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TRISTRAM DE PIRO

ABSTRACT.

Definition 0.1. We call (Ey, By), a solution to Mazwell’s equation in
vacuum, good, if (E 4+ Egy) x By = 0, for some fundamental solution
(E,0) corresponding to {p, J} satisfying the conditions from Lemma
4.1 in [12], with {p, J} not vacuum and {p, J} C S(R® X Rq). We

call (Eo, Bo) static if %20 = 250 — 17,

Definition 0.2. We say that a field C(7,t) is simple if all the com-
ponents ¢;, 1 < i < 3 are continuously fourth differentiable in the
coordinates (1, x2,x3) and continuously twice differentiable in the co-
ordinate t, such that the partial derivatives all belong to L'(R?) for
fized t > 0, and, the L'-norm of the partial derivatives is uniformly

bounded for 0 <t < 1. We also require that the components c¢; are in
L2(R?) and, for some a > 0, e*Fle;(7,1) € L*(R?).

Definition 0.3. We say that a real pair (E, B), satisfying Mazwell’s
equations for some {p, J}, satisfies the strong no radiation condition if;

P(T’, t) = fS(G,r)<Et X Et) . dg =0

forallr > 0 and t € R. We say that it satisfies the no radiation
condition if;

lim, oo P(r,t) =0

forallt e R

Lemma 0.4. For any {p,J} satisfying the conditions from Lemma
4.1 in [12], if (E,0) denotes a fundamental solution, then a solution
{E + Ey, By}, with (p,J,E + Ey, By) satisfying Mazwell’s equations,
satisfies the no radiating condition, if E,Ey and By are simple and

{(E + Ey)o, 8@;?”) o, (Bo)o, %]0}1 C S(R?), (x). Moreover, we have
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the explicit representation;
(B +Eo)(@1) = —L7 [ (b(k)e'™et + d(k)et*et)eihe dk
Bo(7,t) = F;)f fR3 (by (et 4 dy (e~ ety e d]

where {b,d, by, d;} C S(R?).

Proof. By Lemma 4.1 in [12], and the argument in [6], we have that;

limy oo P(1) = lim, o0 fs(r)((E + Ey) x (B + By))dS(r)

= 1imy o0 [g,) (B % B)dS(r) + lim, o [, ((E + Eo) x Bo)dS(r)
+limy o0 fS(T) (Ey x B)dS(r)

= liMm, 00 fs(r)((E + Eo) x Bo)dS(r)

and, by (x), we have that 0?(E + Ey) = 0 as well, ().

Assume that E.E, and By are simple, then, E+ F, and By, are sim-
ple, and we have that;

V(E — Ey) — c%a (g;EO) =0

so that, applying the three dimensional Fourier transform F to the
components, and using integration by parts, we have that;

F(V(E = Fo))(F. 1)) — AT

— _I2F(E - Bo)(F,t) — & EEET)E

c? ot?

— —k2%a(k, t) — &2k

c2  ot?
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=0
where k? = k? + k2 + k%, @ = F(E — E,). For fixed k, we obtain the
ordinary differential equation;

d?ar- _
@ = _C2k2aE

so that;

Gz (t) = Co(k)e™ + Do (k)e e
with;

@;(0) = Co(k) + Do(k)

a(0) = ikcCo(k) — ikeDo(k) (11)

and, solving the simultaneous equations (11), we obtain that;

E(E) = %(-ﬂ(ﬁ + FO)|(E,O))|(E,0) + ﬁ}—(a(E;tEO) |(E,O)>|(E,O)>

T . 1

d(k) = 3(F((E + Eo)lz0)| 70 — %ﬂ@l(m))mo))
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bi0) = 3(F(Bo)lao)lao + 27 (%52 wo)l o)
d+ 1(7) = %(‘F((EO)|(E,O))’(Z,0) - if(a(a'?) ’(E,O))|(i,0))
and [? = [2+12412. Using the fact that {b(k)e™*+d(k)e=* by (I)e' +

dy (et} C S(Rg) for t € R, we can apply the inversion theorem to
obtain;

(E + Eo) fns BE ikct + d(E)e—ikct)eiE.idE
EO(T, t) fns 7 Z) ilct +31(Z)e—”0t)eﬂ-fdi

(2m)

As we noted above, {be?* + de=et bl + die~} C S(R?) for
t € R, so that, by the fact that the Fourier transform preserves the
Schwartz class, see [17], we must have that {(E + Ey)¢, (Bo):} C S(R?)
for t € R. Then, for n > 3 and the definition of the Schwartz class;

= | fs) (B +Fo)s x (Bo),)dS|
< fsm (B +Bo): x (Bo)) - nldS(r)]

< Joury [(E + Eo)il[(Bo):|dS(r)

< drr 2C'1ntD1:t
rn T
. 47rCl,n,tD1,n,t
- r2n—2
so clearly;
lim, oo P(r,t) =0
U

Definition 0.5. Fiz a real propagation vector ko # 0 and a real vector
d(] with ko . d[) =0. Let;
EO (f, t) — Eoe—ikocteiEO.E

B(] (f, t) — dle—ikocteik‘o.f
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where d; = k—ic(Eo x dy). Then, see [6], the pair (Eq, By) solves
Mazwell’s equation in vacuum, and so does (Re(Ey), Re(By)). We
call a real pair (E1, B1) a monochromatic solution if it of the form

(Re(Ey), Re(By)) as above, or (Ey, By) are constants.

Lemma 0.6. For a monochromatic solution to Mazxwell’s equation in
vacuum, we have that P(r,t) = O(r). In particularly, the pair (Ey, By)
doesn’t satisfy the no radiation condition unless Ey and B, are con-
stants. Any constant real solution (E1, By) satisfies the strong no ra-
diation and no radiation conditions.

Proof. We have, for a monochromatic solution, with k¢ # 0, that;

RG(EO) (fv t) =

oS!

(G*ikOCteikO-f + eikOCtG*ikO-f)

Re(Bo)(@,t) =

ro &

( e~ ikoct piko.T + ethoct e—iEO.E)

so that;

Re(Ey) x Re(By) = %ﬂ(e—zikocteziﬁoj + e2ikocte—2ko® 4 9)
By the divergence theorem, using [3] and [8], we have that;
P(r,t) = fS(G,r)(Re(EO) X RB(EO))dg(T‘)

_ fB(ﬁ,r) 7. (@(e—moaem%m 4 e2ikoct o —2iko.E | 2))dB(r)
_ fB(ﬁ,r) @ ] 2iEO(€72ikoct€2iEOE _ e2ik0ct€f2igg.§)d3(r>

— (dozdﬂ ik (e~ 2ikoct — €2ikoct)<ﬂ>%J% (r|2ko])

|2ko|
_ (30281) + ik (e~ 2ikoct €2ikoct)(%)%J%(2r|E0’)
doxd T (,—2ikoc ikoct\( T \3(_1 3 ——)st k
_ (02;1) i (e~ 2hoct _ ¢2iko t)(@)g(mn'l%l)z(P1(2r|1%0|)szn(2r|k0|)

_ (do>2<d1) . Z’E0<e—2ikoct . eQikgct)(g)%( L )%((QZIE’E‘)SZ'TL(QT’EOD

—Q0,0003(27’|E0 )
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_ (doxdy) T (—2ik 2ik (L Vs (&
= (o) i (-2t gtibuct) 2y ()} (2

LYsin(2r|kol)
—Qoorcos(2r|kol))

Clearly, P(r,t) = O(r) unless dy x d; « kg = 0, in which case dy = 0,
which gives a constant solution. The last claim is clear by the diver-
gence theorem and the fact that <7 . (E; x By) = 0. O

Lemma 0.7. For any {p, J} satisfying the conditions from Lemma 4.1

in [12], if (E,0) denotes a fundamental solution, then a solution {E +
EO,BO} with (p,J, E + Ey, By) satisfying Mazwell’s equations such
that {E, Ey, Bo} are simple and {(E + Ey)o, E+E°)|0, (Bo)o, 8t0| } C
S(R3?), satisfies the strong no-radiation condition, using the integral
representation in Lemma 0.4, when;

or when By is parallel to E + Ey, in the sense that By = A\(E + Ey).
In either of these cases, the no radiation condition holds as well.

If {E,Ey, By} are simple and the components of {Ey, By} are non
oscillatory, then {E + FEo, By} satisfies the no-radiation condition.

Proof. Using the result of Lemma 0.4, we can use the integral repre-
sentations of F 4+ Fy and By to compute;

((E + Eo) x By)(T,1)
= G Js (0(R) x by (D)) E+D7 40t g
+# Jro (b(k) x d (1)) e F+DTeilb=Det gk 4]

s Lo (A(R) x By(1)) @Dt ]
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+ams Jro(d(R) x di(D) e’ ™D 004k, (1)

Clearly, if (1) is satisfied, then we obtain that (E + Eg) x By = 0,
so that 7. ((E + Ey) x By) = 0, and using the divergence theorem,
P(r,t) =0 for all r > 0 and t € R, and lim, - P(r,t) = 0, for all
t € R, so that the strong no radiation and no radiation conditions hold.
Similarly, if By is parallel to E + Ey, then (E + Ey) x By = 0, so that
((E + Ey), By) satisfies the strong no radiation and the no radiation
conditions again.

If {E, Ey, By} are simple, then, we have that;

F( + &5 + 2 (B +Eo)(k,1) = (k1 + k3 + 12 F(E+ Ey) (k. 1)
so that, for k| > 1,1 <14 < 3;

|F(E + Eo)i(k,t)| < ﬁ Js |(38—;% + a% + aa—;g)(EﬂLEonf

Cit
|K|

<

W

and, similarly, for \E| >1,1<4i<3;
| F(Bo)i(k, t)| < %?f

where {C;;, D;;} C R

Similarly:;
| F(E + Eo)(k, t)|

< S F(E+ Eo)i(k, t)]
a

— k%

where Ct = Z?:l Oi,t

and \]:(EO)(E, t)]

<&@
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We have that F (E+Ey)(k,t) and F(By)(k,t) are bounded on B(0, 1),
as, for |k| < 1;

|F(E + Ey)(k,t)| = |$ [s(E + Eo)(T, t)e~*dz|
< £ fp (B + Bo)(@,)lda

< %% Z?:l Di,t

where D;; € R-o.

It follows that, using polar coordinates, with k; = Rsin(0)cos(¢),
ke = Rsin(0)sin(¢), ks = Rcos(f), and using (#)

’

| [ F(E + Eo)i k|
= | [0 F(E + Eo)iedk + [ro gy F(E + Eo)idk|

< Ciaa + | fpor Jo 7 F(E + Eg)it(R, 0, ¢) R*sin(0)dRdfd¢

< Ci,t,l + fR>1 fo7T fjw R? C;%i‘f dR
< Cipq +2m C’”foo L dR
= Ciu1 +27%C;,

so that, for 1 < i < 3, F(E + Eo)iy € L'Y(R?), and, similarly,

<
F(By)iy € LYR?). A similar argument shows that for 1 < i < 3,
]:(8(%%&’) € L'(R?), and F(2Bv),, € L'(R?). We have, using polar
coordinates, that;

| fB (0,1) zlic]: aE_gtEO)Z 570)(E)dE|

< fy f T F (R 0) (R, 0, ¢)| 4 R2dRdOphi

so that the components, —- f(LEO)) o)(k) for 1 < i < 3, are

integrable on B(0,1). Similarly, for 1 < 4 < 3, the components
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—=F ( ) z0)(1) are integrable on B(0, 1). Therefore, so are the com-
ponents of {b,by,d,d,}, (B). B
Applying the result (f), we obtain that, for |k| > 1;

[b(k) + d(k)| < &
b (k) + etd(k)| < £
|eheth(k) + e~herd (k)| < Lo
|(eikct _ e_ikCt)a(Eﬂ

= 2|sin(kct)d(k)|

Co+Ct
< FE

so that at time ¢t = we have that;

2k ’
- — Co+C =«
a(R) <
Co+E
< e

where I € R is the uniform bound for ¢ € [0, 1], and, similarly,
for |k| > 1;

maz([b], [ba, |d], |di]) (k) < 7z (4)

for some F' € R~y. In particularly, combining (A), (B), we have that
the components of {b, b1, d,d;} belong to Ll(ﬁg) and we can apply the
calculation in ({1).

We consider one term, by the divergence theorem, and using [8], we
have that;

f S (B(E) > E (Z))ei(EH).Eez’(k—l)ctdg(r)

= [n 7+ (0(k) x di (1)) D=0 aB(r)

= fB(G,r)<(Z_)(k) x dy (1)) «i(k 4 1))e!FHDTeilk=Det g B (1)
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= ((6(8) x da(0)) ik + D) (5)* ) iy sim(r R+ 1)

w(r|k+]

By (%), we have that;

iy o0 P(1) = Grysliy oo [o(0(R)xda ()i (k+1)) (5 )3 (ﬁ(%zm)% lpl,%l

sin(r|k + 1)) eVt dkdl

rcos(r|k +1|))e’ Vet dkdl

Let g(E, Z, t) = ;@(E) X dl (D) 'Z(E_"Z))( @2:“ )% (7r(|E2+Z\) )% |1£i%‘ ei(k_l)Ct

and h(k, 1, 1) = — gy (0(k) xdy ()i (kD) (25)? (g ) ? Qooe 0

We want to compute;
= limy o0 [e 9(k, 1, t)dksin(r|k + 1])dl
+limy oot [r6 Mk, 1, t)dkcos(r|k + 1|)dl

and show it is zero. Then lim,_ ., P(r,t) will be this limit plus 3
other similar terms going to zero, which gives the result.

From (x * %), we have that;

g(R,1,1) = P (B(k) x d (1)) « pe e
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where (k,[) is a unit vector, so that, using Fubini’s Theorem, and
a change of variables K =%+ 1, we have;

Jrs(9(E, 1, )" B+ dRdl (P)
= Jro T (b(R) x (). |k+l\; k=Dt ik ]
— fnb‘ |kii|t2 ei(rlk+1) gl dl

fR3 fR3 |ki§|g rlEHl)d%)dz
_IRS fRS k 121t i(r|El\)dE’)dz
= fR3(fR3 klk‘lgl 1) pi(r|kl) dk‘)dl
2t (0(F)

It follows, switching to polars coordinates;

—/

d (1)) .a(k, I)eitk—Det

where ¢(k,1,t) =

ki = Rsin(6)cos(¢), ke = Rsin(6)sin(¢), ks = Rcos(0)
that;
Jro(9(E, 1, ) F D ddldE:

= fgs(fRM) fog9<7r f0§¢§2ﬂ % ZTRR2SZTL<9)de¢9)dZ

= Sy Jocoen Jococon @(R,0, 6,8, D)e Rsin(0)dRd6)dI (2)

where ¢(R, 0, ¢,t,1) = ¢(k —1,1,1).

From (x * %) again, we have that;

h(F.11) = =28 b(R) x d (1)) gtei )

272

where (k, 1) is a unit vector, so that, using Fubini’s Theorem, and
a change of variables K =k+ 1, we have;

Jroo (0T, T, )T Rl (P
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= Jrs a2 (b(k) x d (1)) -

:fRfi 9‘(:1? z(rlk-i—l\)dkdl

= Jra (s i e D k)l

fRB fna Ok L1t '(”E")dEl)dZ

&'

k) pitk—yet yi(rk+) JTod]
ftl

o O(—LL1) i(r
f’RS fRS [%| (kD dk)dl

where 0(k,1,t) = =200 (b(k) x

272

—/

2(0)) . a(F, T)eitk—e

It follows, switching to polars coordinates;

ki1 = Rsin(0)cos(¢), ke = Rsin(0)sin(¢), ks = Rcos(0)
that;

Jroo (B, T, £)e 4 el

= JrsUrey Jocoen Jocoeon BEG 2 R R2 sin(0)dRd6) d]

= JrsUrey Jocoen Jococan p(R,0,0,t, 1) Rsin(0)dRdO)dl (3)
where p(R,0,¢,t,1) = 0(k —1,1,1).

We follow through the calculation for (P), (P’) but we also need the
corresponding results for;

[roo(g(R.T, )OI GET (P7)
o (h(E, T, ) CF D dEdl (P™)

and we can use the fact that;
sin(r|k +1|) = ( i(rlk+ll) _ i(rmm))
cos(rlk +1]) = 1 (el 1 =itk

_ We leave the details to the reader. Write b(k) = by(k) + iba(k),
dl(l) = d171(l) + Z-dlyz(l)
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where;

bi(k) = LRe(F((E + Eo)l@0)| o)) + s m(F(XEEE 2.0) | o))

=

ba(k) = SIm(F(E + Eo)l@o) o) — s BeF (557 w0 o)
o _ _
dy(1) = 3 Re(F((Bo)l@o) o) — s m(F (52 w0 aoy)

d(1) = $Im(F(Bo)lwo)lao) + #Re(F (O3 w0)la0)

We have that;

q(R,0,0,t, Z)

= TS0, (R0, 0) x dia(1) — yi(R.0,0) x dio(D))
(R, 0,0, D)|u(R.0,6,1,t)

— 2 (By(R.0,0) x dya (1) + by 1(R.0,0) x da(])

'EZ<R7 97 (ba Z)]M(Rv (97 ¢7 77 t) (1)

and, similarly;

p(R,0,0,t, Z)

= =282 [(by1(R.0,0) x dia(I) — by3(R,0,0) x di(0]))
(R, 0,6, 1)]p(R.0,6,1,1)

+900((b,3(R, 0,0) x dy1 (1) + b, 3(R,0,0) x dy2(0))

where by y(k) = by (F — 1), byy(k) = ba(F — 1), w(F,1) = a(k — LI),
(k1 t) = ellF=l-lhet

and, from (1), (2), we have that;

Jrs 9k, 1, 0) e+ el
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- fR3(fR>g f0§9<7r f0§¢§27r %[(51,2(]% 97 ¢) X a1,1(2) - B2,Z(R> 9» ¢)

xdio(l)) « @R, 0,6, Du(R,0,0,1,t) — 22H[(Dy3(R,0,6) x dia(l) +
ELZ(Rverﬁ)

xdyo(1)) (R, 0,6, 1)|u(R, 0, ¢,1,t)e Fsin(0)dRdOdp)dl (E)

and, from (3), (4);

Jrs PR, 1, )€t TR+ dkal

= Jrs(roy Jocoon Joco<on =20((by1(R. 0, ¢) x dia(1) — by3(R.0,0)

B Xal,?(z)) . ﬂi(Rv 0, ¢>Z)]M(R7 0,9, 77 t) + %[(EQ,Z(Ra 0, ¢) X a1,1(2) +
bl,Z(Rv 0, (b)

xdyo(1)) (R, 0,6, 1)|u(R, 0, 9,1, )" Rsin(0)dRdOdp)dl (F)

Write by (k) = by (k) + 228 q, (1) = dy 1, (1) + D220

Then,;

byg(R) =By (k= 1) = bua(k — 1) + 20

and;

b b 512 7(R707¢)
le(R? 0,¢) = bn,i(Ra 0,0)+ -

|(Rsin(0)cos(¢p),Rsin(0)sin(p),Rcos(0))—|

where bll Z(E) T)H(E — Z) and 1_712’2(E) = [_)12 (E — Z)
Again, it is sufficient to consider the first term in (E£). We have that;

fR:s (IR>0 f0§9<7r f0§¢§27r %[glj(Ra 97 ¢) Xc_il,ld))'af(Rv 97 ¢a Z)]M(Ra 97 ¢7 Za t>€WRszn(0)de0d¢)

PPy T 1(R.0,9)
- fR3(fR>O f0<9<7r f0§¢§2ﬂ' # Kbllj(R’ 9’ ¢)+ |(Rsin(@)cos(d))J?sén(@)sin(d)),Rcos(@))—ﬂ)
% (dy 11 (1) + 222D)) (R, 0, 6, D) (R, 0, ¢, 1, )" sin(6)dRdOd)dl

Similarly, we consider the first term in (F'), and, we have that;
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Jros Uy Jocoon Jococon —5321(011(R, 0, 6)xd1 1 (1)) (R, 0, &, 1) (R, 0, ¢, 1, t)e™ R Rsin(6)

dRdAd¢)dl

_ —iQo, ~ (R,0,9)
- fT\’,3 (fT\’,>o f0<9<7r f0§¢§2ﬂ' 27rg ° Kbll,l(R’ 6’ ¢)+ |(Rsin(9)008(¢),I?s’in(@)sin((ﬁ),Rcos(@))—ﬂ)

x(dy 11 (D)+2220y 35, (R, 0, ¢, 1) (R, 6, 6, 1, £)e™ R Rsin(0)dRdfd ) dl
From (), we have that the real and imaginary components of;

{F((Bo)l0) .0 F(E+Eo)l@o)laoy F(Zlz0) g0y F D) @o)l go b

decay faster than ﬁ, but strengthening the definition of simple to
infinitely differentiable if necessary, and adapting the proof, we can as-
sume the decay rate is faster than # It follows that the components of;

{611,Z(E) xal,ll(z) 2l R . |k— -

decay faster than , and, as W;(k, 1) is a unit vector, |v(k,[,t)| =

i T )
(R, 0,0,0,t)] =1, |sin(0(k))] <1, so do the components of;

Pat X0 g (R DR £)sin (0(F)), [(71’—12’?@%*_%;1’2@) Vi (8, D]w(F, 1, t)sin(0(k))}

Noting that, for C' € Rsq, D € R+ and fixed [ € R?, [ # 0, without
loss of generality, assuming that D < [{|7;

o _
| fIkI>D [K (61126 k~1] |k

_ o Cc ik R —
= ‘fD<|k\<\l|+1 [K[6][11 [k—1| |dk + fD>|l\+1 [K|61[2]6 |k~ |k

< S A S __C_ _Jr
= |fD<|k|<\l|+1 \k\ﬁw|6|k4\dk| +| flk\>\l\+1>D |k|6||l|6|k*l|dk|

VAN

C 1
DO|1|6 fAnn(D,\l|+1) |k—1| dk + e fk:\>|l\+1 |k|6dk

_C 00 CR szn
DSJI[6 fAnnf(D,m-i-l \;\dk + W fo f f|l|+1 dequs

c
Db|I[6 fB(6,2|Z|+2D+1 % |l|6 fo f f\l|+1 R dRdfd¢

IN
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2 2|l|+2D+1 R2 2120
< 27 70 27 _
= Do TR+ 5

< m>C(2|l|+2D+1)? + 220
= DO|1|6 3D3|l|6

It follows, that for fixed » € R, sufficiently large, we have that;

maqr(f%br f|2>r lau(k, 1, t)|dkdl, f%'w f|Z>r| Bk, 1,t)|dkdl)

M
[l[>r |7]4rs
2m2 M
— T‘.T’4
22 M
= =3

where M € R, and;

— - - P11 b5 7(R.0,0)
a(k,l,t) =a(R.0,0,1,1) = ﬁ“bn,i(R’e’ ¢)+|(Rsm(9)cos(¢),11~22;:;n( 0)sin(¢),Rcos(0))— ”)x

(dl 1 1(2) &, 1 20 )] . ﬂi(Ra 97 ¢7 Z)]:UJ(R’ 9, ¢, Z7 t)SZ?’L(@)

- 7 . 7 —’LQO 0 EIZ,Z(R’H’d))
B(k:’ l’ t) - B(R’ 0’ ¢’ l’ t) Ton? [(bll l(R 0 Qb) |(Rsin(0)cos(¢),Rsin(0)sin(¢),Rcos())—| ) X

(dyra (D) + 2220 (R, 0,6, 1) (R, 0, 6,1, t)sin(6)

We have that;

P17 1(R.0,9)
fR3 (fR>0 f0<6<7r f0<¢<27r ﬁ [(bll,Z(R7 97 ¢)+ |(Rsin(@)cas(d)),11%2szl'n(6)sz’n(¢),Rcos(@))—ﬂ)
x(dy 11 (1) + 222D)) (R, 0, 6, D) (R, 0, ¢, 1, )" sin(6)dRdOd)dl

= Jrs fR>O fogeq IR —oean (R0, b, 1, t)edRdOd®)dl

splits as four terms, the worst of which is;

f (]‘ f f iPLl[ 51271(R,9,¢) _
R33N R JO<O<m J0<op<2mr 272 L|(Rsin(6)cos(¢),Rsin(d)sin(¢p),Rcos(0))—I|

x 2201 (R 6, 6, D (R, 0, 6,1, 1) Fsin(0)dRd6d)d]

= [ wa Jocoen Joe b ay(R,0,¢,1,t)e"FdRdOdg)dl
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Again, fix [ # 0, with 6 # cos (&) = 007 and ¢ # tan_l(lf) boi-
By the results of Lemmas 0.23,0.24 and 0.18, we can assume that
the real and imaginary parts of oz4(R, 0,¢,1,t) are oscillatory, then as
limp_004(R,0,6,1,t) = M € R, we can apply the result of Lemmas
0.15 and 0.8, and assume that;

|f7z W(R,0,0,1,t)e"dR)|

< | Jr., Re(aa)(R, 0, 9,1, 1) dR|+| [, Im(au)(R,0,¢,1,t)e" dR|

< g("i,9,¢>,Re||Re(a4)H°° Di,a,qa,Re )
—_— T

§Re nf’g’cbgRe
+2<"7,9,¢,1m‘\1m(0¢4)|\w Dro.g.1m
r Erm nlg@,f[m

so that, for [ > 1;

| [, au(R,6,0,1, ) dR|
23 |31,1l,2(7) |

4fl£Re )

< %(4\/3l||Re(a4)Hoo +

£Re

dy 12(l)|

2 ¢ 43I Im(e4)]|so c23
HE (Rt e e )
dy 1,200
C22|7‘
< Z(4v/31(|[Re(0) oo + [[Tm(0)|0) + Sz—)

Tid1,1,2(0)
022 | ===
< 2@Vl aul|oo + 75—

and, similarly, for 0 <[ < 1;

| fr, 0a(R,0,0,1,t)e" dR)|

|d1 1,20

< 2(4v/6]|oul|o + ) (D)

for sufficiently large r € R~¢, where £g. > 0,&7,, > 0 are constants
independent of 1,6, ¢, £ = min(ge, Erm) > 0, {Digs.re» Dipgrm) are
the decay rates for the real and imaginary components of ay(R, 0, ¢, 1,1).
The constant £ can be chosen independently of the parameters {6, ¢, Z},
see Lemma 0.19. We have that;
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P b 7(R79’¢) d l
Ha4|’oo - ’ 271721 [|(R5i”(9)005(¢7) 11%28;71(9)5171((75) Reos(0))—l| X 12( ] (R 0,9, )szn( )’

m| bya 1(F.0,¢)sin(0) I d12(l) |
— 272 |(Rsin(0)cos(¢),Rsin(8)sin(¢),Rcos(6))—I]|

_ P11b12l Hdlgl)’
2?2k

where;

hgllj(g) _ m EIQ’Z(R,Q,(z))SZ’I’L(e)
212 g2|k—1] 272 |(Rsin(0)cos(¢),Rsin(0)sin(¢),Rcos(0))—I|

Fix & > 0, then, as, for fixed [ # 0, kfl’i(kl)' € L'(R?), we can choose

eo,i,m < 90,? < 90,2,527 (boj,m < 9250,2 < ¢0,l,l€27 such that;

[ Jreo Jo

Py ‘bul R
<0<847 ., f%j,,ﬂs@zé%j, 2 2] (R 0,¢,1,t)e dRdfdg| <

O,T,ml

Then;

| fn>0 s oen fog b<om ay(R,0,0,1,t)e"PdRdOd)|

7 irR
S | fR>0 L[O’W)X [0’2ﬂ)\[¢0,7,n1 ’¢0,Z,H2]X[¢0,7,N1 7¢0,Z,H2]) Oé4<R7 97 ¢7 l’ t)@ de9d¢|

7 irR
+| fR>0 faoi,ﬁlgegeo,i@ f%img‘f’g%i,nz as(R, 0, 9,1, t)e" dRdde)|

<| fR>0 fv as(R,0,¢,1,t)e" FdRdOdo| + H/||@|

Liky,ka
< fy

l,k1,k9

(| fr_, @1(R.0, 6,1 t)e" dR])d0ds + || 232
Using (D), it follows that, for [ > 1;

| Jrey Jocoen Jococon ay(R,0,¢,1,t)e"FdRdOd)|

23| 1 dy5(
< 20 2 (4Bl oo + ZH) 4 0 T
_2<4\/6P1,1l‘ by, 7(R.0,0) | ||E'12(7)H_C2%\M|
— 7§ 2m2 |(Rsin(0)cos(¢),Rsin(0)sin(¢),Rcos(0))—1| Vikimo l 4+/31

]| %50
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and, for 0 < < 1;

| oo Jocon Jocoeon a(R0, 6,1, t)e R RdOg)

Y P0)
< 272 (4\/_||a4|v C2% |20

dyo(
lky n2||00 4\/5 >+I€/||%()|

(4\fP1 1 | 512,2(37947) ’ Hd12 |+022 ‘ d12(l)|
- 7"5 2w2  1|(Rsin(0)cos(¢),Rsin(8)sin(¢),Rcos())—I]| Viki ko 4/3

/|| 42 (8)

Fix 6 > 0 arbitrary, then we have that, for [ > ¢, sufficiently small
0 <k < min($,8%);

fR>0 f9 oy <0007, f%lﬂ <0< 7,10 5;21 | |(Rsm(9)cos(1§ éi:(z;smg) Reos(0))—1]| |[dRdfdg
— fo,. AT

- f(Wzm xo )T ]23;; ||If|1|12€-fl)|l2dk

< S 2R+ S, s 25 e dE

< SR e 500 focnaw RRV (O ARAAS+ T fuy o sion TR
< Tt e ®llocson's +tat Jor,, [EGDIAF

= St b2 (F)l oo 5w 5 + 5 25 S ) 12009 2 i (0)d ROy

< S P12 (R .50 5+ E 5400 103 =001, 19010 = G010zl 1) S [Proa(R)IAR
< ?5123;21 ||b12( >H00 B(0,x) 2" 2 + f1$123711'21 ‘GO,Z,KQ - 90,2,;{1“(250,2,52 - ¢0,Z,n2|51(1)K

< T B (W)l 500 5 + 235

< 2P1 L [by2 (K )||ooB(On)§2 + %’f =rx (M)

for |90,Z7m - (),l,m| Iqbﬂl@ ¢0,2m!sl(1), |9072752 — QOJMI < \/LE (G)

where;
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%7:‘61752 = ([¢0J,n17 QSO,Z,:‘{Q] X [¢0,Z7H1’ ¢0J,/§2] X R>0)

(Ws

l,k1,k2

i={k:k+1eW,, .}

and, we can assume that |512,Z<R)’ is independent of {6, ¢}, with
||512J(R)]|L1(R>0) < K, independently of /, due to the decay.

In particularly, choosing ;.. = 657 + #F’ Ooin, = o1 — #ﬁ,
Pojwy = Poi T 3umr Poim = gbog o> we have that (G) holds and

d(l, V; ) 2 lsm(zf) > 1/ for sufficiently small . We then have
that;

| 512J(R,9,¢) | |
|(Rsin(6)cos(¢),Rsin(0)sin(¢),Recos(0))—I| lnl ko | —

VE|[b,7(R, 0, 0)|]00 = LD

Ik

where D € R+, independent of {. From (H), (M), we obtain that,
for [ > 1;

| frn Jocoen Jocoean 0a(R.0, 6,1, t)e RdRAdg)|

2 4GPy 11 dio( Cc25 %20
< e (Rt (M) 3 + m’ )

+r/| 228 (1> 4)
and, for 0 < [ < 1;

| fR>0 f0§9<7r f0§¢§27r ay(R,0,¢,1,t)e"FdRdOd¢|

4\[P11(4\/7D)‘d12(l)‘+ CQ?‘d12(l)|)

= 13

— 7‘5( 272

dy, (1

|| 228 (1> 9)

Using the fact that {M, M} C L*(R?), and integrating g(k, I, t)e"F+1]
over R? x B(0, ) separately, using Lemma 0.9, looking at all compo-
nents, for sufficiently large r € R~g, need uniformity in [ version of
Lemma 0.12, follows that,

| fro 9B, 1 ) dRdl| < A5 4+ FW 4 Hp!

where {A, H} C R. Follows that?(split again Re(g), Im(g))



SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 21
| frs 9(E, 1, t)sin(r[k +1|)dkdl < BS + T 4 Sp!

for sufficiently large r, In particular as k" > 0,6 > 0 can be made
arbitrarily small, and;

limy o [re 9(k, 1, t)cos(r|k + 1|)dkdl| < AS + H¥'
im0 [re 9(k, 1, t)cos(r|k + 1|)dkdl = 0
so the no radiation condition holds.

Similarly, we have that;

T 512,Z(R791¢)

—lQoo
fR3 fR>0 f0<9<7r f0<¢><27r Tox2 (bll,l<R7 07 ¢)+|(Rsz’n(G)cos(qb),Rsin(e)sin(¢),Rcos(@))—ﬂ
x (@, (1) + 220V (R, 0, 6, (R, 0, 6,1, £)e" R Rsin(0)dRd0d)dl

= Jas Sy Jocoen Jococon BUR,0,0,1,0)e" ROdg)d]

splits as four terms, the worst of which is;

oo Josace Jococe 551 e :
R3VIRso J0<O<m J0<o<2m 272 L|(Rsin(0)cos(¢),Rsin(6)sin(¢),Rcos(8))—I|

x120) (R0, ¢, 1)|u(R, 0, 6,1, )¢ Rsin(0) RARdOd)d]

= fR3 fR>0 f0§9<7r f0§¢§27r Bu(R, 0, 9, Za t)eirRRdeed@dz

Again, fix [ # 0, with § # cos‘l(l%) =0y and ¢ # tan_l(ﬁ—f) = Qo1
By the result of Lemma 0.23, we can assume that the real and imagi-

nary parts of %}W are non-oscillatory when restricted to a finite

interval [0, L]. Moreover, we have that limp_oRB4(R, 0, ¢,1,t) = 0 and
limRﬁowlw = M € R, both functions being of moderate de-

crease. We restrict the [ parameter to an annulus Ann(e, ly) C R®.
Then, using integration by parts, see Lemma 0.16, we have that;

| fAnn(e,lo) fR>0 f0§9<7r f0§q§§27r 64(R’ 6’ ¢7 Z’ t)@erRde9d¢)dZ|

= ‘ fAnn(e,lo) fR>0 f0§9<7r,97é90j f0§¢§27r,¢>7é¢>0j ﬁ4<R’ 97 ¢7 Z’ t)eerRde6d¢)dl’
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- %| fAnn(e,lo) fR>0 f0§9<7r,9;é9 f0<¢><27r ¢F#do 1 "OR

(TUT)

We have that, for fixed I € Ann(e,ly), %8t € LY(R?), see calcula-
tion below and Lemma 0.9, so we can restrict the parameters {6, ¢}
to |0 — Oy7l > d1l, |# — ¢o7l = d2 such that, for arbitrary 6 > 0,

[ € Ann(e, ly);
| fn>0 f\efgoj\ggl f\¢7¢0,ﬂ§52 %(Ra 0,0,1,t)e"dRdOd| < §
(SUS)

By the proof of Lemma 0.16, for arbitrary ¢ > 0, there exists
Ce € Rso, such that, uniformly in [ € Ann(e,lo), |0 — 0y;] > 61,
¢ — ¢0J| > 0y;

| Joy 24 (R,0, 0,1, )™ dR| < ¢ +

where Cy = 2val oy HaRﬁ‘*HOO restricted to the parameters, so that;

le] ir
[ Jroo -0, 160 Jios4 125 St (R,0.0,1,t)e" dRddg)
0,1 0,0
< 27%(é + <)
and, therefore;

| fR>o fe;&got fq#%, 8554 (R, 0, (bj, t)eiTRdeQdM <+ 27?2(6/ + %)

It follows that;

ORfB4 ir
| fAnn (e,l0) fR>0 f0<9<7r 975901 f0<¢)<27r ¢>7£¢07 glg (R 0 ¢7 l7 t) Rde9d¢>dl‘

47rl

< F4(0 4 2m*(¢ +92y)
and by (TUT), for sufficiently large r;

| fAnn(e,lo) fR>0 f0<9<7r f0§¢§27r 64(R’ 9’ ¢’ Z’ t)elTRRde9d¢)dZ|

< (8 4 2Cay (TUS)

BB (R 6, ¢,1,t)e" dRdOdH)dl|
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where 0’ > 0 is arbitrary. We have that;

1% loo = 1181 + Rz |l

< 1Balloe + 1Rz 10

_ | =iQo0 by 1 (R.0,0) a0 — N
22 [|(Rsm(e)cos(¢),Rsm(e)sm(¢),Rcos(e))—ﬂ x 2521w (R, 0, 6, D)sin(0)]
—iQo,0R[ 9 512 Z(R 0,0) E’
| 272 [ R(|(Rszn(0)cos(q5) Rsin(0)sin(¢),Rcos(0))—I| ) X ] <R 0 ¢ )sm( )|
—iQo’oR 12j(R797¢) E, (Z)
+H = [|(Rsin(@)cos(¢),Rsin(@)sin(qb),Rcos(e))—ﬂ x BE] 55 (@R, 0, ¢,1)sin(0)]
< &y e 1422y
— 272 1|(Rsin(0)cos(¢),Rsin(0)sin(p),Rcos(0))—|
Qo by 7(R.0,9) a1, ()
+ | OR ( |(Rsin(0)cos(¢),Rsin(0)sin(¢),Rcos(0))—I| )‘ | 12l |
Qo,oR 12j(R707¢) d12 l) i E
+ 272 | |(Rsin(0)cos(¢p),Rsin(0)sin(p),Rcos(9))—I]| | | | ’ OR ( |%| )|
—_ Qo0 | 512,7(R70v¢) | | d12 ) |
2n2 |(Rsin(0)cos(p),Rsin(0)sin(¢),Rcos(0))—I]|
Qo by 7(R.0,9) dy5 ()
+ | 8R( |(Rsin(6)cos(¢),Rsin(0)sin(¢),Rcos(0))—I| )‘ | 12l |
< Qo,0 | 12,T(R?07¢) | | d12 ’
— 272 V|(Rsin(0)cos(¢),Rsin(0)sin(p),Rcos(0))—|
Qo.oR b1p 1 (R.0,¢) N0
+ | OR ( |(Rsin(6)cos(4),Rsin(0)sin(¢),Rcos(0))—1 )‘ | |
_ Qoo

— _| 1271(R707¢) _ | |8/12(Z) |
272 1| (Rsin(0)cos(4),Rsin(0)sin(p),Rcos(0))—|

+ QR r o7 (b1 1(R.0:9)) )
|(Rsin(0)cos(),Rsin(0)sin(¢),Rcos(0))—I|

+

12’7(R,9,¢)<(Rsin( Ycos(¢),Rsin(6)sin(¢),Rcos())—1. ’aR (Rsin(0)cos(
-1

¢),Rsin(0)sin(¢),Rcos(0))—1)> | ‘ 3/12(7) |
[(Rsin(0)cos(¢),Rsin(8)sin(¢p),Rcos(0))— :

|3

< ﬂ’ 512’I(R’97¢) HEIIQ(Z) ’
— 272 1|(Rsin(0)cos(¢),Rsin(0)sin(p),Rcos(0))—|

| AR (Elz,i(Rﬂv‘z’)) | |
|(Rsin(0)cos(¢p),Rsin(0)sin(¢),Rcos(0))—I]|

1 QoA BRI (in@eos () in(@)in(d)coo D) T,
272 |(Rsin(0)cos(¢),Rsin(0)sin(¢),Rcos(0))—1|2 l

+Q0 oR

d12 l) |
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< Qo0 |512,Z(R,9’¢)| ‘d12 l)|
— 272 |(Rsin(0)cos(¢),Rsin(0)sin(d),Rcos(6))—|
+Q0,0R I%(Elgj(Rva?(ﬁ))‘ |E12 ) |
272 |(Rsin(0)cos(4),Rsin(0)sin(p),Rcos(0))—|
V3Qo,oR b1 7 (R.0,0)| ;o)
+ 272 |(Rsin(0)cos(4),Rsin(0)sin(p),Rcos()) 1‘2’ | (F>

By (F'), we see that changing to Cartesian coordinates, the above
terms are of the form;

Cllblzl(k\|d12<l| 02@@J>||8’120)| Czlbm(k\|d12<l|
[k[2[%—1] ] [l [R—12

where {C}, Cy, C3} C R+ and;

- T T — T = - Obyy7 . Obi,7. Obi,7.
[Cra(k, D < ferg3 (k)]s €1075(F) = (=5 =5, —52))

By Lemma 0.9, we can see that for fixed I # 0, 224 € L(R?). More-

over, we can see that when we limit the parameters {6, ¢} and use com-
pactness, to obtain (SUS) above, we then have that with [0 —6,;| > 4],

— Qpi| = 09, at [k =1 > lsin(0 — 6,;) > , so tha oo 18
oil = 02, that [k — 1| > Isin(0 — 0,7) > 2, so that 83/34
uniformly bounded on the restricted parameters. Using the same ar-

gument as in (TUT), (F'), and the proof of Lemma 0.9;

| fB(ﬁ,lo)c fR>O f0§6<7r fog¢g27r Bu(R, 0, ¢,1,t)e™ RARAd¢)d]|

- H fB(ﬁ,zo)C fR>0 foge«,e;eeoz fog¢gzw,¢¢¢0l R

< . fB(O lo)© f’R>0 f0<0<ﬂ' f0<¢<2ﬂ. |8Rﬁ4 |oode9d¢)

Cl‘blzl k)'

C3by, (k)]
< 1 B 12,1
<+ Jp@ae Jrs [l %—1]

[kl lk—1]2

1o (1 Colerz (kD) dy
| 12 )|+ ZIILCIIIIZ; ”)|| 12( H‘

|20 | ]
< 4 (ABC)
where €; > 0 is arbitrary for ly(e;) sufficiently large. Similarly;

| J56.0 Jro0 Jocoor Jococan Bu(R,0,6,1, 1) RARAIdp)dI|

< 2 (DEF)

ORBi(R. 9, ¢,1,t)e" *dRdAd)dl|
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where €5 > 0 is arbitrary for €(e;) sufficiently small. It follows that,
for sufficiently large r, combining (TUS), (ABC), (DEF), that;

| fR?’ f’R,>0 f0§9<7r f0§¢§27r 54(R7 9? ¢7 77 t)eZTRRdeQd(ZS)dH

< 42 200y 4 ate (GHT)

3 r2

It follows that;

| oo hF, T )6 Rl < 478 (8 4 20y 4 s

72 r

It follows that, splitting the calculation into real and imaginary com-
ponents Re(h), Im(h), that;

| Jroo B, T t)cos(r[f + 1)) dRdl < “Z8(2 4 2000y 4 ate
for sufficiently large r. In particular;
limy oot [rs B(K, 1, t)cos(r|k + 1])dkdl|

2WC/>+€1+62

4l

< limy oo =52 (0' +
4rl3

=50 +ea +e

As 0 and € in the proof can be made arbitrarily small relative to the
choice of Iy, and {e;, €2} were arbitrary, we must have that;

Limy oot [ R(K, 1, t)cos(r|k +1|)dkdl = 0

so the no radiation condition holds again.

Lemma 0.8. We have that;
las(R,0,¢,t,1)| < % |d12 |, for R >41\/3,1> 1
R>4V3,0<1<1

|Re(aa)(R,0,6,1.1) < |2 122D for R > 41y/3,1 > 1
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R>4V3,0<1<1
|NM%ﬂRﬁﬁJjNS%é@#%ﬁwR>4W@l>l
R>4V3,0<1<1
where C' € R+
In particularly, the families {Re(ay)(R,0,6,t,1) : 1 € R,

cos™ (1), ¢ # tan™ (1)} and {Im(cu)(R,0,¢,t,1) : | € R?,
005_1(%), O # tan‘l(%)} are of moderate decrease njg 4, with;

140,0 £
1+40,0

Nige=4V3, 1> 1

and Dy, = 025|220

Proof. We have that;

P bo7k) 3L
ol < | e 1448

|E12,Z<E)| < {)Zl‘“ |k — 1] > 0 (change this)

where D € R+

so that;

7 4,0
s (R, 0,0, ,1)| < |22 Cos

- 013'12(2) | 1 _
! [(Rsin(0)cos(¢)—11)2+(Rsin(0)sin(¢d)—l2)2+(Rcos(0)—13)2]2

:%JMM 1 i

B L ((sin(0)cos(9) —1)2+ (sin(0)sin(9) — B )2+ (cos(0)— '3 )] 2
:gﬁum 1

R5 1 [17 21 sin(]ti)cos(d)) - 2l257,'n(192)sin(¢) o 2ZSC§S<9) +1722]%

R

= O] (1) | 1L

B et )3

where C' € R+ and;
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jo| < 20HEELD < 25 < 1 for R > 411/3

so that;
las(R,0,0,t,1)] < - |d12 |<022 dw (for R > 41y/3,1 > 1,
R>4v3,0<1<1)

In particularly;

[Re(ca)(R, 0,6, £.1)] < (R, 0,,,1)] < <2} L2

for R >41v3,0>1, R>4V3,0<1<1

Im(as)(R,0,6,1,1)| < as(R,0,6,t,1)| < 22|20

for R>4lv/3,1>1, R>4V3,0<1<1

Lemma 0.9. We have that,

by, 7 (k) |G, ), g,
E‘ ZE Z| 12 | S Ll(RG)J ‘kl‘fkl l|2| 12 | S Ll(RG)

Proof. For the first claim, fix [ # 0, then;

1 2
7 g lRBaL) ST

(%) (%)
S%fg(zg) Tzlu dk + szS m ——dk

:_fB L [b12 (K |dl€—|— f’RS 12l(k)|d%

3) [l ||

5 b12(R,0, . by k’)|
4 f02 Jocoen reper L2090 R2 i (0)d RO + 2 fB@ |kl|2 dk
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‘512,Z(E)|

+fR3\B(6,1) LE dk

72 [R21% 1 b12(R,9, . - — =
< BN 42 S0 Socoor neoen 2t R2sin(0)dRAOAG+ [0, (5.1, [D122(R) | dF
<m?+ 2[Rl +C
=72+ % +C

where C = Hgm,i” 11(r#) is independent of I. It follows that;

o TR < fra(? + 47 + € Lyl

= (7 + O) fr M0l + 47* [, gl

S <7T2+C>(IBB ‘dl‘a(l dl+fR3\301 |d12( )|dz)
+47T2<fB(6’ ‘d|1lT2 dl + fRS\B 0 1) |d12( )|d7)
< 2+ OV fopen reper |[d1n(R.0,6)| Rsin(9)d8de + D)

+ar2([!

Jo Jocoen —nepen ldio(R. 0, 9)|sin(0)d0de + D)

< (r? + C)(n* + D) + 4n*(2n% + D)
=9r* + 72C + 57*°D + CD
where D = ||c_Z/12||L1(R3)

For the second claim, fix [ # 0, then, using the substitution K =k-I
and the previous proof, we obtain that;

|b12l |b12 (k)| 2 | 4n?
fR3 = llg‘dk fR3 Iklz\k+l|’dk ™+ = +C

Following the above proof again, we have that;

Jrs |;|f,; “2\‘“2 Rl < [ (m? + 47 4 0)| 2]

<9t + 72C + 571*’D 4+ CD
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Definition 0.10. We say that f € C(R) is of moderate decrease if
there ezists a constant D € Rq with |f(x)| < % for |z| > 1. We

say that f € C(Rso) is of moderate decrease if there exists a constant
D € R.o with |f(x)] < # for |x| > 1. We say that f € C(R)
1s of moderate decrease n, if there exists a constant D, € R~ with
|f(z)] < ﬁ—‘g for |x| > n. We say that f € C(Rso) is of moderate

decrease n if there exists a constant D,, € R~o with |f(z)| < l’;’—‘g for

|z| > n. We say that f € C(R) is of very moderate decrease if there
exists a constant D € R~ with |f(z)| < % for |x| > 1. We say that

f € C(R) is of very moderate decrease n if there exists a constant
D,, € R~y with |f(z)| < % for |x| > n. We say that f € C(Rso)
s of very moderate decrease if there exists a constant D € R~y with
|f(z)] < ‘% for |x| > 1. We say that f € C(Ro) is of very moderate
decrease n if there exists a constant D, € R~o with |f(z)| < ﬁc—T for

|z| > n. We say that f € C(R) is non-oscillatory if there are finitely
many points {y; : 1 <1 < n} C R for which f|y,y..,) is monotone,
1 <i<n—1, and f|(—ooy) and fl. o) s monotone. We denote
by val(f) the minimum number of such points. We denote by vals(n),
the minimum number of points on the interval (0,n). We say that
f € C(Rso) is non-oscillatory if there are finitely many points {y; :
1 <i < n} C Rso for which f (yiwisn) 18 monotone, 1 < i < n —1,
and floy) and f|y..) @8 monotone. Similarily, we denote by val(f)
the minimum number. We say that f € C(R) is oscillatory if there
exists an increasing sequence {y; : i € Z} C R, for which fly, .,
is monotone, 1 € Z, and there exists 6 > 0, with y;»1 —y; > 0, for
i€ Z. We say that f € C(R~o) is oscillatory if there exists a sequence
{yi - i € N} C R, for which floy,) is monotone, and f|y, v\, S
monotone, i € N, and there exists 6 > 0, with y, > 0 and y;11—y; > 0,

forieN.

Lemma 0.11. Let f € C(R) and L € C(R) be of moderate decrease,
with % non-oscillatory, then defining the Fourier transform by;

FUNK) = g fo fla)e oda
we have that, there exists a constant C € R~g, such that;

IF(N R < 5

|k[*
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for sufficiently large k. Let f € C(R) and % € C(R) be of moderate

decrease, with % oscillatory, then, similarly;
we have that, there exists a constant C € R+, such that;
F(HK)] < S
for sufficiently large k.

The same result holds in the two claims, replacing moderate decrease
with moderate decrease n.

Let f € C(R) be analytic, with f and % of moderate decrease, then
given € > 0, there exists E, such that, for sufficiently large k;

FHK) < 35+ 5
where E, = 21)(1[;171‘([—[/5, LJ)H%HOO, Le € Roo.

The same result holds with the assumption that % 18 just continuous
or when % € C(Ryo) and % € L*(R), for some p > 1.

Proof. As f is of moderate decrease, we have that f € L'(R) and

lim|g| oo f(x) = 0 Similarly, % € LY(R) and % is continuous. We

have, using integration by parts, that;

FUENR) = ohx o fg)e vy

= [f(y)e™]> +ik [ [(y)e*dy
=ik [ f(y)e™*vdy

= ikF(f)(k)

so that, for |k| > 1;

As % is of moderate decrease, for any ¢ > 0, we can find N, € N
such that;
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Ne —i
) = hp [ Ewe™dyl < e (+)

As %\, N..N. is continuous and non-oscillatory, by the proof of Lemma
0.9 in [10], using underflow, we can find {D,, E.} C R+, such that, for
all |k| > D., we have that;

1 Ne daf —iky
|(27r)% _N. dz (y)e dy| < |k| (%)
It is easy to see from the proof, that { D, E.} can be chosen uniformly

in €. Then, from (%), (*x), and the triangle inequality, we obtain that,
for |k| > D;

\F(L)(k)|
N. — N. i
Slf(%)(k)—@;)% v Liy)e iy + | v Ly)e*tvdy|
Ee
<€+m

so that, as { D., E.} were uniform and € was arbitrary, we obtain that;
\F(L) (k)| < ‘E‘ for |k| > D
and, from (1), for |k| > D, that;

F(f)(k)] < Za®l o

For the next claim, we can follow the proof of the second claim in
Lemma 0.13. The next claim is a simple adaptation of the first two
claims.

For the penultimate claim, we can follow the above proof up to (t)
to obtain that;

k)] < TGO k) > 1 (a2
As is of moderate decrease, we can find L, € R such that;

I#ﬁ L(y)e™dy| < e (BB)

(2m)% JIy[>Le do

S %h—Ls,Le} is analytic, ZPTJ;“—LE,LE] has finitely many zeroes, in par-

ticularly % (—L.,L 18 non-oscillatory. Using the proof above, we have
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that, for sufficiently large k;

LE dj —1 €
|$ o E ey < {5 (CO)

where E, = valu ([~ Le, L)L ||o. It follows that, from (BB), (CC),

that;

IF(Z)] < fis +e (DD)

z/l =

It follows, combining (AA), (DD), that, for sufficiently large k;

Ee
T T€
kT

k)] < B

_ Ee _€
= et
as required.

For the final claim, we can follow the above proof up to (}) again to

obtain that;

F(I(k
F(H(k)] < Fe B k] > 1 (44B)
As % € LP(R), by Holder’s inequality, we have that, for 6 > 0;

|t [° L (y)eihvdyl

(27r)% ~8 dx
1 o | df
S ok Jos Lz (W)ldy
< I &lsollplll-soll 2,
< C(20)71
< £ (CDC)

for ¢ sufficiently small, ¢ > 0 arbitrary. As % is of moderate de-

crease, we can find L, € R~ such that;

|y fyor. E(w)e *dy| < § (BBB)

(271_)% y\>L5 %

As % is continuous on [—L¢, —0] U [d, L¢], we can, using the Stone-

Weierstrass approximation theorem, find a polynomial ps. such that
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|1df

(27) 2 dx (2Tr)%p5e| < 6L , SO that

da —ik
(%)z oo Jocyier, @ (W)e™ Myl

< —

(2m

2Lce —ik
< St ot f6<|y|<Le Pac(y)e ydy‘

<3t (2;)% | f6<\y|<L€ pse(y)e~*dy| (COD)

= Pocldyl + ZErl ficyyicr, Pocly)e™™dy

We have that Ds. 1s analytic on an open neighborhood of § < ly| <

L, so that 25 |6<|y|<Le has finitely many zeroes, in partlcularly 2 | s<lyl<Le

is non—oscﬂlatory Using the proof above, we have that, for Sufﬁmently
large k;

(2ﬂ,)2 ‘[’(5<|y‘<LE p56<y> Zkydy‘ < |k:| (CCB)

where;

Ee = 2valy; (6 < |y| < Lo)|ps.els<yi<relloo

It follows from (CCB),(CCD),(BBB),(CDC), that;

| [ L (y)ehvdy|

(2m) 2
1 6 df —zk daf —ik df
= |(27r)% ~sar(y)e ydyH—\ f5<|y\<Le c(W)e Myl oor (2r )z fly|>Le d
€ Fe
< 3§ + T*l
Ee
<€+ T+l

By (AAB), we then have that, for |k| sufficiently large;

FOR] < 5+ &

O

Lemma 0.12. Let f € C(R~o) be of moderate decrease, with f non-
oscillatory, and lim, o f(x) = M, with M € R, then defining the half
Fourier transform G, by;

(y)e~*vdy|
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G(N)(k) = Jg~ fx)e™dz

we have that, there exists a constant & € R~q, such that;

G < &

for sufficiently large |k|. Moreover, we can choose;

E = 2[[f]locval(f)

Let f € C(Rso) be of moderate decrease, with f oscillatory, and
limg_of(x) = M, with M € R, then, similarly;

we have that, there exists a constant 2 € R~q, such that;

9(F) (k)| < &
for sufficiently large |k|. Moreover, we can choose E = W++D),
where D and 6 are given in Definition 0.10.

The first claim is the same, replacing moderate decrease with mod-
erate decrease n. The second claim is the same, replacing moderate
decrease with moderate decrease n, with the modification that we can
choose E = % + %. We can also choose;

E = 2val(n)]|f||e + 2z

where § is the spacing in the interval (n, o0).

Let f € C(Rso) be of moderate decrease, with f analytic and lim,_o f(x) =
M. Then for all e > 0, we have that there exists E. such that, for suf-
ficiently large k;

G| < B+ c
where E. = 2valy(Le)||f|loo and L. € Ro.
Let f € C(R~o be of moderate decrease, with lim,_of(x) = M, then

for all € > 0, we have that there exists E., such that for sufficiently
large k;
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G(F)(K)] < £ + e

Proof. As f is of moderate decrease and lim, o f(x) = M, we have
that f € L'(Rso) and limjy e f(2) = 0.

As f is of moderate decrease, for any € > 0, we can find N, € N
such that;

GU)R) = Jo fly)e™dy| < e ()

As f|o.n. is continuous and non-oscillatory, by the proof of Lemma
0.9 in [10], using underflow, we can find {D,, E.} C R0, such that, for
all |k| > D., we have that;

| Jo fly)e ™dy| < fis, (xx)

It is easy to see from the proof, that {D., E.} can be chosen uni-
formly in €, Splitting the calculation into real and imaginary compo-
nents, it is straightfoward to see that it is possible to choose F. with
E. = 2||f||wval(f), noting that the infinitesimal correction existing
after the use of underflow, drops out after taking the standard part.
Then, from (x), (xx), and the triangle inequality, we obtain that, for
|k| > Dy;

1G(f)(k)|
<|GF)(K) — [ fly)e ™dy| +] [ fly)e*vdy|

<e+|%|

so that, as {D.,, E.} were uniform and e was arbitrary, we obtain
that;

IG(f) (k)| < WEI’ for sufficiently large |k|

For the second claim, after choosing N € N, we have that f| n)
is non-oscillatory, and, moreover, there are at most % monotone inter-
vals. As in (xx), and inspection of the proof in [10], we get;

N o _ik E
| Jo fem™dy| < T

for sufficiently large |k|, where Ey = 25€ and C' = maz,er.|f]-
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Choosing N > 1, as f is of moderate decrease, we can assume that
If] < x%, for x > N. Then, using the proof in [10] again, the definition
of oscillatory, and noting that * Zy;‘>N% ~ ZypN %, we have that,
for sufficiently large |k/;

| fe™udy| < (2 S on )

2 D
< (i 2onezs0 Gigrno?)

< 2D [ dz
= [k Jyig o2

2D
d|klyig

2D
< kN

i

where yi, > N and y;, < y;, for all y; > N. It follows that;
GNE) =1 [y fe™dy + [T fe vy

[N feibvdy| + | [ fem vyl

< En 4 2D

IN

< HEE+H)

In particular, choosing N = 2, we can take;

E = 2(% + %) — (4C;D) — (4Hf|\§o+D)

For the next claim, the modification for the first part is the same. In
the second part, choose N > n, rather than N > 1 in the proof, and
replace D with D, to get E = 2(NTC + Da), then, taking N = n, we
obtain £ = 2(%< + D») For the next claim, replace the count of &

on
monotone intervals for f|q ) with vals(n).
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For the penultimate claim, we have that, as f is of moderate decrease;

2 e vdy| < [ Bdy

for n > % In particularly, if we choose L. = %, then as f is
analytic, f|o,z.] has finitely many zeros, so f|,z.] is non-oscillatory.
By the proof of Lemma 9 in [10] again, we can find E. € R, with
E. =2val¢(Le)||f||, such that;

| Jo Fly)e ™vdy| < £

for sufficiently large k. It follows that;

GHER) =1 [ Fly)e™dy| +| [ fly)e *¥dy]

|5

§|€|+€

o

as required.

For the final claim, as above, using the fact that f is of moderate
decrease, we can find n such that;

| [ fly)e ™vdy| < § (C)

Using the Stone-Weierstrass approximation theorem, we can find an
analytic function f,, s such that |f — f,, 5| < 0 on [0,n] and;

| Jo fy)e ™dy] < [ 1f () = fas@)ldy + | [y frs(y)e ¥ dy|

<nd+| [ fas(y)e ™dy| (D)

Using the methods above, we can find E, s such that, for sufficiently
large k;
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| [ frs(y)e*udy| < ©

Choosing 0 = ==, we have from (D), (E), that;

- (E)

ol

n —3 € Ee

and from (C), that;

|&=

G < et

x>

where E. = 2valy, (n)||fnsljo.n)]|s for the choice of analytic function

fn,é-
0

Lemma 0. 13 Let f € C(Rso) and &L € C(R-o) be of moderate de-

crease, with 4 d non-oscillatory, and lzmx_mf( ) =0, lzm$_>02lf (x) =
M, with M € R, then defining the half Fourier transform G, by;

= fooo f(x)e_ikxdx
we have that, there exists a constant 2 € R~q, such that;

G0 <
for sufficiently large k. Moreover, we can choose E = 2||Z—J;||ooval(%)

Let f € C(Rsg) and %L 7= € C(Rx0) be of moderate decrease, with
% oscillatory, and lzmxﬁof( ) =0, lim:,Ho%(:I;) = M, with M € R,
then, similarly;

we have that, there exists a constant 2 € R~q, such that;

G < &

d,
(Al £ 1o +D)

for sufficiently large k, Moreover, we can choose E = 5

The first claim is the same, replacing moderate decrease with mod-
erate decrease n. The second claim is the same, replacing moderate
decrease with moderate decrease n, with the modification that we can
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2n|&L e | 2D
choose E = —— + =

Let f € C(Rxg) be analytic, with {f, %} of moderate decrease, such

that limy_of = 0 and limgHo% = M, then, for e > 0, there exists
E. € R+ such that, for sufficiently large k;

G < 75 +
where B, = ZUal;Lf(Le)H%HOO, L. € R

The same claim holds with just f € C'(R~q) instead of analytic.

Proof. As f is of moderate decrease and lim,_,of(z) = 0, we have that
f € LY (R=o) and limyy) o0 f(z) = 0. Similarly, £ € L'(R~o) and £ is
continuous. We have, using integration by parts, that;

G(EIR) =[5~ e (y)e vy

= [f)e ™5 + ik [, fy)e™dy

= ik [° fly)evdy

= kG (f)(F)

so that, for |k| > 1;

G(/) (k)] < W4y

As % is of moderate decrease, for any ¢ > 0, we can find N, € N
such that;

G(LY (k) — [ L (y)e Hvdy| < e (¥)

As %|0, N, is continuous and non-oscillatory, by the proof of Lemma
0.9 in [10], using underflow, we can find {D,, E.} C R+, such that, for
all |k| > D., we have that;

N5 —1 €
|y (e vy < s, ()

It is easy to see from the proof, that { D, F.} can be chosen uniformly
in €. Then, from (x), (%), and the triangle inequality, we obtain that,
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for |k| > D;

Ne —1 € —’L
<NG(L)(k) — [y Ewe ™ dyl + | [ L(y)e vyl
<e+ L |k|
so that, as { D, E.} were uniform and € was arbitrary, we obtain that;
G(E) (k)| < g for [k] > D

and, from (1), for |k| > D, that;

G (k)| < LGB o £

The choice of E' is the same as in the proof of Lemma 0.12. For the
second claim, the proof up to () is the same. After choosing N € N,
we have that df "|(0,n) is non-oscillatory, and, moreover, there are at
most ¥ 5 monotone intervals. As in (%), and inspection of the proof in
[10], we get;

df —

| fy LeMudy| < |k|
where Ey < 28€ and C = maz,er-o| L.

Choosmg N > 1 as <= is of moderate decrease, we can assume that

]dI| < &, for x > N. Then, using the proof in [10] again, and the
definition of oscillatory, we have that, for sufficiently large |k|;

df
N dJ:: Hdy| < (|k| 2 ysN y%)

2 D
— (W ZTLGZZO (yi0+n5)2)

< X dx
— §|k’| fylo

2D
5|k|y¢0

2D
k|N

IN

where y;, > N and y;, <y, for all y; > N. It follows that;
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N .z .
GEI® =y ey + [ Ee™dy]

N . .
<1 ey 4 | [ deehody

53|
_l’_

N

>}

LN
< k]

2 (NC |, D
< Tl(T—i—W)

It follows, using (1), that;

af
G| < P <

where Ey = 2(&£ + L)

As in Lemma 0.12, we can choose E as in the final claim of the two
parts.

For the next claim, the modification for the first part is the same. In
the second part, choose N > n, rather than N > 1 in the proof, and
replace D with D, to get Ey = 2(2€ 4 D2 then, taking N = n, we
obtain B = 2(%¢ + £=).

The proof of the penultimate claim is similar to that of Lemma 0.11,
we can use the proof up to () of this Lemma, to obtain, for |k| > 1;

df

G(f) (k)| < Ea®l 7 44)

k|

As in the proof of Lemma 0.11, we can find {E,, L.} such that, for
sufficiently large k;

G(£)| < & + ¢ (BB)
where E, = 2valﬂ(L€)||%||oo.
dx

Combining (AA) and (BB), we obtain that, for sufficiently large k;

IG(f)(k)] < ‘f‘z Tl

For the final claim, when f € C'(R~g), we use (AA) again. Then,
we use the Stone-Weierstrass approximation theorem, to find a poly-
nomial p¢ such that |% —ps| <don[0,L], and LS < 5. As p’g has
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finitely many zeros on [0, L], we have that, for sufficiently large k;
Le el € Le —i
[y E@e ™yl < 5+ [y pge ™yl
T
so that, for sufficiently large k;
|foo df y)e~kydy| < |f°° df y)e *dy| + £+ %'

€ € Ce
§§+§+m

<e+ %
Then,;
I3 ey
G(f)(k)] < U
€ Ce.
St e

O

Definition 0.14. We say that a family W = {f; : v € V}, with
fo € C(R=o) and V. C R™ open, is of moderate decrease if there ex-
ists constants Dy € R~ with | fz(x)] < l’;"g for |x| > 1. We say that
a family W = {fy : v € V}, with fz € C(Rso) and V. C R"™ open,
is of moderate decrease ny if there ewists constants Dy € R~q with
|fo(z)| < @2 for |x| > ng, where n : V. — Rsg is continuous. We
say that the family {f; : v € V'} is non-oscillatory or uniformly non-
oscillatory if there are finitely many points {y;z : 1 < i < n} C R
for which fo|(y, s 410 i monotone, 1 <i <n—1, and f|(—coy,,) and
flynoio0) is monotone, the number of points being independent of v.
We denote by val(W) the minimum number of such points. We de-
note by val(Wljn the minimum number restricted to a finite interval
[0,n]. We say that a family W = {fz : v € V}, with fz € C(R<o)
is oscillatory if there exists a sequence {y;z : i € N} C R, for which
floys) is monotone, and f|y, . yiii ) i monotone, i € N, and there
exists 0y > 0, with y; > 0y and Y1 — y; > Oy, for i € N. We say
that the family is uniformly non-oscillatory if the constants o can be
chosen independently of U, that is a single 6 > 0 works for each f3.
We call a family W excellent if it is oscillatory with the property that
there exist ny such that val s, (ngy) = val(W) is independent of U and the
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spacing of fi|(ns,00) may also be chosen independently of v. We denote
by ||Wl|eo the best uniform bound for || fo||~, if it exists.

Lemma 0.15. Let a family W = {f5 : v € V'} be of moderate decrease,
with W non-oscillatory, and limg,_o f5(z) = My, with My € R, then
we have that, there exists constants Ey € Rq, such that;

G < 2
for sufficiently large |k|, independent of v. Moreover, we can choose;
By = 2|| follocval (W)

Let a family W = {f5 : © € V'} be of moderate decrease and oscilla-
tory, and limg_o f+(x) = My, with My € R, then, similarly;

we have that, there exists constants Ey € Rwq, such that;

IG(NIR)] <

=

for sufficiently large |k|. Moreover, we can choose

4 vlloo DF
By = WirletDo)

where Dy and 63 are given in Definition 0.14.

The first claim s the same, replacing moderate decrease with mod-
erate decrease ny. The second claim is the same, replacing moderate
decrease with moderate decrease ny, with the modification that we can

2N | for -
choose By = "”'(‘5{””“ + SB;L. We can also choose;
v VYU

Ey = 2valy, (ng)|| folloo + 25

Nz oy

If the family is excellent, we can take;

By = 20al(W)]| follo + 222

Let a family W be of moderate decrease and analytic, such that 'V is
closed and bounded, lim,_,ofz = M. Then, given € > 0, we can choose
E. € R+ independent of v such that, for sufficiently large k;
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G(F)(K)] < £ + e

with E. = 2val(W |jo,L]

Wlloo, feW.

The same claim holds replacing analytic in the family W by contin-
UOUS.

Proof. As each f; is of moderate decrease and lim, o fz(x) = My, we
have that each fz € L'(R~¢) and limye0 f5(z) = 0.

As each f; is of moderate decrease, for any ¢ > 0, we can find
Nz € N such that;

IG(fa) (k) = [N Foly)e ™ vdy| < € (%)

As each fglon,, is continuous and non-oscillatory, by the proof of
Lemma 0.9 in [10], quantifying over the nonstandard parameter space
*V, linking the parameters with N5, and using underflow again, we
can find {D., E.5} C R-o, such that, for all |k| > D,, we have that;

Ne,i —1 EE,E
| Jo " foly)e ™dy| < F2, (%)

It is easy to see from the proof, that {D., F.5} can be chosen uni-
formly in €, as the number of monotone intervals in the interval (0, N.7)
is always bounded by wval(W). Splitting the calculation into real and
imaginary components, it is again straightfoward to see that it is pos-
sible to choose E.3 with E.5 = 2|| f5]|oval(W). Again, note that the
infinitesimal correction existing after the use of underflow, drops out
after taking the standard part, for each f;. Then, from (x), (*x), and
the triangle inequality, we obtain that, for |k| > D,;

G(fz) (k)]

< IG(fo) (k) = o Foly)e ™ rdyl + | J;"7 faly)e*vdy

Ee,?
|%|

< e+

so that, as {D., F.5} were uniform and e was arbitrary, we obtain
that;

IG(f3) (k)] < %, for sufficiently large |k|, independently of .
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For the second claim, after choosing N € N, we have that each
f5l(0,n) is non-oscillatory, and, moreover, there are at most ﬂ mono-

tone intervals. As in (#x), and inspection of the proof in [10] we get;

|f0 fwe _Zkydy‘ < \k\

for sufficiently large |k|, independent of T, where Ey = % and

Cy = maxz€R>0|fU|~

Choosing N > 1, as each f5 is of moderate decrease, we can assume
that |fy < L, for x > N. Then, using the proof in [10] again, and
the definition of oscillatory, we have that, for sufficiently large |k|, in-
dependent of v;

I Fe vy < (5, ox 29)

2 Dy
< <W E”GZZO (yio,g-i-n%)Q)

| /\

Yigw z2

2D%
051 klYig -

2D§
< RN

where y;, - > N and y,,, <y, for all y; . > N. It follows that;
N —i o0 —i
GUER =1 Jy foe™™dy + [§" fre™™dy]

N —i o0 —q
< |f0 fwe kyd@/| + | fN fwe kydy|

2Dz
< Tt ary

2 (NCy
< W( 5 5. N)

It follows, using (1), that;

G(fo) (k) < 25

where Ey = 2(&&= —|—N5 )

In particular, choosing N = 2, we can take;
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2C5 Dy\ _ (4Cs+Dw) _ (Al fsllctDv
E:E2:2<5U+ﬁ)—( = )_(IlfllSU )

For the next claim, the modification for the first part is the same. In

the second part, choose N > ng, rather than N > 1 in the proof, then,
taking N = ng, we obtain E = E,,, = 2("=% + Lr)

Nydy

For the next two claims, replace the 5* monotone intervals on (0, n)
with valy (nz). Then note that in an excellent family, we can replace

val _(ng) by val(W) and &z by 0.

For the penultimate claim, as V' is compact we have, by continu-
ity, that supsev ||| fo2?||c = D exists, so that uniformly, |f| < &, for
|z| > 1. It follows that;

| [ foe™ ™ (y)dy|

< [ Ldx

n T

< D
—_ n

<e

for n > % uniformly in ¥ € V. In particular, choosing L. = %, we
have that there exists a uniform bound val(W/ 1)) for the number of
zeros of fy|jo,z.]. By continuity and the fact that V' is compact, we can
find a uniform bound ||W|| for || fs||s- It follows, as in Lemma 0.12,
taking care to quantify over w, when using the underflow argument,
that, for sufficiently large k;

|y foly)e™™dy| < f

where E. = 2val(W|jo,1.)

W oo

As in Lemma 0.12, we have that;
G < &+ e

for sufficiently large k, v € V, as required.

For the final claim, we use the last proof to find L, with;
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| [ fe™ ™ (y)dy|
<3 (FF)

uniformly in 7. As the family is continuous, and V is closed and
bounded, we can find a polynomial p(x,7) such that;

|f(:)3,@) —p(l’,@” <9

forv € V and = € [0, L.]. By the usual compactness argument, there
exists a uniform bound in the number of zeros of p. restricted to [0, L],
and a uniform bound for ||ps||s on [0, L.. By the same argument as
above, we have that;

| o pely)e™dy| < g5

where E. = 2val(ps|jo,z.])

Choosing § < 5%, we have that;

T

Le * —zk:yd E_ £
|f0 fv(y y‘ |k| 2
so that, using (FF);

G(fs)] < fi= +

<

+s

l\’)lm

|5

_|_

o
[

as required.
O

Lemma 0.16. Let a family W = {fv : 0 € V} be of moderate de-
crease such that the family W' = : 0 € V'} is of moderate decrease

and non-oscillatory, with lzmxﬁofg( ) 0, lzmxﬁo‘g”( ) = My, with
My € R, forv € V, then we have that, there exists constants Fz € R,

such that;

G < £

for sufficiently large k, independent of v. Moreover, we can choose

Ey = 2|| G| |soval (W)
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Let the families W = {fyz : 7 € V} and W' = d—, :v € V} be of
moderate decrease with W' oscillatory as well, with lim,_o fs(z) = 0,
lim, o fv( ) = My, with My € R, then, similarly, we have that, there

exists constants 5 € R~q, such that;

G <

for sufficiently large k, independent of v. Moreover, we can choose;

d7
o (4| %75+ Dy)
C

where Dy and o6z are given in Definition 0.1/.

The first claim s the same, replacing moderate decrease with mod-
erate decrease ny. The second claim is the same, replacing moderate
decrease with moderate decrease ny, with the modification that we can

df=
2nz|| 52 __
choose Ey = ”H&dj oo + 35;;.
v vYv

Let the families W = {fs : v € V} and W' = {£_: 75 € V} be
of moderate decrease and analytic, such that V is closed and bounded,
limg,_ofz =0, limxﬁofl—f(x) = M, with My € R . Then, given ¢ > 0,
we can choose E. € R~o independent of v such that, for sufficiently
large k;

IGHE) < i + 1
with B, = 2val(W' |0, [|W'||oe, L € W'

The same claim holds replacing analytic in the families W, W' by
continuous.

Proof. As each f3 is of moderate decrease and lim, o f5(z) = 0, we
have that each fy € L'(Rxo) and lim—eo fo(x) = 0. Similarly, each
% € L'(R+¢) and each ‘fii; is continuous. We have, using integration
by parts, that;

G(E) (k) = [7° G (y)e*vdy

= [foly)e ™I + ik [J7 foly)e ™dy
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=ik [y fo(y)e *dy
= kG (fz) (k)

so that, for |k| > 1;

G(fo) (k)| < L2 (4

As % is of moderate decrease, for any € > 0, we can find N._ € N/
such that;

1G(%=) (k) — f,"" L2 (y)e*vdy| < e (x)

As f Z|o,N. 5 18 continuous and non-oscillatory, by the proof of Lemma
0.9 in [10] usmg underflow and quantifying over the nonstandard pa-
rameter space again, linked to the parameters Nz, we can find { D, E. 5} C
R0, such that, for all |k| > D,., we have that;

e () T (%)

Again, as in the proof of Lemma 0.15, {D., E. 3} can be chosen uni-
formly in €. Then, from (x), (x*), and the triangle inequality, we obtain
that, for |k| > D;

v Ne o) —1 €,v Afg —1
<[G(L2) (k) — [y Lx(y)eHvdy| + | [ Le(y)etvdyl

Ee.

< e+ —|k’|

so that, as {D., E.5} were uniform and e was arbitrary, we obtain
that;

|g(dfv)( )| < fkfl for |k| > D, independent of ©

and, from (}), for |k| > D, that;

dfy
G (k)] < 2D

where the choice of Ej is the same as in the proof of Lemma 0.15.
For the second claim, the proof up to (f) is the same. After choosing
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N € N, we have that each df?|(0 ~) is non-oscillatory, and, moreover,
there are at most =~ monotone intervals. As in (%), and inspection of
the proof in [10], we get;

dfy —
|f0 f:(; Zkydy|< Tk

INCy _ dfy
where Ey < =57 and Cy = mazer. |72

Choosing N > 1, as ‘Zii is of moderate decrease, we can assume that

|%=| < Dy for + > N. Then, using the proof in [10] again, and the
deﬁmtlon of oscillatory, we have that, for sufficiently large |k|, inde-
pendent of v;

|foo df —Zkydy| < (\k\ Zyi,6>N %)

2 Dy
< (W 2”6220 (yio,zfnév)Q)

2Dy [°  dz
S okl fyiom x?

2Dy
5lklyiq v

ZDF
< RN

where y;, - > N and y;,5 < Yz, for all y;5 > N. It follows that;
U N —1 0 v —1
G R)| = | [y Le™dy + [y Fremtvdy]

< ‘j‘N dfs —zkydy‘ +’foo dfz —ikydy’

< 2Dz
<+ sy

2 NCF Dﬁ
< w5+ aw)

It follows, using (T), that;

dfs
G(f5) (k)| < W < I

where Fy = 2(NC” +

%)

As in Lemma 0.15, we can choose Ej as in the final claim of the two
parts.
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For the penultimate claim, the modification for the first part is the
same. In the second part, choose N > ng, rather than N > 1 in the
proof, then, taking N = ny, we obtain E; = 2(;—(’L n[—)g—)

For the final claims, we can use integration by parts, uniformly in v,
together with the fact that f; is of moderate decrease and lim, o fz =
0, to show that, for |k| > 1;

dfy

G(fa) ()| < ot (1)

Then use the proof in Lemma 0.15 to find L, with;

| Jo Es(y)e ™ vdy]

dzv
<€ (GG)

uniformly in 7. As the family W’ is analytic, and V is closed and
bounded, by the usual compactness argument, there exists a uniform
bound in the number of zeros of f! restricted to [0, L], and a uniform

bound for H || on [0, L. By the same argument as above, we have
that;
€ df —ik E
|f0 d:l:v ’ ydy| S T

where E. = 2val(fgljo,.)[| /5l
Using (GG), we have that, for sufficiently large k;
|foo g y)e *udy| < & W TE€

dxv

so that, using (HH);

G < 7

LT
as required.
If we replace analytic by continuous, then (GG), (H H) are the same,

with § replacing e. We use the Stone-Weierstrass approximation theo-
rem to find a family of polynomials p(y,v) with;
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p(y,7) — 4=(y)| <6 on [0, L]

and choose § < so that;

T
e d T 77: € L —1 €

| Jo e ™dy| < 5+ [y poly)e*dy| + 5 (SS)

By the usual argument, for sufficiently large k;

| Jy poly)eRvdy| < Bs (MM)

where E. = 2val, (L.)||pz||co-

so that, using (SS), (M M);

L. dfz —i € €
L B eyl < g+ 5
and, using (GQ)
S ey < B
Ee

Applying (H H), we then have that, for sufficiently large k., uniformly
in v;

G(fo)l =[5 foy)e *vdy|

E. €
S wE

as required.

O

Definition 0.17. We call a power series Y, a,x™ strongly analytic
iof, for sufficiently large n;

anl < Sy

for some C € R+

Lemma 0.18. There is a one to one correspondence between functions
f: St — S1 which are analytic on the circle and functions f : R — R
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which are analytic and analytic at infinity. There is a one to one
correspondence between functions f : S — S3 which are analytic on
the three sphere and functions f : R® — R which are analytic and
analytic at infinity. If f : R — R is analytic and analytic at infinity,
then so are the derivatives f™, for n > 1. Moreover, f is eventually
monotone and non-zero, and eventually all the derivatives fTI(n), n >0
have finitely many zeroes and are monotone. If w: R — R 1is strongly
analytic and has the property that w(z)e® € LY (R), then F(w) is
analytic and analytic at infinity, where F 1is the Fourier transform.

Proof. For the first claim, if ¢ : S1 — S! is analytic, then define
®(g): R — R by;

®(g)(x) = g(2tan™'(3))

with the principal branch in the range (0,5) for # > 0 and the
branch in the range (5, 7), for z < 0 and tan™'(c0) = 5. We have that
®(g)(1) = g(2tan™*(x)) and, for 0 < z < 1;

tan~Y(z) = Ox %

= fow(Zf:o(—l)”yQ”)dw
00 nx2n+1

= Zn:O(_l) 2n+1

and, for —1 < z < 0;

B 0 na2ntl
tan Hx) =7+ Y o0 (1) 2n+1

so that;

g(2tanY(z)) = g(23 00 ((—1)"L5), for 0 <z < 1

g(2tan=(x)) = g(2m + 2320 (~ 1)Ly

=23 (-1)"L ), for —1 <z < 0

g(tan™"(0)) = g(0)

and so ®(g)(£) is analytic for |z| < 1, and ®(g) is analytic at infinity.
We have that, for |z| < 1;
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tan™'(2) = cot™Hx) = § — tan"'(z)

so that, g(2tan~'(1)) is analytic for || < 1. Similar proofs can be
shown for 1 < |z| < oo, by considering tan~'(z) for 0 < |z| < 2, so

that ®(g)(x) is analytic. Conversely, given A : R — R analytic and
analytic at infinity, we can define ®~1(h)(0) = h(—14), 0 < 0 < 27,

tan(g)
and it is similarly checked that ®~'(h) : S' — S! is analytic. For the
second claim, we can use the three spherical coordinates;

xo = cos(a)

x1 = sin(a)cos(B)

xo = sin(a)sin(f)cos(7)

xg = sin(a)sin(f)sin(7y)

0<a,f<m0<y<2rm

with with the stereographic volume tangent to the three sphere at

(1,0,0,0), Then, the point with coordinates (a, 3, ), for a # F corre-
sponds to the point;

Cosl(a) (sin(a)cos(f), sin(a)sin(B)cos(7y), sin(a)sin(B)sin(7y))

= (tan(a)cos(f), tan(a)sin(B)cos(y), tan(a)sin(3)sin(y)

and we can define;

O (f)(a, B,7) = [f(tan(a)cos(B), tan(a)sin(B)cos(v), tan(a)sin(B)sin(y))

If f is analytic and analytic at infinity, then it is easily checked that
®~1(f) has a unique extension to an analytic function on the three

sphere, by taking limits on the closed subset @ = 7. One needs to
check that ® is invertible, the details are left to the reader.

The third claim is well known. If f is analytic at infinity, then
f(2) = g(x) for g analytic in a neighborhood B.(0). We have that, for

x # 0;
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RIEARIE)

1 1

f,(%) = limy,,
xz+h x

g(z+h)—g(x)
1 1

= limp—o
z+h =z

—]; g(z+h)—g(x)

= lzmh%O#
(z+h)x

=—¢'(z)x

which is analytic in the neighborhood B.(0), so that f’ is analytic
at infinity. It follows that f’ has finitely many zeroes on R and f is
eventually monotone and non-zero, as f is analytic. We can therefore
define fTI eventually, L has finitely many zeroes as f’ is analytic at

!
infinity. We compute;

f//f_f/2
f

fl/
f

which again has finitely many zeroes eventually, as f”f — f"? is an-
alytic at infinity. It follows that f? is eventually monotone. It is easy
to see that, for n > 0, (fT/)(") = w, where p(xg, 1, ..., Tni1)
is a polynomial. Clearly, then, p(f, f/,... 1) is analytic at infinity,

(n—1

so has finitely many zeroes eventually and then f7l : is eventually

monotone, for n > 1.

For the fifth claim, observe that w(z)e” < w(x)e®, for |z| > 1, so
that F(w)(y) is analytic on R, by the Paley-Wiener theorem, as it has
an analytic continuation G(z) to the strip [Im(z)| < 1. Define;

H(z) = 7= ffooow(x)e%zdx (z #£0)
H(0)=0

H is well defined as if z = a + ib, z # 0;
H(z) = 2= [ w(x)ewde

—iz(a—1ib)

= e [ e

= L[, w(o)ed i et d (%)
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o]

We have that \w(:c)ea;fﬂ < |w(z)er’|, for |z| > -5, SO that
bx
w(x)e*+? € LY(R) and the integral (x) exists. We have that;
H'(z) = o= [T w(x)e%mi—“’;da: (z #0)
_ 1 [ hT iz
= 7= [ w(@)e+? Few 7 dy (xx)
x . 22
Similarly, |w(m)ea2b+b2i—:§| < \%L for |z| > max(2, QLILQ) so that

w(x)e%i—’é € L'(R), and the integral in (x*) exists again. It follows
that H(z) is analytic except possibly at 0, in particularly it defines a
real analytic function on B.(0) \ {0}. We have that

limp—operH(h) =0

by the Riemann-Lebesgue lemma, so that H is continuous on B,(0).
If w is analytic, we can assume that w = ) a,z", for z € R, so
that, using the DCT;

—ix

x)en dz

H(h) = 75 [ w()

\/ﬂf Sy ant)eh d

:—lsz( —>00fR(h Zfzoanx”)e%zdx

= rlsz o0 D re OanfR(h et dr

= \/%limR(h)—mo > o Gl R(h)

where, using integration by parts, for n > 1;

R(h) _p =i
I rn) = f_,(% })l)x e dr
R(h) ik 1
= [ihame ]_R(h) Rh) zhf R eh dx

—iR(h)

= th(R(h)"e n

iR(h)

— (—R(h))”e h ) — m’h[n_LR(h)

so that, for n > 2, n even;

L rny = ihR(h)"(—2isin(B2)) — nihl, 1 re
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forn > 1, n odd;

L rny = ihR(h)"(2cos(BM)) — nihl, 1 pe

Torgy = [Ty € dx = ih(—2isin( )

Let R(h) = 2mmh, so that % = 2mz, where m € N sin(®42) = 0,

cos(%) 1. Then, for n > 2, n even;
In,m = —TL’L.h[n_Lm

forn > 1, n odd;

Lym = 2ih(2mmh)™ — nihl,—1

I, =0

It follows that, for n even, n > 2;

Iy = —nihl,_q

= —nih[2ih(2mmh)" ' — (n — 1)ih1, o]
=" 2n2mm)" ) — W2n(n — 1)1, _om
and, for n odd n > 3;

Lym = 2ih(2mmh)™ — nihl,_1 .,

= 2ih(2mmh)" — nih[—(n — 1)ihl,—2m)
= 2ih(2mmh)™ — nih[—(n — 1)ihl, o m)
= W (2i(2mm)") — R*(n(n — 1)1, _2m)
with;

I = 2ih(2mmh) = h?(4imm)

[O,m =0
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We claim that, for n > 1, I,,, = c¢(n,m)h"*, where c(n,m) is a
complex polynomial in the variables n,m. By induction on odd n,
n > 1, it is true for n = 1, then, for n > 3;

Lm = " (2i(2mm)™) — k2 (n(n — 1)1, _o.m)

= W™t (2i(2mm)") — h?(n(n — 1)c(n — 2,m)h"1)

= [2i(2mm)" — n(n — 1)c(n — 2, m)]A" !

= c(n, m)h" !

where ¢(n,m) = 2i(2mnm)" — n(n — 1)e(n — 2,m) is a complex poly-
nomial in the variables n, m again.

By induction on even n, n > 2, we have that;

Iy, = h*(8mm)

so true for n = 2 and;

Lym = "1 (2n(2mm)" ) — h?n(n — 1)c(n — 2,m)h"!
= [2n(2mm)" "t —n(n — 1)c(n — 2, m)]A"H

= c(n,m)h" !

where c¢(n,m) = 2n(2mm)"' — n(n — 1)c(n — 2,m) is a complex

polynomial in the variables n, m again.
It follows that;
H(h) = Z=limm o0 > 0" o nlnm
= \/L%liﬂ%m_)Oo Yoo 1t
= A limi oo Y0, anc(n, m)h™, (%)

For n odd, n > 3;
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n—3
c(n,m) = dimmn! +2i >, 2, (1) L~ (2mm)" 2k

(n— 2k)

and, for n even, n > 4;

c(n,m) = —8mmn! + 2 Zg(—l)kﬁ%@mw)n—l—%

so that [c(n,m)| < (2mm)"(n + 1)!

and, with the assumption of strong analyticity;

< (2mm)™

— n!

|anc(n, m)|

|52 anepmh™| < 200 Gmrlhl® < p2mmlhl _

n! —

so that the functions f,, = > ¢
B(0,1)

> apc(n,m)h" ! are analytic on

The convergence of f,, is pointwise, as for given h € B(0,1), h # 0
we have that;

Fw)() = Aelimpne [ w(w)e H do

2mmh

and f,,(0) =0, form e N

We have that f,, are uniformly bounded, as for h € B(0,1), h # 0,
we have that;

2mmh —iz
[fin (W) = [ | ey, w(@)e " da
2mmh
—2mmh ’dl‘
< |Jwllx

By Montel’s theorem the functions f,, are uniformly convergent, so
the limit is analytic on B(0, 1) and w is analytic at infinity.

l

Lemma 0.19. If f : R?* — R is analytic and analytic at infinity then
oititk

so are the partial derivatives 55 557, (1,7,k) € CIff I RE SR
1s analytic and analytic at infinity, then for 0 < 0 < m, 0 < ¢ < 27,
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R > 0, the polar representation f(R,0,$) of f(k) is analytic and an-
alytic at infinity, uniformly in (0, ¢). Moreover val(fy ) is uniformly
bounded. Ifl € R>, with f(R,0,$,1) = f(k—1), then again, f(R,0, $,1)
is analytic and analytic at infinity, uniformly in (0, ¢, 1), with val( fo.s7)
uniformly bounded. For 6 # cos‘l(ﬁ—i’), ¢ # tan"' (1), the polar repre-

l1

sentation of g(k,l) = flg__z? is analytic at infinity, uniformly in (0, 6,1),
with val (gg, (ﬂ) uniformly bounded. The polar representation of the com-
&
|kl -
(0, ¢), with val(ugy) uniformly bounded. If h(l) is analytic and ana-
lytic at infinity, and the components of f(k) are analytic, analytic at
infinity, uniformly in (6, ¢), with val(uges) uniformly bounded, then,
the polar representation of;

ponents of u(k) = are analytic, analytic at infinity, uniformly in

0 _
o < T | u(k)

is analytic and analytic at infinity. Moreover val( Jo, qﬂ) 18 uniformly
bounded. In particularly, the family is non-oscillatory and excellent.

Proof. For the first claim, it is sufficient to prove that % is analytic

and analytic at infinity. The claim that % is analytic is clear. Without
loss of generality, suppose that;

(5 2,2) =9,y 2)

with ¢ analytic, and €1 # 0, €5 # 0, €3 # 0, the general case can be
proved by rotating coordinates. Then;

_ﬂf_l+%+af—@
Y

Oz 2

of 0 Of _ 0
z

oz Oy y? Ay

oI L 9f _ 9y _ 09

ox Oy 0z z2 Oz

and;

N(8f 9f 9fy _ (99 Og 9g
M(a:w oy 8z) - (817 oy’ 8z)
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so that;

af of o a7 1,09 a9 8
(88 =M (3 5.5

with {Bz’ gg 99} analytic in a neighborhood of (0,0,0). We have

y? Oz
that;
M= dj (M
det(M adj(M)'

o 229222 —
T —e1e2e3+272y222 4 e1y2 22+ eax? 22 ezxly?
where;
N7 €9g€s
Nu = 3%
N.. _ €i¢€3

22 — 42,2
N €1€2
N33 — z2y2

Clearing denominators, and using Newton’s expansion, with €jeq€3 #

0, it is Clear that the components of M are locally analytic at (0,0, 0),

(2,2 =)} are locally analytic at
z'y’z

af of
c 627 )7 By (%7%7673)7 %
(0,0,0) In partlcularly, is analytic at infinity.

For the second claim, if f is analytic, with power series expan-
sion at 0 given by Y, ;- aixe'y’ 2", then making the substitutions
x = Rsin(0)cos(¢), y = Rsin(0)sin(¢), z = Rcos(#), we obtain;

5 o0 Gu(Rsin(8)cos(6) (Rsin(8)sin(6) ) Reos(6)

= 2ighz0 aijrsin'(0)sin (¢)cost (@)cos” (0) RITITF
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_ l
- Zzzo bl79,¢>R

where, for 1 >0, b9, = 3,4 545y Gijesin'™ (0)sin (¢)cos? (¢)cos™(6),
so that f(R, @, ¢) is analytic, uniformly in {6, ¢} around 0. If (Ry, 0y, ¢)
is fixed, zog = Rysin(0y)cos(do), yo = Rosin(fy)sin(¢pg), zo = Rocos(by),

with local power series expansion;

S s k(@ = 70) (5 — o) (2 — 20)

making the substitutions again, we obtain;

> k>0 @ijk(Rsin(0)cos(po) — Rosin(b)cos(¢o))'(Rsin(y)sin(do)
— Roysin(6y)sin(¢o)) (Reos(6y) — Rocos(6y))*

= Zi,jJﬂZO aijesin'™I (0g)sin? (¢o)cos (o) cos®(0y) (R — Ro) 7 ++

= Zzzo blﬂo,(ﬁo (R - Ro)l

where b = aijrsin'(0g)sin? (¢g)cos’ (¢g)cos® (6y)

it jtk=l

so that fy, 4, is locally analytic around Ry. Similarly, if f is analytic
at oo with (29,0, 20) € P?(R) and power series expansion;

e d ok
Zi,j,kzo ik TY 2

for f(%2, %0, 2 ), then, letting x¢ = sin(6y)cos(do), yo = sin(bp)sin(¢o),
2o = cos(6y), we obtain an expansion for;

f(sin(eo)cos(qﬁo) sin(6o)sin(¢po) cos(@o))

T ’ Y ) z

so that;

sin(6p)cos sin(6p)sin cos (0,
f90,¢0(}l2) = f( ( o)R ((bo)’ ( o)R (¢0)’ 1(%0))

— itttk
= Zi,j,kzo aijil?

_ 1

= leo bR

where b; = Zi+j+k:l aijesin'™I(0g)sin? (¢o)cos? (¢o)cos® (6y)
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For the uniformity claim, let Z C P3(R) be the zero locus of f(z,y, z) =
0 and define a relation R C P3(R) x P*(R) by;

R(z,l)iff z €elnZ

where [ is a line passing through the origin of R3. Considering the
projection pr : P*(R)x P?(R) — P%(R), restricted to R. By the previ-
ous result, that fy 4 is analytic and analytic at infinity, and Lemma 0.46,
we have that pr|g is a finite cover. Moreover R is closed and locally an-
alytic in P3(R) x P?(R) of dimension 2. In particularly, R is compact.
Let W C R? x P?(R) be the variety defined by W (y,1) iff y € I, so
W has dimension 3, and let W be its closure in P3(R) x P%(R). Then
pr factors through W. By real Weierstrass preparation, see [1], we can
present the local power series S(X,Y,Z) =}, .1~ aijp X'YIZ* defin-
ing R C W at (0,0,0) in the form S(X,Y, Z) = G(X,Y, Z)H(X,Y, Z),
with G(0,0,0) # 0 and H(X,Y,Z) = Z%+¢(X,Y)Z 4. . cy(X,Y),
where ¢;(X,Y) € R[[X,Y]], for 1 < i < d, ¢(0,0) =0, and d =
ord(S(0,0,7)). Then on the set G # 0, we have the cover has degree
at most d, and, by compactness, we can find a finite sequence of open
sets Uy, ... U,, for which pr|U; has degree d;, so that the total degree
of the cover is at most rmaxi<;<,d;, (Q).

By the proof of the above, we have that f is analytic at infinity, in
the coordinates (R, 0, ¢), in the sense that;

f(5:.0,0) =g(R.0,0)

where ¢ is analytic in (R, 0, ¢) in a neighborhood of (0, 6, ¢ for fixed
(6o, ¢o). Differentiating, we obtain that;

_198f _ 9g
RZOR — OR
so that;
of _ __p29g
orl(Loe) = ~B 5k

where g_]% and —Rz% are analytic in (R, 6, ¢) in a neighborhood of
(0, 6y, ¢ for fixed (6o, ¢o), so that % is analytic at infinity, in the co-
ordinates (R, 6, ¢). The proof above also shows that f is analytic, in

the coordinates (R, 0, ¢), and so is %. Let;
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Coneg, = {(z,y,2) : * = rsin(0)cos(¢),y = rsin(0)sin(p),z =
rcos(f),r € R,0 <6 <0,,0<¢<2r}

so that 3—1’; is analytic on the cone and at infinity, or in the restricted

coordinates. Let Zp, be the zero set of % on the compactification of
the coordinates P'(R) x S'(R) x [0,6]. Then we can follow through
the argument of (@), to obtain a bound on the cardinality of zeros of
% for 0 <6 <60y, 0< ¢ <2m. We can carry out a similar argument
for Coneg, r, letting 6y < 0 < 7. In particularly val(f) is bounded as
{0, ¢} varies. For the next claim, we have that;

f(R,0,0,1) = f(Rsin(0)cos(¢) — 11, Rsin(6)sin(¢) — Iy, Reos() —13)
so at the coordinate (Ry, 6o, ¢o);

f(R, 00, ¢0,1) = f(Rsin(0y)cos(¢o)—Rosin(By)cos(do)+Rosin(6y)cos(po)—
l17

Rsin(6y)sin(po) — Rosin(Bo)cos(po) + Rosin(0y)cos(¢g) —la, Reos(6y)

—Rocos(0y) + Rocos(0y — 3)

= Zm‘,kzo aijk,z(Rsin(Qo)cos(%)—Rosin(eo)cos(qbo))i(Rsin(@o)sm(gbo)—

Rosin(6y)cos(¢o))? (Rcos(6y) — Rocos(6p))*

where 37, 100 @pi(r —mao + 1) (y —mao 4+ 12) (2 — mag + 1)

is the analytic expansion for f around gy — [, with;

Mo = (Rosin(fo)cos(¢o), Rosin(f)cos(¢o), Rocos (b))

For the next claim, it is easily shown that f is analytic and an-
alytic at infinity precisely when f extends to a real analytic map
[+ P?(R) = R. The components of the translation map 73; R* — R
defined by T'(k) = k — [, for [ € R? are analytic. T extends to an

analytic map of P(R?), given in coordinates (z,y, z, w) by;

Ti([x:y:z:w]) = ([r —wl,y — wly, z — wlz, w])
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On the chart x # 0, the map 77 is given by;

(y,z,w) = [1:y:z:wl = [1 —wl,y —wly, z — wlz, w]

y—wly z—wls w
= <17wll ) 1—wly? 17wl1)

which, without loss of generality, assuming [; # 0,0y # 0,13 # 0, is
analytic for |w| < mm(‘lil, ﬁ, ﬁ), by Newton’s theorem, in particular
at w = 0. The same is true for the charts y # 0 and z # 0. It follows the
components of T} extend to analytic maps of P3(R). By composition,
we then know that f o Tj is real analytic on P3(R), so that f; is ana-
lytic and analytic at infinity. Repeating the argument above, it follows
that fy ,; is analytic and analytic at infinity, uniformly in {6,¢,1}. For
the uniformity claim, we replace P?(R) in the argument above by the
Grassmanian of lines Gr(P3(R)), let Z C P3(R) be the zero locus of
f(x,y,2) = 0 again and define the relation R C P*(R)xGr(P3*(R)) by;

R(z,l)iffz €lnZ

where [ is a line in P?(R). Consider the projection pr : P3(R) x
Gr(P3(R)) — Gr(P3(R)), restricted to R. By the previous result, that
Jo.47 1s analytic and analytic at infinity, and Lemma 0.46 again, we have
that pr|g is a finite cover. Moreover R is closed and locally analytic
in P3(R) x Gr(P3(R)) of dimension 4. In particularly, R is compact.
Let W C P(R?) x Gr(P?(R)) be the variety defined by W(y,[) iff
y € 1, so W has dimension 5, and let W be its closure in P(R?) x
Gr(P3(R)). Then pr factors through W. By real Weierstrass prepara-
tion, see [1], we can present the local power series S(X,Y,Z,U, V) =
> i i kim0 Gijkim X YT ZFUV™ defining R € W at (0,0,0,0,0) in the
form S(X,Y,Z,U, V)= G(X,Y,Z,UV)H(X,Y, Z U, V), with
G(0,0,0,0,0) # 0 and H(X,Y,Z, U, V) = V4 + ¢(X,Y, Z,U)VI1 +
(XY, Z,U), where ¢g(X, Y, U, V) € R[[X,Y,U, V], for 1 < <d,
¢;(0,0,0,0) =0, and d = ord(S5(0,0,0,0,V)). Then on the set G # 0,
we have the cover has degree at most d, and, by compactness, we can
find a finite sequence of open sets Uy, ...U,, for which pr|U; has de-
gree d;, so that the total degree of the cover is at most rmazi<;<,d;,
(QQ). For the next claim, we can again show that % is analytic on
Coneg, x R® in the variables (r,6,¢,1). We can embed Coneg, x R?
into PY(R) x [0, 0] x S* x P(R?) into P3(R) x P3(R) via the maps;
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(r,0,0,0) = ([r:1],0,0,[l1 : 1y : 13 : 1])
([w,v],0,0,[l1 : 1y : I3 : ly]) = ([ulysin(B)cos(p)—liv = ulysin(f)sin(o)
—lov : ulyeos(0) — lzv; Lyl [l 1y 2 13 2 ly]) ()
We have that;
=Rt Et R

By the first claim, {gf: , g; , g’; } are analytic at infinity in P3(R). We

have that w extends to a map on P3(R) by;

s sign(xyz)z

[:y:z:w] =

as, for t € R;

sign((tz) (ty)(t))te _ sign(t)sign(zyz)tz
((tw)2+(ty)2+(t2)2) 2 [tIR
_ sign(xyz)x

R

On the chart « # 0;

sign(yz)

1:y,zw — Tyt

we have that, using Newton’s theorem, the map is analytic on the
connected components of the region y # 0, z # 0. By considering the
map;

sign((z—y)(y—2)(z—z))z
R

[x:y:z:w—

we can similarly prove local analyticity on the connected components
of the region x # 0, y # 1, y # z, * # z, until we obtain analyticity
everywhere except x = y = z = 0. The same considerations apply to;

sign((z—y)(y—=2)(z=x))=
R

sign(zyz)y  sign(zyz)z  sign((z—y)(y—2)(z—2))y

= , = , = and

so that as;

Sign(:pyz)a—}{ _ g£ szgn(xyz):c + 8f szgn( 2)y + af Szgn(;yz)



SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 47

we can obtain generically analytic extensions of;

{sign(zyz) 5L, sign((x — y)(y — 2)(= — 2)) 5%

to P3(R). We can define a map ©; : P2(R) x P3(R) — R by;
Oy ziw) b lo i by la]) = sign(zyz) gh(fe:y - 2 w])
and a map O, : P3(R) x P*(R) — R by;

Oc([r:y:z:wl, [l ly:ls: ly]) = sign((x —y)(y — 2)(z — x))

g—j;([:c:y:z:w])

and compose {O1, 0y} with the map in (E) to obtain analytic pro-
jective extensions of {szgn(myz)alé,sign((a: —y)(y — 2)(z — x))gj;
on the cone Coneg, in the variables {6, ¢,l}. Fibring the extension
over P3(R), and using an argument similar to Q, applying Weier-
strass preparation to the generically analytic sets sign(zyz) 5% 9 — 0 and

sign((x —y)(y —2)(z — x))gj; =0, we can obtain generic umformlty in

the cardinality of the zeros of szgn(xyz) ( ,¢,1) and sign((z—y)(y—

2)(z — :c))g}; As ﬁ differs from Szgng}zz)af and Sanlle= y)(ng)(z 2)of
possibly by a HllIlU_S sign, on the connected regions, by the coverlng
property, we obtain uniformity in the cardinality of zeros of %. We

then obtain uniformity in val(f, 57). We have that, with the restric-
tions on (6, ¢, 1), that;

IED — 0iff f(k—1) =

so that g(k,[) has a uniformly finite number of zeros in the polar
representation (R, 0, ¢,[). We have that;

9 1 1 7 7 L__(EJ).E
aR(|E—Z|) - 2|E—Z|32(k l> k= |k—1|3|k|
so that;

of - T
99 _ 3R (k—1).k
R — \Eafﬂ o f|E_Z|3\E\ )

With the restriction on the parameters, this has zeros when;
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k= 1Pkl = f(k =1) .k (U)
We have that % extends to P*(R) \ (0,0,0) by;

e sign(zyz)w
[y 2w 2R

as;

[tr :ty : tz : tw] — Sign((tx‘)tﬁtg)(tz))tw

_ sign(t)tsign(zyz)w
o [t|R

_ sign(zyz)w

The shift T3(k) = k — I, extends to P3(R) by;

Ti([x:y:z:w]) =[x —wlh,y— wly, z —wls, w]

E

so that 81’9”((’0*’1‘)%(512)(243)) extends to P3(R). We have that sign(zyz)

=

R? — S?(R) extends to P3(R) by;

sign(zyz)(®,y,2)

[x:y:z:w— s

as;

ot o sign(t)tsign(zyz)(z,y,2)
[tr =ty : tz : tw] — @)
_ sign(zyz)(z,y,2)
|(z,y,2)|

Similarly, sign(xyz)% : R?* — R? extends to P?(R) by;

e sign(zyz)(z,y,2)w?
[ y:z: w— Ty
as;

sign(t)t3sign(zyz)(z,y,2)w?
[t ](2,y,2)]

[tz :ty : tz : tw] —

__ sign(zyz)(z,y,2)w?
[(z,y,2)]?
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so that, as before, sign((z — 1) (y —12)(z — h))%

the dot product;

extends. Taking

sign((z — )y — b)(z — l3)ay2) el (V)

extends to P3(R). It follows that, by (U), (V);

g—f’%sign((x — L)y —l)(z—13))

agrees with;

_ Shsign((@—)y—lo)(z=1s)) _ fsign((z—11)(y—la) (z—ls)yz) (E—D).F (X)

k= k112 k|

on the region sign(zyz) > 0, and g_zg% agrees with %sign((:c ) (y—
l3)(z —l3)), on the region sign((z — 1) (y — l2)(z —l3)) > 0, so that %
agrees with the term (X') on the region V; = sign(zyz(z—1)(y—1l2)(z—
l3) > 0. By using the same trick, utilising sign((x —y)(y — 2)(z — x))
instead of sign(ryz), we can create a new term (X)' such that %
agrees with the term (X)" on W; = sign((z —y)(y — 2)(z —z)(x —y —
Lhi+1)(y—2z—1la+13)(z —x —I3+1;)). Continuing in this way, using
linear maps and hyperplane arrangements, it is clear we can create a

finite number m of terms, and regions WM’ for 1 < i < m, such that,

9g
LD OR
and R?\ [ = Ui<i<mWi;. Adding regions, if necessary, to cover the
non generic locus if necessary, and noting that the fixed locus of linear

maps is a point, we can assume that R\ {I} = Uicic, W, for all

generically in [ agrees with one of the terms on the region Wi,

[ € R3. Each of the terms, similar to (X) extends projectively, even
at [, and are generically analytic. By the covering property, we can
use compactness and the Weierstrass preparation argument, to show
that % has ﬁn_itely many zeros, uniformly in {6, ¢,1}, in particular,
for fixed {0,¢,1} o4 is non oscillatory, with a uniform bound on
the valency, val(ga (ﬂ). Note that g; does actually extend to a map
g7 : P*(R) = PY(R), defining it to be the point at infinity, in case
k = 1, but it is not analytic at . However, we can assume that the
zero locus of % does not include [ in the extension, unless f;(k) and

g—g have high order zeros along I; at [. We can use the formulation ()’
to resolve this case. As f(k — 1) is analytic and analytic at infinity, the

same argument proves that, with the restriction on fixed {6, qﬁ,Z}, 9o.61
is analytic and analytic at infinity. This follows as the line [ defined
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by {6, ¢} will intersect the hyperplane at infinity, inside a region W,
where the term is analytic, and we can use restriction of variables. The
components of u(k) are just (sin(0)sin(¢), sin(f)cos(¢), cos(6)), which
are constant on any line defined by {6, ¢}, so trivially analytic and an-
alytic at infinity, with the valency bounded. For the final claim, letting
{h1, hs, h3} denote the components of % {f1, f2, fs} the components

I(k,D)
of Tk

(20D Bou(R) = ey (F)fo . Do ()= () foF, D@+ ua () B s (1)
—uy (k) f1(k, 1) hg () + us (k) f1(k, 1) ha(l) — us(k) f2(k, 1) ha (1)

, {u1,ug, us3} the components of @ we have that;

and we have proved the claims above for { fi, fa, f3, u1, ug, us}. Con-
sidering the products fiu;, 1 <i < j < 3, it is clear the above argument
can be extended to prove the corresponding analytic and analytic at
infinity claims, with the uniform bound in valence. We are then left
with a sum;

ha(D) Hy (K, 1) + ho(2) (1) Ha (K, 1) + hs(1) H3(k, 1) (Z2)

in which, for [ # 0, {hy, hy, h3} are rational functions without poles,
and {Hy, Hy, H3} are uniformly analytic and analytic at infinity, with
a valency bound, and the usual restrictions on {6, ¢, Z}. As the compo-
nents of h are analytic and analytic at infinity, we can extend {hy, hy, hs}
to P3(R) \ {0}, in the variables [, so that they are analytic at infinity.
Let W C P3(R) x P3(R) be the variety defined by;

W(l, k) iff 1 #0 and k € P3(R)\ lg;
where [57 is the line passing through 0 and [. We then obtain a map;
O:W-—->R

defined by (ZZ), and, as before, we can extend it to © : P3(R) x
P3(R) — PY(R).

Generic analyticity gives the uniformity in analytic, analytic at in-
finity and valency claims, over the parameters {6, ¢, [}, noting that the
proof is the same, taking the derivative ai}w which is linear in the co-

efficients h;, 1 <i < 3. In particularly, the family, with the restriction
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on parameters is non-oscillatory and excellent.

4

Definition 0.20. Given a closed interval [a,b] C R, with f defining a
real analytic function on an open neighborhood of |a,b|, we define the
analytic degree of f to be the mazimum number of intersections between
the graph of f and a line y = cx + d restricted to (a,b).

Lemma 0.21. Definition 0.20 is well defined. If f has n inflexions in
la,b], that is points xq for which f"(x¢) = 0, then f has analytic de-
gree at most n+2. For a non-oscillatory excellent family whose second
derivative has valency n, restricted to [a,b], the analytic degree of any
function in the family is at most n + 2.

Proof. Suppose that f has m > 3 distinct intersections with a line [,
which we order as a < 7 < ... <z, < b. Considering (x;, T;11, Tit2),
with 1 < i < m — 2, by the IVT, we can find points {y; 1,2} with
T < Y < miyp and T4 < Yo < X such that (f — 1) (yi1) =
(f=1)'(yi2) = 0, that is f'(yi1) = f'(yi2) = c. Applying the IVT again,
we can find z; with y;1 < 2z; < Y2, such that (f —1)"(z;) = 0, that is
f"(#;) = 0. In particularly, as the intervals (y; 1, vi2) and (Yit1,1, Yit1,2)
are disjoint, z; # z;41 and we can find m — 2 inflexions of f in the
interval [a,b]. If f is analytic, so is f”, so, as [a,b] is closed, f” has
finitely many mg zeroes on [a,b], in particularly it can only have at
most mg + 2 intersections with a line. It follows the definition 0.20 is

well defined. The following claim is then clear.
O

Definition 0.22. For 61,902 > 0, we define the set Ws, 5,1, C [0, 7] X
[—m, —7] x R? by,

W51,52,lo(07¢7z) iff |9 - Qﬂ > 09, |¢ - ¢z| > 5277 € Ann(ﬁ, 01, lo)

where Ann(0, 81, ly) is the closed annulus & < |I| < ly, 0; = cos™ (%),
by = tan ()

Lemma 0.23. Fgriﬁxedz € R?, t € Rwg, we have that the polar rep-
resentation of e'F= k€ R3 is given by;

eiretr(r8ol) e R, 0< 0 <7, -1 < o<
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where;
ity oo (1,0, 6,1) = 1

uniformly in {0, ¢}. Moreover, for 6 # cos™' (%), ¢ # t(m_l(%), the

irctv(r,0,¢,0

real and imaginary parts of e D are oscillatory.

If f is analytic and analytic at infinity, of moderate decrease, then
feos(retv(r,0,9,1)) and fsin(rctv(r,0,¢,1)), for 1 #0, 6 # cos (&),
¢ # tan~ (l—f) are non-oscillatory when restricted to any finite interval

[0, L) and have the property that, for any € > 0, there exists Lopsi€R
such that;

| [~ feos(retu(r,0, ¢, 1))dr| < e

€,0,¢,1

Moreover, for the final family in Lemma 0.19 indexed by (0, ¢, 1) with
the above restriction, which is excellent and non-oscillatory, the fam-
ilies defined by f97¢jcos(rctl/(r,9,¢,7)) and fy 47sin(retv(r, 0, $,1)) are
also excellent and non oscillatory, restricted to a finite interval [0, Ly, ],
and when we restrict the parameters (6,6,1) to W, 5,1,-

Moreover, for any given € > 0, there exists L, uniform in (6, ¢,1),
with the restriction (0, ¢,1) € Wy, 5,14, such that;

| fr>L fg@iCOS(TCtl/(T, 97 ¢7 Z))dr| <€

The same results hold for e’ i(lk—tl=ftl)et

Proof. Making the substitution, k1 = rsin(0)cos(¢), ks = rsin(6)sin(¢),
ks = rcos(0), we obtain;

ei(mfZ)ct — ei[(rsin(e)cos(cb)fll)2+(rsin(9)sin(¢)7l2)2+(rcos(0)713)2]%ct
— ei('r2—(2l1rsin(49)cos(q5)+2l27'sin(€)sm(¢)+2l3rcos(6‘))+l2)%ct
irctv(r,0,¢,0)

=€

where;
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v(r,0,¢,0) = (1 — 1 (2l sin(0)cos(¢) + 2lasin(8) sin(¢) + 2lzcos(8)) +

2
)

(NI

It is clear, as |21 sin(0)cos(p)+2lasin(0)sin(p)+2l5cos(0)] < 2(|l1]+
lo| + |I3]), that lim,_ev(r,0,¢,1) = 1, uniformly in {6, ¢}. For the
next claim, we show that cos(rctv(r, 0, ¢,1)) is oscillatory, leaving the
other case to the reader. We have that;

dcos(rctv(r,0,6,0)) 0
e =

iff —sin(retv(r,0,¢,0)(ctv(r,0,6,1) + rctM) -0
iff sin(rctv(r,0,¢,1)) = 0 or ctv(r, 0, ¢,1) + TctaV(WM) _

iff retv(r,0,¢,0) = = +nm, (n € 2)

or CtV(T', 0, ¢7Z) Qy(rthgl)( ( o ) 3 ) =0
where;
v(0, ¢,1) = 2ly5in(0)cos(¢) + 2zsin(0)sin(¢) + 2lzcos(0)

We have;

lim, oolctv(r, 0, ¢,1) + (”gtw (570, ¢,1) — )] =ct#0

so that, by continuity, the zeros of;

ctv(r,0,,1) + 5o (5760, 6,1) — %)

are located in a compact interval [0, K], for some K € R.o. We
have, for r # 0, that;

v(r,0, qﬁ,Z) =0 iff rv(r, 0, ¢,Z) =0
iff [k —1]=0

iff k=1
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which implies that § = cos™' (%), ¢ = tan™'({). It follows that,
with the assumption on {6, ¢}, we have that, for r # 0;

ctv(r,6,0,1) + gto o5 (570, 6,1) — %)

is locally analytic, for r # 0. Clearing denominators, we have for
r # 0, that;

ctv(r,0,,1) + 575 (5710, 6,1) — %5) =0

iff ctv(r, 6, ¢, D)r’ + 21/(:?&) (ry(60,¢,1) —21*) =0

which is an analytic relation, so it can only have a finite number of ze-
ros located in the interval [0, K], (*). We have that lim,_.rctv(r, 0, ¢,1) =
oo and lim,_grctv(r, 0, ¢,1) = —ctl, so, by the intermediate value the-
orem, we can find an infinite number of solutions to rctv(r,0,¢,1) =
5 +nm, n € Z, located in Ryg. As;

lim, _oolctv (1,0, ¢,1) + QV(Z%J)(%’Y(Q, ,1) — %2)] =ct

and;

limsoletv(r,0,6,1) + 52555 (57(0,6.1) = 35)

. Orctv(r,0,0,0
= lim, 0ol
Det[Fe(r,0,6)—1]

= limr—>0 or

is finite, we have that oret(r9:61) s hounded by M € R~y on R+g.

or Z

Using the mean value theorem, if 7, is a solution to rctv(r, 8, ¢, 1) =
Z 4+ nm, and r, is a solution to rctv(r,0,¢,l) = Z + mm, then
2 2

1+ _ £+
|7"'n, - Tm| 2 |(2 nﬂ')]w(z mﬂ')‘
_ ltn=—m)|m
M

> 15 (n#m) (A)

By the observation (x), and the fact that;
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[cti(r,0,0,1) + 5ot (7 (6, 9. 1) — %)

is monotone on (K, 00), there can be at most a finite number {n; ,...,n;,}

for which there exist multiple solutions T, € Ro to retv(r, 0, ¢,1) =
2 4+ n;m. Let Z denote the {r; : i € N} for which there exists
a solution to rctv(r,0,¢,1) = T +nm, n € 2, and Z the finite
set comsisting of solutions to rcty(r,0,¢,1) = 5+nym 1 <5 <
p and the zeros on [0, K], corresponding to (%). Ordering Z U Z,
as a set {r; : i € N}, it is clear that cos(rctv(r,0,¢,1))|pr. ) is
monotone. Choosing § = min({;,d(Z \ Zy, Zy), Sep(Zy)) > 0, where
Sep(Zy) = mian(d(r,r") : {r,r'} C Zy,r # '), we obtain the result that
cos(rctv(r,0, ¢,1)) is oscillatory.

For the next claim (fcos(rctyv(r,6,¢,1)) is analytic on [0, L], so
has finitely many zeros, in which case fcos(rctv(r,0, ¢,Z))|[07 1) is non-
oscillatory. As f is of moderate decrease, there exists a constant
C € R+ for which |f] < %, for » > 1. It follows that;

fT>M | feos(retv(r,0,¢,1)|dr

< Jooarmdr

>M r2

c

=M
< €

forM>%

If there is no bound on the valency of zeros to (fy 4 7cos(rctv(r, 0, ¢, 0)))
on (0, Ly,), then we can find closed sets V.41 C V,, C W, 5,1,, Where;

V,={l¢ W, 6300 C’ard((fe’(ﬂcos(rcty(r, 0,0,0))) =0
m(07 Llo)) > n}

such that V,, # 0. AsV,, is closed, it follows, we can find ly € Npen'Vi,
for which (f, ,;cos(rctv(r,0, ¢,1)))" has infinite zeros on [0, L;,], which
contradicts the definition of analytic. It follows that the family re-
stricted to [0, Ly,] is excellent and non-oscillatory, when we restrict the
parameters in this way.
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For the penultimate claim, we have with the restrictions on {6, ¢,},
that;

[F(F)| < %
Ih(l)| < M
1| = do
hl M
|T’ < So
(k)| =1
[k — 1] > Isin(dz) > dysin(ds)
JGR)) c
| |k—1] | < d1sin(d2)|k—1[4
Fk—1 7w _
15 > A u(®)]
FG=1) | (D)
Sr=nln
___¢C_ M
- Jlsin(62)|E_j‘4 30
c M
< s oy 00 1r B>l

so that;
| [ <1 fosicos(retv(r,0, ¢,1))dr|

¢ M
< r>L W%dr, for L > [

[ & M ]oo
§15in(62)(R—1p)3 —380 1L

_ c M
6 Sin((Sg)(L—lo)B 300

<€

1
for L —lo > (3528 )3
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For the final claim, if we want to do the calculation for;
illR=l—lilet — yi(E-T)et ,—illlet
we can absorb the constant term e !l into the term f of the hy-

potheses, which will not effect any of the conditions analytic, analytic
at infinity or moderate decrease, see also Lemma (0.24.

U

Lemma 0.24. With notation as in Lemmas 0.23 and 0.7, if;

R 512j(R7‘97¢)
(k l ) —704(R 0 ¢’l’t> - 2 [(bll Z<R 9 ¢) |(Rsin(@)cos(d)),Rsin(@)sin(d)),Rcos(@))—Z\)X

(1) + 93D)] . (R, 0,6, 1)]u(R. 0, 6,1, t)sin(6)

— = b 7(R79:¢)
B(k’l’ ) B(R 0 ¢’l’t> 7T2 [(blll(R 0 Qb) Rsin(@)cos(qﬁ),Il%ién(G)sin(@,Rcos(@))fﬂ)X

(. (1) + 220)) (R, 0, 6, 1) (R, 0, 6,1, £)sin(0)

then;
a(R7 97 ¢7 Z? t) - al(R7 07 ¢7 Z? t)ILL(R7 97 qb? Z? t) - e_ZlCtal(R7 07 ¢7 Z? t)eZRCtV(R767¢J)
/B(R7 07 ¢7 Z’ t) = /61 (R7 07 QS? Z’ t)l’b(R’ 0’ ¢7 z? t) = 672[Ct61<R7 9’ ¢7 z? t)e’LRCtV(R797¢j)

For fized 1 # 0 and 0 # cos™ (%), ¢ # tan‘l(l2), if the real and

imaginary components of e~"“ay(R,0,$,1,t) satisfy the conditions of
Lemma 0.23, then the real and imaginary components of a are oscilla-
tory. Similarly, if the real and imaginary components of;

{e™1UBI (R, 0,0,1,1), e~ " REMIEALD jcte—et R, (R,0, 6,1,1)(v(R, 0, ¢, 1)+

Rdl’(ggdﬁ))}

satisfy the conditions of Lemma 0.23, then the real and imaginary

components of %M”) are oscillatory.

Proof. We have that;
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Re(a) = Re(e el = Re(e " aycos(Retv))+ Re(ie ™oy sin( Retv))
= Re(e " ay)cos(Retv) + Im(e " ay)sin(Retv)
Im(a) = Im(e""a,etf) = Im(e~"aycos(Retv))+Im(ie~ "oy sin( Retv))
= Im(e "“ay)cos(Retv) + Re(e™"ay)sin(Retv)
so the first claim, follows from Lemma 0.23.
We also have that;

efilctﬁl eiRctu)

. . efilct eiRctu
Re(Z80)) = Re(2Be 010y = Re(e—ilet /) + Re( RA—21E—))

= Re(e_ilCtﬁleiRcw>+R6(€_ilCtRa—g1€iRCtV)+R6<i6t6_ilCtRﬁ1 (V+R%)€iRCtV)

—ilctﬁl eiRctu)

—ilc iRcty . .
]m(agf)) _ ]m(a(Re 5}5%16 ! )) — Re(eilldﬁleZRCt”)—FRe(Ra(e £ )

— Im(e_ilCtﬂleiRcw)—FRe(e_ilCtRa—gleiRcw)+R€(ict6_ilCtRﬁ1 (V+R%)eiRctu)

and the second claim follows, using the previous calculation and
Lemma 0.23.
O

Definition 0.25. We say that f € C(R \ {0}) is of moderate decrease
if there exists a constant D € Rso with |f(x)| < % for |z| > 1.

We say that f € C(R\ {0}) is of very moderate decrease if there ex-
ists a constant D € R~ with |f(z)] < |7D\ for |z| > 1.We say that

f € C(R\A{0}) is non-oscillatory if there are finitely many points
{yi 1 1 < i <n} CR for which fly,y,..) s monotone, 1 <i<n—1,
and f|(—ooyn) and f|, 00 %5 monotone. We say that f € C(R\ {0})
is symmetrically asymptotic if f and % are of moderate decrease, L is

non-oscillatory, { f, %} C L'((—e€,¢€)), and for e > 0; o
limyo— f(y) = limy—o1 f(y) = M
and
limy—o-L(y) = —limy0+ L(y) = L (%)

where L € {+00, —o0}, M € R. We say that f € C(R \ {0}) is light
symmetrically asymptotic if f and % are of very moderate decrease, f
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and L are non-oscillatory, {f, £} c L'((—¢,¢)), and for e > 0, the
condition (%) holds.

Lemma 0.26. Let f be symmetrically asymptotic, then we have that,
for any 6 > 0, there exist constants {Cs, Ds} C R~o, such that;

\F(HR)] < & + &, for [k| > Ds

Proof. As f is symmetrically asymptotic, we have that lim,_,o_f(z) =
limg oy f(x) = M, where M € R. In either case, we can apply inte-
gration by parts, to obtain (1) in Lemma 0.11. The step (x) follows
from the fact that f is of moderate decrease. As is non-oscillatory,
we can find zy < 0 < w1, with dm|$070 and dm|07$0 monotone. In par-
ticular, for any 6 > 0, we can find o < yo < 0 < y; < x1 such
that [, 94 (y)|dy < 5((27)2) and L(yo) = Lig, L(y1 = Loy, with
{LLO? L270} CR. Then;

_zk 1 i L
27!')2 f N6 4 Yy — (271_)% f(_NmyO)U(the) %(y>e 7 ydy’
= (27r)% f(yo,yl) |%(y)|dy
<90

Again, by the proof of Lemma 0.9 in [10], using underflow, we can
find {Deyy 415 Eewoun } € Rso, such that, for all |k| > D, ,,, we have
that;

af —zk Ee, 0
|(27r)2 vy e @)e Myl < =, (x)

It is easy to see from the proof, that { Dy, 41, Eeyopn } can be chosen
uniformly in €, so that using the triangle inequality again, we obtain;

Ee
|‘F(%)(k)| <e+ o+ ’livg)l»yl
for |k| > De.yo .,
As e was arbitrary, and E,,, ,, is uniform in €, we obtain that;

FEIW) <0+ P
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for |k| > Dy, 4,

so that, using () again;

for |k| > Ds, where C5 = Ey, ,, and Ds = Dy, .

g

Lemma 0.27. Let f € C(R) and % € C(R) be of very moderate de-

crease, with f and % non-oscillatory, then defining the Fourier trans-
form by,

F(f)(k) = —plim,soo [7, f(y)e ™dy (k # 0)

(2m)2

F(@)0) = Shplimese 7, E)e vy (k#0)

(2m)?

we have that F(f) and }'(%) are bounded and there exists a constant
G € R+o, such that;

FHHR) < &

for sufficiently large k.

Proof. As f is of very moderate decrease, we have that f is continuous
and limz|—oo f(x) = 0. Similarly, % is continuous and lim‘xHoo% =0.
As lim|y) o0 f(x) = 0, and f is non-oscillatory, we have that, for k # 0,
the indefinite integral;

limy oo [7, f(y)e ™V dy

= lim, o [ [(y)cos(ky)dy — ilim, o [ f(y)sin(ky)dy

exists. As f is of very moderate decrease and non-oscillatory, we have
that |f(z)] < I%’ for |x| > E, and monotone in the intervals (—oo, E)

and (£, 00). Using the method of [10], letting K = max(|f||-g,g), we
have that;
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llim, oo [ f(y)cos(ky)dy| < 2KE + 2K ff*m Deos(kly=F)) g,

Y

|l2mr—>oof fy)sin(ky)dy| < 2KE+2Kf Fajy wd@/

Y

so that;
) r —1 E+3% Deos -
[limy oo [T, Fy)e™™dy| < AKE + 4K [ 77 Leoslu—E) gy

—sin - E+5i E+57 sin _
—4AKE +4KD([W]E 28 fE 2[R (\kl\l(zy E))dy)

_ 1 Et 5w sin(lkl(y—E))
—AKE +4KD(|,€|(E+W — [y )

+ 5 5xdy)

<AKE+4AKD(2+ 1) =N

<4KE +4KD(

E\kl 5

so that F(f)(k) and, similarly, F( df)(k) are bounded, for k # 0, (1).
We have, using integration by parts, that;

]:(%)Uf) = (27r)1lzm,,ﬁoo I SJ; (y)e~*dy

- (2;)%hm7"—>oo([f(y) _Zky —|— Zl{jf f —1kydy)

= L —ikyloo 7Zky
(ZW)% [f(y)e ]—oo + 'Lk( My 00 f f dy

= ik F(f)(K)

so that, for |k| > 1;

FH)| < L )

As % is continuous and non-oscillatory, by the proof of Lemma 0.9
in [10], using underflow, for r € R, we can find {F,, G,.} C Ry, such
that, for all |k| > F}., we have that;

|(2:)% ij %(y) “kydy| < \k\ (k)

1.7:(f)( ) and }"(d—f)( ) are differentiable for k # 0, limit interchange?
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It is easy to see from the proof, that {F,,G,} can be chosen uni-
formly in 7. Then, from (%), we obtain that, for |k| > F’

| F (L) (k)| < %, for |k| > F
and, from (}), for |k| > max(F, 1), that;

F(I(k
F(f)(k)) < Had®l < G

4

Definition 0.28. Let f € C3(R), with f, f', f" and f" bounded, then
we define an approzimating sequence {f, : m € N} by the require-
ments;

(i). fm € C*(R), form e N.

(11). fonli=mm) = fli=mm]-

(7i1). fm is of uniform moderate decay, in the sense that there exists
a constant C' € R+, independent of m, with;

| fm(2)| < %, for € (=00, —m — YU (m + L o0)

(v). There exists constants {D, E} C Rso, with [ 1 | fm(x)|dz <

D and f;n+i | fn(2)|dz < 2.

Lemma 0.29. Let f € C(R) and L € C(R) be of very moderate
decrease, with f and % non-oscillatory. Let {fn;m € N} be an ap-
prozimating sequence. Let F be the ordinary Fourier transform, defined
for each f,,, then the sequence {F(fm): m € N} converges pointwise

and uniformly to F(f) on R\ {0}, where F(f) is defined in Lemma
0.27.

Proof. For g € C(R) and n € N, define;

Falg) (k) = 5 1, fl)erdy

For k € R\ {0}, {m,n} C N, and m > n, e > 0,6 > 0, we have;

[F N R)=F(fn) B)] < |F)E)=Fn(H) R+ Fn(F) (F) = Fn(fn) (F)]
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HFulfun) () = F () ()

= |F()HF) = Ful DR+ [ Fnlf) (k) = F () B)

< \FDH) = Ful YR + [ \fm i+ |+ 77 | )l

= [F(NK) = Ful AR+ 2 | fmle)dz+ [0 1 | o)l
0 )+ [ | f()d

< |F(N)) = FalF)R)| + ZEE 4 [ 077 Gdo+ [ 2 Gda
<IF(E) = Fu(F)R)] + 222 4 20

< |F() (k) = Ful ) (k)| 4 20205

< e+ 6, for m > maz(m(e), ZHL2EE) As e > 0 and § > 0 were

arbitrary, we obtain the result.

O

Lemma 0.30. If m € R+ is sufficiently large, {ag, a1,a2} C R, there
exists h € R[] of degree 5, with the property that;

h(m) = ao, h'(m) = a1, h"(m) = as, (i)
h(m+ =) =W (m+ ..) = h"(m + ;) = 0 (ii)
for some C' € R~g, independent of m sufficiently large, and, if

h"(m) > 0, h”’(x)|[m7m+%} > 0, if h""(m) < 0, h’”|[m7m+%] < 0. In
particularly;

[ B () dae = |ag)

Proof. 1f p(x) is any polynomial, we have that h(z) = (z—(m+=))p(z)
satisfies condition (i7). Then;

W(x) =3z = (m+ ))°p(x) + (@ — (m+ )’ ()

R'(x) = 6(z—(m+))p(x)+6(z—(m+.0))%p () +(z— (m+1))°p" (2)
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() = 6p(x) + 18(x — (m + ;)P (x) + (& — (m + ;)" (2)

so we can satisfy (i), by requiring that;

m m? ms 42
which has the solution;
p(m) = —agm?, p'(m) = —3agm* — aym3, p’(m) = —12aym® —

6a;m* — asm?

and can be satisfied by the polynomial;

p(z) = 3(=12aom® — 6a1m* — aym®)(z — m)?

+(=3agm* — aym?®)(x — m) + (—aym?)

= 1(—12a9m® — 6aym* — asm?®)z* + (—m(—12a9m® — 6a;m* — aym?)
+(=3agm* — aym?))z + (%2(—12a0m5 — 6aym?* — aym?)

4_ aym?3) — agm?)

—m(—3apm
= (—=6agm® — 3aym* — Lm?)x* + (12aom® + 6aym® + asm* — 3agm*
—aym®)z + (—6agm” — 3aym® — Lm® + 3agm® + aym* — agm?)

= (=6agm® — 3aym* — 2m?)z* + (12a9m® + 6aym® + (ag — 3ag)m*
—aym®)x+ (—6agm” —3a;mb + (3ag — 2)m® + 3agm® +aym* — agm?)
= az? + bz + ¢ (%)

so that;

W"(z) = 6(az®+bx+c)+18(x—(m+=+))(2ax+b) +9(x — (m++))*2a
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= (60a)z* + (24b— 72a(m+ L))z + (6¢c — 18(m+ )b+ 18a(m + 1 )?)
and, using the computation (%)

h"(z) = (60(—6agm?®) + O(m*))a? + (24.12a9m® — 72m(—6agm?)
+0(m?))z + (6. — 6agm” — 18m(12aom®) + 18m?(—6aym®) + O(m"))
= (=360aom® + O(m*))x? + (740aom® + O(m?>))z+

(—360agm™ + O(m"))

which, by the quadratic formula, has roots when;

_ —T40agmS+/7402aZm12—4(—360agm5 ) (—360am7 ) +0(1)
- 2.—360agm®

__ 740m 170m
720 + 720 +O(1)

=12 1+ O(1) or 2 4 0O(1)
19m 1 _ 9lm ; /72
We have that m > =7* and m + .- < = iff m > /5, and, clearly,

we can ignore the O(1) term for m sufficiently large. In particularly,
for sufficiently large m, h”(z) has no roots in the interval [m,m + L],
SO h///|[m,m+i] > 0 or h/”’[m,m-l—i] < 0

We calculate that;

s 1] = 1 = (74 2@y 1]
< #’p(x)hm,mi]

= L|[L(~12a9m® — 6a;m* — agm®)(a — m)”

+(—=3agm* — aym?®)(z —m) + (_aomg)H[m,m-i—%}

< e lzl—12a0m® —6aym* —axm?| 5 +| = 3agm* —aym?| . + | —agm?|]

< 12|ag|m®+6|a1|m*+|az|m?| 3lao|m*+|a;|m3 lag|m?
< o1 + Slaolm Haajm? | Jaoln

< 12|CLO| + 6\a1| + ‘(12’ + 3|CLO| + |CL1| + |CLO| (m > 1)
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< 16|ap| + 7|ay| + |as]

For the final claim, we have, as h"|;, ., 11> 0 or B[, 41y <0,
that, using the fundamental theorem of calculus;

[ @) de = | [ b ()da)

= |"(m+ ) = h"(m)| = | = B"(m)| = |as] .

Lemma 0.31. If m € R.o, {ao,a1,as,a3} C R, there exists h €
C3(R), with the property that;

h(m) = ag, W' (m) = a1, h”"(m) = ay, K" (m) = as, (i)
h(m + 1) = W(m+ 5) = h'(m+ ) = B (m + ) = 0 (i)

where C' € R~ is independent of m > 1, and, if az > 0, K" ()], ey 1] >
0, a3 <0, K"(2)|pme 1) < 0. In particularly;

S W (@) da = [as|

Proof. Let g(x) be a polynomial, then it is clear that the polynomial
h(z) = (x — (m + +)"g(z), for n > 4, has the property (ii), that
h(m+ L) =hy(m+ L) =h{(m+ L) =h{(m+ L) =0. The condi-
tion (7), then amounts to the equations;

(i)/ (,gl()T,)nn = Qo

(i1) ) + L =

(i) Mplelm), o Zed(m) S g,

(iv) M Ba) 4 S gl R L — g

which we can solve, by requiring that;

(2)" g(m) = (—=1)"agm™
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(i1)" ¢'(m) = (=1)"aym" + (—=1)"agnm"**
(i11)" g"(m) = (—=1)"aym™ + 2(—=1)"na;m™* + (=1)"n(n + 1)agm™ 2
(iv)" ¢"(m) = (—1)"azm™ + 3n(—1)"agm™ ™ + (=1)"a;n(n + 3)m" 2
+n(n+1)(n+ 2)(=1)"agm™*3 (x)
Let;
g1(z) = ((=1)"azm™ + 3n(=1)"agm™ ™ + (=1)"ayn(n + 3)m"*+?
+n(n+1)(n+2)(=1)"agm™*3) (z—m)*+((=1)"aym™+2(—1)"na;m" !
+(=1)"n(n + 1)agm™*?)(x — m)? + ((—=1)"a;m™ + (—1)"agnm™**)
(2 = m) + ((—1)"agm®)

Then g, (z) satisfies (x), and so does any function of the form gy (z)+
g1(z) where;

/

g2(m) = gy(m) = g5(m) = g5'(m) = 0

provided g, € C3(R). In this case, if;

h(z) = (z = (m+ 3)"(92(2) + g1(2))

then h satisfies (i), (74). We have that;

|z — (m + %)”91($)|[m,m+$} < #(‘92|[m,m+%] + 191l ms17)

< #ﬂgz\[mmﬂri]+#|((—1)”a3m”+3n(—1)"a2m”+1—f-(—l)”am(n—i—
S)mn+2
+n(n+ 1)(n+ 2)(=1)"agm™®) L5 + ((—=1)"azm™ + 2(—1)"na;m"**

+(=1)"n(n + )agm™?) L + ((=1)"aym™ + (—1)"agnm™**)

+ ((=1)"agm™)]

1
m
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=|((=1)"agm" + 3n(—1)"agm™ ™ + (=1)"ayn(n + 3)m"*+?

+n(n+1)(n+2)(=1)"agm™"3) —Lz + ((—1)"azm™ +2(—1)"naym™**

+(=1)"n(n + 1)agm™?) —Ls + ((—1)"aym™ + (—1)"agnm™**)
et + (1))

< las| + 3n[az| +n(n + 3)|ai| +n(n + 1)(n + 2)|ag| + [az| + 2nla;| +
n(n + 1)[ao| + [a:[ + nlag| + |ag|, (m > 1)

= o (192lmms 2y + (R 1) (0% + 30+ 1)]ag| + (n® +5n + 1) |as + (3n +
Dlas| + |as| = F (F)

where F' € R is independent of m. Using the product rule, the
condition that 2" (z) = 0 in the interval (m,m + ), is given by;

n(n —1)(n —2)(z — (m+ )" (g2 + g1)(2) + 3n(n — 1)(z — (m +
)" g2+ 91)' ()

+3n(z —(m+ )" (ga+91)"(x) + (2 — (m+ 7)) (92+91)" () = 0
which, dividing by (z — (m + £))"3, reduces to;

n(n—1)(n —2)(g2 + g1)(x) + 3n(n — 1)(z — (m + ) (g2 + g1)' (x)+
3n(z — (m+ ;)92 + 01)"(2) + (. = (m + 1)) (92 + 91)"(2) = 0
and;

n(n—1)(n —2)ga(x) + 3n(n — 1)(z — (m + =))gh(z) + 3n(z — (m +
+))%g5 ()

+Ha = (m+ )95 (x) = —(n(n — 1)(n = 2)g1(z) + 3n(n — 1)(z —
(m + 32))g1 (@)

+3n(z — (m+ ))%g{(2) + (z — (m+ 1))’g{"(2)) (A)

Without loss of generality, assuming that;
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—(n(n—1)(n—2)gi(z) +3n(n—1)(z — (m+;;))gi(z) +3n(z — (m+
)2l (@)

= (m+ £))*g"(2))lm = —(n(n — 1)(n — 2)ag — 2=t o dnes
—ms 20

we can choose an analytic function ¢(z) on [m, m + =] with;

(a)- ¢( )< —(n ( —1)(n—2)91(96)+3n(n—1)($—(m+%))g’1(ﬂf)+

The third order differential equation for gs;

n(n—1)(n —2)ga(x) + 3n(n — 1)(z — (m + =))gh(x) + 3n(z — (m +
)5 ()

+Ha = (m+ )95 (z) = ¢(x), on [m, 1+ m] (B)

with the requirement that go(m) = g5(m) = g§(m) = 0, has a so-
lution in C3([m, m + +)) by Peano’s existence theorem. By the fact
(b), we must have that gy'(m) = 0. Writing the power series for ¢ on
[m, m + +], as;

o(r) = 22720 bjw — (m+ )Y

we can use the method of equating coefficients, to obtain a particular
solution, with;

ngPaTt(x) = Z]Oio aj,part(aj - (m + %))j, Wlth7

b; .
Upart = D2 B B G=DHG=NG=D U = 3)

a _ bo a _ by a _
2;part = nin—1)(n—2)+6n(n—1)+3n - Lpart = pn—1)(n—2)+3n(n—1) - O.part —
bo

n(n—1)(n—2)
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so that go per Is analytic as |ajo| < # for 7 > 0.
To solve the homogenous Euler equation;

n(n—1)(n —2)gs(x) +3n(n — 1)(x — (m+ =))gh(x) + 3n(z — (m +

L))2g4(x)
+(z — (m+ £))%g5' () = 0 on [m, m + L]

we can make the substitution y = m + % — x, to reduce to the equa-
tion;

—1)(n—2)go.m(y)+3n(n—1)yg5 ., (y)+3ny>g5 ., (1) +1° 95" (y) = 0

]

with go,n(y) = go(m + = — y). Making the further substitution
y = ¢e*, and letting ro ,(u) = go.m(e"), we have that;

n(n
n [0,

SIH

(1) = g5 (€")e™" + g5 1 (€ )€
Tom (W) = G5 (%) + 395 ()€™ + g5, ()€
so that;

n(n — 1)(n — 2)gam(e”) + 3n(n — 1)egs,, (e) + 3n62“g§’7m(e“) -+
6Sug/// ( )

=n(n—1)(n—2)rym(u)+3n(n—1)e*(ry,, (u)e™)+ 3ne2“((r§’7m(u) —
Ghm(€")e)e™?")

e (5, (1) = 395 ()€™ — gh ()€ )e™™)

=n(n—1)(n—2)ry,(u )+3n(n—1)r§’m(u)+3nr'2’7m(u)—3ng§7m(e”)e“+
7o (1) — 395, (e")e*
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=n(n—1)(n—2)rom(u) +3n(n — 1)ry , (v) + 3nry,, (u) + 1y, (u) —
(3n + 1)ghn(e")e” — 393, (e")e*

=n(n—1)(n—2)rym(u) +3n(n — 1)r’2m(u) + 3m“’2’7m(u) + T’Q”m(u) —
(3n+ 1)ry,,(u)

=3 ((r m(u) — gy m(e)e")e™")

=n(n—1)(n—2)ry,(u)+(3n*—6n— D)7l () +307y  (u) 15 () —
31y (1) + 345, (€")e”

=n(n—1)(n—2)rom(u) + (3n? —6n — I)T’Qm(u) +3(n— 1)r’2’7m(u) +
Ty (1) + 375, (u)

=n(n—1)(n—2)rym(u) 4+ (3n* — 6n+2)ry,, (u) + (3n —3)ry,, (u) +
o (1) =0 (C)

We have that;

A +3(n—1)AN2+Bn?—6n+2)A+n(n—1)(n—2)) =3 *+6(n—
DA+ (3n% — 6n +2)

which has roots when A = —(n — 1) + \/Lg, so that, for large n, the
characteristic polynomial of (C) has exactly one real root \; and 2

complex conjugate non-real roots, { Ay + iA3, Ao — iA3}. It follows, the
general solution of (C) is given by;

T27m<u) — A1€AIU+A26)\QU+M3 _’_Age)\zufi)\g

where {A;, As, A3} C C, and, we can obtain a real solution, fitting
the corresponding initial conditions, of the form;

To.m(u) = BieM" + Bye*?Ucos(Azu) + Bse*Usin(Azu)
where { By, By, B3} C R. It follows that;
92m(y) = r2m(In(y))

92 (l’) = g2,m(m+ % —JT) +g27part($) = T2,m(ln(m+ % - ZL‘)) +92,part(x)



92 TRISTRAM DE PIRO
= B ehin(m+—a) 4 Bge’\2l”(m+$_“’)cos()\3ln(m + % — 1))
+ Byt 5=2) gin (Agln(m + L —2)) + gapare(z) (on [m,m + L)
We have that;
Ao +iX3)? = —n(n — 1)(n — 2)
M+ Ao+ i 4+ A — idg = A+ 20 = —3(n— 1)

Computing the highest degree in n term of the characteristic poly-
nomial, we obtain that, for A = an;

a®n3 + 3n(an)? + 3n?(an) + n® =n*(a+3)> =0

so that a = =3, A\ = =3n+ O(1) and 2\y = =3(n — 1) — (—=3n +
O(1))=3-0(1)=0(1)

Then, if B; = 0, we can see that go(x) has at most a zoﬁ singularity
at (m+ %), which we can achieve with a 2-parameter family choice for

the initial conditions of {¢(m), ¢’ (m), ¢"(m)}. If;

—(n(n — 1)(n — 2)ay — 2D Snex _ ay o )

m m? m3

we can clearly achieve this, while satisfying (a), (b). If;

~(n(n = 1)(n = 2)ag — TR 4 g — 25— 0
by requiring the the additional property (c);

¢'(m) < —(n(n — 1)(n — 2)g1(z) + 3n(n — 1)(z — (m + ;)91 (x) +
3n(z — (m+ ..))%g{(z)

(= (m+5) P9 (@)
we can clearly satisfy (a), (b) as well.
Then, as, for sufficiently large n;

limx_,o(%sm()\gln(x)) + %cos()@,ln(a:)))
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= limg_o( 2255 sin(Asin(z)) + B35 cos(Asin(x)))’
= limg—o(ZEysin(Asln(z)) + Bt cos(Asin(x)))”
= limg—o (L7 sin(Asln(x)) + Bt cos(Asln(z)))” = 0

we obtain that (z—(m+=))"gs(z) extends to a solution in C3([m, m+
1), and (z — (m + £))"(g2 + 91)(z) € C*([m,m + X]). By the fact

1
m

(a), (A) has no solutions in (m,m + +), so that " (z) > 0.
We have that;

(4 2020 ) = | (me ) (Ba 70 & cos (gl
o)

+ Bye*n(mt5=2) gin (Agln(m + L — 7)) + g2 pare(2))]

< |Bam*2 ™" 4 | Bsm ™" + m ™" g2 pare ()]

Noting the right hand side of (a) is bounded by O(m™) on [m, m+ =],
we can also choose ¢(z) and ga pare(z) to be of O(m™) on [m,m + =],
irrespective of the choice of initial conditions {¢(m), ¢’ (m),¢"(m)}.
We have that ¢/(m) = O(m"™™), in the special case, so that choosing
{Bs, B3} sufficiently small, noting;

(x — (m + L) (Bae? "t =) cos(Agln(m + L — )

+ Byt =) sin(\gln(mA-L —1))) |, = O(max(Bym™ 27", Bam 2~ 1))

we can assume that;

where D € R~ is independent of m, so that, using (F');

F+D

For the final claim, we have, as h"[;, ., 1y > 0 or K", . 1, <0,
that, using the fundamental theorem of calculus, that;
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[T W () da = | [T B () da
= W(m+ L) — B (m)| = | — K"(m)| = |as]

O

Lemma 0.32. Let f be as in Definition 0.28, then there exists an ap-
proximating sequence {fm : m € N'}. Moreover, for sufficiently large

m, |F(fm)(k)| < & Tl for |k| > 1, where C' € Ry, independent of m.

Proof. Define f,, by setting;
fm(z) = f(z) for x € [—m,m]
fm('f) = h17m({E), for x € [—m — %’ _m]

fm(x) = ham(x), for x € [m,m + %]

fm(x) =0, for x € (—o00, —m — L]

fm(x) =0, for x € [m, 00)

where {hq , ham} are the polynomials of degree 5, generated by the
data ai1,m,o = f(_m)a 1,m,1 = f,(_m)7 A1,m,2 = f//(_m)a a2.m,0 =
f(m), agm1 = f'(m), agmo = f"(m), guaranteed by Lemma 0.30 (or
Lemma 0.31. By the construction of Lemma 0.30, we have that (i) in
Definition 0.28 holds. By the definition, we have (i7). As f,, is identi-
cally zero on —oo, —m — =] U [m, o), we have that (iii) holds. By the
proof of Lemma 0.30, we have that;

Maz([hm| g, mt 111 P2ml -2 ) < 16}[flloo + TILF oo + [[/"]]o0

It follows that;

S 1 fm(@)ldz < (16]] flloc + TS oo + [1f"lloc) (=m = (=m = 22)

< D
— m

S @)z < (161 lLoo + T lloo + 1]} ((m + £) = m)
<

3=
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where D = E = (16]| f|lsc + 7[|flloc + [[/"]]o0)

proving (iv). For the second claim, we have that;

fumwzmgﬂimuwm@

ot Un@e ™= — ik [T, [ (w)e o da
= S (fn@)e ™2 — ik [, fr(@)e e d)
= B (ful@)e ™% — ik [, fu(a)edr)
= 0 7 Fm(@)e )

so that, for |k| > 1;

IF(fn) (k) Jetrde
1 © f'r/r/z/ _Zkzdx‘

27
_ Lot e
= Wram r S i (@)e | da
:W% r 1)l da
:Ik:|3 fﬁ 1 [P x)lde + [7 [ (x)|dx Jrfm+ |hy () |dx)
SW%QW% m)| 4+ 2m] ") + |f"(m))
< |k|3( %(2\\f"!|oo+2m”fm“°o)
< e em2ml| o), (m > 1l
_— Cm
REE

o 1 "

where C' = " )%(2+2||f |[oo)

4

Lemma 0.33. Let f € C*(R), with f and % non-oscillatory and
of very moderate decrease, with {f, ', f", [} bounded, then F(f) €
LY(R), and we have that;
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fla) = FHF())()

where, for g € L*(R);

Proof. By Lemma 0.27, we have that there exists C € R.o, with

| F(f)(k)] < #, for sufficiently large k; (%). As f is of very mod-

erate decrease, we have that |f]* < B ‘2, for |z| > 1, so that, as
f € C°(R), we have that f € L?*(R). It follows that F(f) € L*(R),
and F(f)|j—nn € L*(R), for any n € N, (xx). Combining (%), (*x),
we obtain that F(f) € L'(R). Let {fm : m € N} be the ap-
proximating sequence, given by Lemma 0.32, then, as f,, € L'(R),
F(fm) is continuous and, by Lemma 0.29, converges uniformly to F(f)
on R\ {0}. It follows that F(f) € C°(R\{0}). As fn. € C*(R)
and f/ € L'Y(R), we have that there exists constants D,, € R,
such that |F(fn)(k) < ‘g‘"g, for sufficiently large k. Moreover, as
2" f(z) € LY(R), for n € N, F(f,n) € C*(R). Tt follows, the Fourier
inversion theorem f,, = F Y F(fn)), (* % %), holds for each f,,, see
the proof in [13]. By Lemma 0.29, we have that, for £k € R\ {O}
\F(f)(k) — F(f) (k)| < £. Then, for n € N, m € N, with m = n2,
using Lemma 0.32, we have for x € R, that;

FUFD) @)~ FUFSa))@)] = [FHEG)R) — F(fa) ()
~F(f) B))e™ bt [ o (F D) =F () (k)
= af F() k)~ -FKfm)(kNdk+:ﬁH>nLf(f)(kﬂdk+:ﬁM>n|JW

(B Jikjsn |k|2dk + Jikon ﬁ?dk)

1
2m)2

IN

[N

—

IN

1 2n 2C Cnf
e 1w
<€

for sufficiently large n, so that, as € > 0 was arbitrary, for x € R;

L oo P~ (F (fm)) (@) = FTHF(f) (@), (5 )

fm)(K)|dF)
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and, by Definition 0.28, (s % %), (x * %x);

F(@) = limum oo fn (1) = limm oo T (F(fin))(z) = F'F(f) ()

O

Remarks 0.34. The previous lemma proves an inversion theorem for
non-oscillatory functions with very moderate decrease. Such functions
belong to L*(R) and an analogous result for Fourier series can be found
in [2], where convergence is proved almost everywhere rather than ev-
erywhere. The corresponding result for transforms is that;

If f € I'(R), p € (1,2), then;
for almost every x € R.

There is also a converse result, which can be found in [7], but is left
as an erercise;

If f € LY(R) N C°R) and |F(f)(k)| < ﬁ, for all k # 0, and
Ae Rzo, then;

F(@) = limpcsois [yyen FOP)R)EdR

for every x € R.

Lemma 0.35. Let f € C(Rso) and L € C(R-o) be of very mod-
erate decrease, with f and % non-oscillatory, and lim,_,of(z) = 0,

limxﬁo% = M, with M € R, then defining the half Fourier transform

G by;
G(f)(k) = lim,os [y f(y)e ™dy (k #0)
G(L)(k) = lim, oo [y L(y)e Hvdy (k # 0)

we have that G(f) and Q(%) are bounded for |k| > ko > 0, and there
exists a constant G € R~q, such that;

G(NH)] < %

for sufficiently large k.
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Proof. As f is of very moderate decrease, and lim,_of(z) = 0, we have
that f is bounded and lim, ,o f(x) = 0. Similarly, % is bounded and
limw_m% =0. As lim, o f(x) =0, and f is non-oscillatory, we have
that, for k£ # 0, the indefinite integral;

lim, o0 [ f(y)e*dy
= lim, o0 [ [(y)cos(ky)dy —ilim,_ [; f(y)sin(ky)dy

exists. As f is of very moderate decrease and non-oscillatory, we
have that |f(z)| < £, for z > E, with E € R+, and monotone in the
interval (F, 00). Usmg the method of [10], letting K = max(]f||(0,5));
we have that

[lim, oo [, f(y)cos(ky)dy| < KE+( \f T Deos ky Deosthy) gy | 4| f: +nkﬁ'

2lk k|

B+ sin —
<KE+2 <ﬁ+ || —E)+ [, k] D (\ky\(y E))dy

T Dsin(|k|(y—F
<KE+ &5+ " —'y'y D gy

(np+1)m
k|

Dcos(ky)
=Sl dy|)

+1)m
|l'Lm7‘—>oof fy)sin(ky)dy| < KE+(] [ T Din ky d |+|fmk7r‘k| Dsw; ky) g "

E+ sin —
<KE+2 (%_E>+fE %1 D (IkJ(y E))dy

BT Dsin(k(v=B)) 4

<KE+E|k| + J5 " Yy

where ny, = pn(5; + 77 = Ein € Zx0) and my, = pn(f; 2 E:n €
Z>0)

so that;
) " et s B+ Dsin(|k|(y—E
limy oo J; F(y)e™"dy] < 2K B+ 355 2 [ 1 mR=Eldy
s —cos([k|(y—E)) 1 BT TaT B+ cos(|k|(y—E
=2KE+ 3% +2D([—<‘|k\|§f Dy T[T cos( |y<2y D dy)

T B+ cos(|k E
=2KE+ 35 + 2D (gt + wm + Je | )

2Dm oo 1
S2KE+ G+ 2D(E\k|+7r E|I<:| + [ 2 dy)
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2Dm 2 1y

Alternatively, letting F' = max(|f]](0,00), we have that;

(np+1)m
llim, oo [ f(y)cos(ky)dy| < FE+( |f L Fcos(k:y)dy|+|f7k +%w‘k' Fcos(ky)dy|)
2k] TR
< FE+ Fg + %0 —i—fE TFsm (|k|(y — E))dy

4

Bl

E+
SFE+gm+ [y

E+
SFE+ g5+ [p

' Fsin(|k|(y — E))dy

4

B

\\de

Fr s
SFE_’_M—'—W

_ 3Fm
=FFE+ S

(mp+1)m

llim, o0 [ f(y)sin(ky)dy| < FE+ |fE"“‘ Fsin(ky)dy|+| fmk wn Fsin(ky)dy|)

< FE+F(™ —E)+ [, " Fsin(k|(y — E))dy

E—i-‘%

<FE+ L ok + [z "™ Fsin(|k|(y — E))dy

Fr Fr
3Fm
so that

lim, e fo f(y)e™dy| < 2FE + 35 = M,

In either case, G(f)(k) and, similarly, G(£)(k) are bounded, for
k| > ko >0, (%).
We have, using integration by parts, that;

G(LY(k) = lim, oo [] L(y)e Hvdy
= limy o0 ([f (y)e™™]5 + ik f3 fy)e " dy)

2G(f)(k) and g(%)(l{) need not be differentiable or even continuous for k # 0,
but see Lemma 0.33 for continuity on R \ {0} with stronger assumptions.
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= [f(y)e ™5 + iklim, o [ f(y)e *¥dy
= ikG(f)(k)

so that, for |k| > 1

G (k)] < GBI (3

As j—f is continuous, non-oscillatory and bounded, by the proof of
Lemma 0.9 in [10], using underflow, for r € R+, we can find {F,,, G, } C
R0, such that, for all |k| > F,, we have that;

Iy ey < G (v

It is easy to see from the proof, that {F,,G,} can be chosen uni-
formly in . Then, from (%), we obtain that, for |k| > F’;

|g( )( )| < |k| for |k| > F

and, from (1), for |k| > max(F, 1), that;

df
|g(f)(k')‘ < \Q(dﬁcf(k)\ < %

O

Definition 0.36. We say that h : R — C is near analytic if for
any 6 > 0, 0 < e < L, there exists g1 analytic on (e, L), such that
\h(y) — g1(y)| < 0, and for any 6 > 0, —L < —e < 0, there exists go
analytic on (—L, —e€), such that |h(y) — g2(y)| < 0

Lemma 0.37. If [ satisfies the conditions of Lemma 0.33 or Lemma
0.38, then F(f) is near (malytz'c If f satisfies the conditions of Lemma
0.38, then kF(f)(k) and L(kF(f)(k)) are near analytic.

Proof. By the proof of Lemma 0.33, we have that F(f) € C°(R \ {0}).
By the Stone-Weierstrass approximation theorem, we can find a poly-
nomial p, 1, s such that [F(f)(y) —pers(y)| <9, fory € [e, L]. Similarly,
we can find a polynomial p_. s such that |F(f)(y) — p—e—rs(y)| <
J, for y € [—L,—¢]. In particularly, as p.rs and p_._rs are ana-
lytic on (e, L) and (—L, —e) respectively, F(f) is near analytic. The
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same proof applies if f satisfies the conditions of Lemma 0.38. Simi-
larly, in Lemma 0.38, we have that kF(f)(k) € C*(R\ {0}), so that
kF(f)(k) € CO(R\A{0}) and L(kF(f)(k)) € C°(R\ {0}), so we can
apply the above proof again.

U

Lemma 0.38. Let [ satisfy the conditions of Lemma 0.33 with the
2 4
extra assumption that f € C*R), ;lj;, ng, Zi{:, ‘;w{:} are of moderate

decrease, then kF(f)(k) € C*(R\{0}), limy_okF(f)(k) = 0, for any
given € > 0, there exists 6 > 0, such that;

mazx(| [ kF(f)dk],| [ 2ETED gy <

Proof. We have that, for k # 0, as % is of moderate decrease, f is of
very moderate decrease and non-oscillatory, and using integration by
parts;

F(Ly(k) = =1 [ L(y)e ™vdy

(271,) r dx
=Gt 1)%limT_>oo([f e~ R+ Zk:f fy)e *vdy)
= ik F(f)(k)

so that, for k # 0, kF(f)(k) = —z']-"(%)(k). It follows that, using
the MCT, the FTC and the fact that f is of very moderate decrease;

limi—okF (f) (k) = —ilimy_oF (L) (k)

= —oplimie Jp ey
7 d
= - 3 IR é(y)dy

As f € C*(R), we have that 2L € C3(R). Moreover, as { f, £, illj:j;’ fli};
are of very moderate decrease, We have that;

}
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|.f1}' | < CO

@)l = £ +25d <O

d 2 3

208 = 128 + 22 < Gy
3

dd(x5 |32ll:c§ to d:r:4‘ < Cg

2 mﬂ 3
so that {x;ij;, d(dz ), d ((M ), ¢ z(iw3 )} are bounded. By Lemma 0.32,

there exists an approximating sequence g,,, m € N, for a: , with the
properties that;

(i). gm € C*(R).

(). Gonli=mm) = TG =

(660 [rpepppems 1 19m(@)ldr < 2
(). gm‘|x|>m+1 =0

Then f,, = = is an approximating sequence for %, with the prop-
erties that;

(i). fm € C*(R).

(@) fonli—mm) = | mm

@00)"- focparams 2 | fn(@)|do < 55
(i) fmljgjsmy 2 =0

Following through the proof of Lemma 0.33, we have that F(f,,)
converges uniformly to .7:(%) on R\ {0} and .7:(%) € C(R\{0}). As
22 f, = 29, and zg,, € L*(R), we have that F(f,, is twice differen-
tiabfle in particularly F(f,,) € C'Y(R). As f is analytic at infinity, so

is . Moreover, as % is of very moderate decrease, \ | | =g(2)] <

C|z|%, so that 93) hag a removable singularity at 0 and 35 is analytic
at infinity and non—oscﬂlatory We have that, for {m,n} C ./\f m > n,
differentiating under the integral sign, using the MCT, property (zv)
of an approximating sequence, and the fact that :c% is of moderate
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decrease and non-oscillatory, for k # 0, o < |k| < 5;

|df(fm) df fn) ’
dk

= Gotlie Jr FmW)e™0dy = G Ji fu(y)e™™dy

= 1|fR —iy fm(y)e™™dy — [, —iy fu(y)e ¥ dy|

(2m)2

S | Jr(gm = g0) (y)e™™|dy

<Dl +C<k>()

where C'(k) is uniformly bounded in the interval o < |k| < 3, so that
the sequence {df In) e N } is uniformly Cauchy on the interval
a < |k| < B and converges uniformly on R \ {0}. As F(f,,) converges
uniformly to .7:(%) on R\ {0}, it follows that ]—"(%) e CYR\{0}).

As F(f) € L*(R), we have that;

| Jy BF(f)(k)dk| < (fy K2dk)2 | F()|z2r)

/3¢ 2

for & < (1772 )?
We have that % = —iF(gm) and, as 2L € L*(R), by a simi-
lar calculation to (x), {gn : m € N} is a Cauchy sequence with re-
spect to the L*norm, so that % is Cauchy in L*(R). As F is

an L2-isometry, using the fact that the limit - (F( ff; )(k)) is of mod-

erate decrease, by Lemma 0.27 and the fact that xdf and L (z ff; )
are of very moderate decrease and non-oscillatory, we can ignore the
tail and use uniform convergence implying L2-convergence on sets of
the form 0 < ko < |k| < ki. It follows that the pointwise limit
(F(L)(k)) € LAR) and L(kF(f)(k)) € L*(R) as well. We then
have that;

|7 A RF(F) (k) k| < S| L RF(F) )2
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<€

Ve 5
for 0 < <||d%(k.7:(f)(k))HL2(R))3

O

Lemma 0.39. Let f be light symmetrically asymptotic, then defining
F(f) and .7-"(%) as in Lemma 0.27, we have that, for any § > 0, there
exist constants {Cs, Ds} C Rq, such that;

\FR) < 3y + i for [K] > Ds

Proof. The proof is a simple generalisation of the proofs of Lemmas
0.26 and 0.27. U

Definition 0.40. Polars Attempt We say that g € C*(R?) is polar
non-oscillatory if, for 0 < 0 < 7, —w < ¢ < m, we have that, for
Go.6, there exist finitely many point {rigs : 1 < i < n} C Rso, for
WhiCh §9.6|(r, g 5ris10.) 15 Monotone, 2 <1 <n—2, and go |0, ,.,) and
99,¢‘(rn,9,¢,oo) is monotone. We say that g is polar decaying if, for 0 <
0 <m, —m < ¢ <m, we have that, there exist constants {C, D} C Ry,
such that |go.4(r)| < %, for |r| > C.

Lemma 0.41. If g is polar non-oscillatory and decaying, we can define;

]:(g) (E) — 5 1)% limp o fOR fow f:r rzsm(e)g(r, 9’ ¢>e—ir(klsin(@)cas(qS)+kgsin(€)sin(¢)+k3cos(9))drded(
in polar coordinates, x1 = rsin(0)cos(¢), xo = rsin(0)sin(¢), xs =
rcos().

where F(g)(k) = —5 [rs g(T)e FTdz

(2m)3

is usually defined for g € L*(R?).

Proof. We can assume that n is minimal with this property, in which
case, the points {194 : 1 < i < n} C R+ are local maxima or min-
ima, and, as g € C*®(R?3), we have that % (rioste) = 0. By the
implicit function theorem, we can find smooth maps \; : S?(1) — R3,
1 <i < n, such that Im(\;) C % =0and {rigs:0<f <m—7<
¢ < 7} = Im(\). As S?(1) is compact, we have that pr,.(Im()\;))
defines a closed bounded interval I; C mathcal R~y,. Moreover, it is
straightforward to see, as each gy, is a function, that I; N I; = 0, for
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1 <i<j<n Let m=mar(J;«;«, Li)- Then g ¢|(m,) is monotone
and, if M = max(|f||p@,m)): as g is decaying, we have that |g| < M, so
that ¢ is bounded. Let k € R?, with k # 0, then there exists an open
Uz C (0,7) x (=7, 7) with k. (sz’n(@)cos(gzﬁ),sm(Q)sm(gb),cos(ﬁ)) =
Vop # 0, for (0,¢) € Uy. Let foy = r’sin(0)ge., then |fos| < 2, for
r > C, and the same remarks above, apply to fg 4, as to gg¢.

As lim, o0 fo.4(r) = 0, we have that the indefinite integral;

lim'r‘*)oo for f& 5 T)e—z‘r(klsin(@)cos(¢>)—l—kgsm(@)sin(d))+k3005(0))dr

=lim, fOT fo.s(r)e=iroedr
= lim, 00 [ fo.6(r)cos(rvg.e)dr —ilim, oo [y fo.6(r)sin(rveg)dr

exists. As fy 4 is monotone, and |fp4|(r) < £, for r > maz(m,C) =
E, using the method of [10], letting K = maz(|f||p r)), we have that;

E+% COoS( |V rT—
|limp_o0 fOR fos(r)cos(rvgy)dr| < KE+K [g 29,91 Deos(|vo.¢|(r—E)) 4.

T

E++ cos(|v r—
[limR o0 fOR fo.o(r)sin(rvgs)dr] < KE+K |5 .l Deos(lvo.ol(r=E)) ..

r

so that;

i B+ Vﬂ cos(|v r—
limpses [y foo(r)e ™ oedr| < 2K E42K [ 0o Leotlosl=b)) g,

T

=2KE + QKD([M ol fE ol sino.sr=F)) gy.y

[v6,6 r2

+2‘

vg, ¢l sin(|vg 4|(r—FE))
ﬁ [ s g

<2KE+2KD(5 s + [ 72dr)

= 2KE + 2K D(

< 2KE+2KD(§ + %) =N

uniformly, for (6, ¢) € Uy, so that, using the dominated convergence
theorem;

Limp oo fOR fOﬂ J‘j f(r,e’¢)e—ir(k1sin(9)cos(¢)+k2sin(Q)Sin(¢)+k3cos(9))drdedqj
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exists, and;
|limRaoo fOR f07r f_ﬂﬂ f(r’97¢)e—z’r(kqsin(@)cos(¢)+k2sin(@)sin(¢)+k3cos(0))drdrded(b‘

< [T T | (limpeo [y f(r,0,¢)dr|)d0de
< 2N7?

U

Definition 0.42. Cartesian We say that g € C*(R?) is Cartesian
non-oscillatory if, for (z,y) C R?, there exist finitely many point
{Ziay 1 <1 < n} C R, for which guylc, ., , 2., i monotone,
2<i<n—2, and goyl(~c0,21.0.,) N G yl(z.0..00) 1S MONOtONE, AN, fOr
fized (x,y) € R?, with (z,y) # (0,0), the ordering of {Grary(Zirery) :
1 < i < n} changes, uniformly in (x,y), at most a finite number of
times, with r € R. We say that g € C*(R?) is slightly decaying if
there exists a constant C' € R~o with |g(T)| < %, for |z| > 1.

Remarks 0.43. The components of a causal field E, obtained us-
ing Jefimenko’s equations, are slightly decaying (and Cartesian non-

oscillatory?) if the charge and current (p,J) have compact support.

Definition 0.44. We say that f : R — R s analytic at infinity, iof
f(%) has a convergent power series expansion for |xr| < €, € > 0. We
say that f is eventually monotone, if there exists yo € R~o such that
Flcoo—yo) and f|oeo) are monotone. We say that f : R® — R is
analytic and analytic at infinity, if;

(i). f is analytic on R3.

(1) f(22, ygo, %) has a convergent power series expansion for |T| <
E(Io,yo,ZO)f E(xo,yo,ZQ) > 0; some (xO S Yo ZO) S P2(R), where T =

(Zl?,y,Z), Zo 7é 07 Yo 7é 07 <0 7& 0.
(i11). For every linear transformation T of R3, (i), (ii) hold for foT.
We say that f is analytic at infinity if (i3) holds and (iii) with the
restriction that T' € O(3), the orthogonal group.

Lemma 0.45. f : R — R is analytic at infinity iff [ extends to
f: PY(R) — R analytic on an open neighborhood of the point at in-
finity. f : R® — R is analytic and analytic at infinity iff f extends
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to f : P3(R) — R such that f is analytic on P3(R) and constant
on PP(R)\R3. f:R>— R is analytic at infinity iff f extends to
f:P3(R) = R such that f is analytic on an open neighborhood U of
P3(R)\ R?® and constant on P3*(R) \ R?.

Proof. The first claim follows by observing that if f is analytic at in-
finity, we can extend f to P'(R by defining f(co) = ¢(0, where g is
the analytic power series for f(2). On the chart [1 : w], we have, for
w # 0, that f([1: w]) = f(5) = g(w), and for w = 0, f([L : 0]) =
f(00) = g(0), so f is analytic in a neighborhood U of the point at
infinity. Conversely, if f is analytic, then f(1) = f([1:1]) = f([1: 2])
is analytic on a neighborhood of 0.

Secondly, observe that if (i7) is satisfied, then for a pair (z(, vy, 2(),
(5130790, ZO)’ with [[‘6 7& 07 y6 7é 07 Z(I) 7é Oa Zo 7£ 07 Yo 7& 07 20 7é 07 then;

limw—)Of(%a 1%07 ZEO) = limw—)l)gxozlxg (wa w, w)

= YGxoz122 (Ov 0, 0)

!/ /
Ty Y

limwﬁof(aﬁ,ju_é) = Lim_so f (2020 Yoo Z20)

wxo ’ wyo } wzo

— llmw—>0f( 0 yia Z%O)
Ve Yy e
z Yo 2
- lzmw—)OQatox1x2 (w_Za w%a wi)

= gIOCL‘lIQ (07 O? 0)

so that f has a well defined limit at [xo : yo : 2o : 0] for any triple
zo # 0, yo # 0, 29 # 0.

By (iii), the same is true for foT', where T is a linear transformation,
so that f has a well defined limit on P?(R) \ R* and we can define an
extension f : P3(R) — P3(R) which is constant on the boundary. We
have, by (i), that, for w # 0;

Ty oz ow) = f(5. 2, %)
=G = =)

El=
@\él»—t
N\Sl»—t
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= 9111(w7 %7 %)

and f([1:y:2:0]) = ¢111(0,0,0), so that f([1:y: 2z : w]) is analytic
for y # 0 and z # 0. It follows that f is analytic on the set U \ Z where
S=(X=0)U(Y =0)U(Z =0), where U is open in P3(R). Similarly,
by (#ii), foT = foT is analytic on V' \ S, where V is open, so that
£ is analytic on T=4(V) \ T71(S). As the sets U \ T(S) for U an open
neighborhood cover P3(R)\ [0:0:0: 1], it follows that f is analytic
on P2\ [0:0:0:1]. By (i), f is analytic on P3(R). Conversely, if f
is analytic on P3(R), constant on the boundary P3(R)\ R?, let f be
its restriction to R3. Obviously (i) is satisfied. Choose (g, yo, 20) with

3507&07903&07ZO?’éOathen;forl'?éO;9#0727&05

(

,2) = f([voyz : yorz : 2wy @ 2YZ])

~~

8|8
<[5

)

I
|

(L : 500 © 20a% * Zauel)

J(L: ey 202 2)

— (M Z0Z i)
9 zoy’ oz’ To

where g is analytic. So that f(%2, % 20) ig analytic for z # 0, y # 0,

)y’ z i
z # 0. We have that, for any linear transformation T' of R?, f o T is
analytic, so that;

foT(%, 8, 2) = [t +t) + 113 1 %2 + 102} + 1232,

t3172 + 7532% + t33%2)

:f(t11$0y2+t12yorz+t13201y ta1zoyz+tooyorzttaszory t31w0y2+t32y0x2+t3320$y)
TYZ ’ TYz ’ Yz

= f([tuwoyz + tiayorz + tizzomy : toarToyz + tasyor2 + tagzowy -

t31T0yz + taayorz + t3zzoxy : TYZ))

— 7([1 . la1woyz+iaoyoxzttaszoxy . l3120Y2z+i32y0x2+t33202Y . TYZ
" tiiwoyzttizyoxrzt+tizzory © tiiwoyz+tizyoxrzttizzory T ti11xoyz+tizyoxrzt+tizzoTy

which is analytic for t;;x0yz + tioyorz + t13207y # 0, and consider-
ing the other charts, analytic for toyxoyz + tooyoxrz + tazzory # 0 and
t3120yz +t30y0xz + 33200y # 0, which as T is invertible occurs if yz # 0
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xz £ 0, zy Z0iff x £0, y # 0, 2 # 0, so that f(%,%o,%o) is ana-
Iytic if T7'(x # 0), T (y # 0), T~*(z # 0), and as T was arbitrary,
J(=, =, %) is analytic except at (0,0,0). By complexifying and using
Laurent series, using the fact the limit at (0,0, 0) exists, f(*2, %O, 2)is
analytic. So (i) holds. We can verify (iii) by verifying (ii) for f o T,
which we can do by repeating the argument for (i¢) and using the fact

f oT is analytic. The second claim is left to the reader.

[l

Lemma 0.46. If f : R — R, f # 0 is analytic and analytic at infin-
ity, then it has finitely many zeroes. If f : R — R, % is analytic and
analytic at infinity, and f # ¢, where ¢ € R, then f is non-oscillatory.
If f: R — R, f is analytic for |x| > a, where a € R>q, analytic at
infinity, and f|z>a # 0 then f has finitely many zeroes in the region
lz| >a+1. If f: R = R, % is analytic for |x| > a, analytic at
infinity, and f||x|>a =% ¢, where ¢ € R, then f is eventually monotone.
If f: R® = R, f #0 is analytic and analytic at infinity, then, for any
line | C R3, f|; is either zero or has finitely many zeroes, moreover
the number of zeros is uniformly bounded, independently of the choice
of l. If f : R® = R, % 18 analytic and analytic at infinity, and if
% # 0, then, for (y,z) € R?, f,. is non-oscillatory. If f : R* = R,
% is analytic for |Z| > a, analytic at infinity, and %|Ifl>a £ 0, then,
for (y,z) € R?, f,.. is eventually monotone. A similar statement holds

for g—};, %}, with f,. and f,, replacing f, . respectively.

Proof. For the first claim, suppose that f has infinitely many zeroes.
Then we can find a sequence {y;;i € N} with f(y;) = 0. If the se-
quence is bounded, then by the Bolzano-Weierstrass Theorem, we can
find a subsequence {y;,; k € N'}, with f(y;,) = 0, converging to y € R.
By continuity, we have that f(y) = 0 and y is a limit point of ze-
roes. As f is analytic, by the identity theorem, it must be identically
zero, contradicting the hypothesis. If the sequence is unbounded, then
we can find a subsequence {y; ;k € N}, with f(y;,) = 0, such that
limg—oo¥i, = 00 Or limy_0oy;, = —00. As f is analytic at oo, we can
find € > 0, such that f(y) = 0 for |y| > 1. By the identity theorem
again, f is identically zero, contradicting the hypothesis. It follows that

f has finitely many zeroes. For the second claim, as < # 0, by the

dx
first part, there exist finitely many points {1, ..., y,}, with % v =0,
for 1 < i < n, and with y; < 941, for 1 <7 < n — 1. In partic-

ularly, we have that f|_ocy); flyn,co) and f is monotone for

(Yi>Yit1)
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1 <7 <n-—1,sothat fis non-oscillatory. For the third claim, suppose
that f has infinitely many zeroes in the region |z| > a+ 1, then we can
find a sequence {y;;i € N'} with f(y;) =0 and |y; > a + 1. As above,
if the sequence is bounded, we can find a subsequence {y;,; k € N},
with f(y;,) = 0, converging to y € R, with |y| > a+1 > a. As
f is analytic for |z| > a, by the identity theorem, it must be identi-
cally zero in the region |z| > a, contradicting the hypothesis. If the
sequence is unbounded, by the same argument as above, f must be
identically zero in the region |x| > a, contradicting the hypothesis.
It follows that f has finitely many zeroes in the region |z| > a + 1.
For the fourth claim, as %|Ifc|>a % 0, by the first part, there exist
finitely many points {yi,...,y,}, with %|yi =0, and |y;| > a+ 1, for
1 < i < n. Choose yg > maxi<i<n(|yi]), then %‘Irbyo # 0, so that
fljz|>yo is monotone. For the fifth claim, we have, by Lemma 0.45 that
f extends to f analytic on P3(R), constant on P3(R)\R®. If [ is a
line in P3(R) such that, without loss of generality, [ N'R? # (), passing
through p = [€g : €1 : € : 1], we can choose a chart U centred at p, with
the line [ corresponding to = y = 0 and such that f is analytic on U,
defined by a convergent power series ZZ k>0 aijrr'y’ 2. Substituting
x =y = 0, we obtain a convergent power series on [ N U, so that f|,
is analytic at infinity. By a similar argument f|; is analytic, so that
by the first claim, f|; is either zero or has finitely many zeroes. For
the uniformity claim, let Z be the zero locus of f and consider the
relation R C P?*(R) x G13(R) given by R(z,l) iff z € ZN1, where Gy 3
is the Grassmannian of lines in P3(R). By the previous proof R is a
generically finite cover of Gy 3(R), with fibres possibly equal to P*(R).
Using the method of Lemma 0.19, we can apply Weierstrass prepara-
tion and compactness to get a uniform bound. For the sixth claim, the
first part is proved in Lemma 0.197, 8%—0;0 is given by the restriction
of g—i to the line y = yg, 2 = zp, so by the previous claim, has finitely
many zeroes. For the seventh claim, the restriction of % to lines [ is
analytic at infinity, in particularly, by the above, it cannot have an
unbounded infinite sequence of zeroes so f, . is eventually monotone.

The last claim follows by symmetry.
O

Definition 0.47. We say that g : R® — R is of very moderate de-
crease, if, there exists constants C' € R~ and s1R~q, with;

o}

9@ < |

El
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for|z| > s, TER?

We say that f : R? x R — R is of uniform very moderate decrease,
if, for allt € R, there exists a constants D € R~q and s € Rg, uniform
i t, with;

f@ Ol < &

[z

for|z| > s, TER?

We say that f : R x R — R is of very moderate decrease, if, for all
t € R, there exists a constants D € R~y and s; € Ry, with;

f@ )l < &

[z

for |z| > s, T € R?

Lemma 0.48. The components of the causal fields E and B, obtained
using Jefimenko’s equations, are of uniform wvery moderate decrease
and analytic for || > r, and analytic at infinity, if, first, the charge
and current (p, J) are compactly supported and uniformly bounded with
t € R on a volume V C B(0,w), where w € Rwq, secondly, the charge
p and the components j; of the current J, for 1 < i < 3, are smooth
and,third, the charge p and the components j; of the current J, for
1 <@ < 3 are analytic in t. If the initial conditions py € S(RS),%\tzo €
S(R3), with p defined on R* by Kirchoff’s formula, then p € C*°(R*)
and if py and %|t:0 have compact support, then for t € R, p; has
compact support, in particularly p, € S(R®). If the current J is defined
as in [14], with the conditions in the last clause, then, after subtracting
a harmonic, time independent, current Jo(T), the components j; €
C>(R*), 1 <i <3, and for each t € R, ji; has compact support and
Jir € S(R?). Suppose that the charge p, obeys the wave equations on
R, with the current J defined as in [14], and with the initial conditions
po € S(R?’),%h:o € S(R?) and with compact support. Then the fields
{E, B} are well defined by Jefimenko’s equations, as a limit of fields
{(Ew,By) : w € Rug,w # c} and the components are of uniform
very moderate decrease. If the components of the initial conditions
po € S(R?) and %hzo € S(R?) have compact support in B(0,w),
w € Rso, and the partial derivatives {% (1,7, k1) € Zéo} are
analytic in t, then the fields {E, B} are analytic for |T| > w, uniformly
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int, and analytic at infinity. If the components of the initial conditions
po € S(R?) and £ L|—o € S(R?), then the above results hold without the

compact support clazms, and if {po, (%)0 are analytic, then the fields
{E, B} are analytic for |Z| > w, uniformly int, and analytic at infinity.

Proof. For the first claim, we have that;

B 1)) = gl 8t ar + [, g — [, At

< 47r60 fv e ,|2dT —i—fv i ,|dT ~|—fv c2| /‘dT)

47r610|ﬂ (fv \rCllT||2d + fv c|C7’2|:‘ dr’ + fv cszlrr dr’)

47r610|ﬂ (Jy Cl||f f/Hl'd + [y CQLTT—??W"Z + [y %d ’)

< 47reo|'r fv = '|dT +fv |*Cl|j| dr’ +fv C2d7_/+fv c%lr*"\dT +fv Gar’

+ fV cgilrj’|d7
< 47relo|ﬂ (Jy %dT/ + [y %dT’ +Jy %dT’ + [y %dT’ +Jy %dT’
+fv C’gwd )

vol(V)
— Admeo|T|

<01+C1+Cz+02+ + & )

alll~

where {C},Cy, O3} C R+ are uniform bounds for {p, p,|J|} on V,
7| > 2w and;

D = vV )(201+202+203)

4meg|

We have that, for 1 < i < 3, |e;] < [E| < £, for [F| > 2w, so the
components of E are of very moderate decrease.

We have, following the method above, that, for |F| > 2w;

B(r.t) = g2, Hkar + f, 2ethar

c|F—T
Lo(f, ‘,C,, dr’ +fv T /|d7')
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<

=il

where C; € R~g is a uniform bound for |7| on V, [F > 2w, and;

E = #OU;TZF(V)(ch + 204)

Again, we have that, for 1 <i < 3, [b;| < |B| < £, for [F| > 2w, so

the components of B are of very moderate decrease.

For the second claim, expand in coordinates (x,y, z) around a point
(20, Yo, 20), With |To| > w, and |T —Ty| < w. Then, using Newton’s
expansion;

_1 n
(L+y)=2 =300, EClyn 1y <1

- _ =
and the fact that if |7 — 7| < w < M , then |7 —Tp| < %,
so that;

|z—%o|2 2(x—T0)«(To—T7") |[Z— xo\ (T—=0).(To—T7")
||ngF’|2 + [Zo—7"|2 | < [Zo—7" +| [Zo—7"|? |

1 2|T—7o|
<3t Fm

1 1 _
< 2 + 2 1
it follows;

]1 7 t'r /

471'6() V elr—7 d
— f A tr) /
= i

a V' e2((w—r))24 (y—rh) 2+ (s—74)2]2
_ j‘l(FlvtT) /
_47r60fV2 1\2 7\2 /Q%dT

A[(z—zo+wo—71)?+(y—yo+yo—75)*+(2—20+20—73)?]

_ 1 f 1 tr) —dr’

dmeo IV 2|52+ 70— |2+2(F—T0)-(To—F')] 2
_ 1 f 717 tr) d+'
= — = T

4 — 2 7L

meg JV 2[zo—7|[1 +|\z¢ x0|‘2+ (T ‘58)7(32& 7 )]2
_ GRS, oo (=D"(2n)!/ [7—70l? 2(—70)-(To—T') \n\ -/
- 47r6002 fV [To—7| <Zn=0 2] (\EO—F’P + [To—7"|2 ) )dT

We have that;
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7/ T n(2n)! , [T—ZT0|? T—20).(To—7"
fv A te) ((=D™(2 )'(L 9,||2+2( 0)(/0 ))n)|d7_/

[Zo—T7" 2mn) [Zo—T |Zo—7"|2
Tt n (‘ZO w)2 n—m 2(‘50‘_10) m
S 2"%' fV |]|1EQ| Izm OC ( |x0| w)2> ( fojw ) dT/
- 2”n' fV ljﬁs(:—tr)' Zm OCn(lﬁ)n m(%)de/
S 2"n' |:c0| w) fV ’]1 7 t )’(%)ndT/
< Cl(2n)!(ﬁ)”

27nl(|To|—w)

and, using Newton’s expansion;

_1 S ' 'n
(1—y)2 = 02, Sy, lyl < 1
we have that;

ZOO 01(2”')'(%)” . Cq 1 4C1

n=0 2 nlfEol—w "~ [Rol-w (29~ Vi(To|-w)

so that, applying the DCT, we have that;

IGRD P,
47reo V 2r— r’|dT

o0 n T r T—T 2 T—T T 7,,/ n
ano 2n7§'2 fV J1 ,t ) | 9,' 4 2(z—o). (/‘% )) dT’ (T)

|Zo—7" |zo—r |2 [Zo—T

T 4mepc?

and integrating the coefficients of (1 — 1 ,0) (22 — 9,0)? (x5 — 73,)"
(i,7,k) € Z>0, in the expansion (}), to obtain constants a;, € R,
(4,4, k) € Z3,, we see that the series;

D igmezs, k(T — T10) (T2 — @20) (23 — 230)"

is absolutely convergent for |T — Zy| < m

For the third claim, assuming that {z, vy, 2, T, yo, 20} C R\ {0}, we
have that;

1
(20 =12 (2 —rg)?+ (22 —r})]2

T‘ T‘
mo[(1- Ty (02 e 2. (202 Tatyayd

J— X
- 2r! 27 2r! /|2 1 (A)

woll+a[-TL-22(5) (G -32 z)(zo)HxQ( = )+(2 (522 (£)2(3)2)2
0
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- 7 y/ 7
yol(50% — T¥)2 (1-T2¥)2 (202 - a2y 3
- ’"/2 2T1 z0\_ 25y oy 201712\, (2202 y2z02l(B)
woll+(—= 52 = LG - TR (G2 G0+ (12872
 ol(H0E - Ty (s Ty (1 T2
= rh = = O)
2ol a(— 2 (2)(20) - 2 (2)(0) 4212 ) (20220 )2 4 (2)2 (20 )2] B (
0

If0<e<l and[Z] <V1—¢lft]and [Z] < /][ then

alwy,2) = (GPE+ ()3 <1

and if;
|x| < min(m\'@;—a, ‘xo‘l(gluja))
then, in (A);

T T r 7|2 T z z
a2 ) - B @)+ () + ()PP + () (2) <1
(D)

Similarly, if 0 < § < 1, and [£] < V1 —6|2| and |£| < V/§|2], then
Bla,y,z) = (£)°(32)* + (1)*(2)* < 1
and if;

|y| < min(|y0\|[\/ ﬁ’ |y0\1(2w ))

then, in (B);

and, if 0 < 0 < 1, and |2 < VI —0]2] and |2] < v/6] 2, then

e z) = () + () <1
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and if;

2] < min('z(’\%ju_e, IZO\l(Qlw—G))

then, in (C);

In case (D), we can expand (A) using Newton’s theorem, as;

T 00 —1)"(2n)! 2r 2rh o 2l Ny 2 7|2 -
2 5y G w2 a2 () - Zh(2) (20 0(TR) (2)2 ()2

= Zz‘+j+k20 aijk$i(§)j(§)k
with [2] < V1 —€|f2] and [Z] < /€[ 2], (*). If [z[ > 21 > 0, then if;

ol | 22

lyl > 4=
implies that;

1| 72|

|y|>ﬁ

and, for m € N, we can obtain an expansion of i in the region;

m\;’j—ol mwll%ol
s <yl < =

21 (14m)| 2|

by noting that, with ¢ = — ly — ¢| < ¢, so that;

1 _ 1 _ 1

y ety 1429

= % Zf:o(—l)"(ny)

1 (1+m)| 2 |

_ 1 ZOO (_1>n (y—( i« )
21 (1+m)| g0 | £=<n=0 oy (14+m)| 70 |

Vi i )

n

n
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In case (F), we can expand (B) as;

es] —1)™(2n)! 2r 2r ;r 2! 2 7 "
e S (=5 =T G = G+ () + (P ()?

- Zz‘+j+kzo b”kgf(%)ﬂ(%)’f

with [2] < T —0]2] and |¢| < V0|2

In case (F'), we can expand (C) as;

5 T SR E RO - HE )2 () (e
Py

= D i4j4k20 %kzl(f‘;)](i)k

with 2] < VI=0]2] and |2| < VB2

For the fourth claim, suppose the initial conditions py € S (R3),%§\t:0 €

S(R3?), have compact support, with p defined on R* by Kirchoff’s for-
mula;

For t > 0;

P(T.t) = sz [ en (t9@) + po(@) + Dpo(@) « (7 — 7))dS(7)

and, for t < 0;

P(T.1) = iz Sy 19@) + p0(@) + Dpo(y) - (7 — 7))dS(y)
then, see [?] and the construction in [14], we have that, for T € R?;
limy04p(T, 1) = p(T,0)

limy o+ 2(%, ) = 9(T)

limt—>0+p(fa _t) - p(f, O)
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Limy o4 %2(T, —t) = —g(T)
where ¢((7)) = %h:m so that;
limio_p(7,1) = (7, 0)
limtﬁo,%(f, t) = limy_o4 — %(E, —t)
=——y9(®)
= 9(T)
In particular;
lime op(T, ) = p(T,0)
limy2(z,1) = 9()
Using the fact that py € S(R?), g(T) € S(R?), the transform method,

see Lemma 0.4 and uniqueness of the wave equation solution, given the
2 initial conditions, we have for t > 0;

zkct TN\ —ikct\ JikeT 1.
p(E1) = Shg Jea b(R) + d(R)e— )
p(f o fRd eiket 4 - (k) —zkct)ezﬁfd_ (X)
where;
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see also earlier in the paper, so that, for ¢t < 0;

p(T,t) = ﬁ Jros (b7 (k)= + d~ (k)e'*!)e EEGE (V)

Differentiating under the integral sign in (X'), we have that, for t > 0;

ititkp T\ ptkc : T\ ,—ikct\ ik JT.
ajzaTag( T, t) = - )2 L [ (k) (iko)? (i3 ) Rb(K) €™+ (ikey ) (ik ) (iks)*d (k) et et

where (ik; ) (ik)? (iks)*b(k) € S(R?) and (ik;)*(iks) (iks)*d(k) €
S(R?), so that;

. gititk —
lzmtﬁoJr Ox'0yI 0z (ill', t)

= l’Lmt_>0+ fR3 Zk'l (Z]{ZQ) (Zk?g)kb(E)elkCt—l-(lkl) (Zk'Q) (Zk‘g)kd(

=
\_/
@
<
=
]
S~—
Q)
.
ol
8
Q.
N

= ng Zk?l Vi(iko ) (iks)Fb(k) + (iky )i (iko)? (iks)*d(k))e T dk

(2m )2
= ng (iky )i (iko ) (iks)* F(po) (k) e*= dk

i+j+k _
= aﬁaﬁ"—k(w’ 0) (X)
Similarly, differentiating under the integral sign in (Y), using the
fact that b= (k) +d~ (k) = F(po)(k);

. 8z+]+k _ gititk —
llmt_m W( t) W(m70) (Y/)

and combining (X)', (Y)’, we obtain that;

. 3i+j+k2 3z+3+k2
lzmtﬁo 0xOyI OzF (Q? t> 0xOyI OzF (:C’ O)

By a similar argument, differentiating under the integral sign, and
using the facts that b(k)ikc—d(kike = F(g)(k) —ikeb™ (k) +iked™ (k) =
F(g)(k)’ ogititk+1 32+J+k

limeso gyrgyranan (T:) = pripoer (5 0)

Similarly, using the fact that py € S(R?), {b(k),d(k)} c L*(R?), so
we can apply the inversion theorem, we have that;

. pitith+2,
limiso+ gyrgyipana (T:1)
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=iy oy fm (iky ) (k) (ks ) (—k2c2)b(R ) e
+(iky)! (zk2> <zk3> (—k2c?)d(k)e~ ) ehTdk;
= T Jra (ih0) (i) (iks)* (= k2¢2)(b(k) + d(k))e™ dk
= T Jra () (k)" (k) (—K2e2) (F (po) (k) e

alJrJJrk N\ (T pikeT T,
- 271_)? f’R?’ 8x’8y782p0 )(k) dk

2az+y+k (po)
=c 0xOyI OzF (33')

and;

, Gititht2, .\ 9itith2y2(pg) —
lszﬁO—m(x t) = W(‘E)

As pliso, pli<o obey the wave equation, so do the partial derivatives

gitithtl )
m|t>o, so that, for [ > 1, [ even, t # 0;

oititk+l gititk
s lio = (V)2 (g o

and, for [ > 1, [ odd, t # 0;

3i+]'+k+l _ -1 al+3+k+l
axzayaazkaﬂ|#0 c! 1(V2) ? (axlayﬂazkat”#o

and, using the above, for [ even;

. oititktlp@t) o oyL o 9tithp
llmtﬁom =cC (V ) (axzayjaz )

and, for [ odd;

. itItEH T ) 1, _o\izl, gitithg
lzmt—mm d (V ) 2 (8ri8yj<9zk)

In particularly, as all the partial derivatives of p extend continuously
to the boundary ¢ = 0, we have that p € C*°(R*), and the wave equa-

tion is satisfied at t = 0, %29 = 2?2 (p), (*). By Kirchoff’s formula,

3 It is relatively straightforward calculation to check, using the integral repre-

2
sentation of a solution to the wave equation, /2(f) — C%%Tf =0in R? x [0,00),
GititRtl g, i gitithtly

generated by the initial data (g, h), that lim: o4 5 5757087 = Cavak: e 2

. . itk i1 myitgktl
for 7 even and that llmtﬁo+m = (C \V4 ) W for 7 odd. By

uniqueness of the wave equation with specified initial conditions (g, h), the same
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must be true for Kirchoft’s representation. The same result holds for the backward
wave equation with initial data (g, —h), so the limit of the partial derivatives is
same for ¢t > 0 as t < 0. We have, if;

p(@. 1) = grimz Jspe.en (t9() + po(@) + Dpo(®) - (7 — T))dS(H) (t > 0)
p(@.1) = tmez Jspi—eny (t9(@) + p0(@) + Dpo(y) - (¥ — 7))dS(y) (t < 0)
Then, for t > 0, p(T,t) = p(T, —t) iff;

ez Jsp.ent9@) + po(@) + Dpo(7) « (¥ — 7))dS(7)

= tre Jspm.en (F19(F) + po(¥) + Dpo(7) « (¥ — 7))dS(3)

iff o S, 2090)AS (@) =

iff [5p0.00 9@)dS (@) =

iff g() =0

as if g(g,) # 0, without loss of generality, by continuity, we can choose t5 > 0
sufficiently small with g|sp(,.ct) > 0, so that f5B@o cto) 9(m)dS(y) >0

and, for t > 0, p(T,t) = —p(T, —t) iff;

T Jsnmen t9@) + po(@) + Dpo(7) - (7 — 7))dS (@)

= 1 Szt (t9F) — po(T) = Dpo (@) - (7 — 7))dS (@)
it = S5m0 2100(@) + Dpo(@) - (7 — T)]dS(H) = 0
i [y .00y [P0 (@) + Dpo(@) « (7 — T)]dS(7) = 0

HE [y ey OIS @) + t [ oy V(p0)  dS =0
[y er) PO@AS @) + ¢t [ o0y div(7(p0))dV () = 0
HE [ty PO@AS ) + ct [z ) 7 (p0)dV () =

iff po(y) =0

as if po(7y) # 0, by continity, without loss of generality, there exists € > 0, such
that, for sufficiently small ¢q;

f5B(§O,ct0) po()dS(y) > dmec®t?

and, if M is a uniform bound on 72(pg)
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see [4] and [14] and the above, we had for t > 0;

P(T1) = 157 fy im0 (L9(5) + 0(7) + Dpo() « (7 — 7)dS (D)

and, for t < 0;

P(@1) = e Jsp—ay(t9(@) + po(@) + Dpo(y) « (7 — 7))dS ()

In particular, for fixed tg € R, as py and g have compact support, we
can see that 0 B(Z, c|to|) N Supp(po, g, Dpo) = 0, for |To| > Cy,, where
Ci, € R0, so that py, has compact support as well. As p;, € C®(R?),
we then have that p,, € S(R?).

For the fifth claim, with;

J(@,t) = —c? f V(p)ds

see [14] for the existence of the integral. We have, differentiating un-

der the integral sign, and using the fundamental theorem of calculus,
that, for (i, j, k) € Z3,;

gititky 2 Qititk+1,
0x'Oyiozk f L) 8x1+18y16z’“ ds <Z)
G g gttty

Oz 0y 0zk ot Oz +t19yi 9zk

and for [ > 2;

IRty o grtithil

Ox0yI OzF Ot Oxit10yiozkotl—1

As (%)0 € S(R?), and (%Zgﬁg—k satisfies the wave equation on
R*, by the proof in [14], we have that the integral (Z) is well defined.
Then, as p € C®(R*), we have that j; € C(R*). A similar argument

shows that the components {js, 73} C C*(R*). By the fundamental

_ AMrmcttd
|cto fB@O,cto) V2(po)dV ()| < =5

1
. . 2,92 AMmcttd 3 2 . (35)5
so that, if 4rec®ts > —5—2 iff 135 > 1§, we can choose 0 < tg < Ao 1o
obtain;

f5B(§079t0) PO( )dS( + cto fB (o ctg)v (po)dV( )

In either case, we can reflect a solution for ¢ > 0 to obtain a smooth solution on
RA.
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theorem of calculus, we have that;

aJ

5 =—cv(p)

By the previous claim, for ¢y € R, py, has compact support, so
that (/(p))s, has compact support and (%), has compact support. It
is clear from the above that the compact support V; of p; and (7(p)):
varies continuously with ¢, so on the interval (tg—e, to+€), (%)|(t0_67t0+6)
has compact support W, . in R*.

J satisfies the wave equation on R*, as, using the fundamental the-
orem of calculus and the fact that s7(p) satisfies the wave equation;

() = (D) + 55

t

= ([ ((p))ds) + L (—c2 ey

2
_62(fjoo _c%aavﬁ(p)ds) _ ovip)

Il
<l

By the connecting relation;

Vot g =0

we have that % vanishes outside Supp(p;), and for any 7 € R3, there
exists two uniformly bounded intervals [t1z —,toz ], [t1z+,t27.+], for
which T € Supp(pt), for t € [t1z_,tez -] U [tiz+,t2z+]. Using the
fact that Supp(p:) is moving and v/(p) satisfies the wave equation, so
uniformly bounded, we can define;

7 =\ _ f(t2z— OJ toz,+ 0
JQ(ZE) = th 2 Edtﬁ— j;ﬁ,f,—l- Edt

=7 %—zdt (the ultimate value of J(T,t))

with J, bounded. On any ball B (6,_7"), we have that J — J, even-
tually vanishes, and, as div(J) — div(Jy) = 0 ultimately on the ball,

and div(J) = —%§ = 0, ultimately, otherwise charge would build up,
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we have that div(Jg) = 0. It follows that (p,.J — J) satisfies the con-
tinuity equation., and the linkage relation;

(7J -0

Ve -+ C2

is still satisfied, as J, is time independent. On any ball B (0 ), Wi
have that ultimately J — Jo = 0, so that, as (1*(J) = 0 and J, is tlme
independent, ultimately;

V3(Jo) =2(Jp) =0*(J) =0

and J is harmonic. As the components 7 (p);, for 1 < i < 3, satisfy
the wave equation, we have that that there exists constants C; € R,

for which | 7 (p):(Z, t)\<‘ct| for 1 <1 < 3, so that;

|7 (p) (3, )| < LA

It

and;

[Jo@)| = | [;277 =7 (p)dt + [*7 = 7 (p)d]

tlz

< A(taz— —tiz—) + (ezs — iz )l V (Olit1s— tom Ults— tom]]

C24C2+402 \/C?+C24+C?2
2 1 2 3 2 1 2 3
<Atz —tiz- )Tt (tea s —tia)
‘ 1,1,7‘ ‘ 1,z,+|
< &
— |z
as the intervals [tz —,t2z |, [t1z.+,t2z+] are uniformly bounded,

and the hitting times {t1z _, %17} are proportional to the distance 7.
It follows, as bounded harmonic functions are constant, that Jo = 0,
and J has compact supports.

The same results hold for w # c¢. If w # ¢, using Jefimenko’s equa-
tions, we can prove the existence of fields (E,,, B,,), for which the com-
ponents depending on .J,, have compact Support at time ¢, the support
increasing as w — ¢ and uniformly bounded. 7 obeys a wave equa-
tion (with speed w)?. Also true that if (E, B) are defined from (p, J),

using Jefimenko’s equations, then (%’f, %]f) are defined from (5§7 %‘t] )

using Jefimenko’s equations, provided the causal solution exists.
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For the sixth claim, following the method of [14], and the results in
this paper, we can construct charge and current configurations (p,, J.)
for w € Rsg, w # ¢, such that (02 (p,,) = 0, 32 (J,) = 0, V(p)+5 2L =

w? ot
0, 5§ = — 7 .J, with the same initial conditions (f, g) and support V.
All the arguments for charge and current we have used for ¢, hold in
the case w # ¢, being careful to replace ¢ with w in the definitions. In
this case, the fields (E,, B,) generated by Jefimenko’s equations are
well defined for ¢t € R, with respect to charge, as, for given 7, the locus
of {z : B(z,wt,) NV # (I} is bounded, because wt, = w(t — @)
contains the factor ¥ # 1, and for current, a similar idea, the proof be-
ing the same, as the current obeys the wave equation and has compact
support, receding at speed w. Then, we have that (py, Ju, Ew, By)

satisfy Maxwell’s equations. If we use Kirchoff’s formula for 22, with

initial conditions (%[, ‘322’; 0) = (2o, —2(7%p) o) "
R@ 1) = 1w Jypmen (L5E10) + 500+
D(3¢10)(@) « (7 — 7))dS (@) (¢ > 0)
%(57 t) = frow féB(E,—ct)(tthP o) + %b@)
+D(%10)(®) « (¥ — T))dS (@) (t < 0)

We then have, using Jefimenko’s equations;

|

(7 tT 1 dp 77| (r1—7]
47reo fV [7F— dT/>1 T dwey JV Bt t c )c\rl rl\Qd /
[F—7 |\ 02p (— Ap (—
47!'60 fV W f(SB(r c(t— [7—7 \))(t c )(aTg)(ya O) + a_i(y7 0)

+D(2)(7,0) . (7 — 7)|dS(7) “‘f‘fl’dr'

c[r—7'|2

1

—T o2 Op [—
+47r60 fV dme? (t— IT=7'1 r\ f5B(r ,—c(t— |T i ))(t_‘ c )(d_p)<y70)+a_f(y>0)

+D(3)(,0) « (7 — 7)]dS(7) = ’"1,3d7'

7"

We can use then use the asymmetry (ry —ry) rp = 0, 7/ = —7f,
together with the symmetry, in the integral;
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fzSB e(t— =1 i ))((t_ L )( )(y f(;B oft— 2= r\))((t—

[r—7|

T><62§5>>< 0)dS(y) (t = 0)

and vanishing in the integral of féB(F’ (- E=T) D(210)(7) - tzdS ()

for large 7, see Lemma 0.49, and the W decay in the re-

maining term, to show that 1.y _e(pw, Juw, Ew, By) exists and define
(per Jer Be, Be) as limye(pw, Juw, Bw, Bw), for the original charge and
current combination (p,,.J.). It is clear that (pc, J., E., B,.) satisfies
Maxwell’s equations, and the configuration (E., B.) is defined by Je-
fimenko’s equations as an indefinite integral. A detailed exposition of
this claim is the the subject of the following.

We are mainly interested in the case w = ¢, but most of the calcula-
tions can be adapted to the case w # ¢, the important point being to
keep the factor ¢ in Jefimenko’s equations, (*). Unless otherwise stated
though, w = ¢. We can assume by the above and the proof in [14],
that p € C*(R*"), for the components j;, 1 <i < 3, j; € C®(R?), for
t € R, p: and j;; have compact support, and the components j; satisfy
the wave equation [(0%j; = 0, 1 <14 < 3. It follows that the derivatives
% ¢ C=(R*) and i € C*(R*), 1 <i <3, that 2 and %, 1<i <3

]zt
,8ttand 8t,1§z§3have

compact support. The fields {£, B} defined by Jefimenko’s equations
are given by;

obey the wave equatlon and, for t € R

E(F 1) =

fv p(7 tr )T d +fvp(rtr)td/_fvj(rtr)d/

47reo [7—7|2 clr—7r Alr—r

x|

(77’ Zf) fv r t,l)|2><td + fv (7 tr)Xtd

[7—7 c|F—7'

We have using Kirchoft’s formula, that, for ¢ > 0;

p(@,1) = o Jsnwent9@) + po(@) + Dpo() « (7 — 7))dS(7)

4 There may be a point that particles travelling at speed ¢ in the base frame
would contradict special relativity, but it is not clear with an extended charge
distribution that there are any individual particles. In any case, the associated
charge and current configuration (p,J) exists and seems to define fields (E, B)
satisfying Maxwell’s equations with special properties, at least in the case w > c.
The case when inertial frames travel at speeds w > ¢ is developed in [11].
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and, for t < 0;

P 1) = oz Jsp—oyt9@) + (@) + Dpo(@) « (7 — 7))dS(7)

so that;

— 2 — [
1 o)t 3 1 p(F t— =) (r1—71) ;
4meq fV [7—7"|2 dr )1 T 4meo JV c[r—7"]3 dr

_ 1 1 7=\ 9p(7,0)
= Treo fv[m S5 ee— =2y (¢ = =) 2557 + p(3,0)
+Dp(7,0)« (7 —7))dS(7)
1 [F—7| 8ﬁ(y 0)
A2 (t— I7fc?/l)2 f(;B 7 _C(t_M))((t - T) + p(% 0)

+Dp(7,0) « (7 = 7))dS ()| Frhdr’

c[r—7|3

Let;

Wy = {7 : 6B(7, c(t — 1)) N B(0,w) # 0}
Wy = {7 : 0B(F, —c(t — =71y 0 B(0,w) # 0}

With the convention (x) below, if t > 0, we require that c(t— @) >
0 iff |7 — 7| < ct, so that Wy C B(0,ct), if t > 0 and Wy =0 if ¢t <O0.
Similarly, we require that —c(t — @ > 0 iff |F — 17| > ct, so that, if
t >0, Wy C R¥\ B(0,ct) and if t < 0, we obtain no restriction on Ws.
In either case, we clearly have, by smoothness of the data, continuity
and the fact that B(0, ct) is bounded for ¢ > 0, that;

1 [T=7']\ 0p(%,0)
|47re() le dme (t— [r— T/\)z féB(r ,c(t— ‘T Ld ))((t_ c ) Py +p(y70)

+Dp(7,0) « (5 = 7))dS (7))

C

rl rh
< fB(o ct) Ctl e */1 |d7’
C 1 !
< Tt fB(G,ct) |7—7|2 dr
C 1 /
< % s 7EdT

<& f 512 sin(0)|drdode
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S 27r20t ct d,r,
c 0
S 2’/T2tCt

so that;

471'60 fV [F— = tT d />1 = fl(Fv t)
1 [7—7|\ 9p(3,0)
+ sz amc2(t Ty faB 7 —c(t—@))((t — =) + (@0

+Dp(3,0) . (7 — 7))dS () L dr’

c|r—7'|3

We can assume in the calculation that 7 # 0, by changing coordi-
nates with a translation given by 7, see below for the corresponding

time translation, as we can define a new pair (pFO,j?O) by p"°(Z,s) =
p(T — 7o, s) and fo(f, s) = J(T — 7o, s), for (,5) € R*. The new
pair (pfo,jﬁ)) inherits the properties of (p,J), in particular we have
that p™ € C°°(R*), the components of J °, j7° € COO(R4), 1<4<3,

2( o) — _ 770
O%(p™) = 0, for 1 < i < 3, the continuity equation T =—-v.J
holds, and the connecting relation 7(p™) + 612 a‘ét 0. Moreover,

we can use Kirchoff’s formula with the initial data for (pFO,j?O) given

0

by (o, (QLO)O, 720, (agg)o) and we have that, making the substitution
=

™ =To+T7;

Jyy R G, = (e [, AT T g, =

|0—72 T \drweg JV  [Fo—T

471'60

'rO T// t I
(7 Jv WdT )

|70 —7"]

for the corresponding retarded time ¢, =t — , and, similarly,

for the corresponding terms in Jefimenko’s equations.
We have, for 7 # 0, 7 # 0, that;

SB(T, —c(t — =T 0 B0, w) # 0

iff |7 — [—e(t — =2

ift |77 |+ (ct — |7 — 77| < w|F|
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iff [7|[[7] + (ct — |7 =7|)] < w|7|
iff ||F|+ct—|F =7 <w
iff —~w—ct<|F|—-F—7F|<w-—ct
so that, if ¢ > 0;
Wy={F:—w—ca<|f|—-F—7|<w-—c}nR>*\ B(0,ct)
and, if t < 0;
Wy={7":—w—-—c <|f|-|F—7| <w-—ct}
Letting;
N = mazgepom) (300l [pol, [Dpol, [(Dp)o)

so that, for 7 € Ws, using the fact the initial data is supported in
B(0, w);

op(7, _
fw—w—@» 123945(7) < 4ru?M
f(SB (7 ,—c(t— |T Ll |p(y7 )|d5@) S 47TU}2M

Fye ey 1 DO G NISD) < fy e 2ty gy M1
™)lds (@)

< Arw?M| — c(t — ‘F_Fl‘)\

[

we have that, for s sufficiently large;

1

7—7'|\ 9p(y,0
| fWﬂB(ﬁ,s) dme2(t—1T=)2 féB 7 —c(t—LJ"))((t - %) p(y b 4 p(7,0)

+Dp(7,0) . (7 — 7))dS (@) Lt dr|

c|r—7'|3

1 2 [7F—7|
= sz\B(Gs) m(llﬂw M|t — =] + dww* M

+Hrw? M| = e(t — ) ) tomdr’

clr—7'



130 TRISTRAM DE PIRO

— 2 1 1 1
= w Msz\B(675)<c3|t—‘F;?/‘| + CS‘t_\F—c;/‘P + - |7— T’I‘)|7’ 7 ‘2d’7'

We have that, for s sufficiently large;

f 1 dr’ = f 1 !
= — AT = dT
Wa\B(0,s) 14_IT=1j=_=|2 Wa PP
|t— [T ‘t,w‘(ﬁp,ﬁyﬂmz)

_ _ 1 /
= fWQ\B(O,s) ( |7]\22 72 ?7,2 +1)% , dr

_ b - 7 —

731 ey - (B -2 24

and, for [7/| > mazx(t,4|7|);

1 c
A= R S AR
‘?/‘3‘#_“‘—7«'(‘[")‘2_2 'r,7|‘2+1)
so that;
1
sz\B(ﬁ,maaz(tA\?D) |t— ‘FZFI‘ ||F7?/|2d = sz\B (0,maz(t,4]7)) (20+4 |7 |3dT
Similarly;
1

fWg\B(ﬁ,maz(\/{fAW)) [t— |?—j/|‘2|;_;/|2d sz\B (0,maz(v/t,4[F)) (2c+8 287 |* et
so that;

S L— _ [="1\%0(®m.0)
|fW2\B 0,maz(t,/t,4[7])) Ame2(t— IT T\ féB(r —c(t— |’“ Lid ))((t c ) ot

+(7,0) + Dp(,0) - (7 — 7))dS ()] = dr|

C

2 (c+1) 1
<w MfWg\B(ﬁ,maz(t,\/EA\?))(02(2c+4)|F’\3 + 2287 |F

Ydr’
As above, we have that;

Tt . . .
(ﬁ fWQmB(G,max(t,\/iAm) 7£ & )th )1 is finite and we claim that

(c+1) 1
fWQ\B(ﬁ,max(t,\/ﬂMF))(02(20—&—4)\7" |3 + (20—&-8)\?’\4)(17—,
is finite as well. In order to see this, note that up to a bounded region,
Wy is contained in a family of real quadratic surfaces, parametrised by
a finite interval [—f, ] D [—w — ¢t, w — ct] degenerating to the plane
7| = |F =7, if 0 € [~w — ct,w — ct], (°). Compactifying in P(R?) x

5 Noting, that for d € R0, || sufficiently large, with the interval (—f, 8) sym-
metric, we have that, denoting by |[F'| — [F —7'| = |d|, the union of [F'|— [F—7'| =d
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and |F'| — |7 — 7| = —d;

7| = [r =7 = |d| or [7'] + [F — 7| = [d|

iff [7 — 7> = [7'? — 2d|[7| +|d|?

so that, as |F'| + |F — 7/| = |d| is bounded in R3;

7| —r =7 = d]

iff [7— 7> = [7'[? — 2d|[7| +|d|?

iff R? — (2r17) + 2rorh + 2r3rh) + |72 = |72 — 2|d||7'| + d?

iff — (2717 + 2rorh + 2r37%) — (|d|* — R?) = —2|d||F|

iff [(2r17] + 2rorh + 2r3rh) + (|d]? — R?))? = 4|d]2(r2 + ri2 + 1)

iff 4(rir] + rorh + 13rh)? + 4(rrh + rorh + rarh)(|d]? — R?) + (|d]? — R?)?

= AP (r + 15 +17)

where R = |F|. Note that the degenerate case of a single two dimensional plane
in R? corresponds to the idealised case when the initial charge distribution pg is
supported at a single point.

In coordinates (z,y, z), if we intersect a real generic quadratic surface defined by;

ax? + By + 2% + dxy + exz + Cyz +nr + 0y + 12 + k= 0, (%)

where {«, 8,7,0,€,0,1n,&,n,t,k} C R, with a real generic plane \x+ py+vz = &,
we obtain that x = % — Ry — %2, so that substituting in (x);

— Ry — %2+ By + 727 +0(5 — by — %2y +e(5 — By — §2)2 + Cyz+

>l

o

>l

>=

n( y—Xz)+0y+iz+r=0

which defines a real quadratic curve in the coordinates (y,z). If the curve
is generic and unbounded, it cannot be a parabola, a circle or an ellipse, so by
the classification of conic sections, must be a hyperbola. By a result in [16], the
standard form of a hyperbola is given by;

o= - =1

so that by a further change of coordinates { = £ 4- %, n = £ — £ we can write
this in the standard form £n = 1, with asymptotes £ = 0, n = 0, defining a curve C’
with asymptotes {l{,15}. If the original hyperbola C has asymptotes {l1,l2}, and
is defined using a set of coefficients {¢; : 1 < i < 5}, with a fixed bound |¢;| < f,
f € R0, then there exists a linear transformation T : R? — R? and a shift map
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S : R? — R? such that (ST)(C") = C, (ST)(1}) = U1, (ST)(l4) = l3. If 7 € C’" and
7' is the nearest point to T on I} Uly, then [T — 7| < ‘—\/g for |Z| > 2. It follows that;

|(ST)(@) — (ST)(@')| < |IT|||z — |
< ||IT||%Z
_ V2

= 1Ttz

so that for 7 € C, we have that, for the nearest point i € I; U la;

B Teal
7 =7 < rremy37

< V2T(I(IT][+1)

= [y

provided |(ST)~'y| > max(|3|,2), (), where 5 defines S, as;
9l = |(ST)(ST)~*(7)

= |T(ST)~! + 3]

< (1711 + DIST) = (7l

provided |(ST)~'y| > |3|, in which case;

—1(= 7|
(ST) (@] > il

and;

y (IT1I+1)
EDO-TG) = Tl

We can achieve the condition (x) with || > ||T||(|T 13| + max(2,3])), as;
(ST)~"g| = max([5],2)

it |71 (7) — 78] > max(|5],2)

which we can achieve if |[T~1(y)| > |T~'5| + maxz (]3], 2)

but as [g] < |77~ (@)

we have that, [T1(7)] > {7, so if [g| > [|T]|(JT~*5] + max(2,[5])), then

T @) = T3] + max (]3], 2)

We then obtain that, for 7 € C, for the nearest point 7’ € Iy U ly;
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[—0, B], and using the implicit function theorem, we could choose a fi-
nite cover {Uy,...,U,} of R?\ B(0,1) x [, 8] and a sequence of maps
fi : Ui — Wo \ B(0, mazx(t, vt,4]F)) with constants C; € R~ such that
|fi(@, )] > Ci|Z|, |det(Jac(f;))| is bounded uniformly in ¢’ by constants
N; € R0, and the maps f; cover Wy \ B(0, max(t, v't,4|F)). We then
have that;

(c+1)
| fWg\B(ﬁ,ma:L‘(t,\/fA\?))(02(2c+4)|F’\3 + (20+8 [7']*

< Z?:l | fUi fz‘*(c2(2(cci41))|?/|3 + 02(20+8 |?/|4)|det(Jac(fZ))|dxdxydt’

)dr'|

(c+1) 1
< Xt Ju Nilgaaamiear + creaaaean) drdydt

2N;8 (c+1)
< Zz 1 03 fRQ\B(ﬁ,l)<52(2c+3)|(z,y)|3 + (2c+8)|(:cy H)dxdy

n  4wN;B (c+D)r r
< Zi:l Cf’ r>1 ( c2(2¢+3)r3 + c2(2c+8)rt )d?"
_ n  47N;B (et+1)
- Zi:l c3 Jr>1 ( c2(2¢+3)r2 + (20+8)7"3 )d?”
_ " 4ArNiB o (ctl) 1
- Zizl Cf’ <62(20+3) + 2¢2(2c+8) )

Jy, AR ), s finite and well defined.

This proves that (=

4meq

We then have that, using Kirchoff’s formula for 22, with initial con-

2
ditions (§|0, % 0) = (§|0, —c2(7°p)o);
0 02
5 (T 1) = 47r012t2 féB(x ct) (t510) + 8t0( )+

D(3lo)(®) « (5 — 7))dS(y) (t > 0)

815’

0p (= 2 ) _
8_17?<x’t) - 477012t2 féB(E,fct) <t E)tg ) + 8_§|0(y>

+D(20)(@) - (7 — 7))dS(7) (t < 0)

that, using Jefimenko’s equations;

[y -7 <

<l

for [g] > D, where D = ||T|(/T~5| + maa(2, 3)), E = VZ|T||(|T]| + 1).
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(7t )T A, — —/ - 7= (Tl—Ti)d /
47“0 fV ] 47 )i = 47r60 fV Bt c >C\F—F'\2 T
[7—7 2%p\ (— Ap /—
471'60 fV 47TC2(t IT T féB(r c(t— |77 \)) (t c )(Tg)(yu O) + a_f(y> 0)

+D(%)(3,0) - @—T«)]dS@) g(;:;:l,z dr’

1 |7— 52 Op /—
+47reo fV a2 (t— \T i f(SB(r ,—c(t— |T i ))(t_ c )(a_p)(y70)+a_f(y70)

+D(%) (3. o>-<y—r~>1ds< ) iE=d (QQ)

with the convention that 0 B(Zo, ro) = (), when r9 < 0, (*), using the
fact that, for fixed t € Rg, t— lF_f' < 0, and for t € R>¢, t— @ =0
ifft ¥ € dB(T,ct), with d7’(0B(T, ct)) = 0. Without loss of generality,
we have that {(2—22?)0, (%?)0, 00, (Dp)O(D%f)o} are supported on B(0,w),
for some w € R+¢, and, using continuity, we let;

2
M = maxyeB(o,w)(K%)oL |(%)|o| |D(a—p)|0|)

We can change the time coordinate, as we can define a new pair
(pt,jt) by p'(Z, s) = p(T, s+t) and 7t(f, s) = J(z, s+t), for (7,s) € R™.
The new pair (pt,jt) inherits the properties of (&tj), in particular
we have that p! € C°°(R*), the components of J, j! € C®(R?),
1<i<3,02%(p) =0,0%! =0, for 1 <i < 3, the continuity equation

%%t =—-v T holds, and the connecting relation s7(p") + C%aa_zt = 0.

Moreover, we can use Kirchoff’s formula with the initial data for (p, 7)
—t

given by (pf, (%%t)o, Jo, (68{5 )o) = (pt,( 2),, Jy, (% ) ) and we have that;

o(7, trl)ltd ) G t’) d7_,>1

dmweg JV c[r—T 47reo \% c|r 7|
==/
for the corresponding retarded time ¢, = — ="
the corresponding terms in Jefimenko’s equations.

, and, similarly, for

We can assume in this calculation, that 7 is disjoint from the a
ball B(0,s) containing the support of {(8t2) ,(22)]o, D(2)]o}. This
is because, if t is fixed, then we have for a sufficiently large ¢’ >

at 7 18 digjoint from a ba Tp,S) contamnin e support o
t, that 'd'j'tf ball B(Zy, s) taining th pport of

2 . .

{(gtg) (%)hD(%)h/}. Then, using the uniqueness property, we
have that p(x,t) is determined by the shifted initial conditions
{(%)t’a (%)h', D(%’)h/}. By a change of coordinates, T = T + Ty, and
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considering p®, we can assume that T = 0, 7 is disjoint from B(0, s),
with the support of {(atg) (2)|y, D(2)|y} contained in B(/O7 s). By
a further change of coordinates, t” = ¢ +t', and considering p', we can
assume that ¢’ = 0, with the original ¢ moving to t — ¢, so that we can
assume t < 0, but we can’t assume that t = 0.

It follows, as t < 0, that in (QQ), we can ignore the term;
T' ’r Op /—, F—7 r—r!
(e Jy B = i fy 3o = B (Ehar
B 02 _ 9p /—
= s Iyl e Jome a2 (= (G F.0) + 53, 0)

+D(%)(3,0) - (7 — 7))dS (7) e’

and, we are left, simplifying the radius, from (QQ) with;

+47re() fV W f(SB(r ,—ct+|T—7" |)(t - = c |)(?;2 )(y7 0) + %(g7 O)
+D(2)(7,0) - (7 - ™)dS @) EEhdr (QQQ)

If d € B(0,s), we let;

L= {F" €R3:de B, —ct+|F—7)|)}
={FeR: |d-7F|=—-c+[F-7|}
so that, in (QQQ), we have that V' = Uzcp@ o Vas

As B(0, s) is open, we can choose d5 > 0 such that B(d, 537) C B(0, s).
By the calculation above, we can assume that the real unbounded hy-
persurface V3, is a real quadratic surface and, by the calculation be-
low, that the ésymptotic cone Z3, is a union of lines parametrised over
a finite interval. For a line [ appearing in the asymptotic cone, fix-
ing 0 < € < &3, and r(e) sufficiently large, we can assume that for
™ € 1N (R*\ B(0,r(e))), there exists 7 € V5, with 7/ — 7| < ¢, see
footnote 5, so that;

dB(7, —ct+|F—=7|)NB(0,s) = (6B(F", —ct+|F —7])+ (7 —1")) N
B(0, s)
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and, asd = d+ (7 —r") € B(d, 67) C B(0,s), that 6 B(7/, —ct + |7 —
7]) N B(0,s) # 0 and passes through d € B(0,s) with |d — d| < .
Let P; be the plane passing through d, with P; perpendicular to [ and
1ntersect1ng [ at pz. Let T% be the tangent plane to § B(¥, —ct+ |7 —7'|)

at d , intersecting [ at py, so that we can assume, for sufficiently large

r(e), that [pg — py| < e Let 7, = p; — (7' — Pz = 2z — 7. Then,

for sufficiently large 7(e), we have that 7, € I N (R*\ B(0,r(e))),

— —

dB(7 Topp: ct—i—]r T, ) N B(0, s) # 0 and passes through d,,,, € B(0, s)
with |d

—d | < e. We have that;

opp

(7). Using the facts that \ Llo| < M on B(0,s), the surface measure
of B(F', —ct + [T = 7]) N B(O s) is at most 2ms?, T, = 2pg — T, we
have, for sufficiently large r(¢), that;

11 [F=7]\ ( 8* (ri—7})
|47reo [47T02(t— |77F/| 2 féB(?/,—Ct-HF—?/D(t - T)(8t5)< )]dS( )c": 7"1|2
P |T To | T r 0
i s Tl Jont (t—el)(28) (7, 0))dS (7) s |
_ 1 (r1—7} 52
- |47reo [47r02(t—‘?_j/|) c|7"1 r’1\2 de (7 ,—ct+|7—7 \)(a_p)( )]dS( )

P T (22)(7,0)]aS ()|

4meq 47rcg(t_|T—Tcopp\ clr— 7‘0pp|2

—ct+|F—T7,

opp> opp | )

—ct+|F—T

opp? opp‘

1 1 (ri—ry) 1 1 (ri-ri,
o |[4ﬂ'60[4ﬂ.c2(t7 |7—c?’\) C|?17?/1|2+47T60 A (t— IFfFf)pp\) c|F— rzp:f féB(?’,fctJer?’D(a_p)( 0)]dS( )

+[ 1 1—_—/ Tl 7“1 Opp de(r

47req 47r02(t—|T Tcopp\) clr— ropp

o fzSB(F’,—ct+|?—F’|) (%22) (¥,0)dS(¥))]

i (3, 0)d5(7)

opp?

|l e " Topply 1 12 (p- T2y (n=r) =) |
- 16 2 3 T—T |T 7‘0 [\= = ‘?_Fg IN= =
e (= e 20— Ty 2 (t— oy, |2
82 1 1 (Tl 7‘1 opp)
féB(?’,fct+|?fF’|)(3t2)( )]dS( ) [47T60 A CQ(t7|77?ijpp‘) T =T, 2 ]

féB

—ct+[F—7y,, |)(gt2 >( )dS f&B (7 ,—ct+|r—7" |)(gt2 >( )dS( ))|

OPP ’

= | [<n (=2 g2 (1= P o 2) 2r1-2p,

- 2 3 77 —2 47 —2

A i 7 e (1= T o 2
92p _ 1 1 (r14ri— 2]%71)

T 1) R R

c
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Uswiry, —etrie—rs, p (58 @ 0 @)~ [ —ar—rr (568) . 0)AS @))]

0pp7

2r1— 21r

|T+T 2p7
M s> | (ri—rp)((t—

— 8mepc? =\ = =
(t—%)\ =72t~
| 1 1 (7“1+T"1—21f,1)|
dmeo 2 (t— \?+F’—2pg|) c|F+7 —2pg]?
c
%p P
|f§B —ct+[F -7, |)(3t2)( )dS f6BT ,—ct+|F— r’|)(8 )( )dS( )|
Ms? Ms? 1 1

— meoc3 T3 + 2megct 7|3 + 1672€pc3 \(t— [7+7! 2pd‘)H7+?/*21%‘

|f6B —ct+|?—?{,pp|)(gt§>( )ds féBr ,—ct+|F— 7"’|)(8_p>( )dS( )‘

4y 47 —2pa |2 — (t— Ty |2 >|

2 a2 8ﬂ6003| T

OPP’

Opp?

(P)
(following the method in (4i), noting the O(|7'|*) term cancels in the
first long term to obtain O(IZI()W(gl ) — 0(|%’|3))

Change coordinates, so that the azimuth angle 6 of the sphere § B(7/, —ct+
7 — %), is centred on the line passing through {%,d }, giving coordi-
nates;

7 + sin(0)cos(9)T + sin(0)sin(o)y + 003(9)(3/ —7)
0<fo<m-—-m<op<m)

for a choice of orthogonal vectors {Z,7,d — 7'} with modulus —ct +
|7—7'|. Similarly, choose the azimuth angle Hopp of the sphere 6 B(T,,,, —ct+

is centred on the line passing through {7 }, giving co-

’7" - ropp ‘ )
ordinates;

opp’? opp

B Fl)‘i‘ §11(opp) 05 (Popp) Topp 1 5in(Oopp) 5112 Popp)Yopyp + COS(GOPP)(aZ)pp -
"opp

(0 S eopp S ™, =T S ¢opp S 7T)

. _ _ —/

for a choice of orthogonal vectors {Zopp, Yopps Aopp — Topp) With modu-
lus —ct+|F—7,, |. We have, for points {7, 7, } of intersection between
B(0,s) and 6 B(T', —ct +|F —7|), B(0,s) and 6 B(T), , —ct + |F —

that;

T opp> 0pp | )

ZPEP
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=\~ o —/ 2s
0(@) ~ sin(0(7)) < —r—7
Oopp (Topp) 2= ST Oopp(Trpp)) <~z (TT)

and, for sufficiently large r(¢), choosing {T, 7, Topp, Jopp ) compatibly,
we may assume that;

|q - qup| < 2e

for {7',q,,,} defined by coordinates 0 = 0,p,, ¢ = Popp with 0 <0 <
max(Omaz, Omaz.opp), Where;

emax = maw0§¢§27r‘9((_]/)

for ¢ in B(0,s) NdB(T', —ct + [T —7'|), with coordinates {6, ¢}, and;

—/
Omaz,opp = MAT0<p<27bopp(Topp)

for g, in B(0, s)Nd B(T,,,, —ct+|7—T, with coordinates {0y, Popp }

T opp> opp | )

It follows that, for sufficiently large r(¢), using the surface measure
dS = r?sin(f), the fact (I'T) and 7%(1 — cos(1)) = O(1), and footnote
5, for sufficiently large r;

|féB opp _CH'W_FZ;W;')(%)( )ds f(SB(’/‘ ,—ct+|F— ?’\)(?)( )dS( )|

2 mazx emaa:ﬂmax,o .
< 26|7((Z2)0)) | p(g.0) 127 (—ct [T =T, )2 fi ) sin(0)do

+2

2

= 2|V (((5)0)| 5@, |27 (—ct+H[T =T, |)* (1= cos (maz (mas, Omaz,opp)))

< Ce

S T

where {C, D} C R~o.

It follows from (P), for sufficiently large r(¢), following the method
of (ii), that;

e Uiz =y Sty (£ = T (58)(@. 0)dS (1)

dme?(t— e=7]
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+

1
proenl|

4

1
(t [7— Topp‘

f&B(r —ct+|7—7,

opp’ opp |

1 D 1

mOCSMS + 27regc4|'r’|3 T e P

£y
[7]3

where F; € R+o.

[T+7 —2p=|
(¢ 7d)\|7“+r’*2pgl

(7). Using the facts that | 2lo| < M on B(0, s), the surface measure

of 0B(T

T, —ct+ [T —7]) ﬂB(O,s) is at most 27s*, T, = 2p; — T, we

opp

have, for sufficiently large r(e), that;

1

e o (%(3,0))1dS (7) E=

| 4Ameq [47r02(

1 1 % dS (7‘1 7"l opp
+_47r60[47rc( [ ropp\ de(ropp, ct+\?—?gpp|)(a (,0))]dS(y )C|,~ A |
1 27 M s> 1 27 M s>
_— 7l _ =__=/
4mege dme (t— [~ CT ‘)2|7“—7"’| 4mege Ame?(t— |7 Tcoppl) - ropp
_ Ms? 4 Ms?
— 8meeo(ct—[F—T|)2|F—7| 8mceo (ct—|rF14+7'|) 2|71 47|
— Ms? Ms?
8mceo|F—7"|3| |7it?’\+1|2 87rceo|?1+?’\3|(|716%,‘—1)|2
Ms? Ms?
— Admceo[T—7|3 8meeg |[T147']3
3Ms?
— 8meeo[T'|3
E2

| 13

where TN=T— 2}_73, E2 S R>0.

(7i1). We have that;

| 4req

1
+m[

471'60

4mc?

[

1
(t |7— 7”opp‘

1

dme2(t—1T=T1)2

ri—r )
[m f(SB(W’_CtHF_WU D(a—p)(y’ 0> ( )]dS( )clr1 7"1\2

D(2)(F,0)+(G—Th,,)|AS (7) Gz \

*Ct+‘1“ T opp 67 7/

féB(r Toppl)

(=t =) fypr —exrirrry D)@ 0)-(2(7 >>]ds<>

opp’

(6=l (2 (5, 0)]dS () S|

(ri—r7)
c|r—7'|?
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1 1 — o —
+m[m(—6t+|r Towl) Jsns —ctrirr, ) P(5)(@,0)-

op(7))S (7) ez

1 (—ct+[F—7") 9 _ _
< 4dmepc dme2(t— \7*7/\)2|F | | f(SB(F’ —ct+|7—7]) D<5§)<y’ O> (y)dS(y>|
1 (—ct+|7—7, ap _ _ _
ST i p‘z: — | fsne, v D)@ 0)Zopn(@)dS )]
(NN)
Letting zy = %, so that |Zy| = 1, R the surface measure of

dB(F, —ct+|F—71])N B(0, s), using Lemma 0.49, following the method
of (i), we have that, for sufficiently large r(e);

| Ssn, ety P(3)(@,0) - 2(7)dS(7)]

= | fsn —astr—y DG @ 0-CE@)~20)dS O+ fip7 —tsr—r) D(5) @ 0)-
Z0dS(y)|

< S —asrry D)@, 00-E@) -2)AS @+ fspr sy D)@, 0))-
%dS(Y)|

< Rma’xyeB(Os ‘D(a_p)( 0)[[Z(¥) —Zo+]| f(SB(F’,—ct—i—\?—F’D D(a_p)( 0)dS(y).

%]
< RMmazye po o 2(7) = %ol + 20| [y P37 0)dS@)]
< RM|(1 = c08(Omazs 5 (Omaar)| + | [5500 —ctsirry D30 (: 0)dS(7)
~ Jp, DG @ 0)dS@)| + | [ D(5)(,0)dS )|
= ﬁRM(l—cos(Gmax))H\f(sBm,_dH;_m)D(?)( 0)dS ()~ [ D(5)(7.0)dS )|

< RMF0,,,, + Ge

2sH
< —ct+[7—7| + |1+ d

—ct+|7" 7| + |1+ |
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where {F,G,W, H, Ay, B} C R~¢. Similarly, there exist {As, Bo} C
R0, such that
9p (= == — A B
| féB —Ct+HT =T, D<5§)(y7 O) " Z(y>ds<y)| < _CH“;_FZH + IlJFin)p

— A + Bs
—ct+[7+7" —2p5] [14-2p;—7|

Opp?

so that, from (NN), following the method of (i7)

|47T60 [47rc2(t 1|T il féB (7, —ct+[F—7'|) D(a_p)(y? 0) ( - TI)]dS(y) g;l__;/l‘g

1 1 D op d 7‘1 Tl opp
+47r60[47rc 2(t— Im— TOPP‘ f(sB(Topp’*CtJF‘?*?gppD (8 )<y70) ( opp)] S( )07 Top |
1 (— ct+|r r/)
< AmE0C gre2 (t— \?—?’\)2|?_F/|( ct+|r 7| + |1+7"/|>
1 ( Ct+|r ropp) ( A2 _|_ BQ )
dmegc 47r02(t_\r rcoppl) 77| —ct+[r+7 —2p5] [1+2p5—7|
_ 1 1 ( A1 + Bl )
= 2cnc2 i P =7
1672epc ‘(tflr = l)HT 7| —ct+[7—7| [14+7|
1 1 Ao Bo
+167’r26002 - [7— vopp\H, - ‘(fct+|?+F/7270E| + |1+2ﬁg—?’|>
opp

< £

?\

|
where E3 € R~o ((4), (i7), (i4i))

By the calculation below, we can assume that the asymptotic cone
Z3, of the real unbounded hypersurface V3, is a union of lines parametrised
over a finite interval [«, 5]. It follows that we can define maps 6; :
R x [, B) = Zg,, 02 : R x [a, B) = Z3,, such that for fixed v € [a, B),
01(r,7) €1, 31, 02(r,7) €1 55, 7 € R, where the intersection curve C_ 3
has the two real asymptotes {l, 3,,, 3.}, and, such that, for i € {1,2

(4). 0:(0,7) = pg.,,;, (using the notation above)

(@). 0i(ry¥)opp = 01(—7,7)

(7i1). There exist R; C R~ with 6; diffecomorphisms outside [— R;, R;] X
[a, B), with the partial derivatives uniformly bounded.

(). Im(01] R\~ Ry, Ri)x[,8) N IM(O2| R\ [ Ry Ro]x[0,8)) = 0



142 TRISTRAM DE PIRO

(v). For ry > 1y > Ry, |0i(re,y) — 0i(r1,7)| =12 — 11

It follows from (ii7), (v) that the pullback;

91|R\ —R1,R1]x[a, 5)<dLeb|Zdt) = |891 X 691 |d7"d7 f(r,y)drdy

has the property that f(r,v) has order O(r), uniformly in v and
flr,y) = f(=r,7), for r € R~o. For R € R+, with R > R;, can define
the regions S, C R X [o, 8), by;

Sri =A{(",7): Bi < |r'| < R,y € [a, B)}

with corresponding regions ¢;(Skr) C Zg,

Then, by the calculation above, letting;

4req

H(7) = 4, [m S —etsir_ry DO, 0)(5—7))dS () =2
we have that, for r > R;;

|07 H (r, ) + 07 H(—r,7)| < &

|f(r,v)| < Dr

(B3 H (r,y) + 07 H (=1, 7)) f(r,7)] < $2

and;

limpg o0 R> R fei(sm) H(7)dr' = limpg_00 >R, fSR,Z_(HfH)(r, v) f(r,y)drdy
= limposoo, iR, Jjoo )L, O7H (r ) () dr+ [ 01 H (r, ) f(r,)dr]dy
= Uimp oo iRy fio gy OVH (1) f(r,y)dr [ 01 H (=) £ (=7, 7)dr]dy
= i i, [ gy S OTH(r,5) + 07 H(=r,9)) £ (r,5)drdy
= Jos) fEf(HIH(n V) + Ot H(=r, 7)) f (r,y)drdy

where, letting G (v) = [ (07 H(r, ) + 07 H(—r, 7)) f(r,~)dr;

|< foo CDd CD]?%

T
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_ CD
=%

so that;

Mg oo, kR, Jiqp) S, (OTH (r,7)+01H(=7,9)) f(r.7)drdy = [, 5 G(y

exists and;

1im oo, m5 Ry fia 5y S (O H (r, ) 405 H (=r,7)) f(r,7)drdry| < S22

It follows;

limR%oo,R>Ri fei(sR,i) H(F/)CW

exisrs, and;

|limR_>oo7R>Ri fei(s&i) H(F’)d?’l < CDS,?;Q)
as well. (UU)

..... Let the lines appearing in the asymptotic cone Z3,, parametrised
by [a, ), correspond to the system of hyperplanes H,, v € [o, §) with
fixed locus @3,. Then, for T € V3, \ Q7,, |Z| sufficiently large, let T,cq,
be the nearest point on the asymptotic line [34 .+ and Top, be the near-
est point on Vg, NH, to (ZTnear)opp- By a simple adaptation of the above
argument ((4), (i), (¢7)), we have that, for |[7'| sufficiently large, there
exists C' € R+, with;

() + h(Top,)| <

c

7|3
=\ (L p(Tte)e

where h(7') = (-5 )1

dmeq |T—T

(Follow argument of (UU), using the facts, that for sufficiently large
|T/| dvdt - dZdt? d‘/dt - g( )dZdt7 with g( ) g( opp) for the sur-
face measures on Vg, and Zas respectfully, as;

891 ( 891 (

7)) = ST )

for the appropriate parametrisation 6, so that;

)dy
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(h(T)g(T)dZg, + h(T,,)9 (T

opp

)dZE,t|
< [(R(T) + h(T0,,)) 9 (T)dZg | + [h(T,,) (9(Tep,) — 9(7))dZg |
= O(35)O(R)drdy + O(3)O(%)drdy = O(5)drdy.

Same idea for asymptotic cones defined below in Lemma 0.51, re-
flecting the branch at infinity.)

................... Ift =0, then Wo = {7 : —w < |F'| = [T —7| < w}, and,
by the calculation in footnote 5, we can, for sufficiently large 7, char-
acterise Wy as a family of quadratic surfaces, parametrised by [0, w],
degenerating to the plane 7 = |[F—7|. We denote by Wy, for 0 < s < w
the locus;

{7 = =7 =stU{F: || = |F = 7| = —s}

characterised, for s # 0, by the quadratic real surface V; in footnote
5, with Wy being the plane {7 : [7’| = [F—7|}. Fixing s¢ # 0, for a real
generic hyperplane H,, using footnote 5, the intersection V,, N Hy, is
a real unbounded generic quadratic curve Cy, C Hy,. In particularly,
by the classification of real quadratic curves as conic sections, Cy, is
generic hyperbolic and has two real asymptotes {ls, 1,05, 2}. If we take
a generic real 1-dimensional pencil of hyperplanes { H, , : 7 € R}, such
that J,cr Hs,r = R?, with base locus [, then clearly;

UreR(VSO N HSOJ") = VSO

and, using O-minimality, there exists finitely many open bounded
intervals {I; : 1 < j < n} for which Vi, N H, , is finite, r € U,,,, I;-
Let Py, = R\ U <<, Ij; and we still have that;

UrePSO (V:Go N HSO,T) = V:@o

We define the two dimensional asymptotic cone Z,, of Vj, to be
UTe Py, lsy.r1 Uls, r2 where the intersection curve Cy, , has the two real

asymptotes {ls,,1,lsor2}. By choosing the base locus [y, to intersect
Vs, in a finite number of points and noting that for a sufficiently generic
family, V,, N Hy,» N W = 0, in coordinates [X,Y, Z, W], where V, is
the projective closure of Vi, in P(R?), is mobile, and compact, so can
be paramertised analytically by a finite interval. we can assume that
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P

S0

Urelso (VSO N HSO,T) = V;‘o

is a finite interval I, when parametrising Z,, and Vj,, so that;

Let d7; be the surface measure on Z,, obtained from the pullback
of Lebesgue measure with the inclusion of Z,, in R* and, similarly,
let d7; ., and d7; ,, be the line measures on Iy, 1 and I, 2, obtained
from the pullback of Lebesgue measure, and let dry ., , be the union of
the measures on s ;1 Ulgyr2. cooeoveeoeenne If t; < to, with {t1,t2} C R,
and {V;,,V;,} denote the compact supports of {p:,, ps,}, then as the
supports vary continuously, and J; and p, are compactly supported
for each t € [t1,t,], J; and p, are uniformly compacted supported for
t € [t1,t5] in a ball B(0, p), for some p € R~o. In particularly;

thl pr,dV = fB(@p) pudV

th2 P, dV = fB(@p) P dV
For t € [t,1s], using the continuity equation, the divergence theo-

rem and the fact J, is uniformly compacted supported for t € [t;, 5] in
B(0, p), we have that;

%(IB(ﬁ,p) pdV) = fB(ﬁ,p) %dv
= fB@p) div(J),dV

— Jypoy T - dSAV
=0

so that;

fB(@p) pudV = fB(@p) Pro AV

thl ptldV = f%g thdV
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In particularly, 4( th pedV) = 0, (°). The same argument applies

for %, with associated current J; = —c? V_(p) alld compact supports
W;, t € R, obeying the wave equation (0?(.J;) = 0. Tt follows from the
Reynold’s transport theorem, (7), the divergence theorem and the fact

that J; vanishes outside W, and V,, that;

6

In fact, the result is true for (p,J) satisfying the continuity equation, when
J fails to have compact support, and the components j;, for 1 < i < 3, are
uniformly of rapid decay, in the sense, that for any finite interval [tq,t5], there
exists constants Ci2,, € Rso such that [j;(Z,t)] < % for t € [t1,ts]
and |Z| > 1. In order to see this, suppose that on a finite interval (¢1,t2), p
is supported uniformly on B(0,p). and %fw pdV # 0, for some t € [t1,ta].
Then there exists an interval (to — €,to + €) C (f1,t2), such that, without
loss of generality, %th pdV|(t0_57t0+€) > 0, and, by the intermediate value
theorem, we can assume that th pAdV | (ty—etote) 18 strictly increasing, with
th0+6 Pto+edV — thU ptodV > § > 0, (x). Using the hypotheses on J, we can
choose r > p sufficienly large such that for t € (to —€,tg+¢€), | fsz(ﬁ,r) Ji.dS| < 61,

and by the continuity equation, for ¢ € (tg — €,tg + €);
ko fB(a,r) pdV|] = |fB(6,r) V|
=|- fB(ﬁ,r) div(J)dV|
=| faB(ﬁ,r) J. d§|
<&
and the intermediate value theorem;
| [, Pro+edV = [,y ProdV| < d1€

so choosing §; = <, we obtain that;

2¢
| @ Pro+edV = [ PodVI= Ly, . ProredV = [y, ProdV |

<

Nl

which contradicts (x).

" The Reynolds transport theorem is true in this case, but is not the usual form,
as, due to the failure of analyticity, there can be jumps in the support. There is
also an issue with using the formula pv = .J, when substituting for the velocity of
the area element. This could be resolved in [15].



SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 147
S PV = % [, ‘Z;pdv
= =&, FdV) = [, div(J1))
=-% th div(J1)dV
=—% [, J1-dS
=0
In particular, at ¢ = 0, we can assume that;

Sy V2 (p0)dV = [, (21 (55)0)dV =0 (0), ().

We can define antiderivatives, by letting;

P (T, t) = ffoop(f, s)ds

T T, t) = fjoo J(T, s)ds (if the integral exists)

As is easily checked, if p € C*°(R?) and the components j; €
C>®(R*), 1 < i < 3, then p* € C®(R*) and the components j¢ €
C>(R*Y), for 1 < i < 3. The wave equation holds for p* and J*, as
using the fundamental theorem of calculus, differentiating under the

integral sign, the result about he left hand limit in [14], and using the
fact that p satisfies the wave equation;

= [' VA(p)ds — 1%

_ft 1 9%pge  10p
— Joco 2 52 c? Ot

8 Note that you can also deduce this, using the divergence theorem, and the
fact that 7(pg) vanishes on §Vp;

Jy, V2 (0)dV = [51, 7 « (V(po))dV

= féVU V(po) +dS

=0



148 TRISTRAM DE PIRO

Differentiating under the integral sign and using the fundamental
theorem of calculus, the fact that the continuity equation holds for

(p, J), the continuity equation holds as;

=p+ [ . Tds
=p+ [l Sl —Fds
=p—p=0

and, differentiating under the integral sign, using the fundamental

calculus of calculus and the connecting relation for (p, J), the connect-
ing relation holds;
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n (9
- 07( )

....... Then the fields {E, B} are well defined by Jefimenko’s equa-
tions and the components are of uniform very moderate decrease.

O

Lemma 0.49. Cancellation Lemma

Let g € C°°(R3) with compact support V. C R3, then for a hyper-
plane H C R3, we have that;

fVﬁH V(g)dﬂ =0

where p is Lebesque measure on V N H.

Proof. With out loss of generality, we can assume that V' = B(0, r), for
some r € R+ and H is a hyperplane passing through 0, with the equa-
tion a4+ Py +~yz = 0. Assume first that {a, 8,7} C R are distinct and
non zero. Let pris, pris, prag be the projections onto the coordinates

(z,9), (z,2), (y, 2). Let;

9 We don’t necessarily have that (pa,ja) has compact supports. On a finite
interval [t1, t2], for sufficiently large T, we have aait = p =0, and;

2 _a
VQ(/OG) = C%aazpt

=0

Let h(T) define p® for sufficiently large 7, then, as R3 = U,er Supp(p:)©;

VA (h(a)) = C(h(@)) =0

everywhere. We can repeat the argument for the antiderivative J to obtain
&(T) defining J" for sufficiently large Z. so, as R3 = Usier Supp(J¢)¢, we have that

v2(e(@)) = 0?(e(z)) = 0, and, clearly, for the pair (h(Z),e(ZT)), we have that;

div(e(@) = -2 =0

=0

and (p* — h(Z),J" — ¢(T)) has compact supports and inherits all the properties
—a

above for (p®, J").
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gia(z,y) = g(x,y, 2(z,)) = gz, y, -2 — &)
g13(z, 2) = g(z,y(z,2), 2) = g(z, —F — 5, 2)
923(y, 2) = g(x(y, 2),y,2) = g(— % — Z,y,2)

Then, by the chain rule;

0 3

é’ﬁ\(m) = ( + y - %a_g)(%yz(%y))

9 _(dg , B9 _BO

32wy = (52 + 52 — 32 @)
so that;

B 9 _ (B=) (D 0

S8 @) — 5B @y = 5 (5 + D @wr@a)
and;

dg |, 0 ) )
(a_ggc + ﬁ”(%yﬂ(%y)) - (510{) (g é’,lf |(x,y) - % 912| (@)

and, a similar calculation holds for {g3,g23}. It follows that, using
Fubini’s theorem, the fundamental theorem of calculus and the fact
that gio vanishes on 0(prio(V N H));

8 0 d o 9
fVﬂH g+8_z)dlj' = pr‘lz(VﬂH)<ﬂ—ia%_/B—_a%)|( z,y) 612( ﬁ V)dxdy
=0
where c1a(a, 8,7) € R is non-zero. Similarly, using {pris, proz};

89

fva d,u fva + gg)dr“

so that;

8
fVmH agdﬁ‘ == fVmH 6gd“ fVﬂH = f\/mH agdr“
and;

16)
anH a_gd“ =0
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Similarly:;

9 9
fVmH de“ = fVmH 52dp =10

and;

fVﬂH V(Q)dM =0

By continuity, the result holds for any hyperplane H as the initial
assumption was generic.

g

Lemma 0.50. Uniqueness of Representation of Arcs

Suppose that T € R\ B(0,s) such that §B(z,r) N B(0,s) # 0, then
there exists a unique 0 < w < s such that B(0,w) intersects B(T,r)
at a single point Dy, with the property that the spheres 0B(T,r) and
0B(0,w) share a tangent plane at Py,

Proof. Suppose that 0 ¢ B(z,r). Let [ be the line connecting the
points {0,7}, intersecting the sphere 6 B(0, s) at g. Then g € B(T, ),
otherwise 6B(Z,7) N B(0,s) = 0. We have that §B(z,r) N B(0, s)
partitions B(0, s) into 2 disjoint, connected regions, and the regions
containing 0 and § are distinct. It follows that the line [ between 0
and ¢ intersects B(7,r) at the point p;, € B(0,s). Choose 0 < w < s
such that § B(0,w) passes through Dz, Then, as the tangent planes to
the spheres 6B(0,w) and B(T,r) at P, are both perpendicular to
and pass through p; ., they must coincide. Suppose that the spheres
6B(0,w) and §B(T,r) share a further intersection point P’ with the
properties that the tangent planes at P’ coincide, then the lines [ and
I', where I’ connects the points {0,7'}, both pass through 0 and Z, so
must coincide and P’ € [. Then, as p;,. and P’ are distinct, it follows
that ' ¢ 0B(z,r).

O

Lemma 0.51. Fiz 0 < w < s and with T ¢ B(0,s), t < 0, let V,,(T)
be the locus defined by,

B(0,w) intersects B(T,—ct + |T —T|) at a single point Py, with the
property that the spheres §B(T, —ct + [T — T|) and §B(0,w) share a
tangent plane at p .
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Then, V() C V.X(T, where;

Vo (@) = ATy[([9] = w) A (|7 =gl = —ct + [z = 7)

V(T —gl=c+ T -T) V(T -9+ [T -7 = —ct)) \T = \]

and V}(T) is generically a double cover of 6 B(0,w), and there exists
parallel planes { P, Py} C R3, such that, either;
VI(T) is bounded

when (PN 6B(0,w)) = (P, NJB(0,w)) =0, or;

V(@) blows up at an exceptional locus Z, C §B(0,w)

w

where Z, = (P, N 6B(0,w)) U (P, N §B(0,w)) is the union of 2
circles on §B(0,w). For specific, non-generic w, these circles can co-
incide, but, in the generic case, when Z, has two components, V,,(T)
basically has two asymptotic cones among Cone1(0, PLNJB(0,w)) and
Cones(0, P,N6B(0,w)) corresponding to distinct { Py, Py}, with a single
pair of infinite opposite branches along asymptotes, which are bounded
translations of the lines of the cones. The cover splits into a bounded
and unbounded component centred along the asymptotes. In a special
case of this generic behaviour, again corresponding to specific w, V()
can blow up along one component of Z, and remain bounded over the
other component. There is another special case, due to a specific link
between t and T, which can occur for non generic w, but it exhibits
similar behaviour to the generic case.

Proof. By the proof of Lemma 0.50, we have that;
Vo(T) = s TFY[([Jl = w) AT =9l = —ct + [T = T|) AT = AY]
Making the substitutions T = \y and |y| = w, we have that;
T —y|l=—ct+ |7 -7 <= [ Ng—7y|=—ct+|\y—T7|
— |N=1||[g]| = —ct+ |X\y—T|

— wA—1]=—ct+|\y—T7|
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= wA =1 =c22+ (A\y1 — 1)+ (Ao — r9)? + (Ayz — 13)?
—2ct|\y — T
= 4 [(Ay1 — 11)? + (A\ya — 12)* + (Ay3 — 13)?]
= [P (= 12 = @2 — gy — 1) — (s — 72)? — (s — 7))
= 4 N2w? = 20Xy T+ [T = [—2 w? +w? — A2+ 2057 — |7]?)?
= N4t — (27T — 2w?)?) + A\(=82t*y . T — 2(2y . T — 2w?)
(w? — 2 — 7)) + (LI — (w7 — P22 — [72)?) = 0 (AA)

If we reverse the two = steps, we obtain the alternatives;

w2 A =12 =2+ Ay —r)? + Ay —12)2 + (A\yz — 1r3)?

+2ct| Ny — 7

and w|A — 1| =ct + |A\g — 7| or w|A — 1| = —ct — |\ — T|

which gives;

T—yl=c+|T—Tlor |T—g|+|T—T| = —ct

so that the condition (AA) defines the admissible A in the formula;

Voo (®) = 0 Fy(([7] = w) A (|7 = gl = —ct + [T —7)
V(IZ—gl=cad+Z-T) V(T -7+ [T -7 = —ct)) NT = AY]

with V,(Z) € V)(z). By the quadratic formula, we have that, if

a # 0;

A\ — —b+/—Vb%2—4dac

.Y
2a —aOI'

o R

where;

a = 4At*w? — (27 . T — 2w?)?
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b= -8ty .T — 2(2y . T — 2w?)(w* — *t* — |7]?)
e = 4L = (u? — 3 — [P (QQ), ().
Let;
a(z) = 4cPt*w? — (22 — 2w?)?
b(z) = =8c*t?*z — 2(2z — 2w?)(w? — 2t — |7]?)
c(z) = 42272 — (w? — A2 — [7]*)?

Then a(z) € R[z] is a polynomial of degree 2, b(z) € R|z] is a poly-
nomial of degree 1 iff;

—8c%t? — 4(w? — 2 —|F|*) # 0
iff 4|72 — 4% — dw? # 0

iff ’F| 7£ 4w2z4c2t2

iff |7| # Vw? + 22
and c(z) is a constant. We have that ¢(z) =0

HF 42272 — (w? — 22 — [F[2)2 = 0

1[)C;‘:elrlericaully the two roots corresponding to A must provide one of the three
alternatives;

(@). [T—y|=—ct+|T—T7|
(). [T —g|=ct+ T —T
(i13). [T —y|+|T —T| = —ct

for the corresponding Z = \y. Clearly the points on V,!}(Z) corresponding to case
(i7) are bounded, so if we obtain any infinite points, they must correspond to cases
(¢) or (i7). By Lemma 0.55, the infinite points on opposite sides of the asymptotic
line which we find below, must correspond to both cases (i) and (i¢). To obtain
cancellation, we therefore need to include the opposite time —t in the calculation,
which we can do by considering p + p~2¢, where p*(%,t) = p(T,t — s).
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2w2+202t2+/7\/(202t2+2w2)2 —4(w2—c2t2)2

iff 7] = .

|72 = w? + 22+ [ — (PR + w?)? — (w? — 2L2)2
7> = w? + 2 + | — Vw22

i |7)? = w? + A + 2wet = (w + ct)? or |[7]? = w? + 2t* — 2wet =
(w — ct)?

iff |7| = |w+ct]| or [F| = |w —ct] =w —ct

which can happen, with roots at 0 and —%, the finite point, calcu-
lated in (x) below being 0. However, we consider the generic case when
c(z) # 0, leaving further consideration of the other case to the reader.

Let;

Zy={r€6B0,w):a(y.7) =0}

Zy={z € §B(0,w) : b(y.T) =0}

As a(z) has degree 2, we have, by the quadratic formula, that;

w2+/_w2 1_4(17c2t2)

a =4t — (25. 7T —20w?)? =0 iff y.7 = 3 - (PP)

which has at most 2 real solutions, corresponding to at most 2 (pos-
sibly empty) parallel intersection circles of the sphere §B(0,w) with
parallel planes {P; 4, P2, }. We will consider the generic case with two
nonempty parallel circles, {C} 4, C2 4}, which are not points, leaving the
other cases to the reader, so that Z, = C} , U Ca,, (*). We have that
b(z) has degree at most 1, with at most 1 real solution, corresponding
to at most 1 (possibly empty) intersection circle C} of the sphere with
a plane P, parallel to P, , and P, ,. Again, we will consider the generic

' The case when a has repeated roots, by the formula (PP) occurs when
1- 4(1;7‘;#) = 0, iff w? = 4(1 — c®t?), we can exclude this case by assuming
2 > % by moving the initial conditions sufficiently far enough in advance of ¢ and
changing coordinates. Alternatively, we can obtain at most 2 possible solutions for
w, which will account for a set of measure zero in the final integration, see footnote
refcoincides. Observe that when a has two real roots, they cannot be maxima or

minima, so a will change sign on opposite sides of the intersection circles C , and
Cs 4.
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case when Cj, is nonempty and not a point, leaving the other cases to
the reader. We have that Cj coincides with one of the circles (' 4 or
02,0, IH&:bZO,

iff (w? — 2t* —r?)(4w?® — 4y .7) = 8¢*t*y . T and (PP) holds

W/ —w?y [1— 0=t Wi —w?y 1 40=c2E2)
iff (w2—c2t2—r2) (4w?—4( \/T»ZSC%Z( v )

2 2

which can happen, in which case V,,(T does not blow up along Cj.
Again, we leave this case to the interested reader.

For i € 0B(0,w) \ Z,, we have that p(\,7,7) = 0, where p(z,7,T) €
R|[z] is a polynomial of degree 2, with coefficients in {7, 7}, having at
most 2 real roots.

Using the fact that;

la| < (42t2w? + (2wr + 2w?)?) = Oy
|b| < 8c2t2wr + 2(2wr + 2w?)(w? + A2 + r?) = O
le| < 428207 4 (w? + A2 +12)2 = Cy

where {C},C5,C3} C Rso. Denoting the possible real roots of
p(A,7,7) by {Z, 2}, we have;

i Cat/TITIOGE
ma$(|71‘,|72|> < [b]+] g 4ac| < 2 ; 103 204

where Cy C R~¢. Then, if;
la| = [4c?tPw? — (25 . F — 2w?)?| > € > 0
it follows;

maa(|%),2)) < 2
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In particular V,,(Z) can only blow up along the exceptional locus Z,,

(12).

In the generic case, with Cy, # 0, Ca 4 # 0, C14 # Ca4, not points,
we define the 2 asymptotic cones of V,,(T) by;

Cone(Cr,) =U

7€C1a log

Cone(Cy,) = Uyecz,a log

where [ is the line joining 0 and 5 € Cj,, for i € {1,2}.

We have that Cone(C1,) N Cone(Cy,) = 0 unless pr*(C1,) = Caa,
where pr* is the orthogonal projection defined by the perpendicular
line [ passing through 0, perpendicular to the parallel planes P, , and
Py ,, onto P,,, in which case Cone(Cy,) = Cone(Cs,). Again, we

consider this generic case, leaving the case Cone(Ci,) = Cone(Cs,)
to the reader.

We obtain no real roots, iff b> — 4ac < 0

iff [—8c2 %y .7 — 2(2y . T — 2w?)(w? — At? — |F|*))?

—4[4c*t*w? — (2y . T — 2w?)?|[4P3|T]? — (w? — 2 — |7]?)?] < 0

iff ¢(y.7) < 0, where ¢ € R[z| is a polynomial of degree at most
2, which by continuity determines an open set Y, C R3, so that
Xy = Y, N0B(0,w) is open. We can exclude X, from our calcula-
tions as the fibre is empty, and assume b> — 4ac > 0.

We obtain a repeated real root at ;—f iff;

b? — 4ac =0

iff (8%t . T — 2(2y . T — 2w?)(w? — *t* — |7]*)]?

—4[4ctt?w® — (27 .7 — 2w?)?J[ AT — (w? — A = [F*)?] = 0

12 We can also note that if Cia = C24 = 0 then |a| > € on 6B(0,w), and

max(| 2], [22]) < %‘ = (5, where C5; € R, Vi(Z) € B(0,C5w) and V,(T) is
bounded.
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which again determines 2 intersection circles Z,., C B(0,w), parallel
to the circles Z, U Z,. Again, we consider the generic case that Z,, is
distinct from Z, U Zy, leaving the other cases to the reader, (**).

13 1¢ Zq and Zy are distinct, with Z,., = Z,, then b?> —dac =0 and a = 0, so
b =0, so that Z, and Z;, have an intersection, which is a contradiction. Similarily,
if Z, and Z;, are distinct, with Z,., = Zp, then b? —4dac =0and b =0, so ac =0,
and ¢ = 0, the blow up behaviour along Z, being similar to the generic case. If
Zy C Zy with Zy C Zyep, then, we must have that a = b =0, and;

2.2
—dw? (w?— P2 |7)?) w24 /w? /1_%

REP—A(wi—cP2—[7%) 2

which, for fixed {¢,|7|} has at most 8 solutions for w, (*). Suppose that the
spheres 0 B(Z, —ct + [T — 7|) and 0B(0,w) share a tangent plane at p ., for some
0 < w < s, so that the line 55  passes through z. Without loss of generality,

suppose that [p; .| < [Z| Pz, = lﬁ%”"f. Assume T # T and consider the function

fz defined, for small X\ by;

fz(A) = —ct + [T+ XT — 7| — [T+ AT — Dz .|

Pzl —

=—ct+ [T+ AT -7 = |1+ N7 - “Z 7|

et + [F4 AT — T — (L4 A — Pzlyg)

]

= —ct+ [T+ AT — 7| — (1 + \)[T| + [Pz,
= —ct+[(1+Nz1—71) 2+ ((1+ N2 —12) 2+ (1 + N 23 —13)] 2 = (1+N) [Z|+ [Pr |
= —ct+ gf(A) - (1 + )‘)|T| + |T)§,r|

in coordinates T = (x1,22,23), T = (r1,re,r3), with fz(0) =
—ct+|T 7| — |f7]3§,r| =0, gz(0) = |T — 7|. Then;

4 — m@((l + Nz —r1)x1 +2((L+N)we —ro)xe + 2((1 4+ N)zg — r3)zs) — T
=y <1+ NT-7,7 > —[7]

= A+ N)EP- <77 >] - 7]

which implies that 7 € l5;. Excluding this solution, as fz is analytic, by
O-minimality, for € > 0, we can assume that fz = 0N [—¢, €] is a finite union of
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points and intervals. No interval can contain 0, as then %(0) =0, so that fz #0
on some set of the form (—e,e)\ {0}. In particularly, this implies that we can
obtain tangency of 0B(T1, —ct + |Z, — 7|) with 6B(0,p5,.;) for mobile points T,
and Pz, along the line lg; . If T =7 or T € l5, we either have [z| < [r],
in which case, it is clear we can move T along I and obtain mobile points, or
|Z|] > ||, in which case we can move T through 7 towards 0, and eventually obtain
mobile points, (xx). From (xx), the possible 0 < w < s can represent arcs with the
property that;

B(z, —ct + | —7|) intersects B(0, s)
and such that the spheres  B(T, —ct+|Z —7]|) and § B(0, w) share a tangent plane
at Pz, see Lemma 0.51, is not discrete. It follows that the case () accounts for

a set of measure zero in the final parametrisation and doesn’t effect the finiteness

of the integral. When w —ct = |F|, 7y = w, T = (w — ct)% = (1 -2y, (xxx), we

obtain, as above, that there exist solutions to V,,(Z for [z| > [F|, T € 5. This
corresponds to the case a(y.7) = b(y.7) = ¢(y.T) = 0, where;

a(z) = 4c?t?w? — (22 — 2w?)?

b(z) = —8c%t22 — 2(2z — 2w?) (w? — 22 — [F|?)

c(z) = 4PE2|F|? — (w? — 22 — [7|?)?

We have from (x * %) that;

- _ = ti
y.T=75.(1-%)y

so that;

a(y.7) = a(w(w - ct))

= 4c*tPw? — 2w(w — ct) — 2w?)?
=0

b(y.7) = blw(w —ct))

= —8c22w(w — ct) — 2(2w(w — ct) — 20?) (w? — 8 — [7]?)
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Assuming b? — 4ac > 0, we obtain that vy, = 0 or 7, = 0 iff;
Vb2 — 4dac = b or Vb? — 4ac = —b iff (> — 4ac) = b?

iff 4ac =0

iffa=0o0rc=20

iff 4c?t?w? — (2y .7 — 2w?)? = 0 or 4t3|7|* — (w? — 22 — |F[*)? = 0

w2+/7w2 174(17c2t2)
iffy.7 = 5 © or 4c%t*r? — (w?* — At —r?)?2 =0
w4/ —w? 1_4(1*62%2)
iffg.7= s———— orr=|w+ctlorr=w-—ct
w2+/_w2 1_4(17c2t2)

w

iff Case 1. y.7 = 5

or Case 2. r = |w+ct|orr=w—ct

In Case 2, for a # 0, we obtain exactly 2 real roots _71’ and 0, uni-
formly in 7.

In Case 1, with b # 0, we have, using Newton’s expansion of (1+y)%,
for |y| < 1, that;

1
4ac\5
. —b+vb2—dac __ 7, —b+b(1-5°)?
limg 0 ="-5—" = limas0———,"
brb(14-Y o (—1)7171(2”—2)! n
i —bHb(I+543 0 =Ty ¥
= 1Mg—0 2a |y:_4b%£

= 82Pw(w — ct) — 2(2w(w — ct) — 2w?) (w? — 2 — (w — ct)?)
=0
(- T) = clw(w — ct))
=4t (w — ct)? — (w? — 2?2 — (w — ct)?)?

=0
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dac

b(=%3) P~ 1(2n—2) ac\n
) bl 2%( 240)
= l’émaao 2a

_7s 17 2¢ )2 =1 (2n—2)! (4¢)™a” !
= llma—>0§[ +Zn 2 22n Tl(n—1)]  b2n—1 ]

and, with b # 0;

4dac
; —b—vb%2—dac _ 7, —b=b(1- )7
limg o=——5—% = lzma%OT
1
—b—b(14+ Y+ 35, L Cn=2ltyny
= l'lm ne 2T nl(n—1) ‘ dac
a—0 2a y—,i
b(i%) (=nn"— 1(2” 2)! 4ac\n
— lim O*Qb* 3 0t Ty (b2 )
- a—r 2a
T 1 (—=1)2"=1(2n—2)! (4¢)"a" !
= l'Lma—>0[ ‘I' ) zn 2 22n Tol(n_1)  b2n—1 ]

- lz'ma_m(—g + g) (%), (14)

Letting p; , denote the centres of the blow up circle S;,, 1 <1 < 2,
and q;, = lgp, N 6B(0,w), if § € S; 4, we let S;5, denote the great
circle passing through 7 and g, ,. Then, without loss of generality, we
have that the region;

14 This is a first order approximation for V,, (). We introduce the angle 6 below
and consider the leading term —3 which blows up as a — 0. Strictly speaking,

letting d = —1[>"° (DT (n-2)! (42)2:;‘1:71], we have that;

n=2 22n—lIpl(n—1)!

b A=t )
If we define by, (0) = b(0)(1 — <% — 42)(9), with a(0) = 0, so that;
brew(0) = b(0)

Do (0) = ' (0) (1 — 52 — 42)(9) 4 b(f)(2e — g —ca’  do da  dd)

e (0) = /(0) + b(0) (— 2@ _ A ()

=v(0) - ‘C(%)(%,)(O)’ —d(0)a’(0)

the proof goes through replacing the instances of {b(0),b'(0)} with
{bnew(0),),.,,(0)}, which are all finite.
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a>0NB0,w) = (SigaNa>0)

gesl,a

a<0NB0,w) = (SigaNa<0)

yesl,a

with @ < 0 situated between the intersections S, and Sz,, a > 0
situated above and below the intersections S;, and Sy, on dB(0,w),
and blow ups of opposite signs, see footnote 13, along Sigz, at ¥
and the corresponding opposite point ¥ € Siz, N S1, and points
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y//’y/// C Sl,y,a N 527(1’ (15)'

15 In this case, Cone; , and Coney, have the following asymptotic property.
Fix y € S1,4, and form the plane Q1 3,, determined by /5 ; and the tangent to the
great circle Sy 3, at 7, so that S154 C Q175.4. For a fixed ¥ € S15.4,\y, let 0
denote the angle between 5, and I, in the plane Q1 y « and let a(8) = a(¥'),

0,y
b(8) = b(y'). Considering the first order approximation —2 for Vi () along S15.q,
defining Vi, 1(Z), we have that |Z| = b(‘?g;" Let pr* be the orthogonal projection

from Q15,4 onto l5, and let pr* (@) € 5, 7 be the corresponding point, so that
pr*(T) is the nearest point to T on lg 4, w1th x = |T — pr*(T)| and R = |pr*(z)|.
By elementary trigonometry, assuming 6 > 0, we have that;

b(0)wsin(0 b(0)wcos(6
o= | = MG R = | = M, § = tan(0) ()

As the circles S1, and S, are distinct and non-empty, we can factor a as
(.7 —a)(y.T — B), where Sy, is defined by (y.7 = a) NdB(0,w), Sa,, is defined
by (7.7 = 8) NdB(0,w). Rotating coordinates so that ¥ is situated at (w,0,0), ¥
at (wcos(0),wsin(0),0), we have that;

wr; —a =10

where T = (r1, 79, 73), and, without loss of generality, we can assume that ro # 0,.
This follows as if we rotate g to (w,0,0), ¥ to (wcos(8), wsin(d),0), with ro = 0,
rotate ¥ to (0,w,0) and ¥ to (0,wcos(8), wsin(d)) with r3 = 0, and rotate 7 to
(0,0,w) and 7' to (wsin(f),0,wcos(#)) with r; = 0, then 7 € I5 5, which we can ex-
clude, as it accounts for a set of measure zero in the final integration. It follows that;

a(0) = (weos(0)ry + wsin(0)ry — a)y(0) = (W + wsin(0)ry — a)y(0)

= (a(cos(0) — 1) + wsin(0)ra)y(0) (xx)

with v(0) # 0, so that, from (*),(*x);

cos(0) = | — Sge]

= | = 5w lll(a(cos(9) — 1) + wsin(0)r2)y(0)]| (L)

so that, using the power series expansions cos(#) = 1+0(6?), sin(0) = 0+0(63);
1+0(0% = (—(aO(GQ) + wra6 + O(63)y(6)

and, rearranging;

0 =T |50

(6)) (D)

so 0 = O(%) ( * x)
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so that, from (x), (x * *);

)

x = Rtan(f) = O(1)

tan(0) = O(

==

and, as |T|cos(f) = R = |pr*(Z)|, we have that;
z] = [pr*(@)] = iy — R

= R(1+ % +0(6%) -

= 0(6?)

= O(z2)

From (D);

0 = | 2| (5t + 0(0)) (D)
= s 11+ 0(0))
so that;
0(1+0(0)™" = 0(1+ 0(0)) = | |

=] — 0] < [0(1+ 0(9) — 0] = 0(6%) = O(%)

~v(0)Rra

so that;

1= | — Bl < O(32)0(§) = O(72)O(R?) = O(1)

We have that, using (L);

_ _ wb(0)sin(6)
= Rtan(@) - ‘ [(a(cos(0)— 1)+wszn(0)r2)'y(\9)]|

and using L’Hopital’s rule;

limg_o(wb(0)sin(0))’ |
limg_o[(a(cos(0)—1)+wsin(0)re)v(0)]

limg_or = | —

_ | . limg o (wb’ (0)sin(0)+wb(0)cos()) |
Timg ol(—asin(@) T waos (0)r2)71 () +((a(cos(9)— 1) +wsin(@)r2))7 (0]

wb(0) ‘
wra7(0)

= | o 7”27(0)|

so that the line formed by the translation of /5 by a perpendicular distance of

| — r2,y(0)| in the plane Q1 y,, is actually an asymptote Moreover, as x is analytic
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Ify €S, is fixed, with corresponding {5174, @154}, then as b # 0
along C ,, we can assume that for small enough [0] < ¢, see footnote
15, |b(6)| > €, uniformly in § € S} 4, so that |ﬁ5)| < %, and the root
found in (%) has a maximum value M, varying |0] < 6 and § € S},.

For the root T(#) = bieg + g0, defined by (#x), we can assume that

in 0, 2 — ;2595 = 0(0) = O().
We also have, using (L), and L’Hopital’s rule twice, that;

|limg—o(— #ﬁ,go) R)|

. b(0) b(0)wcos(6
= |lzm0‘>0|(_ 7"20'\/(0) | + | [oz(cos(ﬁ)—(1§+wsi(n20)r2]'y(0) D|

— lim ‘ —b(0)y(0)[a(cos(8)— 1)+wszn(0)r2]+b(0)wr2c09(9)9'y(0)|

- 6—0 r27(0)7(0)0[a(cos(0)—1)+wsin(0)rs]

‘ —b(0)7'(8)[a(cos(0) —1)+wsin(8)r2]—b(0)y(8) [—asin(§)+wcos(8)r2]+b" (0)wray(0)cos(8)0+b(0) wray(0)[cos(8) —Osin ()] |
Y(0)v"(0)0[a(cos(0)—1)+wsin(0)rz]+~v(0)v(0)[a(cos(0)—1)+wsin(0)re —absin(0)+wcos(0)6rs]

= limg—o
= limg_0| 7(g)]

where;

B(9) = =b(0)3"(6) [(cos(0) — 1) + wsin(0)rz] — 26(0)'(6)[—asin(9)
+weos(0)rs] — b(0)y(0)[—acos(0) — wsin(0)ra] + b (§)wryy(0)0cos(6)
+2b' (0)wryy(0)[cos(0) — Osin(0)] + b(B)wray(0)[—2sin(0) — Ocos(6)]

F(0) = 7(0)7"(0)6lc(cos(8) — 1) + wsin(8)rz] +(0)y (0)[a(cos(8) — 1)
+wsin(0)ra] + 7(0)7(0)0[—asin(0) + weos(0)ra] + v(0)y (0) [a(cos(8) — 1)
+wsin(0)ry — afsin(f) + wcos(0)0rs] + v(0)y(0)[—2asin(0) + 2weos(0)rs

—afcos(0) — wsin(6)6rs]

so that;
|lim9_>0(fmb€(7f;()0) R)| = |f2b(0 7'(0) 71”“2;:((%))“2/1(1(})2;)4+2b (O)wr2“{(0)|
It follows, as Tz_ebw(%) — R is analytic in 6, that;
—b —2b " (0)wry+b a+2b"(0)wr
||T29’5(()()))‘ ~R|—| 2b(0)7'(0) 2;((%))31(”22 +2b’ (0)wray o)‘ 0(6) = O(%)
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for sufficiently small §, |Z| > Mw, and we can unambigiously define

f((g)opp = f(_e)a (16)'
Returning to the case notation above, we have that, Case 3, a = b =

: 242 2N . 832tyT
0iff (1 —c** —7r%) = (o7

242
w2+/7w2 174(171: t4)
802t2( w? )

2
—242
w2+/_w2\/1_4(1w6 <)
2

iff (1—c*?—1r?) =

dw2—4( )
corresponding to specific values of w, a situation considered in the
footnote above. We have that V,,(Z) is bounded over one of the compo-

nents of Z, and exhibits a blow up behaviour over the other component.

In Case 1, not Case 3, as we have seen in the above footnotes, we
obtain two components, with one component having a pair of infinite
opposite branches parallel to the lines in the asymptotic cones, and a
bounded component corresponding to ¢ over the singular locus Z,.

In Case 2, we again, by a similar calculation to (*), obtain two com-
ponents, with one component having a pair of infinite opposite branches
parallel to the lines in the asymptotic cones, and a bounded component
corresponding to the root 0.

0

Lemma 0.52. Cancellation along asymptotes
We have that, along the line lgy o, the integrals;
. 77|\ 0%p (— — (ri—r}
() e = Jom—easry (= o) (58 (@, 0)]dS () e

4#02(t—@)2
?—ngp 2 _ _
(—t—Teely(Z2) (7, 0)]dS (37)

1 1
+ 4meg [47r02 (—t— IT—Topp! 2 féB(?gpp,ct-i-\?—?gppD
c

16 By the calculation in footnote 15, we have that {T, Ty, } vary as O(3) with
the angle . Moreover, by Lemma 0.55, for sufficiently small 8, if T corresponds to
—ct, then Ty, corresponds to ct. By the definition of V,}(Z), B(Z, —ct + [T — )
and B(Topp, ct + [Topp — T) pass through {y',y"} C B(0,w), touching 6B(0,w),
with [§ — 7’| = 2w|f| = O(%) and centred on ”oppposite” sides of B(0,w). As the
boundaries 0 B(T, —ct + |T — 7) and dB(Topp, —ct + |Topp — T) limit to the tangent
planes of 7’ and i for sufficiently large {Z, T, } and the points 7" and 7" approach
each other as we increase R, this will be enough to obtain cancellation in the
indefinite integral, following the method above. Moreover, by the calculation in
footnote 15, we can assume that  and T,p, in the limit as § — 0 approach the

same line consisting of a bounded translate of the line /5 ; in the plane Q17,4

(Tl _Tll,opp)

o|F =70, 2
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1 1 3] (r1—r1)
(i) m[McE(t_\?—?’l 2 faB(F’,—ctJrl?—F’l)(a_p( OIS (@) =
1
"'H[MCQ(_t pp\ faB

— ri—r)
(Zl’l) 47360[@ f&B(F/,fctH?fF’DD(B_f)(y’o) ( )]dS< )c|r e

_ ri—r opp)
e DU Y057 )5 3) G

SEI%’

(7,0)))dS (7) =2

clr =

opp 7Ct+‘?_Fi)pp|) (

Q

1 1
+_
dreqg [471'02( i |[7— Topp‘)z f§B opp7

are O(g5), with R = |F|

Proof. Using the notation in Lemma 0.51, we consider the restriction
of Viu(T) to a cover of Sy 54, for ¥y € S, For 7(0) € V()]s ., let
7 be the nearest point to 7 on the asymptote l0y5h7 where g5 o, is

a shift of l5; by the perpendicular distance ¢y = |T 0 | in the plane
S15,a- Then, by the result of Lemma 0.51, we have, for any 0 < e <1,
that;

[7(0) = 7(0)] < e=O(5)

for sufficiently small 6, with |[7(0) — 73| = R and [vz| = |cz| and
7(6)| — Ipr (P (6)] < &, where [pr (/)] = [7(6) — 5] = R, so
that, for sufficiently small 6(R) or large R(6);

R-1<R-EZ<"0)|<R+L <R+1

R—2<R—-1—-e<[F@))]<R+14+e<R+2

We also have that, by the result of Lemma 0.51, that, for sufficiently
small §(R), 0 < € < 1;

7(0)] = | Gragay) | = [P (0)] = |pr* (7 (0)] + lpr* (7 (0))] = | (s )

<%+€/+€g

<26 + €5

b(0)y' (0)wra+b(0)7(0)a+2b'(0)wray(0) |

where e; = | =2
Y 2v(0)2wrs

and similarly;
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— —b(0
7 (0)ep| — | (=52%5)
_ . * (= b
— [7(0)] = o (7 )op)| + 7" (7' (O)op)| — (25|

<E+eé+e

<2 + ¢

so that;

[P (0)] = [P (O)apsl = 7" (0)] = | Gty )| + | Gty )| = [P (6o
< 4e + 2¢5

= O(3) +2¢

and;

[T ()= (O)app| = ([T (O)[=[T"(O))+(IT" ()= [7"(8)opp ) +-(I7" (0) o | —
[7'(0)opl)

< (I7(0) =) + ([T @) = 7" (O)opp|) + (7" (@)opp — T'(0)op )
< 4e' + 265 + 2¢

= O(5) +2¢

In particularly, as, by Pythagoras’ Theorem;

7O + leg|* = lpr* (7 (0))1*

[7'(@)oppl” + legl® = [pr™ (7' (0) opp)|*

we have;

= (Ipr* (@O — legl*)2 = (1pr* (7 (O)op) | — leg*)?

= [7(O)] = 17(0) ops |
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< 4€' + 2e + 2¢5
so that, using Newton’s expansion;
[ (P O)(1 = prele)? — [pr (7 (0)op)| (1 — o —2)?
< 4e' + 2e + 2¢5
pr* (7 (O)] = lpr* (7' (0)opp) | < 4’ + 26 + O(3) + 2¢5
and we can assume that for sufficiently small 0;
pri(T(0)) = —pr*(7'(0)opp) + €+ Wy
with |e¢] < 4€' + 3¢, |wy| = 2€5, and;
—(6) = (g + " ((6))
= —vy — pr*(7'(0))
= —Uy +pr’ (7 (0) opp) — € — Wy
=~y + (7 (0)opp — Vg) —€ — Wy
=T(0)opp — 205 — € — Wy
- F/(‘9)01019 - (265 + wﬂ) + O(%)
> 7(6)opp — (205 + Wy)
For the asymptote I o, With 7 € lg5 o, [T'| = R, sufficiently large,
there exists a unique 7’ € V,,(7), with pr*(7") = 7, where pr! is the

orthogonal projection onto lgy o, in the plane Q1 g,. If [pr*(7")| = S,
then |7 — 7| = O(%), ™ — pr*(7")| = O(%), so that;

so that [ — 7| = O(%) = O(5). We have that;
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SB(F,—ct+|r—7|)NB(0,s) = 0B, —ct+[F =)+ (7 —1r")) N
B(0, s)

~ (6B, —ct+|F —=7"]) + (7 — ")) N B(0, s)

with a radial adjustment of at most [7'—7"|, and § B(7", —ct+ |7 —7"|)
passes through 7" with |7 — 7] = wd = O(z) = O(%). It follows

that 0B(7', —ct + |F — 7'|) passes through ¥ with 7" — : _| O(%),
7 — 7| = O(3). Similarly, we have that for the pair {7, 70 };

T = (205 +Wy) — 7 + O(3)

= (27 +) — 7+ O(3)

=2z — 7 +O(%)

where Z; = (205 + wy), so that |7, —7, | = O(%) = O(%). More-

over;

_63( 0pp7€t+ |T opp’)ﬂB<0 S) (5B( opp?Ct+ |T opp|)+(F/opp_
o)) N B(0, 5)
<5B<_,o/pp7 ct + ’T - Topp’) + (F/opp OPP)) N B(O S)

with a radial adjustment of at most |7/, —7, .|, and d B(T, Opp, ct+|r—
o) passes through 7 with |7 —7| = wf = O(5) = O(%). It fol-
lows that 6 B(7,,,, ct+ |7 —T passes through 7, , with |y0pp

O(%), [ = Toppl = O(5).

oppl) _yoppl =

We have that;
(7). Using the facts that ‘a lo] < M on B(0, s) the surface measure

of dB(T', —ct+|T—7'|)N B(0, s) is at most 27s? = 2z;— 7' +0(5),
we have, for sufficiently large R = ||, that;

T—7'|\ (02 (ri—r1)
|47I]"€() [47T62(t—1@)2 féB(?/,—Ct-HF—?/D(t_l c ‘)(EQB)< )]ds( )c"r‘ r’1|2
(—t— Tl (20 (7, 0)]dS () Gy
[ 1 (ri—ry)

1 1
e | Jsner
o2
dme2(t— \?—?’I) clr—7|2 f(SB(?’,—ctHF_M)(a_p)( )]dS( )

OPP

dme2(—t— Im— TOPP‘)Q OpP’CtJr‘T TO;D;DD

47eq

(r1— 7"1 Opp
cfr— 7/
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1 1 (Tl Tl opp M
+47r60 hwc%—t—w r =70, 12 féB(r ct+[F—71, \)<8 )( )]dS( )|

r1—"r (7“1 7 opp
= & =t e+ 1 ) [ p —evn ) (58) @, 0)]dS (@)

Ameo a2 (=) T =T T ATCO T Tomely €T —Top |7
c

(T Tl opp
+[ ! = = faB ct+\?—?;pp|)(gt2)< 0)dS(y)

4men 471‘02(7257‘?“77“017‘17‘) C|T‘ roppl

féBr ,—ct+|T— ”|)(gt2)(y7 )dS( ))|

.y (i " oe ) (= T 2) | (r1=r) (1= ) ]
16m2€pc? (t— \F—r\)| B |2(77\7 7opp|)

opp?

Oppa

=
2 (—t— I TCoppl YF—7 |2

| 7?2) opp|

PP‘

20)(7,0)]dS(7) + [ I

f(SB(F’,—ct+|F—F’|)(8t2 47reo4 CQ(_t_\T*Topp\) c|r— ropp|2

féB ct+|?—?£,pp|)(%§)< )dS f(SBr ,—ct+[F—7 \)<gt2>(y’ )dS( ))‘

[7+7 —2p|

0pp7

[m—ra)((—t—ic )77 22+ O( L) 12— (t— =Ly 7 2) 2r1 2251 +0(%)
= T4+T Z T+7 —2Z— L
(t_@)r_fqz(_t_w” 47 _sz_}_o(ﬁ)‘ (- t_w

92 1 (ri4r1—225,1+0(%))
féB(F’,—ct+|F—F’|)(8_t§)( )]dS( ) [EMCQ(%?\?+?'—2zg+0(%)| c|r+r1—2zZ+O( 1)2\2]

C )
o2 92
faB ct+|F—?gpp|)(8t§)< 0)dS(y) f(SBr —ct+|7— */\)(atg)( 0)dS(y))|
M2 ‘(ﬁ,ri)((,t,wgww” T 254+ O( %) 12— (t— =T L) - r|2)|

- | 1672¢egc3

0pp7

T T O gz o)
87TEQCS| |7+7/72j,+10_<2f;’1+0(%) 47r160 \H:’*?f*w(i)\ (Z\lfjrﬁjzyigoiﬁ )|
t— B [F T 22540 () 2 dre? (—t———F—H) 7+0la
|f§B(F;pp,ct+\?—?;pp|)(gtg)( 0)dS@) = [sp —ctrirr M%)@, 0)dS ()|
A 7reoc3|7" Ela 27r6004|r'|3 + e o I?+F’7QE§+O(%1)\)”F+7 o)
| Jstrtyy ettty (578) @ VIS @)= fip 17y (55) @ 0)S @)
(P)
where, we follow the method in (i7) below, noting the O(|F'|*) term
cancels in the first long term to obtain O(|7(~)\()|2|((\37)~ * — O(%,lg).

Change coordinates, so that the azimuth angle 6 of the sphere 0 B(7, —ct+
|7 — 7|) is centred on the line passing through {7,7'}, giving coordi-
nates;

)P+ =22+ 0(5)I?
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7 + sin(0)cos(p)T + sin(0)sin(p)y + cos(0)(y —7)
O<o<m-m1<¢<m)

for a choice of orthogonal vectors {Z, 7,7 — 7} with modulus —ct +
|7—7"|. Similarly, choose the azimuth angle 6,,, of the sphere 6B(T,,,, ct+
7 —7,,,|) is centred on the line passing through {77 giving co-
ordinates;

opp? y0pp }

?,)"‘ 811 Oopp) COS(Popp) Topp + Sin(eopp)Sin(¢0pp)yopp + c05(Oopp) (yi)pp -
F/
opp

(0 < eopp ™, =T S ¢opp S 7T)

for a choice of orthogonal vectors {Topp, Yopps Yopp — Topp) With modu-
lus ct + |7 —7,,|. We have, for points {7’,q,,,} of intersection between

B(0, s) and 6 B(7', —ct+|r—7'|), B(0,s) and 6 B(7,, ,ct+|F—7. |) that;

opp? opp ’ )

Oopp(Topp) == SI(Oopp(Topp)) < m (TT)

Let {m,m',m/ ,} be perpendicular lines to the asymptotic line
containing {7 ,ropp} with centre Z; + O(% Ly, passing through the points
WY, ¥, with p = mnl, p = m' Nl p, = m,, NIl Let
{P,P', P, } be planes passing through {7,7,7,,,}, perpendlcular to
the lines formed by translating [ by the vectors {y — 7' Topp — Popp)

respectively Let v = |g - ]_)|7 U |y - p| opp = |yopp popp|

=7 =7, kpp = [Topp = Dopps then by elementary trigonometry, the
angles {/; a,, } between the lines {I, ly 7} and {l,ly = 1} are given
by;
!~ n _ v _ [§-P]
o ~tan(a') = 5 = ]
~ — v’o _ ‘yo po | o 1
ahpp tan( opp) kgzz |7~o:; pozg - O(}_{) (LM)

We have, for vectors {u,v,w}, that;
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so that;
7 =P =" =7z — P — 7

|F;pp - ]_O:Jpp‘ > ’F:)pp - z§| - ’]_jgpp - z§|

=7 =z + O(%)| — [Pl — 74l
and, moreover;

7| = 2] <17 = Z5l = [T, — Z+ O(R)] < 7] + |7

so that;

7 =% = O(R), [Ty, — %] = O()

opp

where R = ||, and, using (LM), a = O(%), o/ = O(%). Then, it

is clear that that the maximal distance between points ¢’ on the arc
dB(T',—ct + |7 — 7|) N B(0,s) and the orthogonal projections pr?(q’)
onto the plane P’ is at most /s = O(%), and similarly, the maximal
distance between points @, on the arc 6 B(7, = ct+|r -7, [)NB(0, s)

and the orthogonal projections pr2(§gpp) onto the plane P, is at most

o s = O(%). Similarly, as the orthogonal distances between P’ and
opp R

P is [7 =7, = O(%), we can, for sufficiently large R, choose

{%, 7, Topp, Yoppy compatibly, such that, uniformly;
17— Tyl = O(5) = €(R)

for {7,q,,,} defined by coordinates 6 = 6, ¢ = Py, with 0 < 6 <
ma$(9maxa Hmaa:,opp)a Where;

Omas = mazo<p<2:8(7) = O(%)
for ¢ in B(0,s) NdB(T', —ct+ [T —7'|), with coordinates {6, ¢}, and;

—/ 1
Omaz,opp = MAT0<3<2r00pp(Topp) = O(5

for g, in B(0, s)NdB( ct+|r7—7, |), with coordinates {Oopp, opp }

=/
TOPP’ opp

It follows that, for sufficiently large R, using the surface measure
dS = r?sin(f), the fact (T'T) and r%(1 — cos(1)) = O(1), and footnote
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5, for sufficiently large r;

| féB o

max(Omaz,Omaz,opp .
< 2¢(R)|V(((Z8)0) | po.0) |27 (ct+[F—T,, )% et ' sin(6)dé

2

55)(7.0)dS ()]

2
féB (7, —ct+|F—7" |)(8t2

i, ()T 0)dS(3)

= 2¢(R)|V (((38)0)| 5@.5) |27 (ct+[F—T,, )2 (1—cos(maz (Brmaz, Omaz,opp)))

where {C, D} C R~o.

It follows from (P), for sufficiently large r(e), following the method
of (i1), that;

1 [T=7|\/0%p (ri—r})
|47r€0[47r02(t—@)2 f5B(7’,—ct+|F—7’|)(t _ Tc >(8t2)< )]dS( )C‘TI r’1|2
c
L 1 [T—Topply 92 (ri—=r1 opp)
Tral, 2(47%)2 S5 et tiz—r,h) (=) (5#) (7, 0)]dS (0) g2z |
M I .
S Foden ¥ s ¥ s o R

where By € R+g.

(71). Using the facts that |6 lo| < M on B(0, s) the surface measure
of sB(T', —ct+|F—7'|)N B(0, s) is at most 2ms?, = 2z;—7'+0(5),
we have, for sufficiently large R = |7, that;

1 9 ri—r)
|47reo [W féBr —ct+[F— 7"|)(5§( 0))1dS(y )cj—fﬁz

OPP

1 1 9p ds (r1—r opp
+47T€0 [471'02( i |[7— TOPP‘)Q f(sB Opp’CtJr‘r TOpp')(a ( ))] ( ) 67 */ |
1 27 M s> 1 27t M s>
_ =l _ =__=
ATe0C g2 (t— [T c"" ‘)2|7’—7‘/| 4mege e (—t— 7 Tcopp| V2[F—7,
_ Ms? + Ms?
8meeg (ct—|[T—7'|)2|[F—7'| 8meeg (—ct—|T14+7])2|[F1+7|
— Ms? 4 Ms?
8meeg |[T—T \3“, ,,‘+1|2 8meeo|T1+713|( ,7c’i,‘71)|2

|71+7
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52

Ms?
< dmeeo|[T—7|3 + 87rceg|r1+'r’|3

3Ms?
— 8meeo|[T'|3

_ By
- P
where 71 =T — 225 + O(3), E2 € Ro.
(7i7). We have that;
_ — (r1—77)
s ey Jone sy DEE0) - (7~ PNS@) i
Opp’ ) D(a_p)<y7 0) ( opp)]ds( ) crﬁ« ::1 Dpp |
= | [ e ST o —curiory DO @ 0)-(Z@)AS (7)

Ame2(t— 1T 1y2
+L[ 17*7/ ( t+ |T OPP de(’r —ct+T—Tpp,) D(a_p)(y’o)

4meg 47TC2( t— 7 Topp‘ )2
_ _ (ri—r1,
oS (@) S|

: (_Ctj—_'i_ﬂ, — |féB(F’,—ct—HF—F’DD(a_p)(ya(D Z(y)dS ()|

= dmeoc gre2(t— T2 7|

1 1
+47’I’60[4 2 (—t— |7~ ropp\)Q f5B ctHTF—T |

opp’

1 (Ct+|7” Topp) - = —
4dmegc dre?(—t— [7— Topp\p)p 277, ‘f(SB(ropp,ct-&-V Toppl) D(a_p)(y70)'20pp<y)ds(y)‘
(NN)
Letting zg = %, so that |Zg| = 1, R the surface measure of

dB(T, —ct+|r—7|)NB(0, s), using Lemma 0.49, following the method
of (i), we have that, for sufficiently large R;

| S e p—ry P50 (@:0) - 2@)dS (@)

= fipe s DD @ 0:E@)=Z0)dS @)+ [5p0 —arirry D) (T, 0)s
20dS(y)]

< Jsn —arpry PG @ 0)0E@)~20)dS DI+ fspe —arpr) PG @, 0)]:

ZodS(Y)|
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< Rmatyepm s ‘D<a_p)( 0)[|z(@)—Z|+| féB(?’,fctJr\?f?/D D(a_p)< 0)dS(¥)-

e
< RMmazyep,0/27) = %l + 15| [sp _osirry D)@ 0)dS @)
sRmﬂa—awwmmxmnwmmﬂ+|&mﬂ%HWWDDG¥x 0)dS(y)

— [ D)@, 0)aS@)| + | [ D(%) (7. 0)dS(7)]
=ﬁRM<1—cos<em>>%+\fwﬁfﬁdﬂwbz}(a—p>< 0)dS(H)— [ D(%)(7,0)dS(®)|

< RM Flp0z + O(%)

2sH w
S —ct+|T—7| + |

= e TR

—ct+|r—T
where {F, G, W, H, A}, B} C R Similarly, using P, there exist
{Ay, B} C R0, such that

|f53 ot [F—T, ) D(%)(@ 0).Z(y)dS([y)| < ct+|T 7

— A + Bo
ctH T+ —225+0()| | 2257 1+0(3)

OPP ’ opp | 11 +Fopp

so that, from (NN), following the method of (i7)
ri—r})
|47r60[47rc2(t 1|T ! féB (7 ,—ct+|7—7]) D<a_p)(y70) ( )]dS( )071 =ip)
(r1—7] opp)
Thop: ) D(a_p)(y7 0) ( opp)]ds( )m‘

: (et 7 (= L |+ R |)
p— —/ _"_,r,/

1 1
+47r€0[47r02( P Topp\)Q f(SB ctHF—T g

— 4megc 47T62(t—‘7‘7r/‘)2|F—?/| —ct+|T—T
+ 1 (Ct+|T Topp) Ao + Bo )
dmeoc , 2 (—t— [7— ropp\)gr 7,pp‘ T+ —225+0( %) [14+2z5—7 +O(%)|
_ 1 1
T 1672epc? |(t— I?*FI)HT ,,‘/‘( ct+|'r 7| + |1+F’|)
c
1 1 As Bo
+167|'26()C2 ‘_t_|?_7,opp|”?_ngp|(Ct-‘rlF-‘r?/—QEy-f—o(%)‘ + \1+2Eg—F’+O(§)|)
c

L@
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where By € Rq (i), (id), (iii))
O

Definition 0.53. For the blow up circles {S1,4, 2.4}, we define the cor-
responding shifted asymptotic cones {SCone(S1 ), SCone(S24)} by;

SCone(S1,4) = Uyesm l5.g,5h

SCone(Ss,0) = Uyesg,a log.sh

Fiz base points y, , € S1.q and Ysa € Sa.4, the circles having centres
{C1.0,Co.a} with radii {ry 4,724} and points on the circle {Z1 4, Z2,4}, such
that Iz, , 5, and Iz, , =, are perpendicular for 1 < i < 2 then we can
define parameterisations fy : [0,27) — S14, P2 : [0,27) — Sa4, by;

61(7) = Ei,a + ri,a(gi,a - Ei’a>COS(’}/) + Ti@(zi,a - Ei,a)*Sin('y)
We define the maps {6,602}, 6; : R x (0,2m) — SCone(S;,), 1 <
1 <2, by;

—b(7)
r27(Y)

where, fory € S;q, Uy has modulus | | with Uy € S15.4 perpen-

dicular to Yy € 5.

Lemma 0.54. Cancellation along the shifted asymptotic cone and V,,(T)

Proof. Using the notation above, we have that, for i € {1, 2}

(4). 0:(0,7) = Up,(y)
(13). 0:(ry7)opp = Oi(—r,y) + O(%), for sufficiently large r > 0, (7).

17 As, by the above, if 7 = 6;(r,7), then;

/

Topp = —(7' = Tp,() + Wa, () + p,(7) + O(F);
= T+ (20p,(y) +Wp, () + O(3)
so that |7 — Zg, ()| = |Thpp — Z, ()| + O(%)

where Zg, () = 5(20,(v) + Wg, (1)) and Zg, (1) € lg 5, (+).sh-
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(7i1). There exist R; C R~ with 6; diffeomorphisms outside [—R;, R;] ¥
0, 27), with the partial derivatives uniformly bounded.

(iv). Im(b1|r\[— Ry, R x[0,27) NV I(O2| R\ = Ro, Ro)x [0,27)) = O

(v). For ry > ry > Ry, |0i(ra2,y) — 0:(r1,7)] = r9 — r1, and for
re <11 < =Ry, 0i(r2,7) = Oi(r1,7)| =11 — 12

It follows from (ii7), (v) that, for 1 <4 < 2, the pullbacks;

Ol (- Ry a1 x 0.2 (ALED] sC0ne(s, 1) = 152 X 8011617“65’7 f(r,y)drdy

has the property that f(r,7) has order O(r), uniformly in v and
f(r,y) = f(=r,7), for r € R-g. For R € R+g, with R > R;, we can
define the regions Sg; C R X [a, 3), by;

SR,i = {(7"/77) : Rz S |T/| S Raf}/ € [aaﬁ)}

with corresponding regions 6;(Sg;) C SCone(S;,)

Then, by the calculation above, using fact (i7), Lemma 0.52 and the
mean value theorem, letting;

ENGED N

dmeg |T—T|

H(7)

. —tr
H (T,) = (477160 p(|rr r’\) )1
where by ¢, we mean t — il il

have that, for r > R;;

and by —t, we mean —t — , We

0T H T (r, ) + 01 H ™ (=1, 7))

= [H*(7) + H™(7,,, + O(;))]

opp

< H*(F) + H (Top)| + [H™ (7, + O(1) — H™(7,,)]

opp

< 5 HIH (T, +0() — H™(7,,)|

OPP opp

=5 +|DH (7). 0(})|
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< g+ v H)E) (YY)

O(;)

where |7} — 7/ -

0pp| =
We have that;
|V (HO) ()| < V3mazi<i<s (5,

and;

- 2 - - ot

Blrlr = s l(55 (0, ) + Do g YTyt
M] ,
i

so that, using the fact that |p| < M for some M € R-o;

9%p /-,
|98 (7 )L ()

c 92t M o —tr)
|B_7"; F,1| — [ e + dmeo[T—7|2 + 27reo|r 7 \le

We have that p obeys the wave equation 7%(p) + C%% = 0, de-

termined by the initial conditions {py, (%f)o}, so that p obeys the
same Wave equation determined by the initial conditions {(gt e va

(po)}, 2 at2 £ obeys the wave equatlon determined by the initial conditions
{= 2% (po), —c* 2 (apo)}, g L <1 <3, obeys the wave equation

determined by the initial conditions { gtgf, , —c? 2 (‘Z’; )}

Using Kirchoft’s formula, it follows that there exist { Dy;, F1;, Do, Eo, D3, E5} C
R0, for 1 <i < 3, such that, for sufficiently large |7|;

Dq; FEq
|a | it < ; |7’L—7‘/\ = \F/\Z
c
3%p Do Eo
|8t2 P < ]
c
. D3 Es
R =
c

so that, for sufficiently large |7|, there exists {G, H, K;} C R+, for
1< <3;

57l < a1 (B + 2+ e + 20l

dmeo[7—7| \ 7| 7| [7—7| 7
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(Bt + B+ 2+ 3l

K;

= 72 |F’1

712

and, for some {X,Y, Z} C R-o;

|V (H)(F)| < P

R
_ VBmazi<i<sKi
T Loz
‘Ti)pp'i_o(;)lz

< X

|F;pp|2

< 25

7|

<Z

so that, from (YY)
|07 H T (r,7) + 07 H ™ (=7, 7)]
Smt+In

= CHZ (3)

We also have;

|f(r, )l < Dr

(01 H* (r,y) + 07 H (=7, 7)) f(r,7)] < 522
where {D, F'} C R, F'= EZ, so that;

limR 00, R> R f@i(sm)(H+ + H™)(7)dr

— limsoo o, Jsy (G + HO) () )y

= limRaoo,R>Ri f[ogﬂ) [f}i QTH+<T7 ’Y)f(ra V)dr—i_f__}fl QIH_ (7”, 7)f<7n7 V)dr] d’)/
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= lim g oo r>; Jjgom )| w OTH* (r, ) f(r,y)dr+ [ 0 H (—r,7) f(—r,7)dr]dy
= iMoo Ry figam S (OTH () + 03 H (=1, 7)) f(r,7)drdy
= fio2m f;fwfm(n Y) + 03 H (—r,7)) f(r, 7)drdry

where, letting G(y fR (OH*(r,y) + 0H (—=1,7)) f(r,v)dr;

Gl <[5 C;Ed = [P

so that;

LM psoo,~> R Jig 2m) S O H (r,9)+07 H (=1,7)) f(r, y)drdy = Joy G
exists and;

1 g oo, ms R, fig.m S (OFH (r, )40 H (=r,7)) f(r,y)drdry| < S22
It follows;

limp—soo R>R, fe )(HJr + H™)(T)dr

exists, and;

i s s, fy 5, (HT + HO)(F)dr| < S22

a

as well. (UU)
Idea for V,,(Z), using calculation () above;

With the same notation as above, for sufficiently large R, letting
7 € V(x), with 7 = pr*(7"), with pr the orthogonal projection of
51 7.0 onto the asymptotic line l67y78h, opp the opposite point to 7 7 and

Topp the nearest point to 7, on Vi, (T)NS1 4. Let dVy be the restriction
of Lebesgue measure to V,,(T) N S13,4, dZy the restriction of Lebesgue
measure to lg; ., = SConey , NSy 7.4

Using the notation above, we have that;
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—b(0
Hemé(()))‘ —R| = €y + O(%)

™ =7+0(3)

—b(0 €7 — _
— (O 2 O(L)T+Ty+ O(3)

—b(0 €T\ — —
= (G @)+ Ty + O(L)

—b €7\ — _
= (Grgyg(());w + Ey)y + Uy + 5(0)

where 6(0) = O(%) is analytic in 6, so that [§'(F)] < N, for some

N € R+p. It follows that;

dF// o b(0)7
g €2r2'y(g)w + 5,(0)

It follows that, using Newton’s expansion;

a7 (0 b(0)y /
TR . i
N GAONE * 0)y *
(T (G gy TP (01 (O))]
b(0)y /
= b‘82r27(0)w+6 ®)
0)y —
|2y ot (5/0)]
b(0)7
0 085 ®)

| s +62 (T (57(6)))|

2 2, 25/ 2
273702028 (0)12 | 1
S e
r37(0)2w? oy +pr* (87(0))12 )3
b(0)2[7[2

(1+62

=1+ 0(6%)

— 1+ 0(%) (S9)

€
R2
so that;

dVy(T") = dZz(T") + O(5z ) dZ5(T")
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and, similarly;

dVy(T ) = dZy(7,,)) + O3z )dZy(T,,)

opp Topp) opp
By the above, we have that;
(@). ™' =7 + O(%)
(id). T, =Ty + O(%)
(iii). HY(F") = HM(F) + O()
(). H-(7 ) = H(7,,,) + O(35)
(v). dV5(7") = dZy(') + O(5z)dZ5(T")

(vi). dVy(T) ) = dZy(T.

opp ) OPP

(vii). HT(7") + H (T,

opp )

(vidd). dZz(T") = dZyx(T

[
Q
=

opp)
Then, using (i) — (viid);

H ( ”)dV( //) +H (—// )dv (—I/ )

opp opp

= [H*(7") + O()]dV5(") + [H™ (7,,,) + O(3)ldV5(7s,,)

= [H*(7)+0 (7 )[dZ5(7")+O(52)dZ (F) |+ [H ™ (7)) + O (35)][dZ5(7,,)
+0(52)dZ (7))
= H*(7")dZy(7')+H ™ (7,,)dZy(7,,)+H* (7)O(52) O(R)+H ™ (7,)O(7)O(R)

+0(35)O(R) + O(55)0(3)O(R) + O(35)O(R) + O(55)O () O(R)

= H*(7)dZy(7) + H(7),,)dZ5(7,,,) + O(k)

= O(75)O(R) + O(z)
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With the same notation as above, let dV be the restriction of Lebesgue
measure to V,(Z), dZ the restriction of Lebesgue measure to SConey 4.

Choose a parametrisation [ : [0,27) — S;,. Following the calcula-
tion (SS) above, we have that, for ¢ € [0, 27);

—b(B(t
|‘9,~2,§?ﬁ - | - R‘ = E,B(t + O(%)

=7+ 0(%)

(B0 Ty O(4))B(1) + Ty + O(2)
= (5B - ZOYB(1) + Ty + O()
= (G2l 4 ) B(t) + T,y + (0, )
where 6(6,t) = O(%), uniformly in ¢, and is analytic in 6 and ¢, so
that maz(|25],|2]) < N, for some N € R~g. It follows that;

o’ _ _b(B(1)B(t) 4 20(6.0)

90~ Proy(Bapw T 00

_ Aégt)g(t) n 853(3 )

where A;(t) = T;;((%%

B — (B WODOB | LB ) 4 (HEUL 1 20E (1)

+(@o BY(¢) + 25

(Ag(t + A (£)B() + (A4T(t) +A5(t))3/(t) + (To B)'(t) + aagi,t)

where;

(B, bBE)B) W
A(t) = o Gwe T rep R0
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Ay(t) = B
__—b(B(®)
Aq(t) 0ray(B(t))w

so that {A;, As, As, Ay, A5} are analytic and bounded on the interval
[0, 27]. We have, for ¢ € [0,2n), that (vo3)(t).b(t) = 0, pr*((vep)(t)) =
0, so that pr*((v o B)(t)) = 0. Similarly, pr*(8(t)) = B(t) so that

—/

pr(B'(8) = B'(0).
It follows that;
ng(e) y a?gt(e) _ Aégt)(mg(t) + As()B(t) x B (t) + (1. 1)

pr*(('??ae(e)) Aéét)ﬂ(t)‘i‘pr (85 (Gt))

= (228 4 A3(1)B(8) + (242 + A5(t)B (1) + O(1, 1)

pri(T) s pro(T50) = 23440 4 A (1)B(t) x B (1) + O' (4. 1)

It follows that, using Newton’s expansion;

T O I A 0)5(0XF (0+0(G 0|
o (s ()] 1T (BT 2y 0)B0F (040 (3.0

_ [0 A()+A (1) As())B(1) X B (1)+O(6,1)]
)< B (£)+0'(0,1))

(A1 (t) Aa(t)+0A1 (1) A5 () B(t

— |A1(t)A4(t)f(t)X6() 0(6.1)]
|A1(H) A1 (£)B()xB (£)+0 (6,1)]

_ (1+0"(0.4)?
(1407 (6,1))

_ (1 + %O”(@,t) + O”//(Qz,t))(l _ %O”/(@,t) + O”m<92,t))
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=14+ 0(6,1)
=1+0(5,t) (559)
so that;

AV (") = dZ(7') + O(5,t)dZ(T")

and, similarly;

av(ry, ) =dZ(w, )+ O(%,t)dZ(7,,)

1
opp opp R’ opp

As above, using (555) now for (v), (vi), we have that;
(i) 7' =7 + O(%,1)

(i1). Ty = Thopy + O(5, 1)

(i6i). HY(F") = H*(7') + O35, )

(). H=(7,) = H (T,,,) + O(75,1)

opp opp

(v). V(") = dZ(F') + O(5, t)dZ(7)

(vi). AV (7g,,) = dZ(T,,) + O(

1
opp opp R’
L

(vidi). dZ(7) = dZ(F, ) = O(R, 1)

opp
Then, using (i) — (viid);

HH(FdV (7)) + H= (72 )dV (7! )

UPP opp

= [H*(7") + Olgs, )]V (7") + [H™ () + Ol 55, 1)]dV (75,

opp opp

= [H*(7)+O0(gs, O)[dZ (7)+O(§, )dZ (7 )|+ [H (7,,,)+O(5s, 1)][dZ(T,,,)
+0(5,t)dZ(7,,,)]

= H*(F)dZ(7')+H ™ (70, )dZ (T, +H* (7)O(5, ) O(R)+H ™ (7,,)O(5,t)O(R, 1)
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+0(35, )O(R, 1)+0(35, 1) O (%, ) O(R, 1) +0( 25, 1) O(R, 1) +0 (., 1) O(

B3>

= H*(7)dz(¥)+ H (T,,,)dZ(T,,,) + O(3,1)

opp

.................... Look at argument of (UU) again, drd~y, (0 <y < 2m).
Final integration over 0 < w < s, exclude discrete case, use Lemma

0.50.
U

Lemma 0.55. Let {7,y }subsetR3, let | C R be a line, with {p,p'} C 1
andp #7D. Then if Ty =D+ NP — ), we have that;

limasoo([Tx = 9| = [2x = T]) = —limas - (|Z2 = Y| — [72 = 7))
Proof. By rotating and translating coordinates (x,y,z), which pre-
serves distance, we may assume that [ is the line y = z = 0, p = 0,
7 = (20,0,0), ¥ = (y1,92,0) and 7 = (71,79, 73). Then, using Newton’s
expansion;

Z\ — Y| — |2\ — 7

= K)\x()a 07 O) - (y17 Y2, 0)‘ - |()\ZL'(), 07 0) - (Tb T2, TS)|

= [(Azo — y1)? + 18] — [(A\wo — r)? + 73 + 132

= [N22 — 2 zoy; + y2z — [(N223 — 2A\xory + 2]z

2 .1 2 41
= [Azo|[1 — 32 + 35517 — o[l — 325 + 355]2

— Aaol(1 = £ + O()) = Awol(1 = £ +O(3))

__ sign(My + sign(A)r1 + O(%)

- xo xo

where y = |7 and r = |F|, so that;

limysoo(|Zh =9l — B0 = 7)) = -2 + 2L

1
R

HO(R, 1)
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limys—oo(|Trx =gl = [T = 7)) = 2 — 2L

= —limyooo(|Tx — Y| — |Zx — 7|)

O

Definition 0.56. For f € C®(R*) and h € R, we define the time
shift f* by f*(z,t) = f(T,t +h). For a field f, with f = (fi, f2, f3)
and f; € C*°(R*), 1 <i < 3, we define ?h = (fh, f2, .

Lemma 0.57. Let (p,.J) be a charge and current configuration with
p e C®R"Y, J = (j1,j2,J3), and j; € C*(R*), 1 < i < 3, such
that (p,J) satisfies the continuity equation. Then, for h € R~q, the
time shifts (ph,jh) satisfy the continuity equation and so do the sums
(p—i—ph,j—i—jh). If for h € R~q, there exists electric and magnetic fields
(Ew, By) such that (p tph,jijh,ﬁh,gh) satisfy Mazwell’s equations,
then there exist fields E' and B such that (p,J, E, B) satisfy Mazwell’s
equations.

Proof. By the hypotheses, we have for {hy, he} C R, with hy > hy
that there exist pairs (E},,, By,) and (Ey,, By,) such that (p+ p"t, J +
7hl,Eh1,§hl and (p+ th,j—i-th,Ehz,Eh,z satisfy Maxwell equations,
so that, taking the difference, (p" —p"2, T -7 , En,—Eny, Br, —Bh,)
satisfy Maxwell’s equations, (x). Then hy — hy > 0, so that, by the

hypotheses, there exist (En,—p,, Bay—n,) such that (p + p'27", J +
jhrhl,EhZ_hl,EhQ_hl) satisfy Maxwell’s equations, (xx). As is eas-

ily checked, if (p, J, E, B) satisfy Maxwell’s equations, then, for h € R,
(ph,jh,Eh,Eh) satisfy Maxwell’s equations, so that, from (xx);

—h —ho—hi+h1 —=h —h
hi ho—hi+h1 1 2—hi1+h1 1 1
(p +p J o+ J ,Ehrhp Bhrhl)

—h1  —=hs —=h —h
= (" + 0" T+ T By Bhgpy) (5% %)
satisfies Maxwell’s equations. Then adding the equations (x), (% * %),
we obtain that;

—hy — — —h — — —h
(20h172j 17Eh1 - Eh2 + Eh;—hl’Bhl - Bh2 + Bh;_hl)

satisfies, Maxwell’s equation and;

—h

— —= —h1 = = —hi
(ph17 J Y %(Ehl - EhQ + Ehg—h1)7 %(Bhl - Bh2 + Bhg—hl))
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satisfies Maxwell’s equations. Again, by the observation above, it
follows that;

—h

—hi—h —h ——h
hi—h 1—h1 1 1—h1 1
(p g ) §<Eh

——hi  —h ——hi  —hi—h
. — B, s By h)s %(Bhl — By, o+ Bh;hi))

_7h1 _

- —=—hi = o mS—h =
(p7J7%(Eh1 _Eh2 +Eh2—h1)7%<Bh1 _Bh2 +Bh2—h1>)

satisfies Maxwell’s equations, as required. 0

Lemma 0.58. Let (py, Jw) for w # ¢, be the smooth charge and cur-
rent configurations defined above, satisfying the continuity equation.
Then the causal fields (E.,, B,,) defined by Jefimenko’s equations exist
forw # ¢, with (puy, Juw, Ew, By) satisfying Mazwell’s equations. More-
over limy o Ey and limy,_,. B, exist and define fields (EC,EC such that
(pe, Jes Ee, B.) satisfy Mazwell’s equations.

Proof. The first claim will be proved later, the second claim follows
from a result in [14]. For h € R+, we have that (p, + pl', Juw + 7:1)
satisfies the continuity equation, w # c. By the observation in the pre-
vious lemma, (p, + p%, Jo + 7};, E,+ EZ, B, + EZ) satisfies Maxwell’s
equations, and is defined by Jefimenko’s equations relative to (p, +
ol T + 7:1) By the main proof, (choosing the initial conditions at
%, between t and t + h) we have that linm,_,.(E, + EZ,) = E.; and

1imy—se( By + F};) = B, exist, so that (more proof required);
. W =h = =h o= =h
= (pc + P?, 70 + 7?7 Ec,ha Ec,h)
satisfies Maxwell’s equations. By Lemma 0.57, for {hy, ha} C R-o,

with hy < hg, we have that;

— {,=—hi  —=—h = R p—
(pm Je, %(Ec,hll - Ec,hgl + Ec,h2—h1)7 %(Bc,hll - Bc,hg1 + Bc,h2—h1))

= (Per Ter 21y se(Buy + B )™ — limuyo(Bo + Bot)

ity se(By + B2 7)), Hlimye(By + BLY) ™

limye(Bo + B) M + limye(Bw + B2 ")

w

- (pc, Jc: limw—mea limw—me)
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satisfies Maxwell’s equations, as required.

Lemma 0.59. Cartesian method

If g : R® — R is analytic for |T| > r, where r € Ry, analytic at
infinity, of very moderate decrease, and continuous, with {Bz’ gz, 8z}
analytic for |Z| > r and analytic at infinity, we can define, for k € R®,

with kl 7é O, kQ 7£ 0, ]{53 7é O,’
-/—:(g)(E) = ﬁlimrlﬁmlimm%mlimmﬁm fj;l f f _Zk xdxldxgdxg
Moreover, for ki # 0, ke # 0, k3 # 0, we have that;
F(g) (E) (QN) llmr—mo f0<0<7r W<¢<7r (’f‘, 9’ gb)efikwsm(e)cos((i’)

e—ikgrsin(@)szn(tb)e—zkg'rcos(@)?,.QSZ‘n<9)drd9d¢

Proof. Let C, be the cube defined by C, = {(z,y,2) € R : |z] <
r,|y| < r, |z| <}, then, as g is analytic fOr |Z| > r, we have that g is an-
alytic on R? \ C,., with global power series expansion Z(i, Jk)EZ3, aijrr'yl 2k,

convergent on R* \ C,. As g is continuous, it is bounded on C, and we
can define;

FR) = frce, 9(@)e ™ dz

For (x,y) € R?, we have that g, ,(z) is analytic for |z| > r, analytic
at infinity, and of very moderate decrease. In particularly, by Lemma
0.46, using the fact that g,, is also of very moderate decrease, g, , is
eventually monotone, and for k3 # 0, we can define;

93(2, Y, k3) = limry o0 fr<|z|<r3 Guy(2)e"*37d2

] o ikaz)m
= l’lmrg—>00 fr<|z|<r3(z(i,j,k)62§0 aijkxlyjzk)(zg.j:() ( Zni!Z) )dz

_ 15 (= zk3) Aijk z 7 k+m
= llmrgﬁoo fr<|z|<r3 (Z(i,j,k,m)ezio Ty = )dz

15 (=tks)"aijk i J k+m
=Moo Dighmezt, om0V i, 2

(= lkS)' Gijk xzy] ([zk+m+1 ]—T [z’“'*‘"”’l ]Ts)

= limyy 00 Z(i,j,k;,m)ez‘lZ k+m+11— k+m+11r
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Yy 2(—iks)™ awk g (sk+m+1 k:—i—m—i—l
= 1My 00 Z(i,j,k,m) 24 g kt+m+lodd ‘ml(k+m+1) 'y (r3 )

2(—ik3)m7‘§+m+laijk

s 2y

= 1My o0 Z(i,j,k,m)ez‘;o,mmﬂodd miktmin) LY

o z 2(—ik3)™agpritmtl j
(i.d,km)EZL g ktmtlodd —  ml(ktmt1) L Y

= Z(i,j)ezgo (bij — cij)x'y’

where;

2(—iks)"rh !

Qijik
bz] = llmrg—wo Z(z,g k m)€Z>0,k+m+10dd m!(k+m+1)

_ Z 2(7ik3)ma¢jkrk+m+l
Cij = 2(i g km)eZL  ktm+lodd —  ml(ktmt1)

so that g3(z,y, k3) is analytic for (z,y) € R?, in particularly contin-
uous.

For (zo : yo) € PY(R), we have that (¢ : yo : 1) € P*(R) and,
as g is analytlc at infinity, there exists €z 4,1, such that g(x—o, %0, %)
is defined by a convergent power series Z(i ik)ez? dijxr'y’ 2¥ in the re-

gion 22 +y? + 2% < exo w1+ Without loss of generality, assuming that
xog # 0, yo # 0, asg is analytic for |22 > r, |22| > r, 1] >, |z] < |x°|
ly| < ‘y‘)' 2l < L by unlqueness of power series, we can replace the
region z? + y? +z < € by the region |z| < |x°| ,yl < |y°‘ NEIRS-
Then;

Z0,Y0,17
(o 20 ks) = lim f (2o 20 qp)e= k3w dy
g3\ V3 7300 Jr<|z|<rs g\ R

. _k
= Mmr3—>oo fr<|z|<r3 9(1?07 ygo’ %)6 23 - %dz (Z = %a z 7é 0)

. i i o) —(—1ik3z)™
= lzmrg—mo fr<|z|<7"3(z(i7j7k)ezgo dijkiﬂ szk)(Zm:O ﬁ)dz

_1s —(=tk3)™dijk i, G S k—m—2
= llmrgﬁoo fr<|z|<7«3 (Z(i,j,k,m)ezio m! Ty e )dz

Y —(=tks)™dijk i, j k—m—2
= liMyy 00 E(i,j,k,m)ezﬂzo m! ry fr<\z|<r3 o dz

. ks)™d k—m—14_ k—m—1
= llmrg—mo Z(i,j,k,m)éz‘émk;&m_i_l ( ZT:;)' ijk ]([27;:71]—;3"_[277:71]:3)

. —(—tk3)"dijk i, j T T
Himy oo Z(i7j7k7m)ez4207k:m+l Wﬁ ¥ ([=In(2)]7? + [In(2)]7?)
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. —(—1k3)™d,; . . k—m—1,_ k—m—1
= liMyy 00 Z(i,j,k,m)ez‘go,k#mﬂ ( Z?j’L)' ”kxly](['lchr:fl]—:3"#[7477:71]:3)

15 —2(—ik3)"dij i, j(nk—m—1__ k—m—1
= liMmyy o0 Z(i,j,k,m)ezio,k#m—i—l,k—m—lodd mik—m—1) * Y (r3 -r )

—2(—ik}3)mT§_m_1dijk

15 (W]
= limy 00 Z(i,j,k,m)gZéo,k;éerl,k—mflodd ml(k—m—1) )

. Z —2(—iks)"d rF ™1 i
(i, kym) €24 otm+1,k—m—lodd ml(k—m—1) Y

= Lgezz, (ki — lij)x'y’

where;

ki; = lim > —2(—iks) ™y~ " diji
iy T3—00 (i,4,km)€ 22 ) k#m+1,k—m—1lodd m!(k—m—1)

l-- o —2(—’L‘]€3)mdijk7‘kimil

(/N Z(i,j,k,m)GZiO,k;éerl,kfmf10dd m!(k—m—1)

TTZ’*), so that as (zo : yo) € P*(R)

was arbitrary, gs(x,y, k3) is analytic at infinity.

We can then take €, ,, =

As g is of very moderate decrease, we have that;

|gxy(z)| = |g(x,y,z)| S ¢

(@+y2+2%)
_ bk c
(1.2+y2+z2)% |Z‘
c
<7 (4)

for (22 + 1% +2%)2 > |z| > 5. As 8 is analytic for [Z| > r and ana-
lytic at infinity, it has finitely many zeroes, so that g,,(z) is eventually
monotone in the interval |z| > FE, for some E € R.g, uniformly in
(x,y), (B), and we can achieve both (A), (B), for |z| > v = max(s, E).
Without loss of generality, we can assume that v > E > r. We also
have that, for (22 + 3% + 22)2 > (22 + %)% > s;

|gxy(z)| < ¢

(@2 +y2+2)E
__C @A)
@) @44
< c

T L
(@+y%)?
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Then, by a simple generalisation of Lemma 0.35, for |(z,y)| > s, we
have that;

|g3($,y, ]i]g)l = |limr3 — 0 fr<|2\<7‘3 g(x’y7 Z)e—ikgzdz|

4Cv 6CT
S eyl T @]

. W
= ey (&)

where W = 4Cv + %, so that gs(x,y, k3) is of very moderate de-
crease.

As g3(z,y, ks is analytic for (x,y) € R? and analytic at infinity, so
is %—f’, so that, for fixed © € R, ¢34k, (y) is eventually monotone and

of very moderate decrease, so that, for ks # 0, we can define;
go(x, ko, k3) = limy,, 00 fiiQ g5(, y, ks )e~*2vdy

As g3(z,y, k3 is analytic for (z,y) € R? and analytic at infinity, us-
ing (1:1) € PY(R), g5(%, %, k3) is defined by a convergent power series
Z(z‘j)ezio si;x'y?, valid for (x,y) € R?, so that, for zg # 0;

QQ(J/’O, kf2> ka) = limrz—mo f_ri2 g3<x0’ w, kg)efikgwdw

~ r2 11 —iky
= lzmm_wo f—'l“2 93(57 L ]{53)6 vy — y—2dy (U) = o XTo = E)

. i s) —(—iko)™
= liMyy 00,650 f5<\y|<7~2 (Z(i,j)ezgo $i;2" Y ) (2 m=o ﬁ)dy

T —(=tk2)™sij 5, j—m—2

= llmrzaoo,eao fe<\y|<7"2 (Z(i,j,m)ezgo m! LY )dy
T —(—ika)™si; i j—m—2

= iy 00,0 Z(i,j,m)ezio m! z fe<ly|<rz y dy

. — _‘k Mg, . . Jj—m—1,_ j—m—1
— Mm’rz—>oo,e—>0 Z(ivjvm)ezgo,j;ém—i—l ( 273!) Sij xl([?fmfl]—;z_’_[?—mfl]?)

. —(—1k3)™sij i r r
iy s0030 i amye 22, gomn 2 ()] + [In(2)]1)

. —(—ika)Ms: s i—m—1.,_ 1
= llmmﬁooﬁﬁo Z(i:j:m)ezgo,j;ﬁerl ( lrs!) Sij 3;2([?17:_1]_5«2%-[?]_;_1]:2)

g —2(=tk2)™si; i, d—m=1__j—m—1
= liMyy 00,60 Z(i,j,m)ezgo,j;éerl,jfmflodd mlG—m-1) * (3 € )
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= lim > —2tka) My
= 19— 00 (i}j}m)gzgo,j;éerl,jfmflodd m!(j—m—1)

. 72(7ik2)m5ij6kim71 i
l’lme—>0 Z(i,j,m)ezgo,j;ém-&-l,j—m—lodd m!(j—m—1) €

= Ziezz()(ai — Bi)a’
= ZiGZZ()(ai — Bi)a’
= Yiez, (i = Bi)(5)

where;
i (k)i sy
i = 1My, 00 Z(i,j,m)ezgo,j;em+1,j—m—1odd ml(j—m—1)
g —2(—’ik‘2)m5i]’€k7’m71
ﬁi = llme—>0 Z(i,j,m)ezgo,j;ém—i-l,j—m—lodd m!(j—m—1)

It follows that go(x, ko, k3) is analytic at infinity, and, as % is ana-

lytic for x¢y # 0, and the composition of analytic functions is analytic,
go(x, ko, k3) is analytic for = # 0.

By the same reasoning as above, we have that gs(x, ko, k3) is of very
moderate decrease, and using the fact that % is analytic for x # 0,
and analytic at infinity , using Lemma 0.46, go(z, ko, k3) is eventually
monotone, so , for k3 # 0, we can define;

a1 (kb kg, ]{Ig) = limn*)oo fj;l gg(l', kQ, kg)e_ik”dx

For |z| < r, x € R, by the usual arguments, we can define;

h2(x7 2 k2) - Mmrz—wo fr<|y\<r2 g(x, Y, Z)eiikgydy

As above, as ¢ is analytic in the region |y| > r and analytic at infin-
ity, we can show that hy is analytic for x # 0 and z # 0, analytic at

infinity, and of very moderate decrease. By the usual arguments, we
can then define, for |z| < r;

hl(z7 k17 kQ) = limrl_ﬂ)o jiz|<rl g(xj Y, Z>6—ik1xdx

and show that h, is analytic for 0 < |z| < r, and smooth at 0 (extra
argument here), in particular, bounded. Then , for k3 # 0, let;
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hg(k’l, ko, k’g) = f|z|<r hl(z, k1, k’g)€7ik3zd2’
For |z| < r, |y| <, define;

s1(y, 2, k1) = limy, o0 fr<|x\<r1 g(x,y, Z)e_iklxdx

As above, as ¢ is analytic in the region |z| > r and analytic at in-
finity, we can show that s; is analytic for y # 0 and z # 0, analytic at
infinity, and of very moderate decrease. We can also show that s; is
smooth along on the locus ((y =0Uz=0)N(jy| <rnlz| <r)) C R?
(extra argument here). Then, by the usual arguments, we can define;

s2.3(k1, ko, k3) = f‘y|<r,|z|<7q s1(y, z, ky)e”*ve= k3= dyd

Let m(ky, ko, k3) = hg(ky, ko, k3) + so3(k1, ko, ks3), for ky # 0, ky # 0,
k3 # 0. Then, for k; # 0, ko # 0, k3 # 0, it is clear, totalling the

volumes, that we have;

Flg)(F) = 55 (1) + 9a(F) + m(k)
O
Lemma 0.60. Let g and all its partial derivatives {% 0 <

i1+ ig + i3 < 4} satisfy the hypotheses of the previous lemma. Then,
for kg #0, kg # 0, ks # 0, with |ki|, |ke|, |k3|, sufficiently large, there

exists constants Cj, iy iy € R0, with;

F () (F)| < g

1292 yd3 2 \k‘lllkzllkS\
and D € Rq, with;
- D
|]:< )(k)‘ k1 ||k || ksl k|4
We have that, for r > 0, f(Q)'B(ﬁ'r e LY(B(0,r)), F(9)|v € L'(V),
F(lv, Vi), for 1 < i <3, Flg)lv, € L'(Vi;), 1 <i<j <3,
where;

Vo= {(k1, ko, k3) : [ka| > By, |ko| > By, [ks| > Es}.

Vi=A{(k1, ko, k3) : |ki| < Eiy|ki| > Ep 1l #4,1 <1 <3}
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V;j = {(k17k27k3) : |kl| < Ei7 |kj| < Ej> |kl| > Elal 7é Zvl 7&]’
1<1<3).

In particularly, F(g) € L'(R?).

Proof. For the first claim, let;

CL3(377 Y, k3) = limrs%oo fji?’ g(x’ Y, Z)e—ikgzdz

for k3 # 0. (Then for fixed x, ks, as(z,y, ks) is of very moderate
decrease in y and oscillatory for sufficiently large .

Then, we can define;
CLZ(J', k27 ]f?,) = limm%m fin a3(37, Y, kB)e—ikgydy

for ko # 0. (For, fixed ko, k3, as(x, ko, k3) is of very moderate de-
crease in y and oscillatory, for sufficiently large ).

so we can define, for k; # 0;
ay(ky, ko, k3) = lim,, oo f:"l s (7, ko, ks)e~*1¥dy

- 3
F(g)(k) = ﬁml(khkmk:&)

Using the end of the proof of Lemma 0.35, we can show that that
there exists C' € R+, independent of z,y, with;

Cllglloo
|a3(‘ray7k3>| S %

for sufficiently large |ks| > Cs5. Similarly, for sufficiently large |ko| >
%

C oo
|&2($a k?, kg)‘ S HGSM‘TZ%B,H

C?|lglloo
= |k2l|ks|

and, for sufficiently large |k;| > Cf;
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Cllaz|ky|>Cy, kg >C5 oo
lai (1, ko, ks)| < BT E—

C?||as| k(>0
- k2| k3|

C3lgll
< Clglloe
— |k1l|k2]|ks]

so that, for k| > Cil, [ka| > Co, k3| > Cs;

T 3
@Bl < Ly Sl

(2m)2
_ Co0,0,0
[k1|[k2|[ks]
where Cp o0 = —=C3||9]|
0,0,0 = 3 glleo
(2m)2

Similarly, for |ki|, |ka|, |ks| sufficiently large, we can find constants
Cil,ig,'ig € R>0, for il + ig + ig > 4, such that,

F (et (R < ot

01 x0"2y0"3 z k1 |[k2|[ks]

For the second claim, we have, for k; # 0, ky # 0, k3 # 0, using
repeated integration by parts, that;

g 4 0% | 0% d'g d'g 9 \(T
F( ox4 + Oyt + 0z4 + 2(93528312 + 28;18282'2 + 28y28z2)<k)

o 1 . . . 1 T2 3 & ﬁ % ﬂ
- (27r)% lzmh HOOlzmTQHOOlzmTSHOO ffrl ff?"g 4.[\77“3 ( or? + oy + 024 +2 0x20y?

4 4 . . .
—I—QBQ?Q(;IZQ + 2 6;)25922 Ve~ ke e=ikay e=iksz o dydz

= (ki+ki+ki+2k2 k24 2k2 k2 +2k2Kk2) —L5 limy, oo limyy s oolimMy o0

(2m)?

f_rlm ffiz f_ri3 g(z,y, 2)e Fze ik e=ikaz gy dy
= |k[*F(g)(K)

so that, using the first claim, for sufficiently large |k, |k|2, |k|3;

84 34 34 34 84 34 —
‘F(g)(aizfli+ﬁ+ 822 +2 812(’;]];2 +2 8126922 +2 6y28gz2 )(k)

[k

[ F(g) (k)| <

< C4,0,04+C0,4,04+C0,0,4+2C2,2,0+2C2,0,242C0,2,2
- K1 |||k [ k|4
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=_ D
e[|k s K|+

where D = Cy o+ Coao+ Cooa +2C220 4+ 20202 + 2C) 2,2.

For the next claim, we have as g is of very moderate decrease, that
lg] < %, for |z| > s, and, as g is continuous, that |g| < C, for |z| < s.
Using polar coordinates (R, 0, ¢), we have;

Js l9]*dz

= Ip@.s) 191°dT + [ra\p s l9l*dT

4C47s3 D j—
< "’fns\B(ﬁ,S) rd®

<40%xs® | 1| D R2sin(9)
RI[dR

4C47s3 > dR
< 3 +D fs R?

4C47s3 + D

3 s

so that g € L*(R3). Letting p = 4, and % —l—é =1, so that ¢ = 3,
and generalising the Haussdorfl-Young inequality, see [18], we have that
F(g) € L3(R?), and we can find F € R, with:

1F @I 4 sy < Fllgllzeces

S F(4C‘;7rs3 + %)%

By Holders’s inequality, we have that for r > 0, F(g)| @,y € L'(B(0,)),
and;

H]:(g)(E)HLI(B(G,r))

< 1IF )P4 50 1Ml 40516)

< P(ACk | Dy (izety)

Using the second claim, we have that there exist constants { E'1, Fa, F3} C
,R/>()7 SUCh that, fOl" |k’1| Z El, |k’2| Z EQ, |]€3| Z Eg,
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T D
7 g) (k)] < |||k || ||+
< _ D
— E1E;Es|k|*
_ P
LR
where F' = YR Then, using polar coordinates, ki = rsin(0)cos(¢),

D
E1E>Fs
5 = rsin(f )sm( ¢), k =rcos(0), 0 <0 <7, —1m < ¢ <m;

fkl >E1,k2>F2,k3>Es3 |‘F(g) (E) |d%

= fkgzo,kézo,kézo | F(g) (k| + Ev, Ky + Ea, ki + E3)|dk

!/

F —/

< fk’lzo,kgzo,kgzo [(K +E1, kG + E2 ks + E3)[ dk
— F
= fogeg 0<¢<T fo (R B Kyt B Ky B) [T *sin(0)drdfde
_ S F
- fogagg,oggbgg fO [(rsin(0)cos(p)+FE1,rsin(0)sin(p)+Ea,rcos(0)+E3 )\4T SZTL(Q)deQdQS
<[ 0 £ r?sin(0)drdfde
— J0<0<F,0<6<F JO  |(rsin(0)cos(¢)+Er,rsin(0)sin(@)+E2,rcos(0)+Es)[4

0o Fy2 1 d

s s 4 Tded

t Josocz0soss Jro T oo Emm@no B e @ B ¢

o Frg
< f0§9§%70§¢§% 0 [(E1,E2,E5)*

7'0 F 1
+ T _2 A 2 2 P drd6d¢

f0<6< 0<¢< T (1+2szn(9)c’ros(¢)E1+25'Ln(9)szn(¢)E2+2305(9)E3+E +E +E )
my2___Frg

< TO(Q) [(E1,E2,E3)|*

o F 1
+ foﬁ@é%’oﬁqﬁﬁg fro r? (1+25’m(9)003(¢)}31+251”(9)M"(¢)E2+2cos(0)E3+E2+E2+E2) drdfdg

2.3
ro F

00 4F
< 4(Ef+E34+FE3)? + f0<0< 0<p<T fr 7z drdfde

__ mF 4F (5)*

- 2 2 2\2 +
4(E?+E3+E2) ro

- 7T27'S’F Fr2

~ 4(E3+E3+E3)

for ro > 12max(E, Es, E3).

Similarly, repeating the calculation for all the finitely many con-
nected regions in |ki| > Ei,|ke| > FEs,|ks] > FEj3, we obtain that
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F(g)lv € LY(V), where;

Vo= {(k1, ko, k3) : |k1| = By, [ke| > Ea, |ks| > Es}.

Using the same argument as above, for as(x, ks, k3), we have, with-
out loss of generality, that for |ky| > Ey and for |ks| > Ej3, there exists
D € R+q, with;

6
DH + g+2a 2(9 2”00
\k2||ks\

F(53 + 24 + 255.85) (2, ko, bs)| <
We have, for ky # 0, k3 # 0, that;

4 4
‘F(g_yil + gzg + Qayzazz)(%k%k:a)

1 . . —ikoy ,—ik3z
—(QW)%lzmm%mlzmm_)oof I . 8y 8Z4+28y232 Je e dydz

= (k3 + k3 + 2k2k3) )3 LMy ool iMyy 00
f f g(z,y, 2 Z’“2’746_“‘332dydz
= |(ka, k3)|*F(g)(, k2, k3)

so that, for © € R, |ko| > Es, |ks| > Es;

99

o*
Hfg"r 112 Wﬂoo
|/f2W€3||(szfs)|4

[ F(9)(@, ko, k)| <

o
D|| t+o4+2 WHM
C2Cs|(k2,k3)\4

<

_ B
[(k2,k3)[*

94g , 04 24y
||74 +5 425505l

0z Jy“0z
where F = raNen .

As above, we have that;
Jias B o 1T (9) (@, Ko, os) | dkpdlhs
= fk;zo,kgzo |F(g9)(ky + Ea, ki + Es)|dkydks

/ /
< fkgzo,kgzo k5t Bz, kg+E3 i dhapdhs < oo
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so clearly, for x € R, F(g)(x, ko, k3) € L'(S), where S = {(ky, k3) €
R?, |ka| > Es, k3| > Es}. Let;

9( F(g)(x,kg,k3>dk2dk3

) = Jiap> B ol o

As above, we have for sufficiently large x, 6(z) is non oscillatory and
of very moderate decrease.

Interchanging limits, we have that;

Jv, F(9) (ki ko, k3)dkrdkadkes

= f|k1|<E1 f\kzlez,lk?,les F(g)(k1, ko, k3)dkydkodks

= f|k1|<E1 f\k2|zE2,|k3|zEg(MmT1—>°° fj;l F(9)(z, ko, k3)e~*dx)dk, dkydks;

= f|k1|<E1 limy, o0 fj;l(-ﬁkz‘zE%\kﬂZEs F(g)(x, ky, k3)dkodks)e~ 1@ dxdk,

= f|k1|<E1(limh—>oo I 0(z)e ™1 dzx)dky

- f|k1|<E1 F1(0) (k1) dky

where F} is the Fourier transform for non-oscillatory functions of very
moderate decrease in one variable. As above, we have that Fi(0) €
L*(R), so that Fi(0)|jk, <k, € L'(|k1| < E). It follows that;

f|k1\<E1 F1(0)(ky)dky < o0

and F(g)(k1, ko, k3) € L*(V1). Similarly, we can show that;

F(9)(k1, k2, ks) € (Micics L' (VD) N Nicicjas L' (Vig)

As R \ (U1§i§3 Viu U1§i<j§3 Vij) = CE, B, By, Where;

Cry By = {(k1, ko, k3) € R3¢ |k1| < Ev, |ka| < Ea, k3| < Es3}

and Cg, g, g, C B(0,7), where r = max(Ey, E, E3), we have that
.7:(9)(/{1, k’g, k‘g) S L1<CE1,E2,E3) and F(g)(kl, kg, kg) € Ll(Rg)

O

Definition 0.61. Let f € CY(R?) with 2L bounded for 0 <

i1 +iy < 14. Let C, = {(z,y) € R? : |z] < n,|y] < n}. Then we
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define an inflexzionary approximation sequence {fm : m € N} by the
requirements;

(1). fm € CM(R?)
(12). fmlc, = flen
(@10) fmlmore, 1) =0

(). For |x| <m, for 0 <i<13;

2 em) = 5t wm)
R [
ame| (wmt+L) =0

85311' (@,—m—) = 0

(v). For|z| <m

814 814 .
Zf 8y1£| xm > O; 33/{4 ‘Vzm Z O

814 814 .
faylflcl (z,m) < O; ay_1f4|Vx,m S 0

if S oy > 0, Sy, >0

a 14 ayld
o4 f le]
f@14 O 8{T’Vzm§0

(vi). ForOS]y|§m+%,0§i§13

2 o) = G lmyyy m <z <m+ L
a{;i? (zy) = a;ﬁ” (—my), —M — % <zr<-—
85;:;” (m+Ly) = 0

Bl g =0

(vii) Form <z <m+ L, 0< |y| <m+ =
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614f al4f
8:514' 6w12ﬂ ‘Hm,y >0
614f 814fm
8:014' 7 14 |Hm7y
814 814 T

f O 14 (—m,y) > 07 81{4 |H

if Skl cmay < 0, Sdp|m ., <0

where;

Vo ={(z,y) e R* 1y € (m,m + =)}
Virm ={(z,9) e R*:y € (=m — ., —m)}

Hpyy={(z,y) e R*: z

)

€ (m,m+ =)}

H ,,={(z,y) eR*:z€(-m— L —m)}

m’

Definition 0.62. Let f € CY(R3) with % bounded for 0 <

i1 +ig+i3 < 14. Let W, = {(z,y,2) € R?: |z| < n,|y| < n,|z| < n}.
Then we define an inflexionary approximation sequence {fn, : m € N'}
by the requirements;

(). fm € C(R?)
(@@). fulwn = flwn
(@00) fmlmovw, 1) =0

(). For 0 < |y <m,0<|z| <m, for 0 <1< 13;

0" fm _ 9

6xi (m7y7z) - W (m,y,z)

9 fim — 9

ozt (7m7yvz) — Ozt (7m7yvz)
' fm —

8xi (eri,y,z) - O

' fm —

oz’ (7m7%»yvz) - 0

(v). For0 <yl <m,0<|z| <m
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814
Zf 81:14' m,y,z) > 0; 8xﬁn ’Hm,yyz Z 0

614 14 .
f m,y,z) < 0 61{4 |Hmy z < 0

8y14 —_
ovr ' fm

f 8y14| m7y7z) > 07 f |H m,y,z 2 O
814 814 "

Zf 8y14 —my,z) < 0, am—{4|H—m,y,z <0

(vi). For0<|z|<m+L0< |2/ <m, 0<i<13

8(;yi (@y,2) = 8;yi (@myz), My <m+ 1
ame| (@,2) = 8me| (—myz), —M — £ <y < —m
agyi (zm+L,2) = 0

8;# (x,—m—=L2) =0

(vii) For 0 < |z <m+ L, 0<]z|<m

A M £,
Zf 6y{4 |(z,m,z) > 07 8y{4 ’Vz m,z 2 0
Zf 14 |(a:mz) <0 8y14 |mez <0

614
Zf 14 |(:1:,fm,z) > O; W|Vzﬁm,z 2 0

614 ~ 614 ™
Zf 8y{4 ‘(:r,*m,z) < 07 yf ‘Vz, m,z <0

(viii). For0<|z|<m+ = 0<|y[<m+ L, 0<i<13

%k%w) = % (zym), M <2< m+ %
% (zy,2) = % (z,y,—m); — T — % <z < —
8;],;” (x,y,m+%) =0

8é.£zn (z,y,fmfi) =0

(iz) For 0 <|z|<m+ L1 0<|y<m+ L
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Zf 6214 ‘(xzyv ) > 07 8314 |Dzym 2 O

614

o ey < 0, 21D, ,,. <0
f@ﬁlyﬂm>0/§ﬁbwﬂnzo
if 334 (@y,—m) <0, %bz’yﬁm <0
where;

Hpyo = {(2,y,2) €RP 1z € (mym+ 1)}

Ho oy, = {(z,y,2) € Rz € €(—m— 1 —m)}

Ve = {(2,y,2) € R* 1y € (mym + 1)}

Ve—m,z = {(x,y, Z) € R3: Yy € (_m _ 1 _m)}

ey = 1(2,y,2) € RP 1 2 € (mym + L)}

1

D
Dyy—m ={(2,y,2) € R? 1z € (—=m — .-, —m)}

Lemma 0.63. If [a,b] C R, with a,b finite, and {g, g1, 92} C C*°([a,b]),
then, if m € Rg is sufficiently large, there exists h € C*®([m, m+ W%] X
la,b]), with the property that;

2

h(m7y> = g(y)7 %km,y) - gl(y); %km,y) = QQ(y); ) € [a'a b]; (Z)
hm+y) =Lm+L,y) = Thm+ L£,y) =0, y € [a,0], (i1)

|h|[m,m+i]><[a,b}| <C

for some C' € R~g, independent of m sufficiently large and, if
83h( ) >0 - h(xay) > 07 fOTl‘ € [mam_’_%]; and Zfa 3(m y) < 0;

Oz3 ) O3

gig (z, y) <0, for x € [m,m+ =], (x). In particularly;

S |28 e lde = g (y)

Moreover, fori € N, 22 has the property that;

762
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i it1 i i+2 i
28 (m,y) = 990W), Sillmy = 9" W), Zrls |y = 95" (V)

y € la, 0], ()

1+1 i+2
Bhim+L,y)= A (m+L,y) = Z5k(m+ L,y) =0

€ [a,b], (it)

for some C; € R, independent of m suﬁ?cz’ently large (md, if

g;j;;},( ) > 07 gylzazS< ) > 0 forx E [m m+ ]J a’nd Zfa z8x3 (mJy) <

0, 59;'89?3( ,y) <0, forx € m,m+ ], (xx). In particularly;

o
m

43 I3
e |@yldr = g ()|

Proof. For the construction of A in the first part, just use the proof of
Lemma 0.30, replacing the constant coefficients {ag, a1, as} C R with
the data {g(y),91(v),g2(y)}. The properties (i), (ii) are then clear.
Noting that [a,b] is a finite interval and {g,¢1,92} C C*([a,b]), by
continuity, there exists a constant D, with max(|g(v)|, |g1(v)|, |92(v)] :

€ [a,b]) < D, so, as in the proof of Lemma 0.30, we can use the
bound C' = 16D + 7D + D = 24D, for m > 1. The proof of (x) follows
uniformly in y, as in the proof of 0.30, for sufficiently large m, again
using the fact that the data {g(y), g1(y), g2(y) : y € [a,b]} is bounded.
The next claim is just the FTC again. For the second part, when we
calculate 2 ot h fori € N, we are just differentiating the coefficients which
are linear in the data {g(y), 91(v), g2(y) }, so we obtain a function which
fits the data {g®® (y),gf) (y),ggi) (y)} and (i)', (27)" follow. Noting that,
fori € N, {g, ¢\, ¢’} c C>([a,b]), again by continuity, there exists
constants D, with maz(|g® (y) 191" (v)1, 195" ()] : v € [a.0]) < D,
so, again, as in the proof of Lemma 0.30, we can use the bound C; =
16D;+7D;+ D; = 24D;, for m > 1. The proof of (xx) follows uniformly
in y, for each ¢ € NV, as in the proof of Lemma 0.30, for sufficiently large
m, again using the fact that the data {g(y), ggi) (y), gg) (y) :y € [a,b]}
is bounded. The last claim is again just the FTC. U

Lemma 0.64. Conjecture

Fixn e N, withn > 3. If m € Rxq is sufficiently large, {a; : 0 < i <
n— 1} C R, there exists h € R[z]| of degree 2n — 1, with the property
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that;
RO (m) =a;, 0<i<n—1 (i)
A (m+L)=0,0<i<n—1 (i)
|h|[m,m+%]| <C
for some C' € Rq, independent of m suﬁﬁciently large and, if

™M (m) > 0, h™(x) 1y >0, if h™(m) < 0, h® 1y < 0.
In particularly;

|[m m+ ‘[m m+

m 1
ST W) ()| da = |an-1], (%)

Proof. We sketch a proof based on the special case n = 3, which was
shown in Lemma 0.30, leaving the details to the reader, (*). We have
that h(z) = (z — (m + =))"p(x) where p(z) is a polynomial satisfies
condition (#i). Computing the derivatives h¥(m), for 0 <i < n—1, we
obtain n linear equations involving the unknowns p(m), 0 < i < n—1,
of the form;

o S2E) — g, (0< i <n—1) (%)

k=0 mnf'H»k'

8 1f ap > 0, a1 > 0, there does not exist a smooth function A on the interval
(m,m+ L), with h(m) = ag, /'(m) = a1, h(m+ =) =0, h/(m+ %) = 0, such that
A" > 0 or b’ < 0. To see this, if A" > 0, using the MVT, we have that h'(z) >
W(m) >0, for z € (m,m+ 1), contradicting the fact that »'(m+-L) = 0. If b <0,
and h/(z) has no roots in the interval (m,m+ ), then as #'(m) > 0, h/(z) > 0 on
(m,m+ L), and h is increasing on (m, m+ 1), so that h(m+ L) > h(m) = ag > 0,
contradicting the fact that h(m + L) = 0. Otherwise, if #’(z) has a root in the
interval (m,m + ), as B < 0, it attains a maxunum at zg € (m,m + L). Using
the MVT again, we must have that for y € (zo, m+ L), h/(y) < h/(zg) = 0 so that
h’(m + 1) <0, contradicting the fact that #’'(m + 1) = 0.

One step requires the verification that for a computable polynomial r, of
degree n — 1, r,(1) # 0, which is highly unlikely on generic grounds and the fact
that r3(1) # 1, although ra(1) = 1, see footnote 18. The geometric idea is that
allowing for inflexionary type curves, where we can have points zg,; € (m,m + %)
for which h(i)(xo,i) =0, where 2 < ¢ < n — 1, the end conditions can be satisfied
while still having h(n)‘(m,m-s-i) >0 or h(”)|(m7m+i) < 0. However, you still need
to do a concrete calculation,MWhich in the case ofmverifying the conjecture for all
n € N, n > 3, would involve finding the exact pattern in the coefficients obtained
in the proof of Lemma 0.30. We actually only need the result for some n > 14 in
the rest of this paper.
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which we can solve for p@(m), 0 < i < n — 1, using the fact
that the matrix (di)o<i<n—10<k<i is lower trlangular and |d;| = 1,
for 0 <i <n —1. Then we can take;

p(z) = 30 pP(m)(z — m)!

so that h has degree n + (n — 1) = 2n — 1. It is clear from (x), that
we have;

pD(m) =St craipym™* (0 <i<n—1)

where (¢;r)o<i<n—1.0<k<i 1S & real matrix, so that p(z) has the form;

p(x) = 21 v’ (%)

where;

Uno1—i = Zz;é raem™TF 4 Z;ZO sgm® ™ (0<i<n-—1)

for real matrices (7ix)o<i<n—1.0<k<n—1 and (Si)o<i<n—1,0<i<i-

It is then clear, using the product rule and (xx), that;

hO () = Y0

where wy = 2,aom> 2 F + O(M3" 3% (0 <k <n-1)

By homogeneity, it is then clear that the real roots of h™(z) are of
the form t,;m + O(1), where t,, € R, 1 < 50 < n — 1, and t,, satisfies
a polynomial r(z) of degree n — 1, which is effectively computable for
given n. We can exclude any roots in the interval [m,m + L], for suf-

ficiently large m, provided ¢y, # 1, for 1 < sy < n — 1, which we can
check by showing that r(1) # 0. We have that;

[l nm 1| = (2 = (m + )" p(2))]
< o 0y PO (m) (@ — m)'|

n— 1|p()(m
<3
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n+k
< E Zk =0 ’czk‘az k‘mn:z
<> Zk _olciklaik| = C, (m > 1)

The last claim is just the FTC.

U

Lemma 0.65. If [a,b] C R, with a,b finite, n > 3, and {g; : 0 < j <
n—1} C C*>([a,b]), then, if m € R~q is sufficiently large, there exists
h e C®([m,m+ +] x [a,b]), with the property that;

() .
OD1) ) = 95(y), ¥ € [a,8], (i)

O (4 L y) =0, y € [a,b], (i)

|h|[m,m+i]><[a,b}| <C
for some C' € R~y, independent of m suﬁciently large, and, if

gh( y) >0, gxff(x y) >0, f0r$€[m m-+ — ], cmdzfaxn( m,y) <0,
Eh(a, y)<0 for x € [m,m+ L], (x). In particularly;

m4+-+ n
L |5 el = |gno1(y)]

Moreover, forie N, 2 a hhas the property that;

2ot (m,y) =gy (v), y € [a,b], (i)

ZEh(m+L.y) =0, y € [a,0], (i)’

o'h
3yi [mamJ”#] X [azb}

| < C;

for some C; € R~y, independent of m suﬁﬁciently large and, if

i+n
aay @x}:z( y) > O; gylax” (l’ y) > O fOT’ZIT € [m m+_- ] and Zf@ O™ (muy> <
0, g;ax}i( ,y) <0, forx € [m,m+ E]’ (). In particularly;
= i+n )
o | 2 pldr = 1 ()]

Proof. For the construction of h in the first part, just use the proof
of Lemma 0.64, replacing the constant coefficients {a; : 0 < j < n —
1} € R with the data {g;(y) : 0 < j < n — 1}. The properties
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(i), (4i) are then clear. Noting that [a,b] is a finite interval and {g; :
0 <j<n-—1} C C>([a,b]), by continuity, there exists a constant
D, with maz(|g;(y)] : 0 < j < n—1,y € [a,b]) < D, so, as in
the proof of Lemma 0.30, we can use the bound C' = Zogjgnq L;D,
for m > 1. The proof of (x) follows uniformly in y, as in the proof
of 0.30, for sufficiently large m, again using the fact that the data
{g;(y) :0<j<n-—-1y € [a,b]} is bounded. The next claim is just
the FTC again. For the second part, when we calculate g Ih forie N,
we are just differentiating the coefficients which are hnear in the data
{g9;(y) : 0 < j < n—1}, so we obtain a function which fits the data

{g](-i)(y) :0<j<n-—1} and (¢), (it)’ follow. Noting that, for i € N,
{g]@ :0<j<n-1} Cc C*(a,b]), again by continuity, there exist
constants D;, with max(]g](»i)(yﬂ :0<j<n-1y € [ab]) < Dy,
so, again, as in the proof of Lemma 0.30, we can use the bound C; =
> o<j<n1 LiDi, for m > 1. The proof of (xx) follows uniformly in y,
for each 7 € NV, as in the proof of Lemma 0.30, for sufficiently large m,
again using the fact that the data {g]@ (y):0<j<n-—1,y¢€lab]}is
bounded. The last claim is again just the FTC. U

Lemma 0.66. If [a,b] C R, [¢,d] C R,with a,b,c,d finite, n > 3,
and {g; : 0 < j <n—1} C C®([a,b] X [¢,d]), then, if m € Rx¢ is
sufficiently large, there exists h € C™([m,m+ =] X [a,b] x [¢,d]), with
the property that;

4) .
%’(m,y,z) - gj(y7z>7 <y7 Z) € [a’ub] X [07 d]; (Z)

Ohe(m+L,y,2) =0, (y,2) € [a,b] x [c,d], (ii)
Pt L faix )] < C

for some C' € Rsq, independent of m sufficiently large, and, if

gxf}(m y,2) >0, Zh(x y 2) >0, forx € [m,m+%], andif%(m,y, z) <

) Oxn

0, &h(x,y,2) <0, for x € [m,m+ L], (x). In particularly;

) Oxm

f |anh| wy,Z)‘dl' = |gn-1(y, 2)|

Moreover, for (i,k) C N?,0<j<n-—1, %, has the property
that;

i+j+k Jithkg, .
aianTZk(m y? ) aylaz (yu ) (y,Z) S [CL?b] X [Cv d]7 (Z)/
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2 (4 Ly, 2) = 0, (g, 2) € [a,6] X [c,d], (ii)

Ditkp
yiozk |[mm+ 1 x[a,b] X [c,d] | < Czk

for some C;) € R, independent of m sufficiently large, and, if

i+k+n i+k+n .
;yaz—ka&(m,y,z) > 0, %—ka;ﬁi(:c y,z) >0, for v € [m,m+ =], and if
i+k+n i+k+n
%(m»w < 07 %(l’ Y,z ) < 07 fOT‘T < [mam—}_%]: (**) In
particularly;

+L itkdn gitkg
S | e | ) [T = |55 (v, 2)]

Proof. For the construction of h in the first part, just use the proof of
Lemma 0.64, replacing the constant coefficients {a; : 0 < j <n—1} C
R with the data {g;(y,z) : 0 < j7 < n — 1}. The properties (i), (i)
are then clear. Noting that [a,b] X [c,d] is compact and {g; : 0 < j <
n—1} € C*(la,b] X [c,d]), by continuity, there exists a constant D,
with maz(|g;(y, 2)] : 0 <7 <n—1,(y,2) € [a,b] X [¢,d]) < D, so, as in
the proof of Lemma 0.64, we can use the bound C' =} ., | L;D,
for m > 1. The proof of (*) follows uniformly in 7, as in the proof
of 0.64, for sufficiently large m, again using the fact that the data
{9j(y,2) :0<j<n-—1,(y,2) € [a,b]} is bounded. The next claim is
just the FTC again. For the second part, when we calculate mrP f;, for

(i,7 € N2, we are just differentiating the coefficients Wthh are linear
in the data {g] (y, z) : 0 < j <n-—1}, so we obtain a function which

fits the data {6 H2k(y,2) 10 < j <n—1} and (i)', (i)' follow. Noting
that, for (i, k) € N2, {8y18zk 0<j<n-1} C C([a, b] [c,d]), again

by continuity, there exist constants D ;, with mcmc(|a (Y, 2)] 1 0 <
j<n-—1y€la,b] x[c,d]) < Dy, so, again, as in the proof of Lemma
0.64, we can use the bound C;j, = Eogjgnfl L;D;y, for m > 1. The
proof of (xx*) follows uniformly in (y, z), for each (i, k) € N?, as in the
proof of Lemma 0.64, for sufficiently large m, again using the fact that
the data g;l;z],; (y):0<j3<n—-1/(y,2) € [a,b] X [c,d]} is bounded.
The last claim is again just the FTC. U

Lemma 0.67. For f € C*(R?) with dljj;f; bounded by some con-
stant F' € R~q, for 0 < i1 + iy < 27. Then for sufficiently large m,
there exists an inflexionary approzimation sequence {f, : m € N},

with the property that;
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maz( [ | 2| drdy, [, | 2 |dudy) < Gm?

for some G € R+, for sufficiently large m.

Proof. Define f,, = f on C,,, so that (ii) of Definition 0.61 is satis-
fied. Using two applications of Lemma 0.65 with n = 14, changing
to a vertical rather than horizontal orientation, and the fact that, for
0<i<13,|z|<m, &L
[—m, m], we can extend f,, to R = {(:v y) |zl <m,m < |yl <m+1},
such that f,,|R, satisfies conditions (iv), (v) of Definition 0.61, where
Ry ={(z,y) : |z| <m,0 < |y| < m+=}. Again, using two applications
of Lemma 0.65 with n = 14, and the original horizontal orientation,

and the fact that, for 0 <7 < 13,0 < |y| < m + £, 8;£T|(m7y) and
% (—m.y) define smooth functions on [—m — -, m+ L], we can extend
fmto S ={(z,y) :m < |z| <m+L1,0< ]|y <m+ L}, such that
Jm|C,,y 2 satisfies conditions (vi), (vii) of Definition 0.61. Conditions

(1), (iii)rré,re then clear. We then have, using (i77), that;

(z,;m) and —\(x _m) define smooth functions on

yl

Jreo | 2 |dady = [, et | 2L | dzdy

1

= f|x\<m lyl<m |8x |dxdy+fz\<m m<|y|<m+L |8ml4 |dxdy+fm<|m|<m+ L ly|<m

Ol | daxdy

+ fmSII\Sm-F%,mSIy\Sm—F% |8ﬂcl4

Ofm Ofm
Sz ]#\dmdy = fcm+% ]8514\d:z:dy

= Jatzmtutzon 1908 190AY+ [ uctytcmer 2 |5 |02 AY+ [ Ly |

+fm<|x‘<m+ m<|y‘<m+ 1 |8 14 ’dxdy ( )

We then have the following cases, using the second clause in Lemma
0.65 repeatedly with the appropriate orientations;

Case 1;

814 o~
flxlgm,|y\gm ‘Wﬁ\dxdy

- ‘ﬁx‘<m ly|<m |8x14 |dxdy < Fm

Ofm

83214

Ofm

Jyls

|dxdy

|dxdy
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814 ™
6y—1f4 |dxdy

fll‘lémﬁly\ﬁm |

- f|$\<m ly|<m |ay14 |d$dy < F'm?

Case 2;

14 = |dzdy

f|$|<m m<\y|<m—i—1 | ox

314
- flw\ém(f\ylsml |Gt ldy)de

2
< m Jixlgm Cl4d£L’

< 2m%C’14

=40y

Case 3;

fmg|x|§m+%,|y|sm |2t | ddy

= S rnciziam 1 |58 |d)dy
i< Garb ) + | Gkl )y

< 4mkF

Case 4.

fm§|x|gm+%,m§|y|§m+% |%|dxdy

- fmS\yISm+i<fm<|Z|<m+ aai |dz)dy

- fmé\ylﬁm+%(|a<;i1?|(my |aalilsm E——

< m<y<mt L Cuspdy+ [~ 1cm Ci32dy

< mee(€i31.C13.2) (the constants {C31,Ci32} coming from the two

applications of Lemma 0.65 at the two boundaries)

Case b;



214 TRISTRAM DE PIRO

L[‘|:C|<mm<‘y|<m+1 | 14 ’dwdy

814 .
- flx\ém(fm§|y\§m+i |Gt dy)dz

- f|w\<m(|8y13|(fvm +| ay13)|(:c,—m)dI)

<A4dmF

Case 6;

f|y\<m m<|z|<m+ L | ay L #|dzdy
= S rnciziam 1 |55 |d)dy

<L fem( 20 Dil it l(m,y) + | 02, Dil 2tk
2@2m)F(22, D)

=4F(32, Dy)

Case 7.

(=m, y))dy

IN

14 = |dzdy

fm<|x|<m+ L m<|y|<m+ L | ay

814
~ Fciems s Unctamss 1%t 1) dy

1 13
< m m§|y|§m+i(21 Lz 14
13 8z+13
= %Zz L7’14<|8x18y1f3|( )|+

< 4F(Z%o Li,14) (
of Lemma 0.65)

8z+14f

8z+14f
Dzrioyld ‘(m y) + Lz 14

Dzioylt ‘ (=m,y) )dy

ai+13f

8i+13f 8i+13f
dxi0yl3 ’(m,—m)’

darayts |(-mom) || 5yt [ (-m,—m) |)

the constants L; 14,0 < ¢ < 13 coming from the proof

Combining the seven cases and (x), we obtain, for sufficiently large
m, that;

Sz |20 | dady < Fm? + ACyy + 4mF + m8C80.C12) < Gy

o |2 dvdy < Fm? + AmF + AF(Y2, Dy) 4+ £ Eim0Lirs) < G2

8y14 m

O
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Lemma 0.68. For f € CY(R?) with % bounded by some con-
stant F' € Rg, for 0 < i1 + iy + i3 < 40. Then for sufficiently large
m, there exists an inflexionary approximation sequence { fm : m € N'},

with the property that;
max( [ |6 v |dadydz, [ ]8 w|dadydz, [ \8 n)drdydz) < Gm?

for some G € R+, for sufficiently large m.

Proof. Define f,, = f on W,,, so that (i7) of Definition 0.62 is satisfied.
Using two applications of Lemma 0.66 with n = 14, with a horizontal
orientation, and the fact that, for 0 <7 < 13,0 < |y| <m, 0 < |z| <m
% (m.y,2) and %|(_m7y,z) define smooth functions on [—m, m]?, we can
extend f, to Ay = {(z,y,2) :m < |z| <m+L,0< |y <m,0 < 2] <
m}, such that f,,|As satisfies conditions (iv), (v) of Definition 0.62,
where Ay = {(z,4,2) : 0 < |z| <m+ 1,0 < Jy| <m,0 < |z| < m}.
Again, using two applications of Lemma 0.66 with n = 14 again, this
time with a vertical orientation, and the fact that for 0 <i <13,
0§|x|§m+%,0§|z|§m,%
smooth functions on [—m — £ m + 1] x [ m7 m] we can extend f,
to As = {(xa?/az) 10 < ‘x| < m‘i‘%am < |y| < m"{'%vo < |Z‘ < m}a
such that f,,| Ay satisfies conditions (vi), (vit) of Definition 0.62, where
Ay ={(z,y,2) 10 < |z <m+L10< |y <m+ 1,0 < 2] <m}.
Again, using two applications of Lemma 0.66 with n = 14 again, this

time with a lateral orientation, and the fact that, for 0 < i < 13,
O fim 0" fm

0<|z| < m+ = 0< |yl < m + = m, af; (z,y,m) and a_zi|(fr,yﬁm) define

smooth functlons on [-m — L m+ L2, we can extend f,, to Wini1

such that f,,|w .., satisfies conditions (viii), (iz) of Definition 0.62.

Conditions (7), Enm) are then clear. We then have, using (ii7), that;

and T l@—m.2) define

Oxl4

). [rs O | dxdydz = me+; gimdxdydz

_ Ofm Ofm
= Joj<mgl<mjst<m ot A0AYdz + [yt i< oy <m |5t [dTdydz

Ofm O fm
+f|ac|§m,m§|y|§m+%,|z|§m 8$14‘d$dydz+f <\x|<m+ m<|y|<m-&-1 Jz|[<m 8m14‘dxdydz

Ofm
+ jiﬂd§m,|y\Sm,mg\z|§m+L ’8114 ‘dxdydz+fm§\x|§m+ Jyl<mm<|z|<m+ - 1 |8 14 \dxdydz

= |dedydz

+fz|<mm<|y|<m+ m<|z\<m+1 |8x14|dxdydz+fm<|x\<m+ m<|y\<m+ ;m<|z \<m+1 |8:L"
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). Jrs |50t

s |dxdydz =

TRISTRAM DE PIRO

[

Ofm

a1t [dedydz

= Jatmipicmietem lantildadydz+ [ oo oo g | dadydz

t Jal<mamsiyl<ms o< [ ATAYAA L3 ety o< |

Ofm

Dyld

|dxdydz

+ fac|<m ly|<m, m<\z|<m+ 1 ’8 14 \dxdydz—i—f <|ac|<m+ 1 Jyl<mm<|z |<m+ 1 ‘8 14 ]dxdydz

Ofm

0z14

|dxdydz =

c). fRS

- flw\<m ly|<m,|z|<m |az14 |dwdydz + f <Ja|<mAL [yl <m,|2|<m

+ ol <mm<iyl<mt L 1 <m

fm

0214

%deydz
%deydz
Ofm
\dxdydz+f <\x|<m+ m<|y|<m+1 Jz|<m 19214

|dxdydz

Ofm
it pyi<mmeizf<m 1 |5t [AOAYATA [ o) 1 <o o<y | ot ddyd>

+fz|<mm<|y|<m+ ;m<|z|<m+L |3214]dxdydz—i—f <Jz|<m+L m<|y|[<m+L m<|z[<m+L |8z

(%)

We then have the following cases, using the second clause in Lemma
0.66 repeatedly with the appropriate orientations;

Case 1;

flfflém,ly\émv\zlﬁm| Oz
- f|m\<m ly|<m,|z|<m |8x
f|x|§m,|y\§m,\z|§m
- f|a:\<m ly|<m,|z|<m 1O |

814

Lxlﬁm,ly\§m7\2|§m| 0z 14

- f|x\<m ly|<m,|z|<m | 0z

Case 2;

61414 |dxdydz
| drdydz < Fm?
%\dxdydz
i \da;dydz < Fm?
= |dxdydz

—i |dxdydz < Fm3

Om | dxdydz

Ofm
+ jiz|§m,m§|y|§m+%,m§|z\§m+% |8y14 |dxdydz+fm§\x|§m+%,m§|y|§m+%,m§|z\§m+% |ay14

Jw.

= |dedydz
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681;% |dxdydz

fmﬁlxlﬁm-&-%,lylémldém |

= Jyizmsizm Sn<iol<me 1 | |dr)dyd-
- flylﬁmﬂ%kmvy@ + |%|(—m,y,z))dydz
<2(2m)*F

= 8m?F

Case 3;

Jnelol<ms L jyi<m,jz/<m |%|dxdydz

- f|y|§m7\2|§m(fm<lm\<m+ | 14 i*|dx)dyd=
1 8l814f
< o iz iz (| 20 Dil 5y

< %(meF(Zgo D)
= BWF(Zio D)

9 fm = |dedydz

Jonslolems 1 pmelm | 50
fly|<m \z|<m(fm<|z\<m+l | 14 ™ |dz)dydz

= % Iy\ém,lz\gm(’ Zi:O D

< 22m)*F(XC2, Di)

= 8mF (3,2, Di)

Case 4.

) 81614]0
11 921491

o O fm|dxdydz

ﬁm|§m,m§\y|§m+i,lz\§m

814 .
- «ﬁxwgm,mgm(ﬁygmﬁ |t |dy) dadz

Cl4dI

2
< Jj<m sl m

(m,y, 2)+] 32,2, D

13
(ma Y, Z)+| Zi:O D

61814]0
8y14a$z

8i614f

vl 921490

(—m,y, 2))dydz

(—m,y, 2))dydz
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_ 22
= (2m) m01470
= 8m014,0

O L | dadyd>

flxlim,mS\yISeri,IZ\Sm

814
= Jatzmpotzm Uy s |50 dy)daedz

00714d1'

2
< i<, z1<m
= (2m)2%00714
= 8mC’0714
Case 5.

flrISm,mS\y|§m+i,|z\gm aym *|drdydz

- f|w\<m |z|<m(fm<|y\<m+ 1 | oy 14 \dy)d:z:dz

= Joi<myizm | 5955 [@m.2) + [ 525 |, —m.2 ) dzd2)
< 2(2m)*F

= 8m?*F

Case 6.

% |dxdydz

fm§|x|§m+i,m§|y|§m+i,|z|§m

1 | o i =\ dy)dzdz

= fm<‘x|<m+ 1 |z‘<m<fm<|y|<m+

az+14814fm

az+14814
“oyoatt | (@m,z) T Li 14

8yzazl4

1
<m m m<|a¢\<m—i—l |z |<m(zz OLZ 14

| (g—m,2) Jdxdz

81-}—13@14 ai+13814 ai+13814
= niz f|z|§m Zi:o Li,14(| Oyt oz 13 (m,m,z)|+| ayz‘a—xmf (m,—m,z)|+|—ayi3z13f|(—m,m,z)|

6i+13614
aroari | (cm,—m,)|))dz

< (2m) 4F(3120 Liia)

m
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13
= SF(ZZ':O Li,14)

(the constants L;14,0 < i < 13 coming from the proof of Lemma
0.65)

Case 7.

814fm
Jn<iol<ms 2 m<lyl<me & s <m | Tyttt | dwdydz

14 = |dy)dzdz

= fmg\x|§m+%,|z\§m<fm<|y|<m+ ‘
613 . 613 .
= fmg‘m|§m+%’|z‘§m<| ay{:s (z,m,2) +| 8y{3 (w,—m,z))dxdz

01371d$d2 + f, Clg’gdl'dz

S m§x§m+%,|z|§m mfigfm,\dgm

< (2m) maxz(C13,1,C13,2)

m

= 2max(Ci31,Ci32)

(the constants {C}31,Ci32} coming from the two applications of
Lemma 0.65 at the two boundaries)

Case 8.

= |dzdydz

fm<|x|<m+ ;mEy|[<m+-L |z |<m| az14

= fmﬁ\x|§m+%,|z\§m<fm<|y|<m+ ‘ bz f|dy)dwd=

8z+14f

1 13
Oyi0z14 ‘ (x,m,z)+Lz 14

8z+14
< m m§|x\§m+%,|z|§m(2i:0 0,14

8yzazl4

% (0,—m,z) )dxdz

gititid Hititla

S # |<m(z z Li,14Lj,i,14( Wiazfl‘l (m,m,z) | |6x]6]ylazl4 |(m —-m z)l
gititi4 giti+14

+|3mjayiazji4'|(—m,m,z)| + |a;jajyi3z}104 |(—m,—m,z)|))dz

13 =13
<2m) 4R (32202220 LijnaLy,ina)

m2

<

13 13
= %(Zizo ijo Li714Lj,i,14)

(the constants L; 14, Lj;14,0 < ¢ < 13,0 < j < 13 coming from two
applications of the proof of Lemma 0.66)
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Case 9.

f ‘ af77L
|x|§m,|y\§m,m§|z|§m+i Oxl4

dxdydz

1 |a 14 ’dz>dxdy

- ﬁx\5m7|y|§m(fm<|z\<m+

. ‘a I | dadydz

f|:v|<m ly|<m,m<|z|<mA+--

1 |5 T4 |dZ)d:L'dy

= ‘ﬁx\gm,|y|§m(fm<|z\<m+

(the constants Fp 14, F140 coming from an application of Lemma 0.66
with a different orientation)

Case 10.

fa:|<m,|y\<m m<|z|<m+-- ! ‘dz

= dedydz

Ofm | dz)dxdy

- f|a:\§m,|y|§m(fm<|z\<m+ 9211

= Siotemyim U ats (2, 5,m) + |55 (2, y,m))dwdy
< 2(2m)*F

= 8m?*F

Case 11.

. ] o Im | dxdydz

fm<|x|<m+ L ly|<m, m<|z|[<m+--

- m<\x|<m+1 |y\<m(fm<| |<7n+1 | ox

Ot |dz)dwdy
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z+14

St (,y, —m))dwdy

ity gty

- flylsm(fmsmsm+i(zi Liaa(l 5ot | (2, 5, m)+ Liaa (| gt | (2. y, —m) )da)dy
8z+13 az+13

13
= j‘|y|§m(zi Lz 14‘ 5219113 |(m> Y, m) + Z Lz 14‘ 921013 ’(_m7 Y, m)

+ 220 Lial gigetsl (m y,m) + 020 Lisal giagts | (—m, y, —m)) dy
< (2m)(AF) (L, Lia)

= 8mF(3;% Lija)

61—0—14

azzaxji4 |(l‘, y,m )+Lz 14

< m<|z|<m+- 1 |y|<m(Zz OLz 14

Case 12.

] 5y Im | dxdydz

fm<|x|<m+ L 1y|<m, m<\z|<m+

- m<\x|<m+1 |y\<m<fm<| |<7n+1 | (9y

S| dz) dwdy

z+14

i+14

&Tgyjilexay? m)+Li 14| Gt

Lz 14

S m<|:z:|<m—i—1 |y|<m(Zz 0

oitiaf, oitlaf,

- f|y|§m(fm§|x\§m+% (Z Ll 14<| 3zzay14 |(ZL’, y,m )"’Lz 14(| 8z’8y14 |($7 Y, —m))dx)dy

13 13 gititid
= Jiem(CiZo XjZo LinaLijaal grgzgyrs| (my y, m)
itj+14
+Z Z Lz 14 1,],14|ai]+iazfl4l(_m7yvm)
3i+j+14f

13 13
+>.2 Zj:() Li,14Li,j,14|Wiayl4|(m7 Yy, —m)

13 B 7o oititiay d
+ 2000 2joo LinaLijaal gz |(—my y, —m))dy
< (2m)(4F) (320 3520 LinaLija)
= 8mF(Z z Lz 14 Z,],14>
Case 13.
fm<|x|<m+ L lyl<mm<|z|[<m+L | 0z 14 |dl’dyd2’

A dz)ddy

- fm<\x|<m+m,|y\<m(fm<| |[<m+2- L |
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= Jonctatcms 1 i 5t | (2, 9. m) + r%ux, y, —m))dzdy
= ipenUnnciroms . (9t 2, y.m) + 1926 | y, —m))da)dy
= \y|<m(zz o Lias axiazlf3 [(m, y,m) + Zz o Lias ngf;:ﬁ [(=m,y,m)
+300 L 13|38;:91213 [(m,y, —m) + 312 L 13|aa;:91§13 |(=m,y, —m))
< (2m)(4F)(3:2 Lis)

= 8mF (3% Lins)

61’—0—13

Cases 14-16 are similar to cases 11-13, interchanging the orders of
integration, with case 14 corresponding to case 12, case 15 correspond-
ing to case 11 and case 16 corresponding to case 13, so that;

Case 14.

f|:c|<m m<y|<m+L m<|z|[<m+ L ’ 14 i |dxdydz
< 8mF(Zi:0 ijo Li,14Lz',j,14)

Case 15.

fac|<m m<|y|<m+L m<|z|<m+ L | 14 i |dxdydz

< 8mF (3,2 Lija)
Case 16.

9 Jm = |dxdydz

f|z|<mm<\y|<m+ m<\z|<m+1 | 0z
<8mF (3,2, Lias)
Case 17.

. | e Im | dxdydz

fm<|x|<m+ m<|y|<m+ mE|z|<mA+—-

Ot dz)dwdy

- fmg\x|§m+%,m§|y|§m+%(fm<\ |<m+1 | Ox
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az+14
8z’8xf14 (2,9, )"‘ZZ o Lija

1 gitlar,
~m m§|z\§m+i(fm§|y|§m+ (Zz OLZ 14(| 82189014 |<£L’ Yy, m )

8z+14

1 2 e (1, y,

< o Susiolzmt & mslyizms 1 (SiZo Lia

81+14

+ le Liya(| om0 azzazM #|(z,y, —m))dy)dx

13 13 gititldg
<z m§|x|§m+#(2j:0 Y icoLinaLi s W-;z—iagml(:c,m,m)
itj+14
+ Z Zz =0 Ll 14L; 1,5,14 Wl(x7 —m, m)
itj+14
+ Z Zz 0 L’L 14 1,5,14 %l(l’7 m, _m)

S~
+ Z;io > Li,14Li,j,14|%|(x> —m, —m))dx

Hi+it+13 Jitit1d

13 13 13 13
- ﬁ(ZFO 2% Li’14Li,j714’Wiagfl3|(ma m, m)"‘Zj:o 2 ico Li,14Li,j,14|W

ai+j+13f ai+j+13f

—m))dzdy

|(=m, m,m)

13 13 13 13
+ Z]:O 27,:0 Lz,14L’L,],14| Byjaziaxl?, |(m7 _m7 m>+Z]:O ZZZO Ll,14LZ,],14|W‘(_m, —m, m)

8i+j+13f ai+j+13f

+ Z;io Zio Li,14Li7j,14|W|(m, m, —m)—i—z Z oLia “7714|W|<_m’ m, —m)

§ititizg

13 13
+ 22520 2ito LigaLijaal ggges | (m, —m, —m)

§ititidy

13 13
+ 20500 2ico LinaLijal gamaems | (—m, —m, —m))
(Z Z Lz 14 1,7, 14)
Case 18.

fm<|w|<m+ ;m<[y|<m+L m<|z|<m+-L | dy & | dzdydz

0 |dz)dxdy

- fmﬁ\x|§m+%,m§|y|§m+%(fmS\ZISeri e

i4-14 i+14
%'(:ﬂvyam)—i_zzl Lz 14 .

1 13
< i Jnslai<ms £ m<iyi<ms 1 (2izo Lina

az+14 81+14
== f|$|§m+i<fm§|y|§m+ (ZZ o Lija( ﬁKm‘,y, )—1—21 o Lia( Wgﬂd(%@/, _
az+13
- % m<|z\<m+ 1 (ZZ OLz 14 W&ﬂﬂ(ﬂc,m,m)

13
+ 380 Linal S 2 | (2, —m, m)

8z"6y14 ’(:C7 y7 -

m))dxdy

m))dy)dx
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i+13
St | (x,m, —m)

+ ZZ 0 Lz 14 9z 9y13

+13
+ 30020 Lial %;Ty];ﬂ(x, —m, —m))dx

Hit+it+13 Jititid

13 13
< (0520 Xit0 LinaLij sl somgzags | (mom, m)+3"320 3002 LivaLi sl gz | (—m, m, m)

6i+j+13f @i+j+13f

+ Zjl-io Zio LijaLijasl 55555, (M, —m, m)+2}io Z;io LinaLi sl ggmgyms |(—m, —m, m)
i+j+13 i+j+13

+ Z;‘io Zio L¢,14Li,j,13|gf)mjz—ia;i3|(m, m, —m)+Z§io Zz'lio Li,l4Li,j,13|aijajzi_ayjis |(=m, m, —m)
i+j+13

+ Z Z Lz 14 z,],13|(£gﬁ+@?ﬁ3|(m7 —m, _m)

§itit1sy

+ Z;io >ito LijaLijasl 5555, (—m, —m, —m))
< —};(Z Z o LijnaLijis)

Case 19.

14 = |dxdydz

fm<|x|<m+ m<|y|<m+ m<|z\<m+1|

1 | 5z 14 |dZ)d£de

= fm§\$|§m+%,m§|y|§m+% (fm<\z|<m+

13
= fmg\x|§m+%,m§|y|§m+%(‘88 {3 (Qf Yy,m ) + ’682{? ‘(‘1'7 Y, _m))d$dy

13 813
= Lciutoms 2 Bncpiemsr (1G5 y,m)+ 5 (0, y, —m)) dy) de
13 i+13
S m J]I|Sm+i (Zi:o LZ 13 %ylazfig |(£U, m, m)

+137,
+ le Lz 13| %;«uazls |({L’, —m, m)

81+13

+ Zzl Lz 13‘ 6y18z13 ’(.T, m, _m)

13
+> 20 Lias
ititi3 gitit13 f

< (320 20 LiasLi g sl smraymazs | (my m, m)+3032 0 3012 Lina Li 1| grgergs | (—m, m,m)

1+13
%le];i’(xv —m, —m))daz’

§ititizy

13 i+7+13 3 13
+ 320 20 LinaLi sl smgmas | (m, —m,m)+57 120 502 Livs Li j sl smgomgms | (—m, —m, m)

Hiti+13

i+j+13 13 13
+ Z]lio 27,120 Li,lgLi7j713|%|(m, m, —m)+2j:0 Zi:O Li,lSLi,j,l?)’Wﬂ@le‘(_ma m, _m)
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13 13 i+i+13
+ 22500 2uito LinsLijaslgrpyas | (m, —m, —m)
gi+i+13
+ Z o2 Lias ’L,],13|Wiazflsl(_m, —m, —m))

< %(Z;io S0 LinaLijas)

It is then clear from (%), summing the bounds from the individual
cases 1-19, as at the end of the proof of Lemma 0.67, that there exists
a constant G € R~ with;

max(fRS %Mmdydz, fm 5 14|dxdydz fR3 5 14|da7dydz) < Gm?
for sufficiently large m.

4

Lemma 0.69. Let {f, : m € N} be an inflezionary sequence, then
for k #£ 0, sufficiently large m, we have that there exists D € R~g, with;

F(fm) R < L2

Moreover, for sufficiently large m, F(fn) € L'(R?).

Proof. For (ki, ko, k3) € R3, using repeated integration by parts, and
the fact that f,, € L1(R?), we have, for m € N;

F(Lim 4 99 4 009y (F)

L dyld D214

olar g\ _ . iy
= )2 = [T [T 8];{4 + 2 ay m o az{4) ihiz g=ik2y o =iksz o dyd 2

= ((ik1) "+ (iko) *+(ik3) ™) f 2 5 fnla,y, 2)e” Fimetheve=iksz dudydz
= (k" = k' - k§4)]:(fm)(k?)

so that, for k # 0;

814 —

e+ 18+ 238) (P

|~F<fm)(E)‘ < (k14+k14+k14) (T)

We have, using the result of Lemma 0.68, for sufficiently large m,
that;
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P (ke + Gt + ) (R)]

Op14 Dyld 9214

| Jro (Gt + Gl + Sl e e have ik dadyd. |

(2m)2 gyt T o
- (2;)% Jrs( §£§Z| + |%| + |gfﬁ|)dxdydz
3G 3

so that, combining (1) and (11), we have, for k # 0, sufficiently large
m;

_ y
F ()R] < 2 et (4

Using polar coordinates ki = rsin(0)cos(¢), ko = rsin(0)sin(¢p),
ks =rcos(0), 0 <0 <m, —m < ¢ <, we have that;

1 1 1
RITHEFE) — 717 a(0.9)

where (6, ¢) = sin'*(0)(cos'*(¢) + sin'*(¢)) + cos'(0)

We have that, in the range 0 < 0 < 7, —7 < ¢ < 7, with 0 # 7,
6] # 3

a(f,¢) =0
iff tan'(0)(1 + tan'*(¢)) + gy = 0
iff tan'(0)(1 + tan'*(¢)) = —Flzx(d))

which has no solution, as the two sides of the equation have opposite
signs.

and, with 0 = 7, , |¢| # 5
a(t,¢) =0
iff cost(¢) + sin't(¢) =0

iff tan'*(¢) = —1
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which has no solution, as the two sides of the equation have opposite
signs.

and, with 0 # 7, , |¢| = §
(6, 8) = 0

iff cos'(0) + sin'*(6) =0
iff tan'(6) = —1

which has no solution, as the two sides of the equation have opposite
signs.

and, with 0 = 7, , |¢| = §

a(f, ) =0
iff1=0

which is not the case. It follows that «(f,¢) = 0 has no solution
in the range 0 < 0 < 7w, —7m < ¢ < w. By continuity, compactness
of [07] x [—m, 7] and the fact that a(%,5) = 1, restricting the in-
terval [—m, 7], there exists € > 0, with a(0,¢) > ¢, for 0 < 0 < T,
—m < ¢ < m. In particularly;

(2m)
— Dm?
|k:|14
where D = 3¢
e(2m)2
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For the final claim, we have, for 1 < i < 3, m € N, as f,, is supported
on W, 1 and continuous, that z;f,, € L*(R?) and, differentiating un-
der the 1ntegral sign;

OF (fm)(k ok =
| gkl K akz fn3 fm(T de”

- \ﬁ Jres :;cifm (T e‘”“"”df)]
fR3 |7 frn(T)|dT

—( %H me( )Hl

so that % is bounded, and, in particularly, F(f,,) is continu-
ous, for m € N. It follows, using the first result, and polar coordinates,

that, for n > 1, sufficiently large m;

| s FUm) RV < L0 1F ) B + frss 5 | ) ()| AR

4Cn7r Dm3
< + Jro\B@n e

< ACar® o [T %0 D2 (0) |drdOde
< 40"” +2D7*m? [ 4

< 4C§7r3 —|—2D7T2m3[ flll]oo

11rttin

_ 4C,w® + 2D72m?
- 3 11ntl

where C,, = [|F(fin)|p@.nlloo; 50 that F(f) € L'(R?).
U

Lemma 0.70. Let f € C'(R3), with % bounded for 0 <

i1 41y +1i3 < 40, f analytic for |T| > r, where r € Rwq, and f analytic
at infinity and of very moderate decrease. Then;

f@) =FHF()@), TR
where, for g € L*(R?);

F9)(@) = iy [ 9B dE
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Proof. By Lemma 0.60, we have that F(f) € L'(R). Let {f,, : m €
N} be the approximating sequence, given by Lemma 0.67, then, for
sufficiently large m, f,, € L'(R) and F(f,) € L'(R) by Lemma
0.69. It follows, see [5] or the method of [13], that for such m, f,, =
FYF(fm)), (x % %), By the proof of Lemma 0.59, we have that, for k
with min(|ky, [kol, [ks]) > € > 0, |F(f)(k) = F(fm)(k)] < 5=, (B). By
the proof of Lemma 0.60, we have that F(f) — F(fn) € L3(R?), with
| F(f) — }"(fm)||L%(R3) — 0 as m — oo. In particularly, there exists
a constant H € R~ with ||F(f) — F(fm)||L%(R3) < H, for sufficiently

large m. We then have, using the Holder’s inequality that, for € > 0,
m sufficiently large;

F () = FCa)llrow

= [[(F(f) = F(fa)lwdwrom,)

< FU) = FFaDlwell 3 gy, 1wl [2omy
< H|[1w.||zaow.)

=8H¢?

Letting W, = {(keR?: |kl <e},1<i<3,and V, = U1§i§3 Wie,

we have that;
R3I\ V. = {k € R® : min(|k1|, |ka|, | ks]) > €}

Using the notation of Lemma 0.60, we have that W7, =W, UV, .U
Vig.e U Vi3, with € replacing the parameters {Ey, Es, E3}. Using the
method of Lemma 0.60, we can show that;

Hm(l‘, y) - f|k;3|25 ‘F(f - fm)(m7ya k3)dk3

is non oscillatory and of very moderate decrease, with;

Frra F(F = )k, s, s ks eyl

F(f = fm)(kr, ko, k3)dkydkadks

f|k1\<e,|k2|<e,\k3|26

F(0,)dleydes

- f|k1<€7|k2|<€
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where F is the fourier transform for non oscillatory functions of very
moderate decrease in 2 variables. As 6, € L3(R2), F(6,,) € L2(R) by
the Haussdorff-Young inequality, so that, by Holder’s inequality;

|y, O = Fu) i, Ko, )l
< NF @)l 21 (1 <, ks | <€)

2
< ASNFOm)ll 1 1y <ol
S 4€2||9m||L3(R2)
< 4C 19 D962

= E12€2

where C1p € R~ is a uniform bound for ||6,,||13(r2), D12 is the func-
tional bound in the Haussdorff-Young inequality.

Similarly, we can show that;

IF(f) = F(faller s, < Erse®

FC) = FUmllr,o < Ere

so that;

IF(f) = F(fllrom. < Fre, (0< e < 1)

and, similarly;

F() = Ffllrow,o < Fie, (0 <e<1)

IF() = Fmllerwo < (Fi+ Fa + Fy)e = Fe (0 < e < 1) (4)

Using the fact from Lemma 0.60, that F(f) € L'(R), for § > 0
arbitrary, we have that;



SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 281

for n € N, sufficiently large, n > ng. Choosing m € N, with
m = [n¥], and using (A), (B), Lemma 0.69we have, for T € R3, that;

IFHF)@) = FHESn) @) = |FHF ) F) = F(f) (F))]
= oot Joon(FNE) = F(fn)(R))edk
+ fRS\B@,n) (F(F)R) = F(fm)(F))e*TdE|

iU FE) = F(fn) Rl
+fR3\B@,n) F(f)(k |dk+fR3\B [ (fn) (R)|dF)

= ;%(IVEOB(QH) F () (k)= F (fm) (k )|dk+4ﬂn3Eé+6+fR3\B Tn) ﬁ:lﬁd%)

< % (Jy, IF()E) = F(fm) (R)|db + 2L 46 + [0 poy TordR)
47rn E€ Dnlo 70

S Gt Fet sty 0+ Jronsn T db)

< o )% (Fe + % +o+2m [ lsziodr)

= GpFet S + 9+ 2Dmn lgil)

N (2 )z <F6+ MEE +to+ 21?33)

< 20+Fe

(2m)?

for sufficiently large n > ng, so that, as € > 0 and § > 0 were arbi-
trary, for T € R?;

im0 F ~(F(fm)) (@) = FLF()(@), (¢ % #x)
and, by Definition 0.62, (* % ), (% % %%);

F@) = limn o0 fm(T) = limin oo 7~ (F (fm))(T) = FLF()(T)
U

Definition 0. 71 We say that f : R® — R is of moderate decrease
n if [f(T)] < |Z|n for |7 > C, C € Rep, n > 2. We just say that f

is of moderate decrease if f is of moderate decrease 2. We call {0, ¢}
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generic if sin(0)cos(¢p) # 0, sin(f)sin(¢p) # 0, cos(0) # 0

Lemma 0.72. The results of Lemma 0.30 hold, replacing the intervals

[m, m + L] with [m,m + =] and [m,m + —5]. The generalisations of

Lemmas and Definitions 0.61 to 0.69 also hold similarly, replacing % by
1 1

—5 in the two dimensional case, and % by —5 in the three dimensional
case. In particularly, we have that, for an inflexionary approximation
sequence {gm : m € N'};

b o 97 < £

for sufficiently large m € N, where E € Rg.

Proof. In the proof of Lemma 0.30, observe that the coefficients of the
polynomial p, depend only on the % term, so we can obtain the new
coefficients for p by substituting m? or m? for m. We then calculate in
the # case, that;

" (x) = (=360agm!® + O(m'?))x? + (288agm!® + O(m!%))x
+(=36agm?* + O(m*'?))
which has roots when;

— a — apm!'® m!6
o SR = O(n') +Olm) > 0

Clearly, we can then assume that for sufficiently large m, h"'(x) has

1o roots in the interval [—m——]U[m, m+—5]. For the final calculation,

with |h][m +1,), We can replace m by m3 throughout the proof, to get
the same result, that |h[j,, 1 < C, independently of m > 1. The case
with m? replacing m is left to the reader, but we do not need it below.
The rest of the Lemmas and Definitions 0.61 to 0.69 go through, once
we have generalised the 1-dimensional case and the conjecture Lemma
0.64. In particularly, we obtain the result that for an inflexionary
approximation sequence g, in R, | ) [ g L e < € D
dependently of m, so that, using the binomial theorem;

|dT

Jiem= g s 2y |9m
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< Cwol([—m — #, m + #]3 \ [-m, m]?)
=8C((m+ —5)* —m?)

8C(m® + 21 4 2m 4 5 — )

IN
3|t

for m sufficiently large, where E' € R+.
O

Lemma 0.73. Let f satisfy the conditions of Lemma 0.70 with the ex-
tra assumption that f € C*'(R?), and the partial derivatives {%ng:k :
1 <i+j+k <41} are of moderate decrease, and of moderate decrease

t+J+k+1, then for 1 < < 3;

kiF(f)(k) € CHR3\ (k1 = 0Uky = 0U kg = 0))

lim%»o,ﬁg(kzlzoul@:oukg:o)ki}—(f)(k) =0

The same results hold for kif(%f;), 1 <i<j <3, when [ €
042(733)‘

Making a polar coordinate change, for {6, ¢} generic, rF(f)s,
CHR=0), lim,orF(flos(r) =0, and similarly for 'r]-"(g—gj), 1
3.

()
j

o

IN
I/\ Mm

)(k)

8

m“”

We have that F(f)(k) € LY(R®) and {
LY(R?)

1 <5 <3 C

B

For any given € > 0, there exists § > 0, for 1 < j < 3, such that for
a generic translation | with Iy # 0, lo # 0, I3 # 0;

max |fo Tj:ew( ) )dr], |fo dr T}—Ml( )( ))drl) <

uniformly in {6, ¢}.

Proof. As is of moderate decrease and analytic at infinity, for fixed
Y, 2, fy 18 of very moderate decrease and analytic at infinity, we have
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fork‘l%ov k?%oa k37é07

) , , : Of (=) o7
F(a—i) = (2;)%lZmrlﬁoolZmrgﬁool/lmr‘gﬁoo f_ril I fri3 af: kT drodrs

ro 1 Of —ik1x —i(kaw2t+ksTs
= W”mm—mollmrg—)oof f llm?’l—mof r1 ax( ) ' 1d1’1)€ ( )dedlB

= Wlimrgﬁoolimrgﬁoo ffi? f_TiS (limrlﬁm([feiikxl]tlm +Zk1 f;lnl f(f)eiikzldxl)

e~ ilkaz2thszs) oo

— zk1 3 1imy o liMyy o0 2 f_ris(limrﬁoo f_rjnl F(T)e o1 day e ikm2thaes) gy dary

=ik, )3 lzmhﬁoolzmm%oolzmmﬁoof fsz fﬁis f(@)e ™ dxyduydus
= Uﬁ]:(f)(E) (TT)

the limit interchange being justified by the inversion theorem. It

follows that, for k; # 0, ks # 0, k3 # 0, we have that;
I F(f) (k) = =iF(5)
and similarly;
kiF(f)(k) = —iF(5L) (A), for 1 <i < 3and ky #0, ky # 0, ks # 0.
It follows that, using the fact that;

. , s 9L —ikyws ,—ik
F(l’l, kg, kg) = lzmmﬁoolzmrsﬁoo f f r3 O 1'1,1‘2’1‘)6 1R2T2 o0 3z3dx2dx3

is of moderate decrease, the DCT and the FTC, and the fact that
fy,- is of very moderate decrease;

limE—m,Eé(k1:0uk2:0Uk3:0)kl}— (f ) (E)

—ilimﬁ—m,ﬁgé(kl:0uk2:0uk3:0)]:(f) (% ) (E)

— T3 8f e~ ikT
=3 7T)jlzmk_m o (1 =0Uka=0Uky =0) LTy 300l iy soolimy oo [71 72 70 S0 dridzada;

o . . . T2 T3 —iki21
= —(%)glzmkzﬁo,kﬁo,kx,#o,k#olzmrﬁoolzmrﬁoo S22 iy o [0 SE()e 1 day )

e~ ikaz2thsrs) oo
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_ o 9 i(k k
= Whmkﬁo ks 0.ks 0,3 20 Ty oo liy oo [72 [ ([20 GL(T)dy )€ R thsms) dpy g
™

. . . . ) T3 —i(k: k
e )%l@m’@—>07k3—>0,k‘27607k3750hmrz—>00l@mr3—>00 f—Tz f—rg,([f]ciooo)e izt 3"””3)d:(:2dx3
T

=0 (E)
Similarly:;

lim%%O,E({(k1=0uk2=0Uk3:0)kif(f)<E) =0,1<i<3

As f € CY(R3), we have, by the product rule, that xzaf € CY(R?),
1<i<j5<3. As f is of very moderate decrease and;

l+m+n
~{amﬂt&wa w1l <I+m+n <40}

are of very moderate decrease, we have, by repeated application of
the product rule again, that;

al+m+n af

W 0<l+m+n<40},1<i<j<3

are bounded. By Lemma 0.72, there exists an inflexionary approxi-
mation sequence g, for x Wlth the properties that;

(1) gm € 014(723)
(4i). 9m|[—m,m]3 = x%l[—m,mP
) [T —— A L
(V). Gmlrs - m—y mt 113 =0

By the construction of g, we have that f,, = %= is an approxima-
tion sequence for , with the property that;

(1) fm € C*(R?)
(@) fonlmampp = SElmmis

O S — A LA
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(iv)". fm|R3\[—m—#,m+#]3 =0

Following through the proof of Lemma 0.70, as % is of moderate
decrease and, therefore, of Very moderate decrease, we have that F(f,,)
converges uniformly to F ( ) on compact subsets of R\ (ky = 0U ko = 0U k3 = 0),
sothat F(2) € C(R?\ (k:1 =0Uky =0Uks =0)), As x5z, frn € L'(R?),
for 1 <i < j < 3, we have that F(f,,) is twice differentiable, in par-
ticularly, F(f,,) € C*(R?). As f is analytic at infinity, so is 8f More-
over, as gf is of moderate decrease, assuming without loss of generality

xo?'éO,

9
|8_£(%’ %07 Z?0>| - |g$0,y0,20(xaya Z)|

(&
ST

) 2
o

so that gy, 4.2~ has a removable singularity at z = 0, so that z5; f
analytic at infinity. It follows that for {m,n} C N, with m > n, dlffer—
entiating under the integral sign, using the DCT, property (zzz) of an
inflexionary approximating sequence, and the fact that xg—ic is of mod-
erate decrease and analytic at infinity, for |ki| > €; > 0, |kao| > € > 0,
|k3| > €3 > 0, we have that;

|6]:(fm) _ 8]:(fn)|
ok Ok1

= o3 |8k1 (Jrs fm(@ Je~*TdT — 8%1 Jrs fol@)e 27|

27r)
= 27r)2 | fRS Z,Tlfm ) _Zﬁjdf — f’Rg —lefn(f)e—lgfdf’
- —ik.T
- )2 — | [rs(gm — gn)(T)e " dT|
: T — —
< Gt Uim s e 19m @i |90 (P

of —ik.T
+| f[—m,m]3\[—n,n]3 mla_wfle F df‘)

<SEHEE )
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where C(k) is uniformly bounded on the region |ki| > ¢; > 0, |ky| >
€a > 0, |k3| > e3 > 0. It follows that the sequence {8F Im) - m e N}
is uniformly Cauchy on the region |ki| > ¢ > 0, ]k2| > € > 0,
|k3| > e3 > 0, and Converges uniformly. By considering inflexionary

sequences for ya and z , we can similarly show that the sequences

% :m € N} and {mr(f’" :m € N} are uniformly Cauchy on
the region |ki| > ¢ > 0, |k2| > e > 0, |ks] > €3 > 0, and con-
verge uniformly. As F(f,,) converges uniformly to F (%) on the re-
gions |ki| > e > 0, |ko| > € > 0, |ks| > €3 > 0, it follows that
F(8L)y € CYR3\ (k1 =0Uky =0Uks =0)). The same result folds
for ]-"(%) and ]-"(%), so by (A);

{E F () (), ke F (F)(R), ks F(f)(R)} € CHR?\ (k1 = 0Uky = 0U ks = 0))
(B)

It follows that, changing to polars;

OFNE = (Lb g 0k Bk F(f)(R))

_ OMFNE | 0eFNE | OksF(E
i T e R UALd)

so that, for generic {0, ¢}, rF(f)(r)os € C'(Rso), by (B). More-

over;

lim,or F(f)(r)o.6-

= Uiz g )30 UM ) 0.1 2050 2010 20R1 F () ()

= lim%(e@)aok%limﬁ(e,qs)aﬁ,kl¢o,k2¢0,k3¢0k2]:<f)(E)

= Mmﬁ(e,qs)—mélim%(e@)-@,m¢o,k2¢0,k3¢0k3‘7:(f)(E)

= limgg 5)—0stgn(ki)(1 + % + %)limﬁ(a,qs)—@kl¢o,k2¢0,k3¢okl}—(f)(E)
= limg g 5)—0Stgn(ka2)(1 + % + :_g)limﬁ(a,@—@,kl;éo,kg;éo,kg;éokﬂ:(f)(E)
= limg . 4)051gn(k3) (1 + % %)llmk (0,601 20,k 20,k 20K3F () (R)

=0
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as the cases max(|kal, |ks|) < k1|, max(|k1|, |ks]) < |ka| and max(|ky], |k2]) <

|k3| are exhaustive.

Clearly, we can repeat the above arguments for 2 7 1 <¢<3, and
f € C*(R3), using the fact that is of moderate decrease, in partic-

l+m~+n Of
9 dx;

ularly of very moderate decrease, with the higher derivatives ety
of moderate decrease [+m+n—+2, in particularly of moderate decrease
l+m+4+n+1.

For the next claim, we have, as f is of very moderate decrease, using
polar coordinates, that;

Jrs |fIPdz

< fogegw,ﬂrg,g) fR>0 |f|3+67“2d7“d9d¢

< C+2r2 [ B dr

< O 277 [[—r=Pdr
=C +2m%r,¢ < 00

so that f € L3*¢, for e > 0. By the Haussdorff-Young inequality,
F(f) € L27%(R3), for § > 0, so that, due to the decay, F(f) € L'(R?),
(R). A similar calculation show that, as g—i is of moderate decrease
2, that f € Lg“(R?’), for e > 0. Applying the Haussdorff-Young in-
equality, ]—“(g—i) € L*°(R?), for § > 0. In particular, due to the decay
again, }"(g—ﬁ) € L*(R?). Locally, on B(0,1), for § > 0;

f B(0,1) k3~ T dk

2 drdfde

- fOSGSmﬂrSzﬁSaﬁ 0 757

&
(20)(k)

so that = € L379(B(0,1)), in particularly + € L?(B(0,1)). As
(0,1)), by Holder’s inequality, we obtain that -

W C



SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 289

LY(B(0,1)), and by the decay, we have that FE)E ¢ LY(R?). Similar

F(EL) (k) e
8‘%" € LY(R?), for 1 < i < 3. We can also

complete this argument with just the assumption that a—i is of very
moderate decrease. As by the argument (T'T), for ky # 0, ks # 0,
ks # 0;

F(Gh)(k) = ik F(f)(K)

arguments show that

so that;
F(2Lyx i R
T8 — B (f) (k)

with, for k; # 0;

lik1 ) _ | os 1

L = |sign(k)) || ——-—7| <1
|\k|| |sign( 1)||(1+Z§2+Z§2)%|_
so that;

TED) < |7 (p)(F)

and, by (R), F(f)(k) € L*(R?), so that

(|ZTZ) € L'(R?). We also have that, with just the

assumption that =2 BJ; is of very moderate decrease, 1 <1 < 5 < 3,

using the argument (TT) twice, that for ky # 0, ko # 0, k3 # 0;
2 . . _
Flavgs;) = (ki) (i) F () (F)

= —kik; F(f)(k)

\kl) € L'(R?). Similarly,

for 1 < i < 3,

so that;

F(52L)(R)

= e F(N)(®)

with, for k; # 0, k; # 0;

kik
(5| = Isign(kn)sign(hel |-yl oty | <1
kl

T )2 +% T )2
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so that;

F(52L)(R)

— | < [F(H)(K)]

2 —
Flarda;) ()
[FI2

and, by (R), F(f)(k) € L'(R?), so that e L'(R?).

The last claim follows from the fact that, for [, with [; #0, Iy #0,
I3 # 0, the translation fi(%)(/@) e CY(B(0,¢)), for some ¢ > 0. In
particular, given € > 0, there exists 6 > 0, such that;

max |f0 Tf9¢l( ) )dr|, |f0 p 717:9¢z( )( ))dr|) <

uniformly in {6, ¢}.
O

Definition 0.74. We say that a solution (E,B) to Mazwell’s equa-
tions in vacuum is non oscillatory, if the components {e;, b;} are of
very moderate decrease, and analytic at infinity, with;

8l+m+m e;
Oxloymozn

al+m+mbi
OxlOymozn

of very moderate decrease, 1 <1 <3, l+m+n > 1, the components
are analytic at infinity and {ez,b } are sufficiently dzﬁer@ntmble and
using the fact that E =<7 x By, B = <7 x By, we can assume that the
components of {E1, B1} are of very moderate decrease and analytic at
infinity. We also require that the components {e;, b} of;

9E 0B
ot ot
or equivalently {c*(\y x B), — 7 xE}
or equivalently {c*(\y x \7 X By), — 7 x V xE1}

are of moderate decrease.

Lemma 0.75. There exists a solution (E,B) to Mazwell’s equations
in vacuum, with the property that for all t € R, the components of F,;
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and B, are smooth and have compact support. There exists a solution
— — — =t
(E', B') to Mazwell’s equations in vacuum with (E , B') non-oscillatory.

Proof. Choose smooth vector fields {€,b} with compact support, then
we have that;

div(sy x €) = div(s7 x b) =0

and & = v/ X €, by = 7 x b are smooth and have compact support.
Let;

by = —(v X €1
€y = C2<v X l_)l)
Then, by construction {;,&,by, by} satisfy the equations;

(i). div(@) =0

(ZZ) YV X e = —bQ
(iii). div(by) =0
(ZU) V X 51 = [Lo€p€a.

We have there exists a unique solution to the wave equations (?°E =
0 and (0?°B = 0, with initial conditions (€,,) and (by, by) such that
Ey = e, 88_?0 = @, By = by, %—?0 — by. By Kirchoff’s formula, we
have that the components of (E,B) have compact support for all
times ¢. Moreover div(E satisfies the wave equation with initial con-
ditions div(e;) = 0 and div(e;) = div(c*(7 x by)) = 0, so that, by
uniqueness of the initial conditions, div(E) = 0. Similarly, div(B)
satisfies the wave equation with initial conditions div(b;) = 0, and
div(by) = div(— 7 xe;) = 0, so that, by uniqueness again, div(B) = 0

as well. We have that v x E + %—Jf satisfies the wave equation with

initial conditions \/ X €; + by =0 and;
_ 2B
VYV X €9 -+ %Tlﬂ(]

ZVX€2+CQVQZ_)1



242 TRISTRAM DE PIRO
= X (27 xby) + 2 2 b
= Agrad(div(b,)) — 2 72 by + 2 2 by
=0

so that, by uniqueness, 7 x F = —%—? Finally, we have that, <7 x B —

L IE gatisfies the wave equation, with initial conditions sy Xxby—L6, =0
c2 ot ) s

and;
v X by — c%%‘o
= X by — V%6
— VXV X8 - VE
= —grad(div(e,)) + Ve, — v?e;
=0

so that, by uniqueness, \7 x B = C%%. It follows (E, B) satisfies

Maxwell’s equations in vacuum, as required.

For the second claim, we can construct the potentials {€g, by} for
{E',B'} by;

fioo g(z,y,z,s)ds fioo E(xzyvzzs)ds (
7 T

r>1)

Choose (E, B) a solution to Maxwell’s equations in vacuum with
compact supports, as above. By the method in [6], we can choose
{g,h} such that v x § = E, \v x h = B, for all times ¢t € R, and,
clearly, for a given t € R, g, and h, have compact supports. Then, we
have that, by Maxwell’s equations;

VXVXg=vxE

_ _09B
- ot

UXYUXh=vxB
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|
Q-

5]
SN

It follows, by the fundamental theorem of calculus, and the facts;
limy_,—ooB(z,y,2,t) =0
limy_soE(x,y,2,t) =0
that we must have;
[

v x v x([L 9z, y, 2, s)ds)
= 1 (V x 7 x g)ds
= JL Hds
_ _0B

ot
v x v X ([L b,y 2, 5)ds)
= ' (v x v x h)ds

1 9B
T c? fR 8sd3

|
Q-

)]
SN

so that, as % and % have compact support, by the product rule

{V XV X&),V XV X 50} are of moderate decrease. We can obtain
sufficient differentiablity using a polynomial p(r) for r < 1, with the
property that;

P () ey = 1)y

and defining the potentials {&y, by} by;

p(r) ffoo g(x,y, z,s)ds, p(r) ffoo h(z,y, z,8)ds (r <1)

The components of {E/,EI} are of very moderate decrease and an-

alytic at infinity, as are the potentials. The constructed (E/,El) is

non-oscillatory, but we need a local notion of analytic at infinity.
O
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Remarks 0.76. By considering the following family of examples, we
can support the theory of this paper. As we are considering the radia-
tion condition at t = 0, the data of {%2|i—0, 22|i—0} is not involved in
the Fourier transform calculation, and there is no need for these initial
conditions to be the second derivative of a potential which s O(%) For

a(r) analytic at infinity, with a(r) O(1), we let B,(r) = W, 50

that S, is O(T%) As a(r) is analytic at infinity, we have that;

where g is analytic at 0, then, by the chain rule;
d(3)z =9'r)

so that;

d'(3) =—rg'(r)

and lim, _sord’ (1) = limrﬁo}na’(%)

= lim,_o — rg'(r)

=0 (A)

We let the potentials be defined by;

€0 = Ba(r)2°(0,1,0), (z > 0)

ey = (0,0,0), (x <0)

by = Ba(r)2°(0,0,1), (z > 0)

bo = (0,0,0), (z <0)

which are O(1) but belong to C*(R?). We have that;
Bﬁ.)

EO =Y X €y = (—%,O, 5$4ﬁa+ &

r )

(x > 0)



SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 245

Ey=0, (x<0)

By=< x by = (%,—M“ﬁa — "EGTB‘IL,O),
(x > 0)

By=0, (z<0)

which are O(+). We have that;

_— _ 10 ’ 12 972 9 / 11 972 9 /
Eo x By = (25x853+ 1027 BBy 4 = 7By 52" Bafyy + Bty 5e%Bafyz |

r r2 r r2 r
IH,B(/IZZ )
2

and;

(EO X Eo) )

— (B x By) . 22)

250962 | 10018a8, | 2982 | 5098y’ | oV | 5%BBas% | o8P
r r2 r3 + r2 r3 + r2 r3

932 9 g/ 2 11 72
252 33 + 10z Baﬁa +5$95/5a 5z 5;25” 4z B

s T

where x* + y? + 22 = r? and n is the unit normal to the sphere S(r).
It follows that, using a polar coordinate change x = rsin(0)cos(¢p),
y = rsin(0)sin(¢), z=cos(0), 0 <0 <m, —m < ¢ <m;

fS(ﬁ r (EO X Eo) . d?(?")
= B0 [ om0 TAS() 2R [0 (02 =52 ) dS (1) 48180 [gg,y o 52°AS()
+% fS(ﬁ,r) 2>0 ztdS(r)

256212

= =0t [T f e 9sin(0 )d@dgb—i—waﬁar f Trx Lsin(0)d0d¢+505,B.r? [} f s T Ysin(0)dOde

ﬁ/“fo f ﬂx Lsin(0)dOde

25,327"1" fo f WSZTL 6039(¢)52n(9)d9d¢
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56/6 i N f z sin'1(0)cos (¢)sin(0)dOdo

+58,Bar?r? [ f wsm (0)cos®(¢)sin(0)dOdo

2,11

G s = sin!(6)cos'(¢)sin(0)ddd

= 2532710 (QLo3L (8642 )9

/a o11( 11.9.7.5.3.1 10.8.6.4.2
+58. 8 (08613 (17 5.51)2

+50, 8 (55 5.12) 7 (5:755.1)2

12,12/ 11.9.7.5.3.1 10.8.6.4.2
+Be 7 (12505642 (T67551)2

= 52r10(5m) + B4 (4E) + 522 (5)
We have that, by the chain rule;

BL(r) = — iy (ra(r))

5a(r) 5ra’(r)
"

(14+ra(r))® (14ra(

)6
and;

. 5 7 ,,,5
limy 0o B = llmr—)oo—(1+m(r))5

11

= lim, o0 a(r)? 75

where f = lim,_oca(r).

and, using the result (A);

5a(r)r®  5r7a/(r)
(I4ra(r))®  (14ra(r))®

limr—>oor66(ll - llmr—)oo -

g 5a(r) 5ra’(r)
= lzmr_mo — W — W

It follows that, noting that lim, 1" Be = fs, lim,_oor® 3’

a___
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lim, oo P(r) = lim, o0 (8210 (5m) 4 5/ rH (H5) + Br'2(%))

= o (br =+ B =0

Once we have {Eq, By}, we construct {2 E| o, 68t|t o} by;
%]ft 0 = c*(V x By)
%—thzo = —(V x Ey)

so that {9Z],_o, 9B|,_o} C C3(R®). We then construct {E, B} sat-
isfying the wave equations [’°E = 0, O0%B = 0, with initial conditions
{Ey, By, 2Z o Fl_o, %’f\t o} using Kirchoff’s formula, see [4], (need initial

conditions C®,C?). As proved in Lemma 0.75, (E, B) is a solution to
Mazwell’s equations in vacuum.

An interesting consequence of the radiation question concerning light
1s Planck’s heuristic formula E = hf. If the spectrum of the electro-
magnetic field of light is localised to avoid radiation losses, then we can
use Plancherel’s formula to conclude that;

J— _2 —
Jrs |EP? + |B|dz ~ g|k[?
so that over a cycle, the energy;

B~ glk? 25 = 28 = An’gf

with the frequency f = %‘ and g the small bandwidth of the spec-

trum. During an excitation of a charge and current configuration, with
the total charge and current conserved, we can pass through a phase of
zero current and charge, in which case the difference in the energies
E, — E5 stored in the electromagnetic fields is interchangeable with the
electromagnetic energy of light at a particular frequency. The Balmer
series for the difference in electromagnetic energy of current and charge
confined to a sphere was predicted in [14].

Lemma 0.77. There exists a unique fundamental solution (E,0), with
E decaying in the sense of [11], for gz’ven (p, J), not vacuum. Wz’thout
any decay condition, the difference E— E of two such solutions {E E }
is either 0 or static and unbounded with <7 « E = 0 and 7 x E = 0,
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(), with the possibility () being satisfiable. If (Eo, By) is a solution to
Mazwell’s equation in vacuum, then we cannot have that E + Ey = 0.

Proof. Suppose there exist two fundamental solutions (E, 0) and (E/, 0),

then (0,0, E — E/,ﬁ) is a solution to Maxwell’s equations in vacuum.
It follows from Maxwell’s fourth equation, that;

— =

O(E-E) _ @
ot =0

and, from the relations in Lemma 4.1 of [12], that;
XE-E)=v3(E-FE)=0

By the decaying condition and properties of harmonic functions, we
have that E — E = 0, so that £ = E'. Without the decay condition,
we must have that £ — E is unbounded or E — E = 0, and from
Maxwell’s first and second equations, we must have that 7. £ = 0 and
v X E = 0 as well. The satisfiable claim follows from the fact that
we can construct a solution (0,0, Fy,0) to Maxwell’s equations in free
space, by the requirements that;

(l) V.Eo =0
(i). 2Bo =0

(iii). v x Eg =0

It is possible to satisfy the requirements (i), (éii), for a function
f: R® = R, so that we can define Ey(7,t) = f(T) to satisfy the
conditions (i), (i), (i7i). For the last claim, suppose that E + Ey = 0,
then £ = —FE, and we have that, by Maxwell’s equations, and (Ey, By)
a vacuum solution;

v.E:—v.E):%:O

so that p = 0. Using the fa_Ct that 7 (p) + C%%—z =0 and O0?J =0,
we have that %2 = 0 and 7?J = 0, so that, as J € S(R?), we must
have that J = 0 and (p,J) is a vacuum solution, contradicting the

hypotheses. 0
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