SR,i)

(H+ +H−)(r′)dr′

= limR→∞,R>Ri
∫
SR,i

(θ∗1(H
+ +H−))(r, γ)f(r, γ)drdγ

= limR→∞,R>Ri
∫
[0,2π)

[
∫ R
Ri
θ∗1H

+(r, γ)f(r, γ)dr+
∫ −Ri
−R θ∗1H

−(r, γ)f(r, γ)dr]dγ
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= limR→∞,R>Ri
∫
[0,2π)

[
∫ R
Ri
θ∗1H

+(r, γ)f(r, γ)dr+
∫ −Ri
−R θ∗1H

−(−r, γ)f(−r, γ)dr]dγ

= limR→∞,R>Ri
∫
[0,2π)

∫ R
Ri

(θ∗1H
+(r, γ) + θ∗1H

−(−r, γ))f(r, γ)drdγ

=
∫
[0,2π)

∫∞
Ri

(θ∗1H
+(r, γ) + θ∗1H

−(−r, γ))f(r, γ)drdγ

where, letting G(γ) =
∫∞
Ri

(θ∗1H
+(r, γ) + θ∗1H

−(−r, γ))f(r, γ)dr;

|G(γ)| ≤
∫∞
Ri

CD
r2
dr = [−CD

r
]∞Ri

= CD
Ri

so that;

limR→∞,R>Ri
∫
[0,2π)

∫∞
Ri

(θ∗1H
+(r, γ)+θ∗1H

−(−r, γ))f(r, γ)drdγ =
∫
[α,β)

G(γ)dγ

exists and;

|limR→∞,R>Ri
∫
[0,π)

∫∞
Ri

(θ∗1H
+(r, γ)+θ∗1H

−(−r, γ))f(r, γ)drdγ| ≤ CD(β−α)
Ri

It follows;

limR→∞,R>Ri
∫
θi(SR,i)

(H+ +H−)(r′)dr′

exists, and;

|limR→∞,R>Ri
∫
θi(SR,i)

(H+ +H−)(r′)dr′| ≤ CD(β−α)
Ri

as well. (UU)

Idea for Vw(x), using calculation (∗) above;

With the same notation as above, for sufficiently large R, letting
r′′ ∈ Vw(x), with r′ = pr∗(r′′), with pr∗ the orthogonal projection of
S1,y,a onto the asymptotic line l0,y,sh, r

′
opp the opposite point to r′ and

r′′opp the nearest point to r′opp on Vw(x)∩S1,y,a. Let dVy be the restriction
of Lebesgue measure to Vw(x) ∩ S1,y,a, dZy the restriction of Lebesgue
measure to l0,y,sh = SCone1,a ∩ S1,y,a.

Using the notation above, we have that;
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|| −b(0)
θr2γ(0)

| −R| = εy +O( 1
R

)

r′′ = r′ +O( 1
R

)

r′ = Ry
w

+ vy

so that;

r′′(θ) = Ry
w

+ vy +O( 1
R

)

= ( −b(0)
θr2γ(0)w

+
εy
w

+O( 1
R

))y + vy +O( 1
R

)

= ( −b(0)
θr2γ(0)w

+
εy
w

)y + vy +O( 1
R

)

= ( −b(0)
θr2γ(0)w

+
εy
w

)y + vy + δ(θ)

where δ(θ) = O( 1
R

) is analytic in θ, so that |δ′(θ)| ≤ N , for some
N ∈ R>0. It follows that;

dr′′

dθ
= b(0)y

θ2r2γ(0)w
+ δ′(θ)

It follows that, using Newton’s expansion;

| dr
′′(θ)
dθ
|

|pr∗( dr
′′(θ)
dθ

)|
=

| b(0)y

θ2r2γ(0)w
+δ′(θ)|

|pr∗( b(0)y

θ2r2γ(0)w
)+pr∗(δ′(θ))|

=
| b(0)y

θ2r2γ(0)w
+δ′(θ)|

| b(0)y

θ2r2γ(0)w
+vy+pr∗(δ′(θ))|

=
| b(0)y
r2γ(0)w

+θ2δ′(θ)|

| b(0)y
r2γ(0)w

+θ2(vy+pr∗(δ′(θ)))|

=
(1+θ2

r22γ(0)
2w2|δ′(θ)|2

b(0)2|y|2
)
1
2

(1+θ2
r22γ(0)

2w2|vy+pr∗(δ′(θ))|2

b(0)2|y|2
)
1
2

= 1 +O(θ2)

= 1 +O( 1
R2 ) (SS)

so that;

dVy(r
′′) = dZy(r

′) +O( 1
R2 )dZy(r

′)
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and, similarly;

dVy(r
′′
opp) = dZy(r

′
opp) +O( 1

R2 )dZy(r
′
opp)

By the above, we have that;

(i). r′′ = r′ +O( 1
R

)

(ii). r′′opp = r′opp +O( 1
R

)

(iii). H+(r′′) = H+(r′) +O( 1
R3 )

(iv). H−(r′′opp) = H−(r′opp) +O( 1
R3 )

(v). dVy(r
′′) = dZy(r

′) +O( 1
R2 )dZy(r

′)

(vi). dVy(r
′′
opp) = dZy(r

′
opp) +O( 1

R2 )dZy(r
′
opp)

(vii). H+(r′) +H−(r′opp) = O( 1
R3 )

(viii). dZy(r
′) = dZy(r

′
opp) = O(R)

Then, using (i)− (viii);

H+(r′′)dVy(r
′′) +H−(r′′opp)dVy(r

′′
opp)

= [H+(r′) +O( 1
R3 )]dVy(r

′′) + [H−(r′opp) +O( 1
R3 )]dVy(r

′′
opp)

= [H+(r′)+O( 1
R3 )][dZy(r

′)+O( 1
R2 )dZ(r′)]+[H−(r′opp)+O( 1

R3 )][dZy(r
′
opp)

+O( 1
R2 )dZ(r′opp)]

= H+(r′)dZy(r
′)+H−(r′opp)dZy(r

′
opp)+H

+(r′)O( 1
R2 )O(R)+H−(r′opp)O( 1

R2 )O(R)

+O( 1
R3 )O(R) +O( 1

R3 )O( 1
R2 )O(R) +O( 1

R3 )O(R) +O( 1
R3 )O( 1

R2 )O(R)

= H+(r′)dZy(r
′) +H−(r′opp)dZy(r

′
opp) +O( 1

R2 )

= O( 1
R3 )O(R) +O( 1

R2 )

= O( 1
R2 )



184 TRISTRAM DE PIRO

With the same notation as above, let dV be the restriction of Lebesgue
measure to Vw(x), dZ the restriction of Lebesgue measure to SCone1,a.

Choose a parametrisation β : [0, 2π) → S1,a. Following the calcula-
tion (SS) above, we have that, for t ∈ [0, 2π);

|| −b(β(t))
θr2γ(β(t))

| −R| = εβ(t) +O( 1
R

)

r′′ = r′ +O( 1
R

)

r′ = Rβ(t)
w

+ vβ(t)

so that;

r′′(θ) = Rβ(t)
w

+ vβ(t) +O( 1
R

)

= ( −b(β(t))
θr2γ(β(t))w

+
εβ(t)
w

+O( 1
R

))β(t) + vβ(t) +O( 1
R

)

= ( −b(β(t))
θr2γ(β(t))w

+
εβ(t)
w

)β(t) + vβ(t) +O( 1
R

)

= ( −b(β(t))
θr2γ(β(t))w

+
εβ(t)
w

)β(t) + vβ(t) + δ(θ, t)

where δ(θ, t) = O( 1
R

), uniformly in t, and is analytic in θ and t, so

that max(|∂δ
∂θ
|, |∂δ

∂t
|) ≤ N , for some N ∈ R>0. It follows that;

∂r′′

∂θ
= b(β(t))β(t)

θ2r2γ(β(t))w
+ ∂δ(θ,t)

∂θ

= A1(t)
θ2

β(t) + ∂δ′(θ,t)
∂θ

where A1(t) = b(β(t))

r2γ(β(t))w

∂r′′

∂t
= ( (−b◦β)′(t)

θr2γ(β(t))w
+ b(β(t))(γ◦β)′(t)

θr2(γ◦β)2(t)w
+ (ε◦β)′(t)

w
)β(t)+( −b(β(t))

θr2γ(β(t))w
+

εβ(t)
w

)β
′
(t)

+(v ◦ β)′(t) + ∂δ(θ,t)
∂t

= (A2(t)
θ

+ A3(t))β(t) + (A4(t)
θ

+ A5(t))β
′
(t) + (v ◦ β)′(t) + ∂δ(θ,t)

∂t

where;

A2(t) = (−b◦β)′(t)
r2γ(β(t))w

+ b(β(t))(γ◦β)′(t)
r2(γ◦β)2(t)w
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A3(t) = (ε◦β)′(t)
w

A4(t) = −b(β(t))
θr2γ(β(t))w

A5(t) =
εβ(t)
w

so that {A1, A2, A3, A4, A5} are analytic and bounded on the interval
[0, 2π]. We have, for t ∈ [0, 2π), that (v◦β)(t)�b(t) = 0, pr∗((v◦β)(t)) =
0, so that pr∗((v ◦ β)′(t)) = 0. Similarly, pr∗(β(t)) = β(t) so that

pr∗(β
′
(t)) = β

′
(t).

It follows that;

∂r′′(θ)
∂θ
× ∂r′′(θ)

∂t
= A1(t)

θ2
(A4(t)

θ
+ A5(t))β(t)× β′(t) +O( 1

θ2
, t)

pr∗(∂r
′′(θ)
∂θ

) = A1(t)
θ2

β(t) + pr∗(∂δ
′(θ,t)
∂θ

)

= A1(t)
θ2

β(t) +O(1, t)

pr∗(∂r
′′(θ)
∂t

) = (A2(t)
θ

+A3(t))β(t)+(A4(t)
θ

+A5(t))β
′
(t)+pr∗((v◦β)′)(t)

+pr∗(∂δ(θ,t)
∂t

)

= (A2(t)
θ

+ A3(t))β(t) + (A4(t)
θ

+ A5(t))β
′
(t) +O(1, t)

pr∗(∂r
′′(θ)
∂θ

)× pr∗(∂r
′′(θ)
∂t

) = A1(t)
θ2

(A4(t)
θ

+ A5(t))β(t)× β′(t) +O′( 1
θ2
, t)

It follows that, using Newton’s expansion;

| ∂r
′′(θ)
∂θ
× ∂r

′′(θ)
∂t
|

|pr∗( ∂r
′′(θ)
dθ

)×pr∗( ∂r
′′(θ)
dt

)|
=
|A1(t)

θ2
(
A4(t)
θ

+A5(t))β(t)×β
′
(t)+O( 1

θ2
,t)|

|A1(t)

θ2
(
A4(t)
θ

+A5(t))β(t)×β
′
(t)+O′( 1

θ2
,t)|

= |(A1(t)A4(t)+θA1(t)A5(t))β(t)×β
′
(t)+O(θ,t)|

|(A1(t)A4(t)+θA1(t)A5(t))β(t)×β
′
(t)+O′(θ,t)|

= |A1(t)A4(t)β(t)×β
′
(t)+O(θ,t)|

|A1(t)A4(t)β(t)×β
′
(t)+O′(θ,t)|

= (1+O′′(θ,t))
1
2

(1+O′′′(θ,t))
1
2

= (1 + 1
2
O′′(θ, t) +O′′′′(θ2, t))(1− 1

2
O′′′(θ, t) +O′′′′′(θ2, t))
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= 1 +O(θ, t)

= 1 +O( 1
R
, t) (SSS)

so that;

dV (r′′) = dZ(r′) +O( 1
R
, t)dZ(r′)

and, similarly;

dV (r′′opp) = dZ(r′opp) +O( 1
R
, t)dZ(r′opp)

As above, using (SSS) now for (v), (vi), we have that;

(i). r′′ = r′ +O( 1
R
, t)

(ii). r′′opp = r′opp +O( 1
R
, t)

(iii). H+(r′′) = H+(r′) +O( 1
R3 , t)

(iv). H−(r′′opp) = H−(r′opp) +O( 1
R3 , t)

(v). dV (r′′) = dZ(r′) +O( 1
R
, t)dZ(r′)

(vi). dV (r′′opp) = dZ(r′opp) +O( 1
R
, t)dZ(r′opp)

(vii). H+(r′) +H−(r′opp) = O( 1
R3 , t)

(viii). dZ(r′) = dZ(r′opp) = O(R, t)

Then, using (i)− (viii);

H+(r′′)dV (r′′) +H−(r′′opp)dV (r′′opp)

= [H+(r′) +O( 1
R3 , t)]dV (r′′) + [H−(r′opp) +O( 1

R3 , t)]dV (r′′opp)

= [H+(r′)+O( 1
R3 , t)][dZ(r′)+O( 1

R
, t)dZ(r′)]+[H−(r′opp)+O( 1

R3 , t)][dZ(r′opp)

+O( 1
R
, t)dZ(r′opp)]

= H+(r′)dZ(r′)+H−(r′opp)dZ(r′opp)+H
+(r′)O( 1

R
, t)O(R)+H−(r′opp)O( 1

R
, t)O(R, t)
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+O( 1
R3 , t)O(R, t)+O( 1

R3 , t)O( 1
R
, t)O(R, t)+O( 1

R3 , t)O(R, t)+O( 1
R3 , t)O( 1

R
, t)O(R, t)

= H+(r′)dZ(r′) +H−(r′opp)dZ(r′opp) +O( 1
R2 , t)

= O( 1
R3 , t)O(R, t) +O( 1

R2 , t)

= O( 1
R2 , t)

.................... Look at argument of (UU) again, drdγ, (0 ≤ γ < 2π).
Final integration over 0 ≤ w ≤ s, exclude discrete case, use Lemma
0.50.

�

Lemma 0.55. Let {r, y}subsetR3, let l ⊂ R3 be a line, with {p, p′} ⊂ l
and p 6= p′. Then if xλ = p+ λ(p′ − p), we have that;

limλ→∞(|xλ − y| − |xλ − r|) = −limλ→−∞(|xλ − y| − |xλ − r|)

Proof. By rotating and translating coordinates (x, y, z), which pre-
serves distance, we may assume that l is the line y = z = 0, p = 0,
p′ = (x0, 0, 0), y = (y1, y2, 0) and r = (r1, r2, r3). Then, using Newton’s
expansion;

|xλ − y| − |xλ − r|

= |(λx0, 0, 0)− (y1, y2, 0)| − |(λx0, 0, 0)− (r1, r2, r3)|

= [(λx0 − y1)2 + y22]
1
2 − [(λx0 − r1)2 + r22 + r23]

1
2

= [λ2x20 − 2λx0y1 + y2]
1
2 − [λ2x20 − 2λx0r1 + r2]

1
2

= |λx0|[1− 2y1
λx0

+ y2

λ2x20
]
1
2 − |λx0|[1− 2r1

λx0
+ r2

λ2x20
]
1
2

= |λx0|(1− y1
λx0

+O( 1
λ2

))− |λx0|(1− r1
λx0

+O( 1
λ2

))

= − sign(λ)y1
x0

+ sign(λ)r1
x0

+O( 1
λ
)

where y = |y and r = |r|, so that;

limλ→∞(|xλ − y| − |xλ − r|) = − y1
x0

+ r1
x0
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limλ→−∞(|xλ − y| − |xλ − r|) = y1
x0
− r1

x0

= −limλ→∞(|xλ − y| − |xλ − r|)

�

Definition 0.56. For f ∈ C∞(R4) and h ∈ R, we define the time
shift fh by fh(x, t) = f(x, t + h). For a field f , with f = (f1, f2, f3)

and fi ∈ C∞(R4), 1 ≤ i ≤ 3, we define f
h

= (fh1 , f
h
2 , f

h
3 ).

Lemma 0.57. Let (ρ, J) be a charge and current configuration with
ρ ∈ C∞(R4), J = (j1, j2, j3), and ji ∈ C∞(R4), 1 ≤ i ≤ 3, such
that (ρ, J) satisfies the continuity equation. Then, for h ∈ R>0, the

time shifts (ρh, J
h
) satisfy the continuity equation and so do the sums

(ρ+ρh, J+J
h
). If for h ∈ R>0, there exists electric and magnetic fields

(Eh, Bh) such that (ρ+ρh, J +J
h
, Eh, Bh) satisfy Maxwell’s equations,

then there exist fields E and B such that (ρ, J, E,B) satisfy Maxwell’s
equations.

Proof. By the hypotheses, we have for {h1, h2} ⊂ R>0, with h2 > h1
that there exist pairs (Eh1 , Bh1) and (Eh2 , Bh2) such that (ρ+ ρh1 , J +

J
h1
, Eh1 , Bh1 and (ρ+ρh2 , J +J

h2
, Eh2 , Bh2 satisfy Maxwell equations,

so that, taking the difference, (ρh1−ρh2 , Jh1−Jh2 , Eh1−Eh2 , Bh1−Bh2)
satisfy Maxwell’s equations, (∗). Then h2 − h1 > 0, so that, by the
hypotheses, there exist (Eh2−h1 , Bh2−h1) such that (ρ + ρh2−h1 , J +

J
h2−h1

, Eh2−h1 , Bh2−h1) satisfy Maxwell’s equations, (∗∗). As is eas-
ily checked, if (ρ, J, E,B) satisfy Maxwell’s equations, then, for h ∈ R,

(ρh, J
h
, E

h
, B

h
) satisfy Maxwell’s equations, so that, from (∗∗);

(ρh1 + ρh2−h1+h1 , J
h1

+ J
h2−h1+h1

, E
h1
h2−h1 , B

h1
h2−h1)

= (ρh1 + ρh2 , J
h1

+ J
h2
, E

h1
h2−h1 , B

h1
h2−h1) (∗ ∗ ∗)

satisfies Maxwell’s equations. Then adding the equations (∗), (∗∗∗),
we obtain that;

(2ρh1 , 2J
h1
, Eh1 − Eh2 + E

h1
h2−h1 , Bh1 −Bh2 +B

h1
h2−h1)

satisfies, Maxwell’s equation and;

(ρh1 , J
h1
, 1
2
(Eh1 − Eh2 + E

h1
h2−h1),

1
2
(Bh1 −Bh2 +B

h1
h2−h1))
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satisfies Maxwell’s equations. Again, by the observation above, it
follows that;

(ρh1−h1 , J
h1−h1

, 1
2
(E
−h1
h1
−E−h1h2

+E
h1−h1
h2−h1),

1
2
(B
−h1
h1
−B−h1h2

+B
h1−h1
h2−h1))

(ρ, J, 1
2
(E
−h1
h1
− E−h1h2

+ Eh2−h1),
1
2
(B
−h1
h1
−B−h1h2

+Bh2−h1))

satisfies Maxwell’s equations, as required. �

Lemma 0.58. Let (ρw, Jw) for w 6= c, be the smooth charge and cur-
rent configurations defined above, satisfying the continuity equation.
Then the causal fields (Ew, Bw) defined by Jefimenko’s equations exist
for w 6= c, with (ρw, Jw, Ew, Bw) satisfying Maxwell’s equations. More-
over limw→cEw and limw→cBw exist and define fields (Ec, Bc such that
(ρc, J c, Ec, Bc) satisfy Maxwell’s equations.

Proof. The first claim will be proved later, the second claim follows

from a result in [14]. For h ∈ R>0, we have that (ρw + ρhw, Jw + J
h

w)
satisfies the continuity equation, w 6= c. By the observation in the pre-

vious lemma, (ρw+ρhw, Jw+J
h

w, Ew+E
h

w, Bw+B
h

w) satisfies Maxwell’s
equations, and is defined by Jefimenko’s equations relative to (ρw +

ρhw, Jw + J
h

w). By the main proof, (choosing the initial conditions at
t+h
2

, between t and t + h) we have that limw→c(Ew + E
h

w) = Ec,h and

limw→c(Bw +B
h

w) = Bc,h exist, so that (more proof required);

limw→c(ρw + ρhw, Jw + J
h

w, Ew + E
h

w, Bw +B
h

w)

= (ρc + ρhc , J c + J
h

c , Ec,h, Bc,h)

satisfies Maxwell’s equations. By Lemma 0.57, for {h1, h2} ⊂ R>0,
with h1 < h2, we have that;

(ρc, J c,
1
2
(E
−h1
c,h1
− E−h1c,h2

+ Ec,h2−h1),
1
2
(B
−h1
c,h1
−B−h1c,h2

+Bc,h2−h1))

= (ρc, J c,
1
2
(limw→c(Ew + E

h1
w )−h1 − limw→c(Ew + E

h2
w )−h1

+limw→c(Ew + E
h2−h1
w )), 1

2
(limw→c(Bw +B

h1
w )−h1

−limw→c(Bw +B
h2
w )−h1 + limw→c(Bw +B

h2−h1
w )))

= (ρc, J c, limw→cEw, limw→cBw)
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satisfies Maxwell’s equations, as required.
�

Lemma 0.59. Cartesian method

If g : R3 → R is analytic for |x| > r, where r ∈ R>0, analytic at
infinity, of very moderate decrease, and continuous, with { ∂g

∂x
, ∂g
∂y
, ∂g
∂z
}

analytic for |x| > r and analytic at infinity, we can define, for k ∈ R3,
with k1 6= 0, k2 6= 0, k3 6= 0;

F(g)(k) = 1

(2π)
3
2
limr1→∞limr2→∞limr3→∞

∫ r1
−r1

∫ r2
−r2

∫ r3
−r3 g(x)e−ik.�xdx1dx2dx3

Moreover, for k1 6= 0, k2 6= 0, k3 6= 0, we have that;

F(g)(k) = 1

(2π)
3
2
limr→∞

∫
0≤θ≤π,−π≤φ≤π g(r, θ, φ)e−ik1rsin(θ)cos(φ)

e−ik2rsin(θ)sin(φ)e−ik3rcos(θ)r2sin(θ)drdθdφ

Proof. Let Cr be the cube defined by Cr = {(x, y, z) ∈ R3 : |x| ≤
r, |y| ≤ r, |z| ≤ r}, then, as g is analytic for |x| > r, we have that g is an-
alytic onR3 \ Cr, with global power series expansion

∑
(i,j,k)∈Z3

≥0
aijkx

iyjzk,

convergent on R3 \ Cr. As g is continuous, it is bounded on Cr and we
can define;

f(k) =
∫
x∈Cr g(x)e−ik�xdx

For (x, y) ∈ R2, we have that gx,y(z) is analytic for |z| > r, analytic
at infinity, and of very moderate decrease. In particularly, by Lemma
0.46, using the fact that gx,y is also of very moderate decrease, gx,y is
eventually monotone, and for k3 6= 0, we can define;

g3(x, y, k3) = limr3→∞
∫
r<|z|<r3 gx,y(z)e−ik3zdz

= limr3→∞
∫
r<|z|<r3(

∑
(i,j,k)∈Z3

≥0
aijkx

iyjzk)(
∑∞

m=0
(−ik3z)m

m!
)dz

= limr3→∞
∫
r<|z|<r3(

∑
(i,j,k,m)∈Z4

≥0

(−ik3)maijk
m!

xiyjzk+m)dz

= limr3→∞
∑

(i,j,k,m)∈Z4
≥0

(−ik3)maijk
m!

xiyj
∫
r<|z|<r3 z

k+mdz

= limr3→∞
∑

(i,j,k,m)∈Z4
≥0

(−ik3)maijk
m!

xiyj([ z
k+m+1

k+m+1
]−r−r3 + [ z

k+m+1

k+m+1
]r3r )
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= limr3→∞
∑

(i,j,k,m)∈Z4
≥0,k+m+1odd

2(−ik3)maijk
m!(k+m+1)

xiyj(rk+m+1
3 − rk+m+1)

= limr3→∞
∑

(i,j,k,m)∈Z4
≥0,k+m+1odd

2(−ik3)mrk+m+1
3 aijk

m!(k+m+1)
xiyj

−
∑

(i,j,k,m)∈Z4
≥0,k+m+1odd

2(−ik3)maijkrk+m+1

m!(k+m+1)
xiyj

=
∑

(i,j)∈Z2
≥0

(bij − cij)xiyj

where;

bij = limr3→∞
∑

(i,j,k,m)∈Z4
≥0,k+m+1odd

2(−ik3)mrk+m+1
3 aijk

m!(k+m+1)

cij =
∑

(i,j,k,m)∈Z4
≥0,k+m+1odd

2(−ik3)maijkrk+m+1

m!(k+m+1)

so that g3(x, y, k3) is analytic for (x, y) ∈ R2, in particularly contin-
uous.

For (x0 : y0) ∈ P 1(R), we have that (x0 : y0 : 1) ∈ P 2(R) and,
as g is analytic at infinity, there exists εx0,y0,1, such that g(x0

x
, y0
y
, 1
z
)

is defined by a convergent power series
∑

(i,j,k)∈Z3 dijkx
iyjzk in the re-

gion x2 + y2 + z2 < ε2x0,y0,1. Without loss of generality, assuming that

x0 6= 0, y0 6= 0, as g is analytic for |x0
x
| > r, |y0

y
| > r, |1

z
| > r, |x| < |x0|

r
,

|y| < |y0|
r

, |z| < 1
r
, by uniqueness of power series, we can replace the

region x2 + y2 + z2 < ε2x0,y0,1, by the region |x| < |x0|
r

, |y| < |y0|
r

, |z| < 1
r
.

Then;

g3(
x0
x
, y0
y
, k3) = limr3→∞

∫
r<|z|<r3 g(x0

x
, y0
y
, w)e−ik3wdw

= limr3→∞
∫
r<|z|<r3 g(x0

x
, y0
y
, 1
z
)e
−ik3
z − dz

z2
dz (z = 1

w
, z 6= 0)

= limr3→∞
∫
r<|z|<r3(

∑
(i,j,k)∈Z3

≥0
dijkx

iyjzk)(
∑∞

m=0
−(−ik3)m
zm+2m!

)dz

= limr3→∞
∫
r<|z|<r3(

∑
(i,j,k,m)∈Z4

≥0

−(−ik3)mdijk
m!

xiyjzk−m−2)dz

= limr3→∞
∑

(i,j,k,m)∈Z4
≥0

−(−ik3)mdijk
m!

xiyj
∫
r<|z|<r3 z

k−m−2dz

= limr3→∞
∑

(i,j,k,m)∈Z4
≥0,k 6=m+1

−(−ik3)mdijk
m!

xiyj([ z
k−m−1

k−m−1 ]−r−r3+[ z
k−m−1

k−m−1 ]r3r )

+limr3→∞
∑

(i,j,k,m)∈Z4
≥0,k=m+1

−(−ik3)mdijk
m!

xiyj([−ln(z)]r3r + [ln(z)]r3r )
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= limr3→∞
∑

(i,j,k,m)∈Z4
≥0,k 6=m+1

−(−ik3)mdijk
m!

xiyj([ z
k−m−1

k−m−1 ]−r−r3+[ z
k−m−1

k−m−1 ]r3r )

= limr3→∞
∑

(i,j,k,m)∈Z4
≥0,k 6=m+1,k−m−1odd

−2(−ik3)mdijk
m!(k−m−1) x

iyj(rk−m−13 −rk−m−1)

= limr3→∞
∑

(i,j,k,m)∈Z4
≥0,k 6=m+1,k−m−1odd

−2(−ik3)mrk−m−1
3 dijk

m!(k−m−1) xiyj

−
∑

(i,j,k,m)∈Z4
≥0,k 6=m+1,k−m−1odd

−2(−ik3)mdijkrk−m−1

m!(k−m−1) xiyj

=
∑

(i,j)∈Z2
≥0

(kij − lij)xiyj

where;

kij = limr3→∞
∑

(i,j,k,m)∈Z4
≥0,k 6=m+1,k−m−1odd

−2(−ik3)mrk−m−1
3 dijk

m!(k−m−1)

lij =
∑

(i,j,k,m)∈Z4
≥0,k 6=m+1,k−m−1odd

−2(−ik3)mdijkrk−m−1

m!(k−m−1)

We can then take εx0,y0 =
min(

|x0|
r
,
|y0|
r

)√
2

, so that as (x0 : y0) ∈ P 2(R)

was arbitrary, g3(x, y, k3) is analytic at infinity.

As g is of very moderate decrease, we have that;

|gxy(z)| = |g(x, y, z)| ≤ C

(x2+y2+z2)
1
2

= |z|
(x2+y2+z2)

1
2

C
|z|

≤ C
|z| (A)

for (x2 + y2 + z2)
1
2 > |z| > s. As ∂g

∂z
is analytic for |x| > r and ana-

lytic at infinity, it has finitely many zeroes, so that gxy(z) is eventually
monotone in the interval |z| > E, for some E ∈ R>0, uniformly in
(x, y), (B), and we can achieve both (A), (B), for |z| > v = max(s, E).
Without loss of generality, we can assume that v > E > r. We also
have that, for (x2 + y2 + z2)

1
2 ≥ (x2 + y2)

1
2 > s;

|gxy(z)| ≤ C

(x2+y2+z2)
1
2

= C

(x2+y2)
1
2

(x2+y2)
1
2

(x2+y2+z2)
1
2

≤ C

(x2+y2)
1
2
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Then, by a simple generalisation of Lemma 0.35, for |(x, y)| ≥ s, we
have that;

|g3(x, y, k3)| = |limr3 →∞
∫
r<|z|<r3 g(x, y, z)e−ik3zdz|

≤ 4Cv
|(x,y)| + 6Cπ

|(x,y)|k3|

= W
|(x,y)| (F )

where W = 4Cv + 6Cπ
|k3| , so that g3(x, y, k3) is of very moderate de-

crease.

As g3(x, y, k3 is analytic for (x, y) ∈ R2 and analytic at infinity, so
is ∂g3

∂y
, so that, for fixed x ∈ R, g3,x,k3(y) is eventually monotone and

of very moderate decrease, so that, for k2 6= 0, we can define;

g2(x, k2, k3) = limr2→∞
∫ r2
−r2 g3(x, y, k3)e

−ik2ydy

As g3(x, y, k3 is analytic for (x, y) ∈ R2 and analytic at infinity, us-
ing (1 : 1) ∈ P 1(R), g3(

1
x
, 1
y
, k3) is defined by a convergent power series∑

(i,j)∈Z2
≥0
sijx

iyj, valid for (x, y) ∈ R2, so that, for x0 6= 0;

g2(x0, k2, k3) = limr2→∞
∫ r2
−r2 g3(x0, w, k3)e

−ik2wdw

= limr2→∞
∫ r2
−r2 g3(

1
x
, 1
y
, k3)e

−ik2
y − 1

y2
dy (w = 1

y
, x0 = 1

x
)

= limr2→∞,ε→0

∫
ε<|y|<r2(

∑
(i,j)∈Z2

≥0
sijx

iyj)(
∑∞

m=0
−(−ik2)m
ym+2m!

)dy

= limr2→∞,ε→0

∫
ε<|y|<r2(

∑
(i,j,m)∈Z3

≥0

−(−ik2)msij
m!

xiyj−m−2)dy

= limr2→∞,ε→0

∑
(i,j,m)∈Z3

≥0

−(−ik2)msij
m!

xi
∫
ε<|y|<r2 y

j−m−2dy

= limr2→∞,ε→0

∑
(i,j,m)∈Z3

≥0,j 6=m+1
−(−ik2)msij

m!
xi([y

j−m−1

j−m−1 ]−ε−r2+[y
j−m−1

j−m−1 ]r2ε )

+limr2→∞,ε→0

∑
(i,j,m)∈Z3

≥0,j=m+1
−(−ik3)msij

m!
xi([−ln(z)]r2ε + [ln(z)]r2ε )

= limr2→∞,ε→0

∑
(i,j,m)∈Z3

≥0,j 6=m+1
−(−ik3)msij

m!
xi([y

j−m−1

j−m−1 ]−ε−r2+[y
j−m−1

j−m−1 ]r2ε )

= limr2→∞,ε→0

∑
(i,j,m)∈Z3

≥0,j 6=m+1,j−m−1odd
−2(−ik2)msij
m!(j−m−1) x

i(rj−m−12 −εj−m−1)
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= limr2→∞
∑

(i,j,m)∈Z3
≥0,j 6=m+1,j−m−1odd

−2(−ik2)mrj−m−1
2 sij

m!(j−m−1) xi

−limε→0

∑
(i,j,m)∈Z3

≥0,j 6=m+1,j−m−1odd
−2(−ik2)msijεk−m−1

m!(j−m−1) xi

=
∑

i∈Z≥0
(αi − βi)xi

=
∑

i∈Z≥0
(αi − βi)xi

=
∑

i∈Z≥0
(αi − βi)( 1

x0
)i

where;

αi = limr2→∞
∑

(i,j,m)∈Z3
≥0,j 6=m+1,j−m−1odd

−2(−ik2)mrj−m−1
2 sij

m!(j−m−1)

βi = limε→0

∑
(i,j,m)∈Z3

≥0,j 6=m+1,j−m−1odd
−2(−ik2)msijεk−m−1

m!(j−m−1)

It follows that g2(x, k2, k3) is analytic at infinity, and, as 1
x0

is ana-
lytic for x0 6= 0, and the composition of analytic functions is analytic,
g2(x, k2, k3) is analytic for x 6= 0.

By the same reasoning as above, we have that g2(x, k2, k3) is of very
moderate decrease, and using the fact that dg2

dx
is analytic for x 6= 0,

and analytic at infinity , using Lemma 0.46, g2(x, k2, k3) is eventually
monotone, so , for k3 6= 0, we can define;

g1(k1, k2, k3) = limr1→∞
∫ r1
−r1 g2(x, k2, k3)e

−ik1xdx

For |z| < r, x ∈ R, by the usual arguments, we can define;

h2(x, z, k2) = limr2→∞
∫
r<|y|<r2 g(x, y, z)e−ik2ydy

As above, as g is analytic in the region |y| > r and analytic at infin-
ity, we can show that h2 is analytic for x 6= 0 and z 6= 0, analytic at
infinity, and of very moderate decrease. By the usual arguments, we
can then define, for |z| < r;

h1(z, k1, k2) = limr1→∞
∫
|x|<r1 g(x, y, z)e−ik1xdx

and show that h1 is analytic for 0 < |z| < r, and smooth at 0 (extra
argument here), in particular, bounded. Then , for k3 6= 0, let;
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h3(k1, k2, k3) =
∫
|z|<r h1(z, k1, k2)e

−ik3zdz

For |z| < r, |y| < r, define;

s1(y, z, k1) = limr1→∞
∫
r<|x|<r1 g(x, y, z)e−ik1xdx

As above, as g is analytic in the region |x| > r and analytic at in-
finity, we can show that s1 is analytic for y 6= 0 and z 6= 0, analytic at
infinity, and of very moderate decrease. We can also show that s1 is
smooth along on the locus ((y = 0 ∪ z = 0) ∩ (|y| < r ∩ |z| < r)) ⊂ R2

(extra argument here). Then, by the usual arguments, we can define;

s2,3(k1, k2, k3) =
∫
|y|<r,|z|<r s1(y, z, k1)e

−ik2ye−ik3zdydz

Let m(k1, k2, k3) = h3(k1, k2, k3) + s2,3(k1, k2, k3), for k1 6= 0, k2 6= 0,
k3 6= 0. Then, for k1 6= 0, k2 6= 0, k3 6= 0, it is clear, totalling the
volumes, that we have;

F(g)(k) = 1

(2π)
3
2

(f(k) + g1(k) +m(k))

�

Lemma 0.60. Let g and all its partial derivatives { ∂(i1,i2,i3)g
∂i1x∂i2y∂i3z

: 0 ≤
i1 + i2 + i3 ≤ 4} satisfy the hypotheses of the previous lemma. Then,
for k1 6= 0, k2 6= 0, k3 6= 0, with |k1|, |k2|, |k3|, sufficiently large, there
exists constants Ci1,i2,i3 ∈ R>0, with;

|F( ∂(i1,i2,i3)g
∂i1x∂i2y∂i3z

)(k)| ≤ Ci1,2,i3
|k1||k2||k3|

and D ∈ R>0, with;

|F(g)(k)| ≤ D
|k1||k2||k3||k|4

We have that, for r > 0, F(g)|B(0,r) ∈ L1(B(0, r)), F(g)|V ∈ L1(V ),

F(g)|Vi ∈ L1(Vi), for 1 ≤ i ≤ 3, F(g)|Vij ∈ L1(Vij), 1 ≤ i < j ≤ 3,
where;

V = {(k1, k2, k3) : |k1| ≥ E1, |k2| ≥ E2, |k3| ≥ E3}.

Vi = {(k1, k2, k3) : |ki| < Ei, |kl| ≥ El, l 6= i, 1 ≤ l ≤ 3}.
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Vij = {(k1, k2, k3) : |ki| < Ei, |kj| < Ej, |kl| ≥ El, l 6= i, l 6= j,

1 ≤ l ≤ 3}.

In particularly, F(g) ∈ L1(R3).

Proof. For the first claim, let;

a3(x, y, k3) = limr3→∞
∫ r3
−r3 g(x, y, z)e−ik3zdz

for k3 6= 0. (Then for fixed x, k3, a3(x, y, k3) is of very moderate
decrease in y and oscillatory for sufficiently large y.

Then, we can define;

a2(x, k2, k3) = limr2→∞
∫ r2
−r2 a3(x, y, k3)e

−ik2ydy

for k2 6= 0. (For, fixed k2, k3, a2(x, k2, k3) is of very moderate de-
crease in y and oscillatory, for sufficiently large x).

so we can define, for k1 6= 0;

a1(k1, k2, k3) = limr1→∞
∫ r1
−r1 a2(x, k2, k3)e

−ik1ydy

F(g)(k) = 1
(2π)

3
2a1(k1, k2, k3)

Using the end of the proof of Lemma 0.35, we can show that that
there exists C ∈ R>0, independent of x, y, with;

|a3(x, y, k3)| ≤ C||g||∞
|k3|

for sufficiently large |k3| ≥ C3. Similarly, for sufficiently large |k2| ≥
C2;

|a2(x, k2, k3)| ≤
C||a3||k3|≥C3

||∞
|k2

≤ C2||g||∞
|k2||k3|

and, for sufficiently large |k1| ≥ C1;
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|a1(k1, k2, k3)| ≤
C||a2||k2|≥C2,|k3|≥C3

||∞
|k1

≤ C2||a3||k3|≥C3
||∞

|k2||k3|

≤ C3||g||∞
|k1||k2||k3|

so that, for |k1| ≥ C1|, |k2| ≥ C2, |k3| ≥ C3;

||F(g)(k)||∞ ≤ 1

(2π)
3
2

C3||g||∞
|k1||k2||k3|

= C0,0,0

|k1||k2||k3|

where C0,0,0 = 1

(2π)
3
2
C3||g||∞

Similarly, for |k1|, |k2|, |k3| sufficiently large, we can find constants
Ci1,i2,i3 ∈ R>0, for i1 + i2 + i3 ≥ 4, such that;

|F( ∂(i1,i2,i3)g
∂i1x∂i2y∂i3z

)(k)| ≤ Ci1,2,i3
|k1||k2||k3|

For the second claim, we have, for k1 6= 0, k2 6= 0, k3 6= 0, using
repeated integration by parts, that;

F( ∂
4g
∂x4

+ ∂4g
∂y4

+ ∂4g
∂z4

+ 2 ∂4g
∂x2∂y2

+ 2 ∂4g
∂x2∂z2

+ 2 ∂4g
∂y2∂z2

)(k)

= 1

(2π)
3
2
limr1→∞limr2→∞limr3→∞

∫ r1
−r1

∫ r2
−r2

∫ r3
−r3(

∂4g
∂x4

+∂4g
∂y4

+∂4g
∂z4

+2 ∂4g
∂x2∂y2

+2 ∂4g
∂x2∂z2

+ 2 ∂4g
∂y2∂z2

)e−ik1xe−ik2ye−ik3zdxdydz

= (k41+k42+k43+2k21k
2
2+2k21k

2
3+2k22k

2
3) 1

(2π)
3
2
limr1→∞limr2→∞limr3→∞∫ r1

−r1

∫ r2
−r2

∫ r3
−r3 g(x, y, z)e−ik1xe−ik2ye−ik3zdxdydz

= |k|4F(g)(k)

so that, using the first claim, for sufficiently large |k|1, |k|2, |k|3;

|F(g)(k)| ≤
F(g)( ∂

4g

∂x4
+ ∂4g

∂y4
+ ∂4g

∂z4
+2 ∂4g

∂x2∂y2
+2 ∂4g

∂x2∂z2
+2 ∂4g

∂y2∂z2
)(k)

|k|4

≤ C4,0,0+C0,4,0+C0,0,4+2C2,2,0+2C2,0,2+2C0,2,2

|k1||k2||k3||k|4
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= D
|k1||k2||k3||k|4

where D = C4,0,0 + C0,4,0 + C0,0,4 + 2C2,2,0 + 2C2,0,2 + 2C0,2,2.

For the next claim, we have as g is of very moderate decrease, that
|g| ≤ D

|x| , for |x| ≥ s, and, as g is continuous, that |g| ≤ C, for |x| ≤ s.

Using polar coordinates (R, θ, φ), we have;∫
R3 |g|4dx

=
∫
B(0,s)

|g|4dx+
∫
R3\B(0,s)

|g|4dx

≤ 4C4πs3

3
+
∫
R3\B(0,s)

D
|x|4dx

≤ 4C4πs3

3
+
∫∞
s |DR

2sin(θ)

R4|dR

≤ 4C4πs3

3
+D

∫∞
s

dR
R2

= 4C4πs3

3
+ D

s

so that g ∈ L4(R3). Letting p = 4, and 1
p

+ 1
q

= 1, so that q = 4
3
,

and generalising the Haussdorff-Young inequality, see [18], we have that

F(g) ∈ L 4
3 (R3), and we can find F ∈ R>0, with;

||F(g)||
L

4
3 (R3)

≤ F ||g||L4(R3)

≤ F (4C
4πs3

3
+ D

s
)
1
2

By Holders’s inequality, we have that for r > 0, F(g)|B(0,r) ∈ L1(B(0, r)),
and;

||F(g)(k)||L1(B(0,r))

≤ ||F(g)(k)||
L

4
3 (B(0,r))

||1||L4(B(0,r))

≤ F (4C
4πs3

3
+ D

s
)
1
2 (4πr

3

3
)
1
2

Using the second claim, we have that there exist constants {E1, E2, E3} ⊂
R>0, such that, for |k1| ≥ E1, |k2| ≥ E2, |k3| ≥ E3;
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|F(g)(k)| ≤ D
|k1||k2||k3||k|4

≤ D
E1E2E3|k|4

= F
|k|4

where F = D
E1E2E3| . Then, using polar coordinates, k′1 = rsin(θ)cos(φ),

k′2 = rsin(θ)sin(φ), k′3 = rcos(θ), 0 ≤ θ ≤ π, −π ≤ φ ≤ π;∫
k1≥E1,k2≥E2,k3≥E3

|F(g)(k)|dk

=
∫
k′1≥0,k′2≥0,k′3≥0

|F(g)(k′1 + E1, k
′
2 + E2, k

′
3 + E3)|dk

′

≤
∫
k′1≥0,k′2≥0,k′3≥0

F
|(k′1+E1,k′2+E2,k′3+E3)|4dk

′

=
∫
0≤θ≤π

2
,0≤φ≤π

2

∫∞
0

F
|(k′1+E1,k′2+E2,k′3+E3)|4 r

2sin(θ)drdθdφ

=
∫
0≤θ≤π

2
,0≤φ≤π

2

∫∞
0

F
|(rsin(θ)cos(φ)+E1,rsin(θ)sin(φ)+E2,rcos(θ)+E3)|4 r

2sin(θ)drdθdφ

≤
∫
0≤θ≤π

2
,0≤φ≤π

2

∫ r0
0

F
|(rsin(θ)cos(φ)+E1,rsin(θ)sin(φ)+E2,rcos(θ)+E3)|4 r

2sin(θ)drdθdφ

+
∫
0≤θ≤π

2
,0≤φ≤π

2

∫∞
r0

Fr2

r4
1

|(sin(θ)cos(φ)+E1
r
,sin(θ)sin(φ)+

E2
r
,cos(θ)+

E3
r
)|4
drdθdφ

≤
∫
0≤θ≤π

2
,0≤φ≤π

2

∫ r0
0

Fr20
|(E1,E2,E3)|4

+
∫
0≤θ≤π

2
,0≤φ≤π

2

∫ r0
0

F
r2

1

(1+
2sin(θ)cos(φ)E1

r
+

2sin(θ)sin(φ)E2
r

+
2cos(θ)E3

r
+
E2
1
r2

+
E2
2
r2

+
E2
3
r2

)2
drdθdφ

≤ r0(
π
2
)2

Fr20
|(E1,E2,E3)|4

+
∫
0≤θ≤π

2
,0≤φ≤π

2

∫∞
r0

F
r2

1

(1+
2sin(θ)cos(φ)E1

r
+

2sin(θ)sin(φ)E2
r

+
2cos(θ)E3

r
+
E2
1
r2

+
E2
2
r2

+
E2
3
r2

)2
drdθdφ

≤ π2r30F

4(E2
1+E

2
2+E

2
3)

2 +
∫
0≤θ≤π

2
,0≤φ≤π

2

∫∞
r0

4F
r2
drdθdφ

=
π2r30F

4(E2
1+E

2
2+E

2
3)

2 +
4F (π

2
)2

r0

=
π2r30F

4(E2
1+E

2
2+E

2
3)

2 + Fπ2

r0

for r0 ≥ 12max(E1, E2, E3).

Similarly, repeating the calculation for all the finitely many con-
nected regions in |k1| ≥ E1, |k2| ≥ E2, |k3| ≥ E3, we obtain that
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F(g)|V ∈ L1(V ), where;

V = {(k1, k2, k3) : |k1| ≥ E1, |k2| ≥ E2, |k3| ≥ E3}.

Using the same argument as above, for a2(x, k2, k3), we have, with-
out loss of generality, that for |k2| ≥ E2 and for |k3| ≥ E3, there exists
D ∈ R>0, with;

|F(∂
4g
∂y4

+ ∂4g
∂z4

+ 2 ∂4g
∂y2∂z2

)(x, k2, k3)| ≤
D|| ∂

4g

∂y4
+ ∂4g

∂z4
+2 ∂4g

∂y2∂z2
||∞

|k2||k3|

We have, for k2 6= 0, k3 6= 0, that;

F(∂
4g
∂y4

+ ∂4g
∂z4

+ 2 ∂4g
∂y2∂z2

)(x, k2, k3)

= 1

(2π)
3
2
limr2→∞limr3→∞

∫ r2
−r2

∫ r3
−r3(

∂4g
∂y4

+ ∂4g
∂z4

+2 ∂4g
∂y2∂z2

)e−ik2ye−ik3zdydz

= (k42 + k43 + 2k22k
2
3) 1

(2π)
3
2
limr2→∞limr3→∞∫ r2

−r2

∫ r3
−r3 g(x, y, z)e−ik2ye−ik3zdydz

= |(k2, k3)|4F(g)(x, k2, k3)

so that, for x ∈ R, |k2| ≥ E2, |k3| ≥ E3;

|F(g)(x, k2, k3)| ≤
D|| ∂

4g

∂y4
+ ∂4g

∂z4
+2 ∂4g

∂y2∂z2
||∞

|k2||k3||(k2,k3)|4

≤
D|| ∂

4g

∂y4
+ ∂4g

∂z4
+2 ∂4g

∂y2∂z2
||∞

C2C3|(k2,k3)|4

= E
|(k2,k3)|4

where E =
D|| ∂

4g

∂y4
+ ∂4g

∂z4
+2 ∂4g

∂y2∂z2
||∞

C2C3
.

As above, we have that;∫
k2≥E2,k3≥E3

|F(g)(x, k2, k3)|dk2dk3

=
∫
k′2≥0,k′3≥0

|F(g)(k′2 + E2, k
′
3 + E3)|dk′2dk′3

≤
∫
k′2≥0,k′3≥0

E
|k′2+E2,k′3+E3)|4dk

′
2dk

′
3 <∞
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so clearly, for x ∈ R, F(g)(x, k2, k3) ∈ L1(S), where S = {(k2, k3) ∈
R2, |k2| ≥ E2, |k3| ≥ E3}. Let;

θ(x) =
∫
|k2|≥E2,|k3|≥E3

F(g)(x, k2, k3)dk2dk3

As above, we have for sufficiently large x, θ(x) is non oscillatory and
of very moderate decrease.

Interchanging limits, we have that;∫
V1
F(g)(k1, k2, k3)dk1dk2dk3

=
∫
|k1|<E1

∫
|k2|≥E2,|k3|≥E3

F(g)(k1, k2, k3)dk1dk2dk3

=
∫
|k1|<E1

∫
|k2|≥E2,|k3|≥E3

(limr1→∞
∫ r1
−r1 F(g)(x, k2, k3)e

−ik1xdx)dk1dk2dk3

=
∫
|k1|<E1

limr1→∞
∫ r1
−r1(

∫
|k2|≥E2,|k3|≥E3

F(g)(x, k2, k3)dk2dk3)e
−ik1xdxdk1

=
∫
|k1|<E1

(limr1→∞
∫ r1
−r1 θ(x)e−ik1xdx)dk1

=
∫
|k1|<E1

F1(θ)(k1)dk1

where F1 is the Fourier transform for non-oscillatory functions of very
moderate decrease in one variable. As above, we have that F1(θ) ∈
L2(R), so that F1(θ)||k1|<E1 ∈ L1(|k1| < E1). It follows that;∫

|k1|<E1
F1(θ)(k1)dk1 <∞

and F(g)(k1, k2, k3) ∈ L1(V1). Similarly, we can show that;

F(g)(k1, k2, k3) ∈ (
⋂

1≤i≤3 L
1(Vi) ∩

⋂
1≤i<j≤3 L

1(Vij))

As R3 \ (
⋃

1≤i≤3 Vi ∪
⋃

1≤i<j≤3 Vij) = CE1,E2,E3 , where;

CE1,E2,E3 = {(k1, k2, k3) ∈ R3 : |k1| < E1, |k2| < E2, |k3| < E3}

and CE1,E2,E3 ⊂ B(0, r), where r = max(E1, E2, E3), we have that
F(g)(k1, k2, k3) ∈ L1(CE1,E2,E3) and F(g)(k1, k2, k3) ∈ L1(R3).

�

Definition 0.61. Let f ∈ C14(R2) with ∂i1+i2f
∂xi1∂yi2

bounded for 0 ≤
i1 + i2 ≤ 14. Let Cn = {(x, y) ∈ R2 : |x| ≤ n, |y| ≤ n}. Then we
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define an inflexionary approximation sequence {fm : m ∈ N} by the
requirements;

(i). fm ∈ C14(R2)

(ii). fm|Cm = f |Cm

(iii) fm|(R2\C
m+ 1

m
) = 0

(iv). For |x| ≤ m, for 0 ≤ i ≤ 13;

∂ifm
∂yi
|(x,m) = ∂if

∂yi
|(x,m)

∂ifm
∂yi
|(x,−m) = ∂if

∂yi
|(x,−m)

∂ifm
∂yi
|(x,m+ 1

m
) = 0

∂ifm
∂yi
|(x,−m− 1

m
) = 0

(v). For |x| ≤ m

if ∂14f
∂y14
|(x,m) > 0, ∂14fm

∂y14
|Vx,m ≥ 0

if ∂14f
∂y14
|(x,m) < 0, ∂14fm

∂y14
|Vx,m ≤ 0

if ∂14f
∂y14
|(x,−m) > 0, ∂14fm

∂y14
|Vx,−m ≥ 0

if ∂14f
∂y14
|(x,−m) < 0, ∂14fm

∂y14
|Vx,−m ≤ 0

(vi). For 0 ≤ |y| ≤ m+ 1
m

, 0 ≤ i ≤ 13

∂ifm
∂xi
|(x,y) = ∂ifm

∂xi
|(m,y), m ≤ x ≤ m+ 1

m

∂ifm
∂xi
|(x,y) = ∂ifm

∂xi
|(−m,y), −m− 1

m
≤ x ≤ −m

∂ifm
∂xi
|(m+ 1

m
,y) = 0

∂ifm
∂xi
|(−m− 1

m
,y) = 0

(vii) For m ≤ |x| ≤ m+ 1
m

, 0 ≤ |y| ≤ m+ 1
m
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if ∂14f
∂x14
|(m,y) > 0, ∂14fm

∂x14
|Hm,y ≥ 0

if ∂14f
∂x14
|(m,y) < 0, ∂14fm

∂x14
|Hm,y ≤ 0

if ∂14f
∂x14
|(−m,y) > 0, ∂14fm

∂x14
|H−m,y ≥ 0

if ∂14f
∂x14
|(−m,y) < 0, ∂14fm

∂x14
|H−m,y ≤ 0

where;

Vx,m = {(x, y) ∈ R2 : y ∈ (m,m+ 1
m

)}

Vx,−m = {(x, y) ∈ R2 : y ∈ (−m− 1
m
,−m)}

Hm,y = {(x, y) ∈ R2 : x ∈ (m,m+ 1
m

)}

H−m,y = {(x, y) ∈ R2 : x ∈ (−m− 1
m
,−m)}

Definition 0.62. Let f ∈ C14(R3) with ∂i1+i2+i3f
∂xi1∂yi2∂zi3

bounded for 0 ≤
i1 + i2 + i3 ≤ 14. Let Wn = {(x, y, z) ∈ R3 : |x| ≤ n, |y| ≤ n, |z| ≤ n}.
Then we define an inflexionary approximation sequence {fm : m ∈ N}
by the requirements;

(i). fm ∈ C14(R3)

(ii). fm|Wm = f |Wm

(iii) fm|(R3\W
m+ 1

m
) = 0

(iv). For 0 ≤ |y| ≤ m, 0 ≤ |z| ≤ m, for 0 ≤ i ≤ 13;

∂ifm
∂xi
|(m,y,z) = ∂if

∂xi
|(m,y,z)

∂ifm
∂xi
|(−m,y,z) = ∂if

∂xi
|(−m,y,z)

∂ifm
∂xi
|(m+ 1

m
,y,z) = 0

∂ifm
∂xi
|(−m− 1

m
,y,z) = 0

(v). For 0 ≤ |y| ≤ m, 0 ≤ |z| ≤ m
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if ∂14f
∂x14
|(m,y,z) > 0, ∂14fm

∂x14
|Hm,y,z ≥ 0

if ∂14f
∂y14
|(m,y,z) < 0, ∂14fm

∂x14
|Hm,y,z ≤ 0

if ∂14f
∂y14
|(−m,y,z) > 0, ∂14fm

∂x14
|H−m,y,z ≥ 0

if ∂14f
∂y14
|(−m,y,z) < 0, ∂14fm

∂x14
|H−m,y,z ≤ 0

(vi). For 0 ≤ |x| ≤ m+ 1
m

0 ≤ |z| ≤ m, 0 ≤ i ≤ 13

∂ifm
∂yi
|(x,y,z) = ∂ifm

∂yi
|(x,m,z), m ≤ y ≤ m+ 1

m

∂ifm
∂yi
|(x,y,z) = ∂ifm

∂yi
|(x,−m,z), −m− 1

m
≤ y ≤ −m

∂ifm
∂yi
|(x,m+ 1

m
,z) = 0

∂ifm
∂yi
|(x,−m− 1

m
,z) = 0

(vii) For 0 ≤ |x| ≤ m+ 1
m

, 0 ≤ |z| ≤ m

if ∂14fm
∂y14
|(x,m,z) > 0, ∂14fm

∂y14
|Vx,m,z ≥ 0

if ∂14fm
∂y14
|(x,m,z) < 0, ∂14fm

∂y14
|Vx,m,z ≤ 0

if ∂14fm
∂y14
|(x,−m,z) > 0, ∂14fm

∂y14
|Vx,−m,z ≥ 0

if ∂14fm
∂y14
|(x,−m,z) < 0, ∂14fm

∂y14
|Vx,−m,z ≤ 0

(viii). For 0 ≤ |x| ≤ m+ 1
m

0 ≤ |y| ≤ m+ 1
m

, 0 ≤ i ≤ 13

∂ifm
∂zi
|(x,y,z) = ∂ifm

∂zi
|(x,y,m), m ≤ z ≤ m+ 1

m

∂ifm
∂zi
|(x,y,z) = ∂ifm

∂zi
|(x,y,−m), −m− 1

m
≤ z ≤ −m

∂ifm
∂zi
|(x,y,m+ 1

m
) = 0

∂ifm
∂zi
|(x,y,−m− 1

m
) = 0

(ix) For 0 ≤ |x| ≤ m+ 1
m

, 0 ≤ |y| ≤ m+ 1
m
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if ∂14fm
∂z14
|(x,y,m) > 0, ∂14fm

∂z14
|Dx,y,m ≥ 0

if ∂14f
∂z14
|(x,y,m) < 0, ∂14fm

∂z14
|Dx,y,m ≤ 0

if ∂14f
∂z14
|(x,y,−m) > 0, ∂14fm

∂z14
|Dx,y,−m ≥ 0

if ∂14f
∂z14
|(x,y,−m) < 0, ∂14fm

∂z14
|Dx,y,−m ≤ 0

where;

Hm,y,z = {(x, y, z) ∈ R3 : x ∈ (m,m+ 1
m

)}

H−m,y,z = {(x, y, z) ∈ R3 : x ∈ (−m− 1
m
,−m)}

Vx,m,z = {(x, y, z) ∈ R3 : y ∈ (m,m+ 1
m

)}

Vx,−m,z = {(x, y, z) ∈ R3 : y ∈ (−m− 1
m
,−m)}

Dx,y,m = {(x, y, z) ∈ R3 : z ∈ (m,m+ 1
m

)}

Dx,y,−m = {(x, y, z) ∈ R3 : z ∈ (−m− 1
m
,−m)}

Lemma 0.63. If [a, b] ⊂ R, with a, b finite, and {g, g1, g2} ⊂ C∞([a, b]),
then, if m ∈ R>0 is sufficiently large, there exists h ∈ C∞([m,m+ 1

m
]×

[a, b]), with the property that;

h(m, y) = g(y), ∂h
∂x
|(m,y) = g1(y), ∂2h

∂x2
|(m,y) = g2(y), y ∈ [a, b], (i)

h(m+ 1
m
, y) = ∂h

∂x
(m+ 1

m
, y) = ∂2h

∂x2
(m+ 1

m
, y) = 0, y ∈ [a, b], (ii)

|h|[m,m+ 1
m
]×[a,b]| ≤ C

for some C ∈ R>0, independent of m sufficiently large, and, if
∂3h
∂x3

(m, y) > 0, ∂3h
∂x3

(x, y) > 0, for x ∈ [m,m+ 1
m

], and if ∂3h
∂x3

(m, y) < 0,
∂3h
∂x3

(x, y) < 0, for x ∈ [m,m+ 1
m

], (∗). In particularly;∫ m+ 1
m

m
|∂3h
∂x3
|(x,y)|dx = |g2(y)|

Moreover, for i ∈ N , ∂ih
∂yi

has the property that;
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∂ih
∂yi

(m, y) = g(i)(y), ∂i+1h
∂yi∂x
|(m,y) = g

(i)
1 (y), ∂i+2h

∂yi∂x2
|(m,y) = g

(i)
2 (y)

y ∈ [a, b], (i)′

∂ih
∂yi

(m+ 1
m
, y) = ∂i+1h

∂yi∂x
(m+ 1

m
, y) = ∂i+2h

∂yi∂x2
(m+ 1

m
, y) = 0

y ∈ [a, b], (ii)′

|∂ih
∂yi
|[m,m+ 1

m
]×[a,b]| ≤ Ci

for some Ci ∈ R>0, independent of m sufficiently large, and, if
∂i+3h
∂yi∂x3

(m, y) > 0, ∂i+3h
∂yi∂x3

(x, y) > 0, for x ∈ [m,m+ 1
m

], and if ∂i+3h
∂yi∂x3

(m, y) <

0, ∂i+3h
∂yi∂x3

(x, y) < 0, for x ∈ [m,m+ 1
m

], (∗∗). In particularly;∫ m+ 1
m

m
| ∂i+3h
∂yi∂x3

|(x,y)|dx = |g(i)2 (y)|

Proof. For the construction of h in the first part, just use the proof of
Lemma 0.30, replacing the constant coefficients {a0, a1, a2} ⊂ R with
the data {g(y), g1(y), g2(y)}. The properties (i), (ii) are then clear.
Noting that [a, b] is a finite interval and {g, g1, g2} ⊂ C∞([a, b]), by
continuity, there exists a constant D, with max(|g(y)|, |g1(y)|, |g2(y)| :
y ∈ [a, b]) ≤ D, so, as in the proof of Lemma 0.30, we can use the
bound C = 16D+ 7D+D = 24D, for m > 1. The proof of (∗) follows
uniformly in y, as in the proof of 0.30, for sufficiently large m, again
using the fact that the data {g(y), g1(y), g2(y) : y ∈ [a, b]} is bounded.
The next claim is just the FTC again. For the second part, when we
calculate ∂ih

∂yi
, for i ∈ N , we are just differentiating the coefficients which

are linear in the data {g(y), g1(y), g2(y)}, so we obtain a function which

fits the data {g(i)(y), g
(i)
1 (y), g

(i)
2 (y)} and (i)′, (ii)′ follow. Noting that,

for i ∈ N , {g(i), g(i)1 , g
(i)
2 } ⊂ C∞([a, b]), again by continuity, there exists

constants Di, with max(|g(i)(y)|, |g(i)1 (y)|, |g(i)2 (y)| : y ∈ [a, b]) ≤ Di,
so, again, as in the proof of Lemma 0.30, we can use the bound Ci =
16Di+7Di+Di = 24Di, for m > 1. The proof of (∗∗) follows uniformly
in y, for each i ∈ N , as in the proof of Lemma 0.30, for sufficiently large

m, again using the fact that the data {g(i)(y), g
(i)
1 (y), g

(i)
2 (y) : y ∈ [a, b]}

is bounded. The last claim is again just the FTC. �

Lemma 0.64. Conjecture

Fix n ∈ N , with n ≥ 3. If m ∈ R>0 is sufficiently large, {ai : 0 ≤ i ≤
n − 1} ⊂ R, there exists h ∈ R[x] of degree 2n − 1, with the property
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that;

h(i)(m) = ai, 0 ≤ i ≤ n− 1 (i)

h(i)(m+ 1
m

) = 0, 0 ≤ i ≤ n− 1 (ii)

|h|[m,m+ 1
m
]| ≤ C

for some C ∈ R>0, independent of m sufficiently large, and, if
h(n)(m) > 0, h(n)(x)|[m,m+ 1

m
] > 0, if h(n)(m) < 0, h(n)|[m,m+ 1

m
] < 0.

In particularly;∫ m+ 1
m

m
|h(n)(x)|dx = |an−1|, (18)

Proof. We sketch a proof based on the special case n = 3, which was
shown in Lemma 0.30, leaving the details to the reader, (19). We have
that h(x) = (x − (m + 1

m
))np(x) where p(x) is a polynomial satisfies

condition (ii). Computing the derivatives h(i)(m), for 0 ≤ i ≤ n−1, we
obtain n linear equations involving the unknowns p(i)(m), 0 ≤ i ≤ n−1,
of the form;∑i

k=0
dikp

(k)(m)
mn−i+k

= ai, (0 ≤ i ≤ n− 1) (∗)

18 If a0 > 0, a1 > 0, there does not exist a smooth function h on the interval
(m,m+ 1

m ), with h(m) = a0, h′(m) = a1, h(m+ 1
m ) = 0, h′(m+ 1

m ) = 0, such that
h′′ > 0 or h′′ < 0. To see this, if h′′ > 0, using the MVT, we have that h′(x) >
h′(m) > 0, for x ∈ (m,m+ 1

m ), contradicting the fact that h′(m+ 1
m ) = 0. If h′′ < 0,

and h′(x) has no roots in the interval (m,m+ 1
m ), then as h′(m) > 0, h′(x) > 0 on

(m,m+ 1
m ), and h is increasing on (m,m+ 1

m ), so that h(m+ 1
m ) > h(m) = a0 > 0,

contradicting the fact that h(m + 1
m ) = 0. Otherwise, if h′(x) has a root in the

interval (m,m+ 1
m ), as h′′ < 0, it attains a maximum at x0 ∈ (m,m+ 1

m ). Using

the MVT again, we must have that for y ∈ (x0,m+ 1
m ), h′(y) < h′(x0) = 0, so that

h′(m+ 1
m ) < 0, contradicting the fact that h′(m+ 1

m ) = 0.
19 One step requires the verification that for a computable polynomial rn of

degree n − 1, rn(1) 6= 0, which is highly unlikely on generic grounds and the fact
that r3(1) 6= 1, although r2(1) = 1, see footnote 18. The geometric idea is that
allowing for inflexionary type curves, where we can have points x0,i ∈ (m,m+ 1

m )

for which h(i)(x0,i) = 0, where 2 ≤ i ≤ n − 1, the end conditions can be satisfied

while still having h(n)|(m,m+ 1
m ) > 0 or h(n)|(m,m+ 1

m ) < 0. However, you still need

to do a concrete calculation, which in the case of verifying the conjecture for all
n ∈ N , n ≥ 3, would involve finding the exact pattern in the coefficients obtained
in the proof of Lemma 0.30. We actually only need the result for some n ≥ 14 in
the rest of this paper.
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which we can solve for p(i)(m), 0 ≤ i ≤ n − 1, using the fact
that the matrix (dik)0≤i≤n−1,0≤k≤i is lower triangular and |dii| = 1,
for 0 ≤ i ≤ n− 1. Then we can take;

p(x) =
∑n−1

i=0 p
(i)(m)(x−m)i

so that h has degree n+ (n− 1) = 2n− 1. It is clear from (∗), that
we have;

p(i)(m) =
∑i

k=0 cikai−km
n+k, (0 ≤ i ≤ n− 1)

where (cik)0≤i≤n−1,0≤k≤i is a real matrix, so that p(x) has the form;

p(x) =
∑n−1

i=0 vix
i (∗∗)

where;

vn−1−i =
∑n−1

k=0 rikm
n+k +

∑i
l=0 silm

2n−1+l, (0 ≤ i ≤ n− 1)

for real matrices (rik)0≤i≤n−1,0≤k≤n−1 and (sil)0≤i≤n−1,0≤l≤i.

It is then clear, using the product rule and (∗∗), that;

h(n)(x) =
∑n−1

k=0 wkx
k

where wk = zka0m
3n−2−k +O(m3n−3−k), (0 ≤ k ≤ n− 1)

By homogeneity, it is then clear that the real roots of h(n)(x) are of
the form ts0m + O(1), where ts0 ∈ R, 1 ≤ s0 ≤ n− 1, and ts0 satisfies
a polynomial r(x) of degree n− 1, which is effectively computable for
given n. We can exclude any roots in the interval [m,m+ 1

m
], for suf-

ficiently large m, provided ts0 6= 1, for 1 ≤ s0 ≤ n − 1, which we can
check by showing that r(1) 6= 0. We have that;

|h|(m,m+ 1
m
)| = |(x− (m+ 1

m
))np(x)|

≤ 1
mn
|
∑n−1

i=0 p
(i)(m)(x−m)i|

≤ 1
mn

∑n−1
i=0

|p(i)(m)|
mi
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≤
∑n−1

i=0

∑i
k=0 |cik|ai−k|

mn+k

mn+i

≤
∑n−1

i=0

∑i
k=0 |cik|ai−k| = C, (m > 1)

The last claim is just the FTC.

�

Lemma 0.65. If [a, b] ⊂ R, with a, b finite, n ≥ 3, and {gj : 0 ≤ j ≤
n− 1} ⊂ C∞([a, b]), then, if m ∈ R>0 is sufficiently large, there exists
h ∈ C∞([m,m+ 1

m
]× [a, b]), with the property that;

∂(j)h
∂xj
|(m,y) = gj(y), y ∈ [a, b], (i)

∂hj

∂xj
(m+ 1

m
, y) = 0, y ∈ [a, b], (ii)

|h|[m,m+ 1
m
]×[a,b]| ≤ C

for some C ∈ R>0, independent of m sufficiently large, and, if
∂nh
∂xn

(m, y) > 0, ∂nh
∂xn

(x, y) > 0, for x ∈ [m,m+ 1
m

], and if ∂nh
∂xn

(m, y) < 0,
∂nh
∂xn

(x, y) < 0, for x ∈ [m,m+ 1
m

], (∗). In particularly;∫ m+ 1
m

m
|∂nh
∂xn
|(x,y)|dx = |gn−1(y)|

Moreover, for i ∈ N , ∂ih
∂yi

has the property that;

∂i+jh
∂xj∂yi

(m, y) = g
(i)
j (y), y ∈ [a, b], (i)′

∂i+jh
∂xj∂yi

(m+ 1
m
, y) = 0, y ∈ [a, b], (ii)′

|∂ih
∂yi
|[m,m+ 1

m
]×[a,b]| ≤ Ci

for some Ci ∈ R>0, independent of m sufficiently large, and, if
∂i+nh
∂yi∂xn

(m, y) > 0, ∂i+nh
∂yi∂xn

(x, y) > 0, for x ∈ [m,m+ 1
m

], and if ∂i+nh
∂yi∂xn

(m, y) <

0, ∂i+nh
∂yi∂xn

(x, y) < 0, for x ∈ [m,m+ 1
m

], (∗∗). In particularly;∫ m+ 1
m

m
| ∂i+nh
∂yi∂xn

|(x,y)|dx = |g(i)n−1(y)|

Proof. For the construction of h in the first part, just use the proof
of Lemma 0.64, replacing the constant coefficients {aj : 0 ≤ j ≤ n −
1} ⊂ R with the data {gj(y) : 0 ≤ j ≤ n − 1}. The properties
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(i), (ii) are then clear. Noting that [a, b] is a finite interval and {gj :
0 ≤ j ≤ n − 1} ⊂ C∞([a, b]), by continuity, there exists a constant
D, with max(|gj(y)| : 0 ≤ j ≤ n − 1, y ∈ [a, b]) ≤ D, so, as in
the proof of Lemma 0.30, we can use the bound C =

∑
0≤j≤n−1 LjD,

for m > 1. The proof of (∗) follows uniformly in y, as in the proof
of 0.30, for sufficiently large m, again using the fact that the data
{gj(y) : 0 ≤ j ≤ n − 1, y ∈ [a, b]} is bounded. The next claim is just

the FTC again. For the second part, when we calculate ∂ih
∂yi

, for i ∈ N ,

we are just differentiating the coefficients which are linear in the data
{gj(y) : 0 ≤ j ≤ n − 1}, so we obtain a function which fits the data

{g(i)j (y) : 0 ≤ j ≤ n − 1} and (i)′, (ii)′ follow. Noting that, for i ∈ N ,

{g(i)j : 0 ≤ j ≤ n − 1} ⊂ C∞([a, b]), again by continuity, there exist

constants Di, with max(|g(i)j (y)| : 0 ≤ j ≤ n − 1, y ∈ [a, b]) ≤ Di,
so, again, as in the proof of Lemma 0.30, we can use the bound Ci =∑

0≤j≤n−1 LjDi, for m > 1. The proof of (∗∗) follows uniformly in y,
for each i ∈ N , as in the proof of Lemma 0.30, for sufficiently large m,

again using the fact that the data {g(i)j (y) : 0 ≤ j ≤ n− 1, y ∈ [a, b]} is
bounded. The last claim is again just the FTC. �

Lemma 0.66. If [a, b] ⊂ R, [c, d] ⊂ R,with a, b, c, d finite, n ≥ 3,
and {gj : 0 ≤ j ≤ n − 1} ⊂ C∞([a, b] × [c, d]), then, if m ∈ R>0 is
sufficiently large, there exists h ∈ C∞([m,m+ 1

m
]× [a, b]× [c, d]), with

the property that;

∂(j)h
∂xj
|(m,y,z) = gj(y, z), (y, z) ∈ [a, b]× [c, d], (i)

∂hj

∂xj
(m+ 1

m
, y, z) = 0, (y, z) ∈ [a, b]× [c, d], (ii)

|h|[m,m+ 1
m
]×[a,b]×[c,d]| ≤ C

for some C ∈ R>0, independent of m sufficiently large, and, if
∂nh
∂xn

(m, y, z) > 0, ∂nh
∂xn

(x, y, z) > 0, for x ∈ [m,m+ 1
m

], and if ∂nh
∂xn

(m, y, z) <

0, ∂nh
∂xn

(x, y, z) < 0, for x ∈ [m,m+ 1
m

], (∗). In particularly;∫ m+ 1
m

m
|∂nh
∂xn
|(x,y,z)|dx = |gn−1(y, z)|

Moreover, for (i, k) ⊂ N 2, 0 ≤ j ≤ n − 1, ∂i+kh
∂yi∂zk

, has the property

that;

∂i+j+kh
∂xj∂yi∂zk

(m, y, z) =
∂i+kgj
∂yi∂zk

(y, z), (y, z) ∈ [a, b]× [c, d], (i)′
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∂i+j+kh
∂xj∂yi∂zk

(m+ 1
m
, y, z) = 0, (y, z) ∈ [a, b]× [c, d], (ii)′

| ∂i+kh
∂yi∂zk

|[m,m+ 1
m
]×[a,b]×[c,d]| ≤ Ci,k

for some Ci,k ∈ R>0, independent of m sufficiently large, and, if
∂i+k+nh
∂yi∂zk∂xn

(m, y, z) > 0, ∂i+k+nh
∂yi∂zk∂xn

(x, y, z) > 0, for x ∈ [m,m+ 1
m

], and if
∂i+k+nh
∂yi∂zk∂xn

(m, y) < 0, ∂i+k+nh
∂yi∂zk∂xn

(x, y, z) < 0, for x ∈ [m,m+ 1
m

], (∗∗). In

particularly;∫ m+ 1
m

m
| ∂i+k+nh
∂yi∂zk∂xn

|(x,y,z)|dx = |∂
i+kgn−1

∂yi∂zk
(y, z)|

Proof. For the construction of h in the first part, just use the proof of
Lemma 0.64, replacing the constant coefficients {aj : 0 ≤ j ≤ n− 1} ⊂
R with the data {gj(y, z) : 0 ≤ j ≤ n − 1}. The properties (i), (ii)
are then clear. Noting that [a, b] × [c, d] is compact and {gj : 0 ≤ j ≤
n − 1} ⊂ C∞([a, b] × [c, d]), by continuity, there exists a constant D,
with max(|gj(y, z)| : 0 ≤ j ≤ n−1, (y, z) ∈ [a, b]× [c, d]) ≤ D, so, as in
the proof of Lemma 0.64, we can use the bound C =

∑
0≤j≤n−1 LjD,

for m > 1. The proof of (∗) follows uniformly in y, as in the proof
of 0.64, for sufficiently large m, again using the fact that the data
{gj(y, z) : 0 ≤ j ≤ n− 1, (y, z) ∈ [a, b]} is bounded. The next claim is

just the FTC again. For the second part, when we calculate ∂i+kh
∂yi∂zk

, for

(i, j ∈ N 2, we are just differentiating the coefficients which are linear
in the data {gj(y, z) : 0 ≤ j ≤ n − 1}, so we obtain a function which

fits the data { ∂
i+kgj
∂yi∂zk

(y, z) : 0 ≤ j ≤ n− 1} and (i)′, (ii)′ follow. Noting

that, for (i, k) ∈ N 2, { ∂
i+kgj
∂yi∂zk

: 0 ≤ j ≤ n−1} ⊂ C∞([a, b]×[c, d]), again

by continuity, there exist constants Di,k, with max(| ∂
i+kgj
∂yi∂zk

(y, z)| : 0 ≤
j ≤ n− 1, y ∈ [a, b]× [c, d]) ≤ Di,k, so, again, as in the proof of Lemma
0.64, we can use the bound Ci,k =

∑
0≤j≤n−1 LjDi,k, for m > 1. The

proof of (∗∗) follows uniformly in (y, z), for each (i, k) ∈ N 2, as in the
proof of Lemma 0.64, for sufficiently large m, again using the fact that

the data { ∂
i+kgj

∂Y i∂zk
(y) : 0 ≤ j ≤ n− 1, (y, z) ∈ [a, b]× [c, d]} is bounded.

The last claim is again just the FTC. �

Lemma 0.67. For f ∈ C27(R2) with ∂i1+i2f
∂xi1∂yi2

bounded by some con-

stant F ∈ R>0, for 0 ≤ i1 + i2 ≤ 27. Then for sufficiently large m,
there exists an inflexionary approximation sequence {fm : m ∈ N},
with the property that;
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max(
∫
R2 | ∂fm∂x14

|dxdy,
∫
R2 | ∂fm∂y14

|dxdy) ≤ Gm2

for some G ∈ R>0, for sufficiently large m.

Proof. Define fm = f on Cm, so that (ii) of Definition 0.61 is satis-
fied. Using two applications of Lemma 0.65 with n = 14, changing
to a vertical rather than horizontal orientation, and the fact that, for

0 ≤ i ≤ 13, |x| ≤ m, ∂if
∂yi
|(x,m) and ∂if

∂yi
|(x,−m) define smooth functions on

[−m,m], we can extend fm to R = {(x, y) : |x| ≤ m,m ≤ |y| ≤ m+ 1
m
},

such that fm|R1 satisfies conditions (iv), (v) of Definition 0.61, where
R1 = {(x, y) : |x| ≤ m, 0 ≤ |y| ≤ m+ 1

m
}. Again, using two applications

of Lemma 0.65 with n = 14, and the original horizontal orientation,

and the fact that, for 0 ≤ i ≤ 13, 0 ≤ |y| ≤ m + 1
m

, ∂ifm
∂xi
|(m,y) and

∂if
∂xi
|(−m,y) define smooth functions on [−m− 1

m
,m+ 1

m
], we can extend

fm to S = {(x, y) : m ≤ |x| ≤ m + 1
m
, 0 ≤ |y| ≤ m + 1

m
}, such that

fm|Cm+ 1
m

satisfies conditions (vi), (vii) of Definition 0.61. Conditions

(i), (iii) are then clear. We then have, using (iii), that;∫
R2 | ∂fm∂x14

|dxdy =
∫
C
m+ 1

m

| ∂fm
∂x14
|dxdy

=
∫
|x|≤m,|y|≤m |

∂fm
∂x14
|dxdy+

∫
|x|≤m,m≤|y|≤m+ 1

m
| ∂fm
∂x14
|dxdy+

∫
m≤|x|≤m+ 1

m
,|y|≤m |

∂fm
∂x14
|dxdy

+
∫
m≤|x|≤m+ 1

m
,m≤|y|≤m+ 1

m
| ∂fm
∂x14
|dxdy∫

R2 | ∂fm∂y14
|dxdy =

∫
C
m+ 1

m

| ∂fm
∂y14
|dxdy

=
∫
|x|≤m,|y|≤m |

∂fm
∂y14
|dxdy+

∫
|x|≤m,m≤|y|≤m+ 1

m
| ∂fm
∂y14
|dxdy+

∫
m≤|x|≤m+ 1

m
,|y|≤m |

∂fm
∂y14
|dxdy

+
∫
m≤|x|≤m+ 1

m
,m≤|y|≤m+ 1

m
| ∂fm
∂y14
|dxdy (∗)

We then have the following cases, using the second clause in Lemma
0.65 repeatedly with the appropriate orientations;

Case 1;∫
|x|≤m,|y|≤m |

∂14fm
∂x14
|dxdy

=
∫
|x|≤m,|y|≤m |

∂14f
∂x14
|dxdy ≤ Fm2
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|x|≤m,|y|≤m |

∂14fm
∂y14
|dxdy

=
∫
|x|≤m,|y|≤m |

∂14f
∂y14
|dxdy ≤ Fm2

Case 2;∫
|x|≤m,m≤|y|≤m+ 1

m
|∂14fm
∂x14
|dxdy

=
∫
|x|≤m(

∫
|y|≤m+ 1

m
|∂14fm
∂x14
|dy)dx

≤ 2
m

∫
|x|≤mC14dx

≤ 2m 2
m
C14

= 4C14

Case 3;∫
m≤|x|≤m+ 1

m
,|y|≤m |

∂14fm
∂x14
|dxdy

=
∫
|y|≤m(

∫
m≤|x|≤m+ 1

m
|∂14fm
∂x14
|dx)dy

=
∫
|y|≤m(|∂13f

∂x13
|(m,y) + |∂13f

∂x13
|(−m,y))dy

≤ 4mF

Case 4.∫
m≤|x|≤m+ 1

m
,m≤|y|≤m+ 1

m
|∂14fm
∂x14
|dxdy

=
∫
m≤|y|≤m+ 1

m
(
∫
m≤|x|≤m+ 1

m
|∂14fm
∂x14
|dx)dy

=
∫
m≤|y|≤m+ 1

m
(|∂13fm

∂x13
|(m,y) + |∂13fm

∂x13
|(−m,y)dy

≤
∫
m≤y≤m+ 1

m
C13,1dy +

∫
−m− 1

m
≤−mC13,2dy

≤ max(C13,1,C13,2)

m
(the constants {C13,1, C13,2} coming from the two

applications of Lemma 0.65 at the two boundaries)

Case 5;
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|x|≤m,m≤|y|≤m+ 1

m
|∂14fm
∂y14
|dxdy

=
∫
|x|≤m(

∫
m≤|y|≤m+ 1

m
|∂14fm
∂y14
|dy)dx

=
∫
|x|≤m(| ∂f

∂y13
|(x,m) + |∂f(x,y)

∂y13
|(x,−m)dx)

≤ 4mF

Case 6;∫
|y|≤m,m≤|x|≤m+ 1

m
|∂14fm
∂y14
|dxdy

=
∫
|y|≤m(

∫
m≤|x|≤m+ 1

m
|∂14fm
∂y14
|dx)dy

≤ 1
m

∫
|y|≤m(|

∑13
i=0Di| ∂

i∂14f
∂y14∂xi

|(m, y) + |
∑13

i=0Di| ∂
i∂14f

∂y14∂xi
|(−m, y))dy

≤ 2
m

(2m)F (
∑13

i=0Di)

= 4F (
∑13

i=0Di)

Case 7.∫
m≤|x|≤m+ 1

m
,m≤|y|≤m+ 1

m
|∂14fm
∂y14
|dxdy

=
∫
m≤|y|≤m+ 1

m
(
∫
m≤|x|≤m+ 1

m
|∂14fm
∂y14
|dx)dy

≤ 1
m

∫
m≤|y|≤m+ 1

m
(
∑13

i=0 Li,14|
∂i+14fm
∂xi∂y14

|(m,y) + Li,14|∂
i+14fm
∂xi∂y14

|(−m,y))dy

= 1
m

∑13
i=0 Li,14(|

∂i+13f
∂xi∂y13

|(m,m)|+| ∂
i+13f

∂xi∂y13
|(m,−m)|+| ∂

i+13f
∂xi∂y13

|(−m,m)|+| ∂
i+13f

∂xi∂y13
|(−m,−m)|)

≤ 4F (
∑13
i=0 Li,14)

m
(the constants Li,14,0 ≤ i ≤ 13 coming from the proof

of Lemma 0.65)

Combining the seven cases and (∗), we obtain, for sufficiently large
m, that;∫

R2 | ∂fm∂x14
|dxdy ≤ Fm2 + 4C14 + 4mF + max(C13,1,C13,2)

m
≤ Gm2

∫
R2 | ∂fm∂y14

|dxdy ≤ Fm2 + 4mF + 4F (
∑13

i=0Di) +
4F (

∑13
i=0 Li,14)

m
≤ Gm2

�
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Lemma 0.68. For f ∈ C40(R3) with ∂i1+i2+i3f
∂xi1∂yi2∂zi3

bounded by some con-

stant F ∈ R>0, for 0 ≤ i1 + i2 + i3 ≤ 40. Then for sufficiently large
m, there exists an inflexionary approximation sequence {fm : m ∈ N},
with the property that;

max(
∫
R3 | ∂fm∂x14

|dxdydz,
∫
R3 | ∂fm∂y14

|dxdydz,
∫
R3 | ∂fm∂z14

|dxdydz) ≤ Gm3

for some G ∈ R>0, for sufficiently large m.

Proof. Define fm = f on Wm, so that (ii) of Definition 0.62 is satisfied.
Using two applications of Lemma 0.66 with n = 14, with a horizontal
orientation, and the fact that, for 0 ≤ i ≤ 13, 0 ≤ |y| ≤ m, 0 ≤ |z| ≤ m
∂if
∂xi
|(m,y,z) and ∂if

∂xi
|(−m,y,z) define smooth functions on [−m,m]2, we can

extend fm to A1 = {(x, y, z) : m ≤ |x| ≤ m+ 1
m
, 0 ≤ |y| ≤ m, 0 ≤ |z| ≤

m}, such that fm|A2 satisfies conditions (iv), (v) of Definition 0.62,
where A2 = {(x, y, z) : 0 ≤ |x| ≤ m + 1

m
, 0 ≤ |y| ≤ m, 0 ≤ |z| ≤ m}.

Again, using two applications of Lemma 0.66 with n = 14 again, this
time with a vertical orientation, and the fact that, for 0 ≤ i ≤ 13,

0 ≤ |x| ≤ m + 1
m

, 0 ≤ |z| ≤ m, ∂ifm
∂yi
|(x,m,z) and ∂ifm

∂yi
|(x,−m,z) define

smooth functions on [−m − 1
m
,m + 1

m
] × [−m,m], we can extend fm

to A3 = {(x, y, z) : 0 ≤ |x| ≤ m + 1
m
,m ≤ |y| ≤ m + 1

m
, 0 ≤ |z| ≤ m},

such that fm|A4 satisfies conditions (vi), (vii) of Definition 0.62, where
A4 = {(x, y, z) : 0 ≤ |x| ≤ m + 1

m
, 0 ≤ |y| ≤ m + 1

m
, 0 ≤ |z| ≤ m}.

Again, using two applications of Lemma 0.66 with n = 14 again, this
time with a lateral orientation, and the fact that, for 0 ≤ i ≤ 13,

0 ≤ |x| ≤ m+ 1
m

, 0 ≤ |y| ≤ m+ 1
m

, ∂ifm
∂zi
|(x,y,m) and ∂ifm

∂zi
|(x,y,−m) define

smooth functions on [−m − 1
m
,m + 1

m
]2, we can extend fm to Wm+ 1

m

such that fm|W
m+ 1

m

satisfies conditions (viii), (ix) of Definition 0.62.

Conditions (i), (iii) are then clear. We then have, using (iii), that;

(a).
∫
R3 | ∂fm∂x14

|dxdydz =
∫
W
m+ 1

m

| ∂fm
∂x14
|dxdydz

=
∫
|x|≤m,|y|≤m,|z|≤m |

∂fm
∂x14
|dxdydz+

∫
m≤|x|≤m+ 1

m
,|y|≤m,|z|≤m |

∂fm
∂x14
|dxdydz

+
∫
|x|≤m,m≤|y|≤m+ 1

m
,|z|≤m |

∂fm
∂x14
|dxdydz+

∫
m≤|x|≤m+ 1

m
,m≤|y|≤m+ 1

m
,|z|≤m |

∂fm
∂x14
|dxdydz

+
∫
|x|≤m,|y|≤m,m≤|z|≤m+ 1

m
| ∂fm
∂x14
|dxdydz+

∫
m≤|x|≤m+ 1

m
,|y|≤m,m≤|z|≤m+ 1

m
| ∂fm
∂x14
|dxdydz

+
∫
|x|≤m,m≤|y|≤m+ 1

m
,m≤|z|≤m+ 1

m
| ∂fm
∂x14
|dxdydz+

∫
m≤|x|≤m+ 1

m
,m≤|y|≤m+ 1

m
,m≤|z|≤m+ 1

m
| ∂fm
∂x14
|dxdydz
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(b).
∫
R3 | ∂fm∂y14

|dxdydz =
∫
W
m+ 1

m

| ∂fm
∂y14
|dxdydz

=
∫
|x|≤m,|y|≤m,|z|≤m |

∂fm
∂y14
|dxdydz+

∫
m≤|x|≤m+ 1

m
,|y|≤m,|z|≤m |

∂fm
∂y14
|dxdydz

+
∫
|x|≤m,m≤|y|≤m+ 1

m
,|z|≤m |

∂fm
∂y14
|dxdydz+

∫
m≤|x|≤m+ 1

m
,m≤|y|≤m+ 1

m
,|z|≤m |

∂fm
∂y14
|dxdydz

+
∫
|x|≤m,|y|≤m,m≤|z|≤m+ 1

m
| ∂fm
∂y14
|dxdydz+

∫
m≤|x|≤m+ 1

m
,|y|≤m,m≤|z|≤m+ 1

m
| ∂fm
∂y14
|dxdydz

+
∫
|x|≤m,m≤|y|≤m+ 1

m
,m≤|z|≤m+ 1

m
| ∂fm
∂y14
|dxdydz+

∫
m≤|x|≤m+ 1

m
,m≤|y|≤m+ 1

m
,m≤|z|≤m+ 1

m
| ∂fm
∂y14
|dxdydz

(c).
∫
R3 | ∂fm∂z14

|dxdydz =
∫
W
m+ 1

m

| ∂fm
∂z14
|dxdydz

=
∫
|x|≤m,|y|≤m,|z|≤m |

∂fm
∂z14
|dxdydz+

∫
m≤|x|≤m+ 1

m
,|y|≤m,|z|≤m |

∂fm
∂z14
|dxdydz

+
∫
|x|≤m,m≤|y|≤m+ 1

m
,|z|≤m |

∂fm
∂z14
|dxdydz+

∫
m≤|x|≤m+ 1

m
,m≤|y|≤m+ 1

m
,|z|≤m |

∂fm
∂z14
|dxdydz

+
∫
|x|≤m,|y|≤m,m≤|z|≤m+ 1

m
| ∂fm
∂z14
|dxdydz+

∫
m≤|x|≤m+ 1

m
,|y|≤m,m≤|z|≤m+ 1

m
| ∂fm
∂z14
|dxdydz

+
∫
|x|≤m,m≤|y|≤m+ 1

m
,m≤|z|≤m+ 1

m
| ∂fm
∂z14
|dxdydz+

∫
m≤|x|≤m+ 1

m
,m≤|y|≤m+ 1

m
,m≤|z|≤m+ 1

m
| ∂fm
∂z14
|dxdydz

(∗)

We then have the following cases, using the second clause in Lemma
0.66 repeatedly with the appropriate orientations;

Case 1;∫
|x|≤m,|y|≤m,|z|≤m |

∂14fm
∂x14
|dxdydz

=
∫
|x|≤m,|y|≤m,|z|≤m |

∂14f
∂x14
|dxdydz ≤ Fm3

∫
|x|≤m,|y|≤m,|z|≤m |

∂14fm
∂y14
|dxdydz

=
∫
|x|≤m,|y|≤m,|z|≤m |

∂14f
∂y14
|dxdydz ≤ Fm3

∫
|x|≤m,|y|≤m,|z|≤m |

∂14fm
∂z14
|dxdydz

=
∫
|x|≤m,|y|≤m,|z|≤m |

∂14f
∂z14
|dxdydz ≤ Fm3

Case 2;
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m≤|x|≤m+ 1

m
,|y|≤m,|z|≤m |

∂14fm
∂x14
|dxdydz

=
∫
|y|≤m,|z|≤m(

∫
m≤|x|≤m+ 1

m
|∂14fm
∂x14
|dx)dydz

=
∫
|y|≤m(|∂13f

∂x13
|(m,y,z) + |∂13f

∂x13
|(−m,y,z))dydz

≤ 2(2m)2F

= 8m2F

Case 3;∫
m≤|x|≤m+ 1

m
,|y|≤m,|z|≤m |

∂14fm
∂y14
|dxdydz

=
∫
|y|≤m,|z|≤m(

∫
m≤|x|≤m+ 1

m
|∂14fm
∂y14
|dx)dydz

≤ 1
m

∫
|y|≤m,|z|≤m(|

∑13
i=0Di| ∂

i∂14f
∂y14∂xi

|(m, y, z)+|
∑13

i=0Di| ∂
i∂14f

∂y14∂xi
|(−m, y, z))dydz

≤ 2
m

(2m)2F (
∑13

i=0Di)

= 8mF (
∑13

i=0Di)∫
m≤|x|≤m+ 1

m
,|y|≤m,|z|≤m |

∂14fm
∂z14
|dxdydz

=
∫
|y|≤m,|z|≤m(

∫
m≤|x|≤m+ 1

m
|∂14fm
∂z14
|dx)dydz

≤ 1
m

∫
|y|≤m,|z|≤m(|

∑13
i=0Di| ∂

i∂14f
∂z14∂xi

|(m, y, z)+|
∑13

i=0Di| ∂
i∂14f

∂z14∂xi
|(−m, y, z))dydz

≤ 2
m

(2m)2F (
∑13

i=0Di)

= 8mF (
∑13

i=0Di)

Case 4.∫
|x|≤m,m≤|y|≤m+ 1

m
,|z|≤m |

∂14fm
∂x14
|dxdydz

=
∫
|x|≤m,|z|≤m(

∫
|y|≤m+ 1

m
|∂14fm
∂x14
|dy)dxdz

≤ 2
m

∫
|x|≤m,|z|≤mC14dx
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= (2m)2 2
m
C14,0

= 8mC14,0∫
|x|≤m,m≤|y|≤m+ 1

m
,|z|≤m |

∂14fm
∂z14
|dxdydz

=
∫
|x|≤m,|z|≤m(

∫
|y|≤m+ 1

m
|∂14fm
∂z14
|dy)dxdz

≤ 2
m

∫
|x|≤m,|z|≤mC0,14dx

= (2m)2 2
m
C0,14

= 8mC0,14

Case 5.∫
|x|≤m,m≤|y|≤m+ 1

m
,|z|≤m |

∂14fm
∂y14
|dxdydz

=
∫
|x|≤m,|z|≤m(

∫
m≤|y|≤m+ 1

m
|∂14fm
∂y14
|dy)dxdz

=
∫
|x|≤m,|z|≤m(| ∂f

∂y13
|(x,m,z) + | ∂f

∂y13
|(x,−m,z))dxdz)

≤ 2(2m)2F

= 8m2F

Case 6.∫
m≤|x|≤m+ 1

m
,m≤|y|≤m+ 1

m
,|z|≤m |

∂14fm
∂x14
|dxdydz

=
∫
m≤|x|≤m+ 1

m
,|z|≤m(

∫
m≤|y|≤m+ 1

m
|∂14fm
∂x14
|dy)dxdz

≤ 1
m

∫
m≤|x|≤m+ 1

m
,|z|≤m(

∑13
i=0 Li,14|

∂i+14∂14fm
∂yi∂x14

|(x,m,z)+Li,14|∂
i+14∂14fm
∂yi∂x14

|(x,−m,z))dxdz

= 1
m

∫
|z|≤m(

∑13
i=0 Li,14(|

∂i+13∂14f
∂yi∂x13

|(m,m,z)|+|∂
i+13∂14f
∂yi∂x13

|(m,−m,z)|+|∂
i+13∂14f
∂yi∂x13

|(−m,m,z)|

+|∂i+13∂14f
∂yi∂x13

|(−m,−m,z)|))dz

≤ (2m)
4F (

∑13
i=0 Li,14)

m
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= 8F (
∑13

i=0 Li,14)

(the constants Li,14,0 ≤ i ≤ 13 coming from the proof of Lemma
0.65)

Case 7.∫
m≤|x|≤m+ 1

m
,m≤|y|≤m+ 1

m
,|z|≤m |

∂14fm
∂y14
|dxdydz

=
∫
m≤|x|≤m+ 1

m
,|z|≤m(

∫
m≤|y|≤m+ 1

m
|∂14fm
∂y14
|dy)dxdz

=
∫
m≤|x|≤m+ 1

m
,|z|≤m(|∂13fm

∂y13
|(x,m,z) + |∂13fm

∂y13
|(x,−m,z))dxdz

≤
∫
m≤x≤m+ 1

m
,|z|≤mC13,1dxdz +

∫
−m− 1

m
≤−m,|z|≤mC13,2dxdz

≤ (2m)max(C13,1,C13,2)

m

= 2max(C13,1, C13,2)

(the constants {C13,1, C13,2} coming from the two applications of
Lemma 0.65 at the two boundaries)

Case 8.∫
m≤|x|≤m+ 1

m
,m≤|y|≤m+ 1

m
,|z|≤m |

∂14fm
∂z14
|dxdydz

=
∫
m≤|x|≤m+ 1

m
,|z|≤m(

∫
m≤|y|≤m+ 1

m
|∂14fm
∂z14
|dy)dxdz

≤ 1
m

∫
m≤|x|≤m+ 1

m
,|z|≤m(

∑13
i=0 Li,14|

∂i+14fm
∂yi∂z14

|(x,m,z)+Li,14|∂
i+14fm
∂yi∂z14

|(x,−m,z))dxdz

≤ 1
m2

∫
|z|≤m(

∑13
i=0

∑13
j=0 Li,14Lj,i,14(|

∂i+j+14f
∂xj∂yi∂z14

|(m,m,z)|+| ∂
i+j+14f

∂xj∂yi∂z14
|(m,−m,z)|

+| ∂i+j+14f
∂xj∂yi∂z14

|(−m,m,z)|+ | ∂
i+j+14f

∂xj∂yi∂z14
|(−m,−m,z)|))dz

≤ (2m)
4F (

∑13
i=0

∑13
j=0 Li,14Lj,i,14)

m2

= 8F
m

(
∑13

i=0

∑13
j=0 Li,14Lj,i,14)

(the constants Li,14, Lj,i,14,0 ≤ i ≤ 13, 0 ≤ j ≤ 13 coming from two
applications of the proof of Lemma 0.66)
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Case 9.∫
|x|≤m,|y|≤m,m≤|z|≤m+ 1

m
| ∂fm
∂x14
|dxdydz

=
∫
|x|≤m,|y|≤m(

∫
m≤|z|≤m+ 1

m
| ∂fm
∂x14
|dz)dxdy

≤ 2
m

∫
|x|≤m,|y|≤m(E14,0)

= (2m)2 2
m
E14,0

= 8mE14,0∫
|x|≤m,|y|≤m,m≤|z|≤m+ 1

m
| ∂fm
∂y14
|dxdydz

=
∫
|x|≤m,|y|≤m(

∫
m≤|z|≤m+ 1

m
| ∂fm
∂y14
|dz)dxdy

≤ 2
m

∫
|x|≤m,|y|≤m(E0,14)

= (2m)2 2
m
E0,14

= 8mE0,14

(the constants E0,14, E14,0 coming from an application of Lemma 0.66
with a different orientation)

Case 10.∫
|x|≤m,|y|≤m,m≤|z|≤m+ 1

m
| ∂fm
∂z14
|dxdydz

=
∫
|x|≤m,|y|≤m(

∫
m≤|z|≤m+ 1

m
| ∂fm
∂z14
|dz)dxdy

=
∫
|x|≤m,|y|≤m(| ∂f

∂z13
|(x, y,m) + | ∂f

∂z13
|(x, y,m))dxdy

≤ 2(2m)2F

= 8m2F

Case 11.∫
m≤|x|≤m+ 1

m
,|y|≤m,m≤|z|≤m+ 1

m
|∂14fm
∂x14
|dxdydz

=
∫
m≤|x|≤m+ 1

m
,|y|≤m(

∫
m≤|z|≤m+ 1

m
|∂14fm
∂x14
|dz)dxdy
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≤
∫
m≤|x|≤m+ 1

m
,|y|≤m(

∑13
i=0 Li,14|

∂i+14fm
∂zi∂x14

|(x, y,m)+Li,14|∂
i+14fm
∂zi∂x14

|(x, y,−m))dxdy

=
∫
|y|≤m(

∫
m≤|x|≤m+ 1

m
(
∑13

i=0 Li,14(|
∂i+14fm
∂zi∂x14

|(x, y,m)+Li,14(|∂
i+14fm
∂zi∂x14

|(x, y,−m))dx)dy

=
∫
|y|≤m(

∑13
i=0 Li,14|

∂i+13f
∂zi∂x13

|(m, y,m) +
∑13

i=0 Li,14|
∂i+13f
∂zi∂x13

|(−m, y,m)

+
∑13

i=0 Li,14|
∂i+13f
∂zi∂x13

|(m, y,m) +
∑13

i=0 Li,14|
∂i+13f
∂zi∂x13

|(−m, y,−m))dy

≤ (2m)(4F )(
∑13

i=0 Li,14)

= 8mF (
∑13

i=0 Li,14)

Case 12.∫
m≤|x|≤m+ 1

m
,|y|≤m,m≤|z|≤m+ 1

m
|∂14fm
∂y14
|dxdydz

=
∫
m≤|x|≤m+ 1

m
,|y|≤m(

∫
m≤|z|≤m+ 1

m
|∂14fm
∂y14
|dz)dxdy

≤
∫
m≤|x|≤m+ 1

m
,|y|≤m(

∑13
i=0 Li,14|

∂i+14fm
∂zi∂y14

|(x, y,m)+Li,14|∂
i+14fm
∂yi∂x14

|(x, y,−m))dxdy

=
∫
|y|≤m(

∫
m≤|x|≤m+ 1

m
(
∑13

i=0 Li,14(|
∂i+14fm
∂zi∂y14

|(x, y,m)+Li,14(|∂
i+14fm
∂zi∂y14

|(x, y,−m))dx)dy

=
∫
|y|≤m(

∑13
i=0

∑13
j=0 Li,14Li,j,14|

∂i+j+14f
∂xj∂zi∂y14

|(m, y,m)

+
∑13

i=0

∑13
j=0 Li,14Li,j,14|

∂i+j+14f
∂xj∂zi∂y14

|(−m, y,m)

+
∑13

i=0

∑13
j=0 Li,14Li,j,14|

∂i+j+14f
∂xj∂zi∂y14

|(m, y,−m)

+
∑13

i=0

∑13
j=0 Li,14Li,j,14|

∂i+j+14f
∂xj∂zi∂y14

|(−m, y,−m))dy

≤ (2m)(4F )(
∑13

i=0

∑13
j=0 Li,14Li,j,14)

= 8mF (
∑13

i=0

∑13
j=0 Li,14Li,j,14)

Case 13.∫
m≤|x|≤m+ 1

m
,|y|≤m,m≤|z|≤m+ 1

m
|∂14fm
∂z14
|dxdydz

=
∫
m≤|x|≤m+ 1

m
,|y|≤m(

∫
m≤|z|≤m+ 1

m
|∂14fm
∂z14
|dz)dxdy
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=
∫
m≤|x|≤m+ 1

m
,|y|≤m(|∂13fm

∂z13
|(x, y,m) + |∂13fm

∂z13
|(x, y,−m))dxdy

=
∫
|y|≤m(

∫
m≤|x|≤m+ 1

m
(|∂13fm

∂z13
|(x, y,m) + |∂13fm

∂z13
|(x, y,−m))dx)dy

≤
∫
|y|≤m(

∑13
i=0 Li,13|

∂i+13f
∂xi∂z13

|(m, y,m) +
∑13

i=0 Li,13|
∂i+13f
∂xi∂z13

|(−m, y,m)

+
∑13

i=0 Li,13|
∂i+13f
∂xi∂z13

|(m, y,−m) +
∑13

i=0 Li,13|
∂i+13f
∂xi∂z13

|(−m, y,−m))

≤ (2m)(4F )(
∑13

i=0 Li,13)

= 8mF (
∑13

i=0 Li,13)

Cases 14-16 are similar to cases 11-13, interchanging the orders of
integration, with case 14 corresponding to case 12, case 15 correspond-
ing to case 11 and case 16 corresponding to case 13, so that;

Case 14.∫
|x|≤m,m≤|y|≤m+ 1

m
,m≤|z|≤m+ 1

m
|∂14fm
∂x14
|dxdydz

≤ 8mF (
∑13

i=0

∑13
j=0 Li,14Li,j,14)

Case 15.∫
|x|≤m,m≤|y|≤m+ 1

m
,m≤|z|≤m+ 1

m
|∂14fm
∂y14
|dxdydz

≤ 8mF (
∑13

i=0 Li,14)

Case 16.∫
|x|≤m,m≤|y|≤m+ 1

m
,m≤|z|≤m+ 1

m
|∂14fm
∂z14
|dxdydz

≤ 8mF (
∑13

i=0 Li,13)

Case 17.∫
m≤|x|≤m+ 1

m
,m≤|y|≤m+ 1

m
,m≤|z|≤m+ 1

m
|∂14fm
∂x14
|dxdydz

=
∫
m≤|x|≤m+ 1

m
,m≤|y|≤m+ 1

m
(
∫
m≤|z|≤m+ 1

m
|∂14fm
∂x14
|dz)dxdy
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≤ 1
m

∫
m≤|x|≤m+ 1

m
,m≤|y|≤m+ 1

m
(
∑13

i=0 Li,14|
∂i+14fm
∂zi∂x14

|(x, y,m)+
∑13

i=0 Li,14|
∂i+14fm
∂zi∂x14

|(x, y,−m))dxdy

= 1
m

∫
m≤|x|≤m+ 1

m
(
∫
m≤|y|≤m+ 1

m
(
∑13

i=0 Li,14(|
∂i+14fm
∂zi∂x14

|(x, y,m)

+
∑13

i=0 Li,14(|
∂i+14fm
∂zi∂x14

|(x, y,−m))dy)dx

≤ 1
m2

∫
m≤|x|≤m+ 1

m
(
∑13

j=0

∑13
i=0 Li,14Li,j,14|

∂i+j+14fm
∂yj∂zi∂x14

|(x,m,m)

+
∑13

j=0

∑13
i=0 Li,14Li,j,14|

∂i+j+14fm
∂yj∂zi∂x14

|(x,−m,m)

+
∑13

j=0

∑13
i=0 Li,14Li,j,14|

∂i+j+14fm
∂yj∂zi∂x14

|(x,m,−m)

+
∑13

j=0

∑13
i=0 Li,14Li,j,14|

∂i+j+14fm
∂yj∂zi∂x14

|(x,−m,−m))dx

= 1
m2 (

∑13
j=0

∑13
i=0 Li,14Li,j,14|

∂i+j+13f
∂yj∂zi∂x13

|(m,m,m)+
∑13

j=0

∑13
i=0 Li,14Li,j,14|

∂i+j+13f
∂yj∂zi∂x13

|(−m,m,m)

+
∑13

j=0

∑13
i=0 Li,14Li,j,14|

∂i+j+13f
∂yj∂zi∂x13

|(m,−m,m)+
∑13

j=0

∑13
i=0 Li,14Li,j,14|

∂i+j+13f
∂yj∂zi∂x13

|(−m,−m,m)

+
∑13

j=0

∑13
i=0 Li,14Li,j,14|

∂i+j+13f
∂yj∂zi∂x13

|(m,m,−m)+
∑13

j=0

∑13
i=0 Li,14Li,j,14|

∂i+j+13f
∂yj∂zi∂x13

|(−m,m,−m)

+
∑13

j=0

∑13
i=0 Li,14Li,j,14|

∂i+j+13f
∂yj∂zi∂x13

|(m,−m,−m)

+
∑13

j=0

∑13
i=0 Li,14Li,j,14|

∂i+j+13f
∂yj∂zi∂x13

|(−m,−m,−m))

≤ 8F
m2 (

∑13
j=0

∑13
i=0 Li,14Li,j,14)

Case 18.∫
m≤|x|≤m+ 1

m
,m≤|y|≤m+ 1

m
,m≤|z|≤m+ 1

m
|∂14fm
∂y14
|dxdydz

=
∫
m≤|x|≤m+ 1

m
,m≤|y|≤m+ 1

m
(
∫
m≤|z|≤m+ 1

m
|∂14fm
∂y14
|dz)dxdy

≤ 1
m

∫
m≤|x|≤m+ 1

m
,m≤|y|≤m+ 1

m
(
∑13

i=0 Li,14|
∂i+14fm
∂zi∂y14

|(x, y,m)+
∑13

i=0 Li,14|
∂i+14fm
∂zi∂y14

|(x, y,−m))dxdy

= 1
m

∫
|x|≤m+ 1

m
(
∫
m≤|y|≤m+ 1

m
(
∑13

i=0 Li,14(|
∂i+14fm
∂zi∂y14

|(x, y,m)+
∑13

i=0 Li,14(|
∂i+14fm
∂zi∂y14

|(x, y,−m))dy)dx

= 1
m

∫
m≤|x|≤m+ 1

m
(
∑13

i=0 Li,14|
∂i+13fm
∂zi∂y13

|(x,m,m)

+
∑13

i=0 Li,14|
∂i+13fm
∂zi∂y13

|(x,−m,m)
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+
∑13

i=0 Li,14|
∂i+13fm
∂zi∂y13

|(x,m,−m)

+
∑13

i=0 Li,14|
∂i+13fm
∂zi∂y13

|(x,−m,−m))dx

≤ 1
m2 (

∑13
j=0

∑13
i=0 Li,14Li,j,13|

∂i+j+13f
∂xj∂zi∂y13

|(m,m,m)+
∑13

j=0

∑13
i=0 Li,14Li,j,13|

∂i+j+13f
∂xj∂zi∂y13

|(−m,m,m)

+
∑13

j=0

∑13
i=0 Li,14Li,j,13|

∂i+j+13f
∂xj∂zi∂y13

|(m,−m,m)+
∑13

j=0

∑13
i=0 Li,14Li,j,13|

∂i+j+13f
∂xj∂zi∂y13

|(−m,−m,m)

+
∑13

j=0

∑13
i=0 Li,14Li,j,13|

∂i+j+13f
∂xj∂zi∂y13

|(m,m,−m)+
∑13

j=0

∑13
i=0 Li,14Li,j,13|

∂i+j+13f
∂xj∂zi∂y13

|(−m,m,−m)

+
∑13

j=0

∑13
i=0 Li,14Li,j,13|

∂i+j+13f
∂xj∂zi∂y13

|(m,−m,−m)

+
∑13

j=0

∑13
i=0 Li,14Li,j,13|

∂i+j+13f
∂xj∂zi∂y13

|(−m,−m,−m))

≤ 8F
m2 (

∑13
j=0

∑13
i=0 Li,14Li,j,13)

Case 19.∫
m≤|x|≤m+ 1

m
,m≤|y|≤m+ 1

m
,m≤|z|≤m+ 1

m
|∂14fm
∂z14
|dxdydz

=
∫
m≤|x|≤m+ 1

m
,m≤|y|≤m+ 1

m
(
∫
m≤|z|≤m+ 1

m
|∂14fm
∂z14
|dz)dxdy

=
∫
m≤|x|≤m+ 1

m
,m≤|y|≤m+ 1

m
(|∂13fm

∂z13
|(x, y,m) + |∂13fm

∂z13
|(x, y,−m))dxdy

=
∫
m≤|x|≤m+ 1

m
(
∫
m≤|y|≤m+ 1

m
((|∂13fm

∂z13
|(x, y,m)+|∂13fm

∂z13
|(x, y,−m))dy)dx

≤ 1
m

∫
|x|≤m+ 1

m
(
∑13

i=0 Li,13|
∂i+13fm
∂yi∂z13

|(x,m,m)

+
∑13

i=0 Li,13|
∂i+13fm
∂yi∂z13

|(x,−m,m)

+
∑13

i=0 Li,13|
∂i+13fm
∂yi∂z13

|(x,m,−m)

+
∑13

i=0 Li,13|
∂i+13fm
∂yi∂z13

|(x,−m,−m))dx

≤ 1
m2 (

∑13
j=0

∑13
i=0 Li,13Li,j,13|

∂i+j+13f
∂xj∂yi∂z13

|(m,m,m)+
∑13

j=0

∑13
i=0 Li,13Li,j,13|

∂i+j+13f
∂xj∂yi∂z13

|(−m,m,m)

+
∑13

j=0

∑13
i=0 Li,13Li,j,13|

∂i+j+13f
∂xj∂yi∂z13

|(m,−m,m)+
∑13

j=0

∑13
i=0 Li,13Li,j,13|

∂i+j+13f
∂xj∂yi∂z13

|(−m,−m,m)

+
∑13

j=0

∑13
i=0 Li,13Li,j,13|

∂i+j+13f
∂xj∂yi∂z13

|(m,m,−m)+
∑13

j=0

∑13
i=0 Li,13Li,j,13|

∂i+j+13f
∂xj∂yi∂z13

|(−m,m,−m)
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+
∑13

j=0

∑13
i=0 Li,13Li,j,13|

∂i+j+13f
∂xj∂yi∂z13

|(m,−m,−m)

+
∑13

j=0

∑13
i=0 Li,13Li,j,13|

∂i+j+13f
∂xj∂yi∂z13

|(−m,−m,−m))

≤ 8F
m2 (

∑13
j=0

∑13
i=0 Li,13Li,j,13)

It is then clear from (∗), summing the bounds from the individual
cases 1-19, as at the end of the proof of Lemma 0.67, that there exists
a constant G ∈ R>0 with;

max(
∫
R3 | ∂fm∂x14

|dxdydz,
∫
R3 | ∂fm∂y14

|dxdydz,
∫
R3 | ∂fm∂z14

|dxdydz) ≤ Gm3

for sufficiently large m.

�

Lemma 0.69. Let {fm : m ∈ N} be an inflexionary sequence, then
for k 6= 0, sufficiently large m, we have that there exists D ∈ R>0, with;

|F(fm)(k)| ≤ Dm3

|k|14

Moreover, for sufficiently large m, F(fm) ∈ L1(R3).

Proof. For (k1, k2, k3) ∈ R3, using repeated integration by parts, and
the fact that fm ∈ L1(R3), we have, for m ∈ N ;

F(∂
14fm
∂x14

+ ∂14g
∂y14

+ ∂14g
∂z14

)(k)

= 1

(2π)
3
2

∫∞
−∞

∫∞
−∞

∫∞
−∞(∂

14fm
∂x14

+ ∂14fm
∂y14

+ ∂14fm
∂z14

)e−ik1xe−ik2ye−ik3zdxdydz

= ((ik1)
14+(ik2)

14+(ik3)
14) 1

(2π)
3
2

∫∞
−∞

∫∞
−∞

∫∞
−∞ fm(x, y, z)e−ik1xe−ik2ye−ik3zdxdydz

= (−k141 − k142 − k143 )F(fm)(k)

so that, for k 6= 0;

|F(fm)(k)| ≤
|F( ∂

14fm
∂x14

+ ∂14g

∂y14
+ ∂14g

∂z14
)(k)|

(k141 +k142 +k143 )
(†)

We have, using the result of Lemma 0.68, for sufficiently large m,
that;
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|F(∂
14fm
∂x14

+ ∂14g
∂y14

+ ∂14g
∂z14

)(k)|

1

(2π)
3
2
|
∫
R3(

∂14fm
∂x14

+ ∂14fm
∂y14

+ ∂14fm
∂z14

)e−ik1xe−ik2ye−ik3zdxdydz|

≤ 1

(2π)
3
2

∫
R3(| ∂fm∂x14

|+ | ∂fm
∂y14
|+ | ∂fm

∂z14
|)dxdydz

≤ 3G

(2π)
3
2
m3 (††)

so that, combining (†) and (††), we have, for k 6= 0, sufficiently large
m;

|F(fm)(k)| ≤ 3G

(2π)
3
2

m3

(k141 +k142 +k143 )
(∗)

Using polar coordinates k1 = rsin(θ)cos(φ), k2 = rsin(θ)sin(φ),
k3 = rcos(θ), 0 ≤ θ ≤ π, −π < φ ≤ π, we have that;

1
(k141 +k142 +k143 )

= 1
r14

1
α(θ,φ)

where α(θ, φ) = sin14(θ)(cos14(φ) + sin14(φ)) + cos14(θ)

We have that, in the range 0 ≤ θ ≤ π, −π ≤ φ ≤ π, with θ 6= π
2
,

|φ| 6= π
2
;

α(θ, φ) = 0

iff tan14(θ)(1 + tan14(φ)) + 1
cos14(φ)

= 0

iff tan14(θ)(1 + tan14(φ)) = − 1
cos14(φ)

which has no solution, as the two sides of the equation have opposite
signs.

and, with θ = π
2
, , |φ| 6= π

2

α(θ, φ) = 0

iff cos14(φ) + sin14(φ) = 0

iff tan14(φ) = −1
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which has no solution, as the two sides of the equation have opposite
signs.

and, with θ 6= π
2
, , |φ| = π

2

α(θ, φ) = 0

iff cos14(θ) + sin14(θ) = 0

iff tan14(θ) = −1

which has no solution, as the two sides of the equation have opposite
signs.

and, with θ = π
2
, , |φ| = π

2

α(θ, φ) = 0

iff 1 = 0

which is not the case. It follows that α(θ, φ) = 0 has no solution
in the range 0 ≤ θ ≤ π, −π ≤ φ ≤ π. By continuity, compactness
of [0π] × [−π, π] and the fact that α(π

2
, π
2
) = 1, restricting the in-

terval [−π, π], there exists ε > 0, with α(θ, φ) ≥ ε, for 0 ≤ θ ≤ π,
−π < φ ≤ π. In particularly;

1
(k141 +k142 +k143 )

≤ 1
εr14

= 1
ε|k|14

so that, from (∗);

|F(fm)(k)| ≤ 3G

(2π)
3
2

m3

ε|k|14

= Dm3

|k|14

where D = 3G

ε(2π)
3
2
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For the final claim, we have, for 1 ≤ i ≤ 3, m ∈ N , as fm is supported
on Wm+ 1

m
and continuous, that xifm ∈ L1(R3) and, differentiating un-

der the integral sign;

|∂F(fm)(k)
∂ki

| = | ∂
∂ki

( 1

(2π)
3
2

∫
R3 fm(x)e−ik�xdx)|

= | −i
(2π)

3
2

∫
R3 xifm(x)e−ik�xdx)|

≤ 1

(2π)
3
2

∫
R3 |xifm(x)|dx

= 1

(2π)
3
2
||xifm(x)||1

so that ∂F(fm)(k)
∂ki

is bounded, and, in particularly, F(fm) is continu-
ous, for m ∈ N . It follows, using the first result, and polar coordinates,
that, for n > 1, sufficiently large m;

|
∫
R3 F(fm)(k)dk| ≤

∫
B(0,n)

|F(fm)(k)|dk +
∫
R3\B(0,n)

|F(fm)(k)|dk

≤ 4Cnπ3

3
+
∫
R3\B(0,n)

Dm3

|k|14

≤ 4Cnπ3

3
+
∫ π
0

∫ π
−π

∫∞
n

Dm3

r14
|r2sin(θ)|drdθdφ

≤ 4Cnπ3

3
+ 2Dπ2m3

∫∞
n

dr
r12

≤ 4Cnπ3

3
+ 2Dπ2m3[ −1

11r11
]∞n

= 4Cnπ3

3
+ 2Dπ2m3

11n11

where Cn = ||F(fm)|B(0,n)||∞, so that F(fm) ∈ L1(R3).

�

Lemma 0.70. Let f ∈ C40(R3), with ∂i1+i2+i3

∂xi1∂yi2∂zi3
bounded for 0 ≤

i1 + i2 + i3 ≤ 40, f analytic for |x| > r, where r ∈ R>0, and f analytic
at infinity and of very moderate decrease. Then;

f(x) = F−1(F(f))(x), (x ∈ R3)

where, for g ∈ L1(R3);

F−1(g)(x) = 1

(2π)
3
2

∫
R3 g(k)eik�xdk
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Proof. By Lemma 0.60, we have that F(f) ∈ L1(R). Let {fm : m ∈
N} be the approximating sequence, given by Lemma 0.67, then, for
sufficiently large m, fm ∈ L1(R) and F(fm) ∈ L1(R) by Lemma
0.69. It follows, see [5] or the method of [13], that for such m, fm =
F−1(F(fm)), (∗ ∗ ∗), By the proof of Lemma 0.59, we have that, for k
with min(|k1|, |k2|, |k3|) > ε > 0, |F(f)(k) − F(fm)(k)| ≤ Eε

m
, (B). By

the proof of Lemma 0.60, we have that F(f)−F(fm) ∈ L 4
3 (R3), with

||F(f) − F(fm)||
L

4
3 (R3)

→ 0 as m → ∞. In particularly, there exists

a constant H ∈ R>0 with ||F(f)− F(fm)||
L

4
3 (R3)

≤ H, for sufficiently

large m. We then have, using the Holder’s inequality that, for ε > 0,
m sufficiently large;

||F(f)−F(fm)||L1(Wε)

= ||(F(f)−F(fm))|Wε1Wε||L1(Wε)

≤ ||(F(f)−F(fm))|Wε||L 4
3 (Wε)

||1Wε||L4(Wε)

≤ H||1Wε||L4(Wε)

= 8Hε3

Letting Wi,ε = {k ∈ R3 : |ki| < ε}, 1 ≤ i ≤ 3, and Vε =
⋃

1≤i≤3Wi,ε,
we have that;

R3 \ Vε = {k ∈ R3 : min(|k1|, |k2|, |k3|) > ε}

Using the notation of Lemma 0.60, we have that W1,ε = Wε ∪ V1,ε ∪
V12,ε ∪ V13,ε, with ε replacing the parameters {E1, E2, E3}. Using the
method of Lemma 0.60, we can show that;

θm(x, y) =
∫
|k3|≥εF(f − fm)(x, y, k3)dk3

is non oscillatory and of very moderate decrease, with;∫
V12,ε
F(f − fm)(k1, k2, k3)dk1dk2dk3∫

|k1|<ε,|k2|<ε,|k3|≥εF(f − fm)(k1, k2, k3)dk1dk2dk3

=
∫
|k1<ε,|k2|<εF(θm)dk1dk2
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where F is the fourier transform for non oscillatory functions of very
moderate decrease in 2 variables. As θm ∈ L3(R2), F(θm) ∈ L 3

2 (R) by
the Haussdorff-Young inequality, so that, by Holder’s inequality;

|
∫
V12,ε
F(f − fm)(k1, k2, k3)dk1dk2dk3|

≤ ||F(θm)||L1(|k1<ε,|k2|<ε)

≤ 4ε2||F(θm)||
L

3
2 (|k1<ε,|k2|<ε)

≤ 4ε2||θm||L3(R2)

≤ 4C12D12ε
2

= E12ε
2

where C12 ∈ R>0 is a uniform bound for ||θm||L3(R2), D12 is the func-
tional bound in the Haussdorff-Young inequality.

Similarly, we can show that;

||F(f)−F(fm)||L1(V13,ε) ≤ E13ε
2

||F(f)−F(fm)||L1(V1,ε) ≤ E1ε

so that;

||F(f)−F(fm)||L1(W1,ε) ≤ F1ε, (0 < ε < 1)

and, similarly;

||F(f)−F(fm)||L1(Wi,ε) ≤ Fiε, (0 < ε < 1)

||F(f)−F(fm)||L1(Vε) ≤ (F1 + F2 + F3)ε = Fε (0 < ε < 1) (A)

Using the fact from Lemma 0.60, that F(f) ∈ L1(R), for δ > 0
arbitrary, we have that;∫

R3\B(0,n)
|F(f)(k|dk < δ
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for n ∈ N , sufficiently large, n ≥ n0. Choosing m ∈ N , with
m = [n

10
3 ], and using (A), (B), Lemma 0.69we have, for x ∈ R3, that;

|F−1(F(f))(x)−F−1(F(fm))(x)| = |F−1(F(f)(k)−F(fm)(k))|

= 1

(2π)
3
2
|
∫
B(0,n)

(F(f)(k)−F(fm)(k))eik�xdk

+
∫
R3\B(0,n)

(F(f)(k)−F(fm)(k))eik�xdk|

≤ 1

(2π)
3
2

(
∫
B(0,n)

|F(f)(k)−F(fm)(k)|dk

+
∫
R3\B(0,n)

|F(f)(k)|dk +
∫
R3\B(0,n)

|F(fm)(k)|dk)

≤ 1

(2π)
3
2

(
∫
Vε∩B(0,n)

|F(f)(k)−F(fm)(k)|dk+4πn3Eε
3m

+δ+
∫
R3\B(0,n)

Dm3

|k|14 dk)

≤ 1

(2π)
3
2

(
∫
Vε
|F(f)(k)−F(fm)(k)|dk + 4πn3Eε

3m
+ δ +

∫
R3\B(0,n)

Dm3

|k|14 dk)

≤ 1

(2π)
3
2

(Fε+ 4πn3Eε

3(n
10
3 −1)

+ δ +
∫
R3\B(0,n)

Dn10

|k|14 dk)

≤ 1

(2π)
3
2

(Fε+ 4πEε

3n
1
3

+ δ + 2π2
∫
r>n

Dn10

r14
dr)

= 1

(2π)
3
2

(Fε+ 4πEε

3n
1
3

+ δ + 2Dπ2n10[ −1
13r13

]∞n )

= 1

(2π)
3
2

(Fε+ 4πEε

3n
1
3

+ δ + 2Dπ2

13n3 )

< 2δ+Fε

(2π)
3
2

for sufficiently large n ≥ n0, so that, as ε > 0 and δ > 0 were arbi-
trary, for x ∈ R3;

limm→∞F−1(F(fm))(x) = F−1F(f)(x), (∗ ∗ ∗∗)

and, by Definition 0.62, (∗ ∗ ∗), (∗ ∗ ∗∗);

f(x) = limm→∞fm(x) = limm→∞F−1(F(fm))(x) = F−1F(f)(x)

�

Definition 0.71. We say that f : R3 → R is of moderate decrease
n if |f(x)| ≤ C

|x|n for |x| > C, C ∈ R>0, n ≥ 2. We just say that f

is of moderate decrease if f is of moderate decrease 2. We call {θ, φ}
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generic if sin(θ)cos(φ) 6= 0, sin(θ)sin(φ) 6= 0, cos(θ) 6= 0

Lemma 0.72. The results of Lemma 0.30 hold, replacing the intervals
[m,m + 1

m
] with [m,m + 1

m2 ] and [m,m + 1
m3 ]. The generalisations of

Lemmas and Definitions 0.61 to 0.69 also hold similarly, replacing 1
m

by
1
m2 in the two dimensional case, and 1

m
by 1

m3 in the three dimensional
case. In particularly, we have that, for an inflexionary approximation
sequence {gm : m ∈ N};∫

[−m− 1
m3 ,m+ 1

m3 ]
3\[−m,m]3

|gm|dx ≤ E
m

for sufficiently large m ∈ N , where E ∈ R>0.

Proof. In the proof of Lemma 0.30, observe that the coefficients of the
polynomial p, depend only on the 1

m
term, so we can obtain the new

coefficients for p by substituting m2 or m3 for m. We then calculate in
the 1

m3 case, that;

h′′′(x) = (−360a0m
15 +O(m12))x2 + (288a0m

18 +O(m16))x

+(−36a0m
21 +O(m19))

which has roots when;

x ' −288a0+/−176a0m18+O(m16)
−720a0m15+O(m12)

= O(m3) +O(m) > 0

Clearly, we can then assume that for sufficiently large m, h′′′(x) has
no roots in the interval [−m− 1

m3 ]∪[m,m+ 1
m3 ]. For the final calculation,

with |h|[m+ 1
m3 ]

, we can replace m by m3 throughout the proof, to get

the same result, that |h|[m+ 1
m3 ]
≤ C, independently of m > 1. The case

with m2 replacing m is left to the reader, but we do not need it below.
The rest of the Lemmas and Definitions 0.61 to 0.69 go through, once
we have generalised the 1-dimensional case and the conjecture Lemma
0.64. In particularly, we obtain the result that for an inflexionary
approximation sequence gm in R3, |gm|[−m− 1

m3 ,m+ 1
m3 ]

3\[−m,m]3 ≤ C, in-

dependently of m, so that, using the binomial theorem;∫
[−m− 1

m3 ,m+ 1
m3 ]

3\[−m,m]3
|gm|dx



SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 4233

≤ Cvol([−m− 1
m3 ,m+ 1

m3 ]3 \ [−m,m]3)

= 8C((m+ 1
m3 )3 −m3)

8C(m3 + 3m2

m3 + 3m
m6 + 1

m9 −m3)

≤ E
m

for m sufficiently large, where E ∈ R>0.

�

Lemma 0.73. Let f satisfy the conditions of Lemma 0.70 with the ex-

tra assumption that f ∈ C41(R3), and the partial derivatives { ∂f i+j+k

∂xi∂yj∂zk
:

1 ≤ i+ j+k ≤ 41} are of moderate decrease, and of moderate decrease
i+ j + k + 1, then for 1 ≤ i ≤ 3;

kiF(f)(k) ∈ C1(R3 \ (k1 = 0 ∪ k2 = 0 ∪ k3 = 0))

limk→0,k /∈(k1=0∪k2=0∪k3=0)kiF(f)(k) = 0

The same results hold for kiF( ∂f
∂xj

), 1 ≤ i ≤ j ≤ 3, when f ∈
C42(R3).

Making a polar coordinate change, for {θ, φ} generic, rF(f)θ,φ(r) ∈
C1(R>0), limr→0rF(f)θ,φ(r) = 0, and similarly for rF( ∂f

∂xj
), 1 ≤ j ≤

3.

We have that F(f)(k) ∈ L1(R3) and {
F( ∂f

∂xj
)(k)

|k| : 1 ≤ j ≤ 3} ⊂
L1(R3)

For any given ε > 0, there exists δ > 0, for 1 ≤ j ≤ 3, such that for
a generic translation l with l1 6= 0, l2 6= 0, l3 6= 0;

max(|
∫ δ
0
rFθ,φ,l(

∂f
∂xj

)(r)dr|, |
∫ δ
0

d
dr

(rFθ,φ,l(
∂f
∂xj

)(r))dr|) < ε

uniformly in {θ, φ}.

Proof. As ∂f
∂x

is of moderate decrease and analytic at infinity, for fixed
y, z, fy,z is of very moderate decrease and analytic at infinity, we have
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for k1 6= 0, k2 6= 0, k3 6= 0;

F(∂f
∂x

) = 1

(2π)
3
2
limr1→∞limr2→∞limr3→∞

∫ r1
−r1

∫ r2
−r2

∫ r3
−r3

∂f
∂x

(x)e−ik�xdx1dx2dx3

= 1

(2π)
3
2
limr2→∞limr3→∞

∫ r2
−r2

∫ r3
−r3(limr1→∞

∫ r1
−r1

∂f
∂x

(x)e−ik1x1dx1)e
−i(k2x2+k3x3)dx2dx3

= 1

(2π)
3
2
limr2→∞limr3→∞

∫ r2
−r2

∫ r3
−r3(limr1→∞([fe−ikx1 ]r1−r1+ik1

∫ r1
−r1 f(x)e−ikx1dx1)

e−i(k2x2+k3x3)dx2dx3

= ik1
1

(2π)
3
2
limr2→∞limr3→∞

∫ r2
−r2

∫ r3
−r3(limr1→∞

∫ r1
−r1 f(x)e−ikx1dx1)e

−i(k2x2+k3x3)dx2dx3

= ik1
1

(2π)
3
2
limr1→∞limr2→∞limr3→∞

∫ r1
−r1

∫ r2
−r2

∫ r3
−r3 f(x)e−ik�xdx1dx2dx3

= ik1F(f)(k) (TT )

the limit interchange being justified by the inversion theorem. It
follows that, for k1 6= 0, k2 6= 0, k3 6= 0, we have that;

k1F(f)(k) = −iF(∂f
∂x

)

and similarly;

kiF(f)(k) = −iF( ∂f
∂xi

) (A), for 1 ≤ i ≤ 3 and k1 6= 0, k2 6= 0, k3 6= 0.

It follows that, using the fact that;

F (x1, k2, k3) = limr2→∞limr3→∞
∫ r2
−r2

∫ r3
−r3

∂f
∂x

(x1, x2, x)e−ik2x2e−ik3x3dx2dx3

is of moderate decrease, the DCT and the FTC, and the fact that
fy,z is of very moderate decrease;

limk→0,k /∈(k1=0∪k2=0∪k3=0)k1F(f)(k)

−ilimk→0,k /∈(k1=0∪k2=0∪k3=0)F(f)(∂f
∂x

)(k)

= −i
(2π)

3
2
limk→0,k /∈(k1=0∪k2=0∪k3=0)limr1→∞limr2→∞limr3→∞

∫ r1
−r1

∫ r2
−r2

∫ r3
−r3

∂f
∂x

(x)e−ik�xdx1dx2dx3

= 1

(2π)
3
2
limk2→0,k3→0,k2 6=0,k3 6=0limr2→∞limr3→∞

∫ r2
−r2

∫ r3
−r3(limk1→0

∫∞
−∞

∂f
∂x

(x)e−ik1x1dx1)

e−i(k2x2+k3x3)dx2dx3



SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 4235

= 1

(2π)
3
2
limk2→0,k3→0,k2 6=0,k3 6=0limr2→∞limr3→∞

∫ r2
−r2

∫ r3
−r3(

∫∞
−∞

∂f
∂x

(x)dx1)e
−i(k2x2+k3x3)dx2dx3

= 1

(2π)
3
2
limk2→0,k3→0,k2 6=0,k3 6=0limr2→∞limr3→∞

∫ r2
−r2

∫ r3
−r3([f ]∞−∞)e−i(k2x2+k3x3)dx2dx3

= 0 (E)

Similarly;

limk→0,k /∈(k1=0∪k2=0∪k3=0)kiF(f)(k) = 0, 1 ≤ i ≤ 3

As f ∈ C41(R3), we have, by the product rule, that xi
∂f
∂xj
∈ C40(R3),

1 ≤ i ≤ j ≤ 3. As f is of very moderate decrease and;

{ ∂f l+m+n

∂xl1∂x
m
2 ∂x

m
3

: 1 ≤ l +m+ n ≤ 40}

are of very moderate decrease, we have, by repeated application of
the product rule again, that;

{
∂l+m+nxi

∂f
∂xj

∂xl1∂x
m
2 ∂x

n
3

: 0 ≤ l +m+ n ≤ 40}, 1 ≤ i ≤ j ≤ 3

are bounded. By Lemma 0.72, there exists an inflexionary approxi-
mation sequence gm for x∂f

∂x
with the properties that;

(i) gm ∈ C14(R3)

(ii). gm|[−m,m]3 = x∂f
∂x
|[−m,m]3

(iii).
∫
[−m− 1

m3 ,m+ 1
m3 ]

3\[−m,m]3
|gm(x)dx ≤ E

m

(iv). gm|R3\[−m− 1
m3 ,m+ 1

m3 ]
3 = 0

By the construction of gm, we have that fm = gm
x

is an approxima-

tion sequence for ∂f
∂x

, with the property that;

(i)′ fm ∈ C14(R3)

(ii)′. fm|[−m,m]3 = ∂f
∂x
|[−m,m]3

(iii)′.
∫
[−m− 1

m3 ,m+ 1
m3 ]

3\[−m,m]3
|fm(x)dx ≤ E′

m
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(iv)′. fm|R3\[−m− 1
m3 ,m+ 1

m3 ]
3 = 0

Following through the proof of Lemma 0.70, as ∂f
∂x

is of moderate
decrease and, therefore, of very moderate decrease, we have that F(fm)
converges uniformly to F(∂f

∂x
) on compact subsets ofR3 \ (k1 = 0 ∪ k2 = 0 ∪ k3 = 0),

so that F(∂f
∂x

) ∈ C(R3 \ (k1 = 0 ∪ k2 = 0 ∪ k3 = 0)), As xixjfm ∈ L1(R3),
for 1 ≤ i ≤ j ≤ 3, we have that F(fm) is twice differentiable, in par-
ticularly, F(fm) ∈ C1(R3). As f is analytic at infinity, so is ∂f

∂x
. More-

over, as ∂f
∂x

is of moderate decrease, assuming without loss of generality
x0 6= 0;

|∂f
∂x

(x0
x
, y0
y
, z0
z

)| = |gx0,y0,z0(x, y, z)|

≤ C
|(x0
x
,
y0
y
,
z0
z
)|2

= Cx2

x20+
y0x

2

y2
+
z0x

2

z2

≤ Cx2

x20

so that gx0,y0,z0
x0
x

has a removable singularity at x = 0, so that x∂f
∂x

is
analytic at infinity. It follows that for {m,n} ⊂ N , with m ≥ n, differ-
entiating under the integral sign, using the DCT, property (iii) of an
inflexionary approximating sequence, and the fact that x∂f

∂x
is of mod-

erate decrease and analytic at infinity, for |k1| ≥ ε1 > 0, |k2| ≥ ε2 > 0,
|k3| ≥ ε3 > 0, we have that;

|∂F(fm)
∂k1

− ∂F(fn)
∂k1
|

= 1

(2π)
3
2
| ∂
∂k1

(
∫
R3 fm(x)e−ik�xdx− ∂

∂k1

∫
R3 fn(x)e−ik�xdx|

= 1

(2π)
3
2
|
∫
R3 −ix1fm(x)e−ik�xdx−

∫
R3 −ix1fn(x)e−ik�xdx|

= 1

(2π)
3
2
|
∫
R3(gm − gn)(x)e−ik�xdx|

≤ 1

(2π)
3
2

(
∫
[−m− 1

m3 ,m+ 1
m3 ]

3\[−m,m]3
|gm(x)|dx+

∫
[−m− 1

m3 ,m+ 1
m3 ]

3\[−m,m]3
|gn(x)|dx

+|
∫
[−m,m]3\[−n,n]3 x1

∂f
∂x1
e−ik�xdx|)

≤ E
m

+ E
n

+ C(k)
n

(∗)
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where C(k) is uniformly bounded on the region |k1| ≥ ε1 > 0, |k2| ≥
ε2 > 0, |k3| ≥ ε3 > 0. It follows that the sequence {∂F(fm)

∂k1
: m ∈ N}

is uniformly Cauchy on the region |k1| ≥ ε1 > 0, |k2| ≥ ε2 > 0,
|k3| ≥ ε3 > 0, and converges uniformly. By considering inflexionary
sequences for y ∂f

∂x
and z ∂f

∂x
, we can similarly show that the sequences

{∂F(fm)
∂k2

: m ∈ N} and {∂F(fm)
∂k3

: m ∈ N} are uniformly Cauchy on

the region |k1| ≥ ε1 > 0, |k2| ≥ ε2 > 0, |k3| ≥ ε3 > 0, and con-
verge uniformly. As F(fm) converges uniformly to F(∂f

∂x
) on the re-

gions |k1| ≥ ε1 > 0, |k2| ≥ ε2 > 0, |k3| ≥ ε3 > 0, it follows that
F(∂f

∂x
) ∈ C1(R3 \ (k1 = 0 ∪ k2 = 0 ∪ k3 = 0)). The same result folds

for F(∂f
∂y

) and F(∂f
∂z

), so by (A);

{k1F(f)(k), k2F(f)(k), k3F(f)(k)} ⊂ C1(R3 \ (k1 = 0 ∪ k2 = 0 ∪ k3 = 0))

(B)

It follows that, changing to polars;

∂rF(f)(k)
∂r

= ( ∂
∂k1

k1
r

+ ∂
∂k2

k2
r

+ ∂
∂k3

k3
r

)(rF(f)(k))

= ∂k1F(f)(k)
∂k1

+ ∂k2F(f)(k)
∂k2

+ ∂k3F(f)(k)
∂k3

(WW )

so that, for generic {θ, φ}, rF(f)(r)θ,φ ∈ C1(R>0), by (B). More-
over;

limr→0rF(f)(r)θ,φ.

= limk(θ,φ)→0
r
k1
limk(θ,φ)→0,k1 6=0,k2 6=0,k3 6=0k1F(f)(k)

= limk(θ,φ)→0
r
k2
limk(θ,φ)→0,k1 6=0,k2 6=0,k3 6=0k2F(f)(k)

= limk(θ,φ)→0
r
k3
limk(θ,φ)→0,k1 6=0,k2 6=0,k3 6=0k3F(f)(k)

= limk(θ,φ)→0sign(k1)(1 +
k22
k21

+
k23
k21

)limk(θ,φ)→0,k1 6=0,k2 6=0,k3 6=0k1F(f)(k)

= limk(θ,φ)→0sign(k2)(1 +
k21
k22

+
k23
k22

)limk(θ,φ)→0,k1 6=0,k2 6=0,k3 6=0k2F(f)(k)

= limk(θ,φ)→0sign(k3)(1 +
k21
k23

+
k22
k23

)limk(θ,φ)→0,k1 6=0,k2 6=0,k3 6=0k3F(f)(k)

= 0
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as the casesmax(|k2|, |k3|) ≤ |k1|, max(|k1|, |k3|) ≤ |k2| andmax(|k1|, |k2|) ≤
|k3| are exhaustive.

Clearly, we can repeat the above arguments for ∂f
∂xi

, 1 ≤ i ≤ 3, and

f ∈ C42(R3), using the fact that ∂f
∂xi

is of moderate decrease, in partic-

ularly of very moderate decrease, with the higher derivatives
∂l+m+n ∂f

∂xi

∂xlymzn

of moderate decrease l+m+n+2, in particularly of moderate decrease
l +m+ n+ 1.

For the next claim, we have, as f is of very moderate decrease, using
polar coordinates, that;∫

R3 |f |3+εdx

≤
∫
0≤θ≤π,−π≤φ≤φ

∫
R>0
|f |3+εr2drdθdφ

≤ C + 2π2
∫∞
r0

Dr2

r3+ε
dr

≤ C + 2π2
∫∞
r0

[−r−ε]∞r0dr

= C + 2π2r−ε0 <∞

so that f ∈ L3+ε, for ε > 0. By the Haussdorff-Young inequality,
F(f) ∈ L 3

2
−δ(R3), for δ > 0, so that, due to the decay, F(f) ∈ L1(R3),

(R). A similar calculation show that, as ∂f
∂x

is of moderate decrease

2, that f ∈ L 3
2
+ε(R3), for ε > 0. Applying the Haussdorff-Young in-

equality, F(∂f
∂x

) ∈ L3−δ(R3), for δ > 0. In particular, due to the decay

again, F(∂f
∂x

) ∈ L2(R3). Locally, on B(0, 1), for δ > 0;∫
B(0,1)

1
|k|3−δ dk

=
∫
0≤θ≤π,−π≤φ≤φ

∫ 1

0
r2

r3−δ
drdθdφ

≤ 2π2[rδ]10

= 2π2 <∞

so that 1
|k| ∈ L3−δ(B(0, 1)), in particularly 1

|k| ∈ L2(B(0, 1)). As

F(∂f
∂x

) ∈ L2(B(0, 1)), by Holder’s inequality, we obtain that
F( ∂f

∂x
)(k)

|k| ∈
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L1(B(0, 1)), and by the decay, we have that
F( ∂f

∂x
)(k)

|k| ∈ L1(R3). Similar

arguments show that
F( ∂f

∂xi
)(k)

|k| ∈ L1(R3), for 1 ≤ i ≤ 3. We can also

complete this argument with just the assumption that ∂f
∂x

is of very
moderate decrease. As by the argument (TT ), for k1 6= 0, k2 6= 0,
k3 6= 0;

F(∂f
∂x

)(k) = ik1F(f)(k)

so that;

F( ∂f
∂x

)(k)

|k| = ik1
|k|F(f)(k)

with, for k1 6= 0;

| |ik1|k| | = |sign(k1)|| 1

(1+
k2
k1

2
+
k3
k1

2
)
1
2
| ≤ 1

so that;

|F(
∂f
∂x

)(k)

|k| | ≤ |F(f)(k)|

and, by (R), F(f)(k) ∈ L1(R3), so that
F( ∂f

∂x
)

|k| ∈ L
1(R3). Similarly,

for 1 ≤ i ≤ 3,
F( ∂f

∂xi
)

|k| ∈ L1(R3). We also have that, with just the

assumption that ∂2f
∂xi∂xj

is of very moderate decrease, 1 ≤ i ≤ j ≤ 3,

using the argument (TT ) twice, that for k1 6= 0, k2 6= 0, k3 6= 0;

F( ∂2f
∂xi∂xj

) = (iki)(ikj)F(f)(k)

= −kikjF(f)(k)

so that;

F( ∂2f
∂xi∂xj

)(k)

|k|2 =
−kikj
|k|2 F(f)(k)

with, for ki 6= 0, kj 6= 0;

| |−kikj|k|2 | = |sign(k1)sign(k2|| 1

(1+
k2
k1

2
+
k3
k1

2
)
1
2
|| 1

(1+
k1
k2

2
+
k3
k2

2
)
1
2
| ≤ 1
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so that;

|
F( ∂2f

∂xi∂xj
)(k)

|k|2 | ≤ |F(f)(k)|

and, by (R), F(f)(k) ∈ L1(R3), so that
F( ∂2f

∂xi∂xj
)(k)

|k|2 ∈ L1(R3).

The last claim follows from the fact that, for l, with l1 6= 0, l2 6= 0,
l3 6= 0, the translation Fl(

∂f
∂xi

)(k) ∈ C1(B(0, ε′)), for some ε′ > 0. In
particular, given ε > 0, there exists δ > 0, such that;

max(|
∫ δ
0
rFθ,φ,l(

∂f
∂xj

)(r)dr|, |
∫ δ
0

d
dr

(rFθ,φ,l(
∂f
∂xj

)(r))dr|) < ε

uniformly in {θ, φ}.

�

Definition 0.74. We say that a solution (E,B) to Maxwell’s equa-
tions in vacuum is non oscillatory, if the components {ei, bj} are of
very moderate decrease, and analytic at infinity, with;

∂l+m+mei
∂xl∂ym∂zn

∂l+m+mbi
∂xl∂ym∂zn

of very moderate decrease, 1 ≤ i ≤ 3, l+m+n ≥ 1, the components
are analytic at infinity and {ei, bj} are sufficiently differentiable, and
using the fact that E = 5×E1, B = 5×B1, we can assume that the
components of {E1, B1} are of very moderate decrease and analytic at
infinity. We also require that the components {e′i, b′j} of;

{∂E
∂t
, ∂B
∂t
}

or equivalently {c2(5×B),−5×E}

or equivalently {c2(5×5×B1),−5×5×E1}

are of moderate decrease.

Lemma 0.75. There exists a solution (E,B) to Maxwell’s equations
in vacuum, with the property that for all t ∈ R, the components of Et



SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 4241

and Bt are smooth and have compact support. There exists a solution

(E
′
, B
′
) to Maxwell’s equations in vacuum with (E

′
, B
′
) non-oscillatory.

Proof. Choose smooth vector fields {e, b} with compact support, then
we have that;

div(5× e) = div(5× b) = 0

and e1 = 5× e, b1 = 5× b are smooth and have compact support.
Let;

b2 = −(5× e1

e2 = c2(5× b1)

Then, by construction {e1, e2, b1, b2} satisfy the equations;

(i). div(e1) = 0

(ii). 5× e1 = −b2

(iii). div(b1) = 0

(iv). 5× b1 = µ0ε0e2.

We have there exists a unique solution to the wave equations �2E =
0 and �2B = 0, with initial conditions (e1, e2) and (b1, b2) such that

E0 = e1,
∂E
∂t 0

= e2, B0 = b1,
∂B
∂t 0
− b2. By Kirchoff’s formula, we

have that the components of (E,B) have compact support for all
times t. Moreover div(E satisfies the wave equation with initial con-
ditions div(e1) = 0 and div(e2) = div(c2(5 × b1)) = 0, so that, by
uniqueness of the initial conditions, div(E) = 0. Similarly, div(B)
satisfies the wave equation with initial conditions div(b1) = 0, and
div(b2) = div(−5×e1) = 0, so that, by uniqueness again, div(B) = 0

as well. We have that 5 × E + ∂B
∂t

satisfies the wave equation with

initial conditions 5× e1 + b2 = 0 and;

5× e2 + ∂2B
∂2t
|0

= 5× e2 + c252 b1
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= 5× (c25×b1) + c252 b1

= c2grad(div(b1))− c252 b1 + c252 b1

= 0

so that, by uniqueness,5×E = −∂B
∂t

. Finally, we have that,5×B−
1
c2
∂E
∂t

satisfies the wave equation, with initial conditions5×b1− 1
c2
e2 = 0

and;

5× b2 − 1
c2
∂2E
∂2t
|0

= 5× b2 −52e1

−5×5×e1 −52e1

= −grad(div(e1)) +52e1 −52e1

= 0

so that, by uniqueness, 5 × B = 1
c2
∂E
∂t

. It follows (E,B) satisfies
Maxwell’s equations in vacuum, as required.

For the second claim, we can construct the potentials {e0, b0} for

{E ′, B′} by;

∫ t
−∞ g(x,y,z,s)ds

r

∫ t
−∞ h(x,y,z,s)ds

r
(r > 1)

Choose (E,B) a solution to Maxwell’s equations in vacuum with
compact supports, as above. By the method in [6], we can choose
{g, h} such that 5 × g = E, 5 × h = B, for all times t ∈ R, and,
clearly, for a given t ∈ R, gt and ht have compact supports. Then, we
have that, by Maxwell’s equations;

5×5× g = 5× E

= −∂B
∂t

5×5× h = 5×B
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= 1
c2
∂E
∂t

It follows, by the fundamental theorem of calculus, and the facts;

limt→−∞B(x, y, z, t) = 0

limt→−∞E(x, y, z, t) = 0

that we must have;

5×5× (
∫ t
−∞ g(x, y, z, s)ds)

=
∫ t
−∞(5×5× g)ds

= −
∫ t
−∞

∂B
∂s
ds

= −∂B
∂t

5×5× (
∫ t
−∞ h(x, y, z, s)ds)

=
∫ t
−∞(5×5× h)ds

= 1
c2

∫
R
∂E
∂s
ds

= 1
c2
∂E
∂t

so that, as ∂E
∂t

and ∂B
∂t

have compact support, by the product rule

{5 × 5 × e0,5 ×5 × b0} are of moderate decrease. We can obtain
sufficient differentiablity using a polynomial p(r) for r ≤ 1, with the
property that;

p(n)(r)|r=1 = 1
r

(n)|r=1

and defining the potentials {e0, b0} by;

p(r)
∫ t
−∞ g(x, y, z, s)ds, p(r)

∫ t
−∞ h(x, y, z, s)ds (r ≤ 1)

The components of {E ′, B′} are of very moderate decrease and an-

alytic at infinity, as are the potentials. The constructed (E
′
, B
′
) is

non-oscillatory, but we need a local notion of analytic at infinity.
�
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Remarks 0.76. By considering the following family of examples, we
can support the theory of this paper. As we are considering the radia-

tion condition at t = 0, the data of {∂E
∂t
|t=0,

∂B
∂t
|t=0} is not involved in

the Fourier transform calculation, and there is no need for these initial
conditions to be the second derivative of a potential which is O(1

r
). For

a(r) analytic at infinity, with a(r) O(1), we let βa(r) = 1
(1+a(r)r)5

, so

that βa is O( 1
r5

). As a(r) is analytic at infinity, we have that;

a(1
r
) = g(r)

where g is analytic at 0, then, by the chain rule;

a′(1
r
)−1
r2

= g′(r)

so that;

1
r
a′(1

r
) = −rg′(r)

and limr→∞ra
′(r) = limr→0

1
r
a′(1

r
)

= limr→0 − rg′(r)

= 0 (A)

We let the potentials be defined by;

e0 = βa(r)x
5(0, 1, 0), (x > 0)

e0 = (0, 0, 0), (x ≤ 0)

b0 = βa(r)x
5(0, 0, 1), (x > 0)

b0 = (0, 0, 0), (x ≤ 0)

which are O(1) but belong to C4(R3). We have that;

E0 = 5× e0 = (−x5β′az
r
, 0, 5x4βa + x6β′a

r
),

(x > 0)
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E0 = 0, (x ≤ 0)

B0 = 5× b0 = (x
5β′ay
r
,−5x4βa − x6β′a

r
, 0),

(x > 0)

B0 = 0, (x ≤ 0)

which are O(1
r
). We have that;

E0 × B0 = (25x8β2
a + 10x10βaβ′a

r
+ x12β′2a

r2
, 5x

9βaβ′ay
r

+ x11β′2a y
r2

, 5x
9βaβ′az
r

+
x11β′2a z
r2

)

and;

(E0 ×B0) � n̂

= (E0 ×B0) �
(x,y,z)
r

= 25x9β2
a

r
+ 10x11βaβ′a

r2
+ x13β′2a

r3
+ 5x9β′aβay

2

r2
+ x11β′2a y

2

r3
+ 5x9β′aβaz

2

r2
+ x11β′2a z

2

r3

= 25x9β2
a

r
+ 10x11β′aβa

r2
+ 5x9β′aβa −

5x9β′aβax
2

r2
+ x11β′2a

r

where x2 + y2 + z2 = r2 and n̂ is the unit normal to the sphere S(r).
It follows that, using a polar coordinate change x = rsin(θ)cos(φ),
y = rsin(θ)sin(φ), z = cos(θ), 0 ≤ θ ≤ π, −π ≤ φ ≤ π;
; ∫

S(0,r)
(E0 ×B0) � dS(r)

= 25β2
a

r

∫
S(0,r),x≥0 x

9dS(r)+β′aβa
r2

∫
S(0,r),x≥0(10x11−5x11)dS(r)+β′aβa

∫
S(0,r),x≥0 5x9dS(r)

+β′2a
r

∫
S(0,r),x≥0 x

11dS(r)

= 25β2
ar

2

r

∫ π
0

∫ π
2

−π
2
x9sin(θ)dθdφ+5β′aβar

2

r2

∫ π
2

−π
2
x11sin(θ)dθdφ+5β′aβar

2
∫ π
0

∫ π
2

−π
2
x9sin(θ)dθdφ

+β′2a r
2

r

∫ π
0

∫ π
2

−π
2
x11sin(θ)dθdφ

= 25β2
ar

2r9

r

∫ π
0

∫ π
2

−π
2
sin9(θ)cos9(φ)sin(θ)dθdφ
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+5β′aβar
2r11

r2

∫ π
0

∫ π
2

−π
2
sin11(θ)cos11(φ)sin(θ)dθdφ

+5β′aβar
2r9

∫ π
0

∫ π
2

−π
2
sin9(θ)cos9(φ)sin(θ)dθdφ

+β′2a r
2r11

r

∫ π
0

∫ π
2

−π
2
sin11(θ)cos11(φ)sin(θ)dθdφ

= 25β2
ar

10( 9.7.5.3.1
10.8.6.4.2

)π( 8.6.4.2
9.7.5.3.1

)2

+5β′aβar
11( 11.9.7.5.3.1

12.10.8.6.4.2
)π( 10.8.6.4.2

11.9.7.5.3.1
)2

+5β′aβar
11( 9.7.5.3.1

10.8.6.4.2
)π( 8.6.4.2

9.7.5.3.1
)2

+β′2a r
12( 11.9.7.5.3.1

12.10.8.6.4.2
)π( 10.8.6.4.2

11.9.7.5.3.1
)2

= β2
ar

10(5π) + β′aβar
11(11π

6
) + β′2a r

12(π
6
)

We have that, by the chain rule;

β′a(r) = − 5
(1+ra(r))6

(ra(r))′

= − 5a(r)
(1+ra(r))6

− 5ra′(r)
(1+ra(r))6

and;

limr→∞r
5βa = limr→∞

r5

(1+ra(r))5

= limr→∞
1

a(r)5
= 1

f5

where f = limr→∞a(r).

and, using the result (A);

limr→∞r
6β′a = limr→∞ − 5a(r)r6

(1+ra(r))6
− 5r7a′(r)

(1+ra(r))6

= limr→∞ − 5a(r)
a(r)6
− 5ra′(r)

a(r)6

= − 5
f5

It follows that, noting that limr→∞r
5βa = 1

f5
, limr→∞r

6β′a = − 5
f5

;



SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 4247

limr→∞P (r) = limr→∞(β2r10(5π) + β′βr11(11π
6

) + β′2r12(π
6
))

= 1
f10

(5π − 55π
6

+ 25π
6

) = 0

Once we have {E0, B0}, we construct {∂E
∂t
|t=0,

∂B
∂∂t
|t=0} by;

∂E
∂t
|t=0 = c2(5×B0)

∂B
∂t
|t=0 = −(5× E0)

so that {∂E
∂t
|t=0,

∂B
∂t
|t=0} ⊂ C3(R3). We then construct {E,B} sat-

isfying the wave equations �2E = 0, �2B = 0, with initial conditions

{E0, B0,
∂E
∂t
|t=0,

∂E
∂t
|t=0} using Kirchoff’s formula, see [4], (need initial

conditions C3, C2). As proved in Lemma 0.75, (E,B) is a solution to
Maxwell’s equations in vacuum.

An interesting consequence of the radiation question concerning light
is Planck’s heuristic formula E = hf . If the spectrum of the electro-
magnetic field of light is localised to avoid radiation losses, then we can
use Plancherel’s formula to conclude that;∫

R3 |E|2 + |B2|dx ' g|k|2

so that over a cycle, the energy;

E ' g|k|2 2π
c|k| = 2πg

c|k| = 4π2gf

with the frequency f = c|k|
2π

and g the small bandwidth of the spec-
trum. During an excitation of a charge and current configuration, with
the total charge and current conserved, we can pass through a phase of
zero current and charge, in which case the difference in the energies
E1 −E2 stored in the electromagnetic fields is interchangeable with the
electromagnetic energy of light at a particular frequency. The Balmer
series for the difference in electromagnetic energy of current and charge
confined to a sphere was predicted in [14].

Lemma 0.77. There exists a unique fundamental solution (E, 0), with
E decaying in the sense of [11], for given (ρ, J), not vacuum. Without

any decay condition, the difference E−E ′ of two such solutions {E,E ′},
is either 0 or static and unbounded with 5 � E = 0 and 5 × E = 0,
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(∗), with the possibility (∗) being satisfiable. If (E0, B0) is a solution to
Maxwell’s equation in vacuum, then we cannot have that E + E0 = 0.

Proof. Suppose there exist two fundamental solutions (E, 0) and (E
′
, 0),

then (0, 0, E − E ′, 0) is a solution to Maxwell’s equations in vacuum.
It follows from Maxwell’s fourth equation, that;

∂(E−E′)
∂t

= 0

and, from the relations in Lemma 4.1 of [12], that;

�2(E − E ′) = 52(E − E ′) = 0

By the decaying condition and properties of harmonic functions, we

have that E − E ′ = 0, so that E = E
′
. Without the decay condition,

we must have that E − E
′

is unbounded or E − E
′

= 0, and from
Maxwell’s first and second equations, we must have that 5 �E = 0 and
5 × E = 0 as well. The satisfiable claim follows from the fact that
we can construct a solution (0, 0, E0, 0) to Maxwell’s equations in free
space, by the requirements that;

(i). 5 � E0 = 0

(ii). ∂E0

∂t
= 0

(iii). 5× E0 = 0

It is possible to satisfy the requirements (i), (iii), for a function
f : R3 → R, so that we can define E0(x, t) = f(x) to satisfy the
conditions (i), (ii), (iii). For the last claim, suppose that E + E0 = 0,
then E = −E0 and we have that, by Maxwell’s equations, and (E0, B0)
a vacuum solution;

5 � E = −5 �E0 = ρ
ε0

= 0

so that ρ = 0. Using the fact that 5(ρ) + 1
c2
∂J
∂t

= 0 and �2J = 0,

we have that ∂J
∂t

= 0 and 52J = 0, so that, as J ∈ S(R3), we must

have that J = 0 and (ρ, J) is a vacuum solution, contradicting the
hypotheses. �
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