
A NOTE ON INFLEXIONS OF CURVES

TRISTRAM DE PIRO

Remarks 0.1. We define a real projective algebraic curve C ⊂ P n(R)
to be an irreducible algebraic scheme over R of dimension 1, and a
real projective algebraic hypersurface C ⊂ P n(R) to be an irreducible
algebraic scheme over R of dimension n − 1. Working in the context
of Robinson’s theory of enlargements, we can define an infinitesimal
neighborhood Vx of a point x ∈ Pm(R), to be Pm(∗R) ∩ µ(x), where
µ(x) =

∩
ϵ∈R>0

D(x, ϵ). We let Lx denote the Grassmannian of lines

through x. We define the intersection multiplicity I(Cs1 , Cs2 , x) of a
real curve and a hypersurface {Cs1 , Cs2} at x, to be;

max(s′1,s′2)∈(µ(s1,s2)∩l:l∈L(s1,s2)
)Card(Cs′1 ∩ Cs′2 ∩ µ(x)). (†)

In Theorem 18.7 of [2], it is shown this definition coincides with alge-
braic multiplicity for plane complex algebraic curves. If I(Cs1 , Cs2 , x) =
m > 0, then, choose parameters (s′1, s

′
2) witnessing this, and a line l0,

containing (s1, s2) and (s′1, s
′
2). Now choose δ > 0 standard, then, given

any ϵ > 0, there exists standard parameters (t1, t2) ∈ (D((s1, s2), ϵ)∩l0),
such that Card(Ct1 ∩Ct2 ∩D(δ, x)) = m, (∗). This follows, by transfer,
as µ(s1, s2) ⊂ D((s1, s2), ϵ) and µ(x) ⊂ D(x, δ). Now, for such a δ > 0,
we can find a sequence of standard parameters {(sn1 , s2)n : n ∈ N}, con-
verging to (s1, s2) on the line l0, such that |Csn1 ∩ Csn2 ∩D(x, δ)| = m,
(∗∗). For suppose not, then there exists a disc D((s1, s2), ϵ) for which
there are no parameters (y1y2) ∈ D((s1, s2), ϵ) with Card(C(y1,y2) ∩
D(x, δ)) = m, contradicting (∗), hence, (∗∗) holds. Now let ψ(y, z, δ)
be the formula [(y, z) ̸= (s1, s2), (y, z) ∈ l0 : |(Cy ∩Cz ∩D(x, δ))| = m],
then, ψ(y, z, δ) is definable in the language of real ordered fields, hence,
by (∗∗), contains an interval Uδ ⊂ l, with (s1, s2) ∈ ∂Uδ. We can
assume that Uδ ⊂ l+0 , where l+0 ⊂ l0 is a half-line, emanating from
(s1, s2). As δ > 0 was arbitrary, the sentence σ = (∀z > 0)(∃t′, t′′ >
0)(∀(t1, t2))[(s1, s2) < (t1, t2) < (s1+t

′, s2)+t
′′]|(Ct1∩Ct2)∩D(x, z))| =

m holds in R, therefore, in ∗R. Hence, the original statement (†) can
be formulated as;
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I(Cs1 , Cs2 , x) = Card(Cs′1∩Cs′2∩µ(x)) for any(s
′
1, s

′
2) ∈ (l+0 \ (s1, s2))

(∗)

It follows, see also [2], that we can, purely geometrically, define the
notion of a branch and the nature of singularities (Cayley’s defini-
tion) using birationality arguments, see [1]. Using Severi’s method
of resolving singularities, it seems likely that, given a real projective
algebraic curve C, we can find a nonsingular curve C ′ ⊂ P 3, and
a birational map Φ : C ′ ! C. For a point p ∈ C, we can de-
fine the branches {γ1p , . . . , γrp}, centred at p, to be the neighborhoods
{C ′ ∩ µ(p1), . . . , C ′ ∩ µ(pr)}, where ΓΦ(p, pi), for 1 ≤ i ≤ r. For a line
lp, centred at p, we define;

I(C, lp, γ
i
p) = I(C ′, (Φ)−1(lp), pi)

It is easily shown, using the observation (∗), that this definition is
independent of the choice of birational map Φ. For a plane curve C
and a branch γip, we define the tangent line lγip to be the unique line
with the property that;

I(C, lγip , γ
i
p) > I(C, lp, γ

i
p) (for all lp ̸= lγip)

For a plane curve C, we can define a nonsingular point x to be an
inflexion if I(C, lx) = 3, where lx is the tangent line. We define a
singular point x to be a node, if there exists 2 branches {γ1x, γ2x} , cen-
tred at x, with distinct tangent lines {lγ1x , lγ2x}. We define a real plane
projective curve C to be nodal, if it has at most nodes as singularities,
and the inflexions are distinct from the nodes. It is easily seen that,
for a nodal curve C, there exists finitely many points {p1, . . . , pr}, for
which the tangent lines, centred at pi, 1 ≤ i ≤ r, are horizontal or
vertical. We can assume that the line l∞ intersects C transversely,
by a suitable choice of coordinates (x, y). By a simple rotation of the
axes, we can assume that each pi is not a node, and the projections
{prx(p1), . . . , prx(pr)} and {pry(p1), . . . , pry(pr)} are all distinct, (∗∗).

In a similar way, for an analytic path λ : (S1, 1) → R2, and a
point p ∈ R2, we define the branches {γ1p , . . . , γrp}, centred at p, to
be the neighborhoods {C ′ ∩ µ(t1), . . . , C ′ ∩ µ(tr)}, where λ(ti) = p, for
1 ≤ i ≤ r. For a line lp, centred at p, we define;
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I(λ, ls1 , γ
i
p) = max(s′1)∈(µ(s1)∩l:l∈L(s1)

)Card(λ
−1(ls′1) ∩ µ(ti)). (††)

We define the tangent line lγip to be the unique line with the property
that;

I(λ, lγip , γ
i
p) > I(λ, lp, γ

i
p) (for all lp ̸= lγip)

It is easily shown that lγip is given by y−γ2(ti)
x−γ1(ti) =

γ′2(ti)

γ′1(ti)
, where γ(ti) = p,

if lγip is not given by x = γ1(ti). We call p nonsingular, if there exists

a unique t ∈ S1, with λ(t) = x and λ′(t) ̸= 0.

We define a nonsingular point x to be an inflexion if I(λ, lx) = 3,
where lx is the tangent line. We define a singular point x to be a
node, if there exists 2 branches {γ1x, γ2x} , centred at x, with distinct
tangent lines {lγ1x , lγ2x}, equivalently, if {γ

′(t1), γ
′(t2)} defines a basis of

R2, where γ(t1) = γ(t2) = p.

For a real plane nodal projective curve (C, p), based at p ∈ R2, sat-
isfying (∗∗), in coordinates (x, y), we can associate an analytic path
λ : (S1, 0) → (R2, p), as follows;

Let C ′ ⊂ P 3(R), be a nonsingular real projective curve, with prz :
C ′ ! C birational. Let {x1 < . . . < xr, y1, . . . , yr} denote the pro-
jections of the vertical tangent points {p1, . . . , pr} of C, with corre-
sponding {q1, . . . , qr} of C ′. . Choose {a1,1, a1,2, . . . , ai,j, . . . , ar,1, ar,2}
distinct, with pry(ai,1) < yi < pry(ai,2) and ai,k ∈ (µ(pi) ∩ C), for
1 ≤ k ≤ 2,1 ≤ i ≤ r. Let;

{b1,1, b1,2, . . . , bi,k, . . . , br,1, br,2} = pr−1
z ({a1,1, a1,2, . . . , ai,k, . . . , ar,1, ar,2}).

Choose {di,j : 1 ≤ i ≤ r, 2 ≤ j ≤ w} distinct in C, with {di,j :
2 ≤ j ≤ w} = ((pr−1

x (prx(pi) ∩ C) \ pi), and {ci,j,k : 1 ≤ i ≤
r, 2 ≤ j ≤ w, 1 ≤ k ≤ 2} distinct in C, with w = deg(C), such
that prx(ci,j,1) < prx(bi,j) < prx(ci,j,2) and ci,j,k ∈ (µ(bi,j) ∩ C), for
1 ≤ k ≤ 2. Let;

{ei,j : 1 ≤ i ≤ r, 2 ≤ j ≤ w} = pr−1
z ({di,j : 1 ≤ i ≤ r, 2 ≤ j ≤ w}).

Without loss of generality, assume that p is based at d4,2, the lower
index cases are left as an exercise for the reader. Let;
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{fi,j,k : 1 ≤ i ≤ r, 2 ≤ j ≤ w, 1 ≤ k ≤ 2}

= pr−1
z ({ci,j,k : 1 ≤ i ≤ r, 2 ≤ j ≤ w, 1 ≤ k ≤ 2}). (††)

Let {α1, . . . , αw} denote the intersections of C with l∞, the line at
∞ defined by Z = 0, in coordinates x = X

Z
, y = Y

Z
. Let O = (X =

0)∩(Z = 0), and assume that {α1, . . . , αw} are distinct from O, are not
nodes, and the branches {γα1 , . . . , γαw} are all transverse to l∞, that is
the tangent lines {lγα1 , . . . , lγαw}, do not pass through O; this is easily
achieved by a change of variables. Let {η1, . . . , ηw} denote the corre-
sponding points of C ′. Choose a homography K : P 2(R) → P 2(R),
which fixes O, moves l∞ to finite position, and such that the tan-
gent lines {lp1 , . . . , lpr} also remain in finite position. We can lift
the homography K to a homography K ′ : P 3(R) → P 3(R), such that
(K ◦prz) = (prz ◦K ′). Let (x′, y′) and (x′, y′, z′) be the new coordinates
induced by {K,K ′}. Then, in the coordinates (x′, y′), induced by K,
the points {α1, . . . , αw} have coordinates {α′

1, . . . , α
′
w}, in finite posi-

tion. Let {β′
1, . . . , β

′
w} be the points of (C ∩ l′∞), for the new line at ∞,

l′∞, in (x′, y′). As the vertical tangents {p1, . . . , pr} remain in finite po-
sition and O is fixed, the branches of {β′

1, . . . , β
′
w} are transverse to l′∞.

Let {η′1, . . . , η′w} denote the corresponding points of C ′ to {α′
1, . . . , α

′
w}

in (x′, y′, z′). Let {β1, . . . , βw} denote the points {β′
1, . . . , β

′
w} in the old

coordinates (x, y). Let y(β1) < . . . < y(βw) denote the y-projections of
{β1, . . . , βw}, and assume that x1 < x(β1) = x∞′ < x2, (observe that
x(β1) = x(βj), for 2 ≤ j ≤ w). Choose {c∞′,j,k : 1 ≤ j ≤ w, 1 ≤ k ≤ 2}
in C distinct, with prx(c∞′,j,1) < prx(β1) = x∞′ < prx(c∞′,j,2) and
c∞′,j,k ∈ (µ(βj) ∩ C), for 1 ≤ k ≤ 2. Let y′(α′

1) < . . . < y′(α′
w) de-

note the y-projections of {α′
1, . . . , α

′
w}, and assume that x′1 < x′(α′

1) =
x′∞ < x′2, (observe that x′(α′

1) = x′(α′
j), for 2 ≤ j ≤ w.) Choose

{c′∞,j,k : 1 ≤ j ≤ w, 1 ≤ k ≤ 2} in C distinct, with prx′(c
′
∞,j,1) <

prx′(α
′
1) = x′∞ < prx′(c

′
∞,j,2) and c′∞′,j,k ∈ (µ(α′

j) ∩ C), for 1 ≤ k ≤ 2.
Let;

{e∞′,j : 1 ≤ j ≤ w} = pr−1
z ({βj : 1 ≤ j ≤ w}).

{f∞′,j,k : 1 ≤ j ≤ w, 1 ≤ k ≤ 2}

= pr−1
z ({c∞′,j,k : 1 ≤ j ≤ w, 1 ≤ k ≤ 2}).

{e′∞,j : 1 ≤ j ≤ w} = pr−1
z′ ({α′

j : 1 ≤ j ≤ w}).
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{f ′
∞,j,k : 1 ≤ j ≤ w, 1 ≤ k ≤ 2}

= pr−1
z′ ({c′∞,j,k : 1 ≤ j ≤ w, 1 ≤ k ≤ 2}).

be the corresponding points of C ′ in coordinates (x, y, z), (x′, y′, z′).
Introduce ′-notation for the points defined in (††), in the coordinates
(x′, y′), (x′, y′, z′) and let {f ′

∞′,j,k : 1 ≤ j ≤ w, 1 ≤ k ≤ 2}, {c′∞′,j,k : 1 ≤
j ≤ w, 1 ≤ k ≤ 2}, {e′∞′,j : 1 ≤ j ≤ w} be the corresponding points
to {f∞′,j,k : 1 ≤ j ≤ w, 1 ≤ k ≤ 2}, {c∞′,j,k : 1 ≤ j ≤ w, 1 ≤ k ≤
2}, {e∞′,j : 1 ≤ j ≤ w} in these coordinates. Let {f∞,j,k : 1 ≤ j ≤
w, 1 ≤ k ≤ 2}, {c∞,j,k : 1 ≤ j ≤ w, 1 ≤ k ≤ 2}, {e∞,j : 1 ≤ j ≤ w} be
the corresponding points to {f ′

∞,j,k : 1 ≤ j ≤ w, 1 ≤ k ≤ 2}, {c′∞,j,k :
1 ≤ j ≤ w, 1 ≤ k ≤ 2}, {e′∞,j : 1 ≤ j ≤ w} in the coordinates (x, y, z).

For each i, with 2 ≤ i ≤ r−1, xi < prx(ai,k), 1 ≤ k ≤ 2, we associate
open sets Ui,k ⊂ C ′, given by Im(hi,k), where hi,k : (xi, xi+1) → C ′ is
maximal with the property that (prx◦prz◦hi,k) = IdUprx(ai,k), for an open

Uprx(ai,k) ⊂ (xi, xi+1), with prx(ai,k) ∈ Uprx(ai,k), and bi,k ∈ Im(hi,k),
and, similarly, for 3 ≤ i ≤ r, with (xi, xi−1) replacing (xi, xi+1), if
prx(ai,k) < xi, (

1). If i = 1, x1 > prx(a1,k), for 1 ≤ k ≤ 2, we as-
sociate the open sets U∞,1,k ⊂ C ′, given by Im(h∞,1,k), where h∞,1,k :
(−∞, x1) → C ′ is maximal with the property that (prx ◦ prz ◦ h∞,1,k) =
IdUprx(a1,k), for an open Uprx(ai,k) ⊂ (−∞, x1), with prx(a1,k) ∈ Uprx(ai,k),

and f∞,j,k ∈ Im(h∞,1,k), for some 1 ≤ j ≤ w, 1 ≤ k ≤ 2. Sim-
ilarly, if i = r, and xr < prx(ar,k), for 1 ≤ k ≤ 2, we associate
{U∞,r,k, h∞,r,k, (xr,∞)}.

For each (i, j), with 1 ≤ i ≤ r − 1, 2 ≤ j ≤ w, and xi < (prx ◦
prz)(fi,j,2), we associate open sets Vi,j,2 ⊂ C ′, given by Im(gi,j,2), where
gi,j,2 : (xi, xi+1) → C ′ is maximal with the property that (prx ◦ prz ◦
gi,j,2) = IdUprx(ci,j,2), for an open Uprx(ci,j,2) ⊂ (xi, xi+1), with prx(ci,j,2) =

((prx◦prz)(fi,j,2)) ∈ Uprx(ci,j,2), and fi,j,2 ∈ Im(gi,j,2), and, similarly, for
2 ≤ i ≤ r, and (prx◦prz)(fi,j,1) < xi, we associate {Vi,j,1, gi,j,1, (xi, xi−1)},

1We have implicitly included x1 < x∞′ < x2 in the indices. If i = 1, with
x1 < prx(a1,k), 1 ≤ k ≤ 2, we associate the open sets U1,∞′,k ⊂ C ′, given
by Im(h1,∞′,k), where h1,∞′,k : (x1, x∞′) → C ′ is maximal with the prop-
erty that (prx ◦ prz ◦ h1,∞′,k) = IdUprx(a1,k)

, for an open Uprx(a1,k) ⊂ (x1, x∞′),

with prx(a1,k) ∈ Uprx(a1,k), and b1,k ∈ Im(h1,∞′,k). Similarly, if, i = 2, with

x2 > prx(a2,k), 1 ≤ k ≤ 2, we associate {U2,∞′,k, h2,∞′,k, (x2, x∞′)}
5
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(2). If i = 1, 2 ≤ j ≤ w, x1 > (prx ◦ prz)(fi,j,k), we associate open
sets V∞,1,j ⊂ C ′, given by Im(g∞,1,j), where g∞,1,j : (x1,−∞) →
C ′ is maximal with the property that, for k = 1 or k = 2, (prx ◦
prz ◦ g∞,1,j) = IdUprx(c1,j,k), for an open Uprx(c1,j,k) ⊂ (−∞, x1), with

prx(c1,j,k) = ((prx ◦ prz)(f1,j,k)) ∈ Uprx(c1,j,k), and f1,j,k ∈ Im(g∞,1,j).
Similarly, if i = r, and xr < prx(ar,k), for either k = 1 or k = 2, we
associate {V∞,r,j, g∞,r,j, (xr,∞)}, for 2 ≤ j ≤ w. (†††)

Let Γ : {1, . . . , i, . . . , w,∞′} → {1, . . . , i, . . . , w,∞} be defined by;

Γ(1) = 1, Γ(i) = w − i+ 2, (2 ≤ i ≤ w), Γ(∞′) = ∞.

In the ′-coordinates introduced above, we have that;

x′Γ(1) < x′Γ(∞′) < x′Γ(2) < . . . < x′Γ(i) < . . . x′Γ(w).

(3).

2Again, we have implicitly included x1 < x∞ < x2 in the indices. If i = 1,
2 ≤ j ≤ w, with x1 < prx(c1,j,2), we associate the open set V1,j,∞′,2 ⊂ C ′, given
by Im(g1,j,∞′,2), where g1,j,∞′,2 : (x1, x∞′) → C ′ is maximal with the property
that (prx ◦ prz ◦ g1,j,∞′,2) = IdUprx(c1,j,2)

, for an open Uprx(c1,j,2) ⊂ (x1, x∞′), with

prx(c1,j,2) ∈ Uprx(c1,j,2), and f1,j,2 ∈ Im(g1,j,∞′,2). Similarly, if, i = 2, with x2 >
prx(c2,j,1), we associate {V2,j,∞′,1, g2,j,∞′,1, (x2, x∞′)}. For 1 ≤ j ≤ w, with x∞′ >
prx(c∞′,j,1), we associate the open set V∞′,j,1,1 ⊂ C ′, given by Im(g∞′,j,1,1), where
g∞′,j,1,1 : (x∞′ , x1) → C ′ is maximal with the property that (prx ◦ prz ◦ g∞′,j,1,1) =
IdUprx(c∞′,j,1)

, for an open Uprx(c∞′,j,1)
⊂ (x∞′ , x1), with prx(c∞′,j,1) ∈ Uprx(c∞,j,1),

and f∞′,j,1 ∈ Im(g∞′,j,1,1). Similarly, for 1 ≤ j ≤ w, with x∞′ < prx(c∞′,j,2), we
associate {V∞′,j,2,2, g∞′,j,2,2, (x∞′ , x2)}

3We make the following associations, which relate the maps given above in the
unprimed, primed coordinates (x, y, z), (x′, y′, z′);

(i). {Ui,k, hi,k, (xi, xi+1) : 2 ≤ i ≤ r − 1, 1 ≤ k ≤ 2}

(i)’. {U ′
Γ(i),k, h

′
Γ(i),k, (x

′
Γ(i), x

′
Γ(i+1)) : 2 ≤ i ≤ r − 1, 1 ≤ k ≤ 2}

(ii). {Ui,k, hi,k, (xi, xi−1) : 3 ≤ i ≤ r, 1 ≤ k ≤ 2}

(ii)’. {U ′
Γ(i),k, h

′
Γ(i),k, (x

′
Γ(i), x

′
Γ(i−1)) : 3 ≤ i ≤ r, 1 ≤ k ≤ 2}

(iii). {U1,∞′,k, h1,∞′,k, (x1, x∞′) : 1 ≤ k ≤ 2}

(iii).’ {U ′
∞′,Γ(1),k, h

′
∞′,Γ(1),k, (x

′
Γ(1),−∞) : 1 ≤ k ≤ 2}
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It will become clear in the proof that;

(iv). {U2,∞′,k, h2,∞′,k, (x2, x∞′) : 1 ≤ k ≤ 2}

(iv)’. {U ′
∞′,Γ(2),k, h

′
∞′,Γ(2),k, (x

′
Γ(2),∞) : 1 ≤ k ≤ 2}

(v). {U∞,1,k, h∞,1,k, (x1,−∞) : 1 ≤ k ≤ 2}

(v)’. {U ′
Γ(1),∞,k, h

′
Γ(1),∞,k, (x

′
Γ(1), x

′
∞) : 1 ≤ k ≤ 2}

(vi). {U∞,r,k, h∞,r,k, (xr,+∞) : 1 ≤ k ≤ 2}

(vi)’. {U ′
Γ(r),∞,k, h

′
Γ(r),∞,k, (x

′
Γ(r), x

′
∞) : 1 ≤ k ≤ 2}

(vii). {Vi,j,2, gi,j,2, (xi, xi+1) : 2 ≤ i ≤ r − 1, 2 ≤ j ≤ w}

(vii)’. {V ′
Γ(i),j,1, g

′
Γ(i),j,1, (x

′
Γ(i), x

′
Γ(i+1)) : 2 ≤ i ≤ r − 1, 2 ≤ j ≤ w}

(viii). {Vi,j,1, gi,j,1, (xi, xi−1) : 3 ≤ i ≤ r, 2 ≤ j ≤ w}

(viii)’. {V ′
Γ(i),j,2, g

′
Γ(i),j,2, (x

′
Γ(i), xΓ(i−1)) : 3 ≤ i ≤ r, 2 ≤ j ≤ w}

(ix). {V1,j,∞′,2, gi,j,∞′,2, (x1, x∞′) : 2 ≤ j ≤ w}

(ix)’. {V ′
∞′,Γ(1),j , g

′
∞′,Γ(1),j , (x

′
Γ(1),−∞) : 2 ≤ j ≤ w}

(x). {V2,j,∞′,1, g2,j,∞′,1, (x2, x∞′) : 2 ≤ j ≤ w}

(x)’. {V ′
∞′,Γ(2),j , g

′
∞′,Γ(2),j , (x

′
Γ(2),∞) : 2 ≤ j ≤ w}

(xi). {V∞′,j,1,1, g∞′,j,1,1, (x∞′ , x1) : 1 ≤ j ≤ w}

(xi).’ {V ′
Γ(1),∞′,j , g

′
Γ(1),∞′,j , (−∞, xΓ(1)) : 1 ≤ j ≤ w}

(xii). {V∞′,j,2,2, g∞′,j,2,2, (x∞′ , x2) : 1 ≤ j ≤ w}

(xii)’. {V ′
Γ(2),∞′,j , g

′
Γ(2),∞′,j , (+∞, xΓ(2)) : 1 ≤ j ≤ w}

(xiii). {V∞,1,j , g∞,1,j , (x1,−∞) : 1 ≤ j ≤ w}

(xiii)’. {V ′
Γ(1),j,∞,2, g

′
Γ(1),j,∞,2, (x

′
Γ(1), x

′
∞) : 1 ≤ j ≤ w}

(xiv). {V∞,r,j , g∞,r,j , (xr,+∞) : 1 ≤ j ≤ w}

(xiv)’. {V ′
Γ(r),j,∞,1, g

′
Γ(r),j,∞,1, (xΓ(r), x

′
∞) : 1 ≤ j ≤ w}

7
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{Ui,k : 1 ≤ i ≤ r, 1 ≤ k ≤ 2} ∪ {U∞,1,k, U∞,r,k : 1 ≤ k ≤ 2}

∪{U1,∞′,k, U2,∞′,k : 1 ≤ k ≤ 2}

∪{Vi,j,k : 1 ≤ i ≤ r, 2 ≤ j ≤ w, 1 ≤ k ≤ 2}

∪{V∞,1,j, V∞,r,j : 2 ≤ j ≤ w} ∪ {V1,j,∞′,1, V1,j,∞′,2 : 2 ≤ j ≤ w}

∪{V∞′,j,1,1, V∞′,j,2,2 : 2 ≤ j ≤ w}

cover (C ′ \ {qi, ei,j : 2 ≤ j ≤ w}∪{ηj, βj : 1 ≤ j ≤ w}). By the IVT;

{hi,k : 1 ≤ i ≤ r, 1 ≤ k ≤ 2} ∪ {h∞,1,k, h∞,r,k : 1 ≤ k ≤ 2}

∪{h1,∞′,k, h2,∞′,k : 1 ≤ k ≤ 2}

∪{gi,j,k : 1 ≤ i ≤ r, 2 ≤ j ≤ w, 1 ≤ k ≤ 2} ∪ {g∞,1,j, g∞,r,j : 2 ≤ j ≤ w}

∪{g2,j,∞′,1, g1,j,∞′,2 : 2 ≤ j ≤ w} ∪ {g∞′,j,1,1, g∞′,j,2,2 : 2 ≤ j ≤ w}

are analytic. We define a path γ inductively as follows;

γ|(x4,x5) = g4,2,2.

Suppose γ has been defined by on {
⊔

1≤t≤s}(xit , xit+1), where;

if 1 ≤ it ≤ r, and it /∈ {1, 2, r,∞′}, it+1 = it + 1 or it+1 = it − 1,
and γ|(xit ,xit+1) = hit,k(t), or γ|(xit ,xit+1) = git,j(t),k(t), and γ|(xit ,xit−1) =
hit,k(t), or γ|(xit ,xit−1) = git,j(t),k(t) (where the union is disjoint, and the
intervals may repeat).

if it = 1, it+1 = ∞′ or it+1 = −∞, (with the convention that
x−∞ = −∞) and γ|(x1,x∞′ ) = h∞,1,k(t) or γ|(x1,x∞′ ) = g1,j(t),∞′,2, and
γ|(x1,x−∞) = g∞,1,k(t) or γ|(x1,x−∞) = g∞,1,j(t).

if it = 2, it+1 = 3 or it+1 = ∞′ and γ|(x2,x3) = h2,3 or γ|(x2,x3) =
g2,j(t),2, and γ|(x2,x∞′ ) = h2,∞′,k(t) or γ|(x2,x∞′ ) = g2,j(t),∞′,1.

if it = r, it+1 = +∞, or it+1 = r − 1 (with the convention that
x+∞ = ∞) and γ|(xr,x+∞′ ) = h∞,r,k(t) or γ|(xr,x+∞′ ) = g∞,r,j(t), and

8
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γ|(xr,xr−1 = hr,k(t) or γ|(xr,xr−1 = gr,j(t),k(t).

if it = ∞′, it+1 = 2, or it+1 = 1 and γ|(x∞′ ,x2) = g∞′,j(t),2,2 , and
γ|(x∞′ ,x1) = g∞′,j(t),1,1.

Then let;

γ|(xis+1
,xis )

= his,(k(s)+1)(mod2), if is+1 = is + 1, and either ais+1,1 ∈
Im(his,j(s)), or, ais+1,2 ∈ Im(his,k(s)).

γ|(xis ,xis+1
) = his,(k(s)+1)(mod2), if is+1 = is − 1, and either ais−1,1 ∈

Im(his,j(s)), or, ais−1,2 ∈ Im(his,k(s)).

γ|(xis+1
,xis+1+1) = gis+1,j(s+1),k(s+1), if is+1 = is+1, and fis+1,j(s+1),k(s+1) ∈

Im(gis,j(s),k(s)).

γ|(xis+1
,xis+1−1) = gis+1−1,j(s+1),k(s+1), if is+1 = is−1, and fis+1−1,j(s+1),k(s+1) ∈

Im(gis,j(s),k(s)).

provided that γ has not been defined with one of these cases, or its re-
verse, on an earlier interval, otherwise, terminate the process. Clearly,
as the number of possible intervals (xi, xi+1), (1 ≤ i ≤ r), and allowable
functions {hik, fijk : 1 ≤ i ≤ r, 1 ≤ j ≤ w− 1, 1 ≤ k ≤ 2, } is finite, the
process terminates after a finite number of steps. We claim that the
final interval in the process is ((x2, x1), with γ|((x2,x1) = h1,2. In order
to see this, suppose the process terminates after s0 steps, involving the
intervals {I1, . . . , Is, . . . , Is0}, with endpoints {xi(s),s, xi(s)+1,s : 1 ≤ s ≤
s0}. Let St = {γ(xi(s),s), γ(xi(s)+1,s) : 1 ≤ s ≤ t}, (with repeats, and the
obvious ordering). We have S1 = p, Ss1 ⊆ Ss2, for 1 ≤ s1 ≤ s2 ≤ s.
Then, for each 1 ≤ s < s0, if vs is the final vertex, vs occurs once in Ss,
vs ̸= p, and if v ∈ (Ss \ {p, vs}), then v is repeated twice. This is easily
shown by induction. Suppose s − 1 ≤ s < s0, with vs the final vertex.
If vs = p, then either vs−1 = h1,1(x2), in which case, the reverse of h1,1
has been repeated, contradicting the definition of the construction, or
vs−1 = h1,2(x2). In this case, the construction terminates at p, contra-
dicting the hypothesis, as there are only two functions emanating from
p which have been used (initial step and penultimate step)). Hence,
vs ̸= p. We have vs−1 is joined to {vs, vs−2}. If vs occurs earlier than
vs−1 in the ordering, then by induction, as vs−1 ̸= p, it occurs twice,
therefore occurs three times, implying that an interval is repeated. If
vs = vs−1, then only one point. Hence, vs occurs once and then vs−1

9



10 TRISTRAM DE PIRO

occurs twice. This completes the induction. Now consider the final
step s0, if vs0 ̸= p, then, we have, by the above, that vs0−1 ̸= p, and
vs0−1 ̸= vs0. By the same argument, vs0 cannot occur earlier than vs0−1,
hence, it is possible to continue the construction, contradicting the as-
sumption.

Now let γ = (x, γ1(x), γ2(x)) be defined on the intervals {
⊔

1≤t≤s0}(xit , xit+1).
We claim that for each 1 ≤ t0 ≤ s0, γ|(xit , xit+1)

⊔
(xit+1 , xit+2) extends

to γ|(xit , xit+2). Let C ′ be defined by F1(x, y, z) and F2(x, y, z). Then
we have, for all x0 ∈ (xit , xit+2), x0 ̸= xit+1, that;

F1,x(γ(x0)) + F1,y(γ(x0))γ
′
1(x0) + F1,z(γ(x0))γ

′
2(x0) = 0

F2,x(γ(x0)) + F2,y(γ(x0))γ
′
1(x0) + F2,z(γ(x0))γ

′
2(x0) = 0

As C ′ is non singular, for x0 ∈ (xit , xit+2), the hyperplanes defined by;

F1,x(γ(x0)) + F1,y(γ(x0))u+ F1,z(γ(x0))v = 0

F2,x(γ(x0)) + F2,y(γ(x0))u+ F2,z(γ(x0))v = 0

are transverse, hence, determines a continuous function θ : (xit , xit+2) →
R2, with θ(x0) = (γ′1(x0), γ

′
2(x0), for x0 ̸= xit+1. This implies the result.

then we have that;

patch the intervals onto [0, 1]...
take the projection (prz ◦ γ).

Definition 0.2. We define a nodal path to be a function γ : S1 → R2,
with the following properties;

(i). γ is analytic, that is defines an analytic map of real manifolds.

(ii). γ is smooth, that is γ′(t) ̸= 0, for t ∈ S1.

(iii). γ has at most nodes as singularities, that is there exists at
most two distinct points {t1, t2} ⊂ [0, 1), with γ(t1) = γ(t2), and, in
this case, {γ′(t1), γ′(t2)} defines a basis of R2.

We define a node of γ, to be a point p ∈ R2, for which there do exist
two distinct points {t1, t2} ⊂ [0, 1), with γ(t1) = γ(t2) = p. We define

10
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a time inflexion of γ, to be a point t0 ∈ S1, such that, in coordinates
(x, y), with p = (x(t0), y(t0)), x

′′(t0)y
′(t0) = x′(t0)y

′′(t0), (∗), that is
the curvature κ(t0) = 0, and x′′′(t0)y

′(t0) ̸= x′(t0)y
′′′(t0), (

4)

(iv). The nodes and inflexions are distinct from γ(0).

(v). If t0 is a time inflexion of γ, then γ(t0) is not a node.

We define an inflexion of γ to be a point p, for which there exists a
time inflexion t0 such that γ(t0) = p.

Definition 0.3. We define a smooth closed path to be a function γ :
(S1, 1) → (R2, (0, 0)), with the following properties;

(i). γ is analytic, that is defines an analytic map of real manifolds.

(ii). γ is smooth, that is γ′(t) ̸= 0, for t ∈ S1.

We define a vertical tangent point to be t0, for which γ′1(t0) = 0,
and, a horizontal tangent point t′0, for which γ′2(t

′
0) = 0. Using results

of [5], there exist finitely many points {t1, . . . , tw}, which are horizontal
or vertical tangents. We require;

(iii). The vertical and horizontal tangents are distinct from;

γ(0) = γ(1) = (0, 0).

(iv). We require that on each interval [ti, tj], [ti′ , tj′ ], with {ti, tj′}
horizontal, {tj, ti′} vertical, 1 ≤ i < j ≤ w, 1 ≤ i′ < j′ ≤ w, that;

γ1|[ti,tj ](e2πit) = γ1(ti) +
(γ1(tj)−γ1(ti))(t−ti)

(tj−ti)

γ2|[ti′ ,tj′ ](e
2πit) = γ2(ti′) +

(γ2(tj′ )−γ2(ti′ ))(t−ti′ )
(tj′−ti′ )

(iii). γ has at most nodes as singularities, that is there exists at
most two distinct points {t1, t2} ⊂ [0, 1), with γ(t1) = γ(t2), and, in
this case, {γ′(t1), γ′(t2)} defines a basis of R2.

4It is an interesting point that the condition (∗) is implied by x′(t0)y(t0) =
x(t0)y

′(t0) as, by differentiating, we have, x′′(t0)y(t0)+x′(t0)y
′(t0) = x′(t0)y

′(t0)+

x(t0)y
′′(t0), and x′′(t0)y(t0) = x(t0)y

′′(t0), so ( y
′′(t0)

x′′(t0)
) = ( y

′(t0)
x′(t0)

) = ( y(t0)x(t0)
). How-

ever, the converse is not necessarily true, that (∗) implies x′(t0)y(t0) = x(t0)y
′(t0).

11
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We define a vertical tangent point to be t0, for which γ′1(t0) = 0,
and, a horizontal tangent point t′0, for which γ′2(t

′
0) = 0. We define a

node of γ, to be a point p ∈ R2, for which there do exist two distinct
points, {t1, t2} ⊂ [0, 1), with γ(t1) = γ(t2) = p. We define a time
inflexion of γ, to be a point t0 ∈ S1, such that, in coordinates (x, y),
with p = (x(t0), y(t0)), if t0 is a vertical tangent point,

and
x′′(t0)y

′(t0) = x′(t0)y
′′(t0), (∗), that is the curvature κ(t0) = 0, and

x′′′(t0)y
′(t0) ̸= x′(t0)y

′′′(t0), (
5)

(iv). The nodes and inflexions are distinct from γ(0).

(v). If t0 is a time inflexion of γ, then γ(t0) is not a node.

We define an inflexion of γ to be a point p, for which there exists a
time inflexion t0 such that γ(t0) = p.

Remarks 0.4. We recall the following result from [5], Lemma 3.5,
that, for a nodal path, there exist finitely many nodes {ν1, . . . , νm}. In
a similar way, one can show that there exist finitely many inflexions
{i1, . . . , ir}.

Lemma 0.5. Let ϕ : S1 → S1 be defined by;

ϕ(t) = γ′(t)
|γ′(t)|

Then ϕ′(t0) = 0 iff p = (γ1(t0), γ1(t0)) is an inflexion.

Proof. Let r(t) = [(γ′1)
2(t) + (γ′2)

2(t)]
1
2 . Then;

r′(t) =
γ′1γ

′′
1 (t)+γ

′
2γ

′′
2 (t)

r(t)

ϕ′(t) = (
γ′′1 r−

(γ′1)
2γ′′1
r

− γ′1γ
′
2γ

′′
2

r

r2
,
γ′′2 r−

(γ′2)
2γ′′2
r

− γ′1γ
′
2γ

′′
1

r

r2
) (∗)

If ϕ′(t0) = 0, we have;

(γ′′1r
2 − (γ′1)

2γ′′1 − γ′1γ
′
2γ

′′
2 )|t0 = 0 (1)

5It is an interesting point that the condition (∗) is implied by x′(t0)y(t0) =
x(t0)y

′(t0) as, by differentiating, we have, x′′(t0)y(t0)+x′(t0)y
′(t0) = x′(t0)y

′(t0)+

x(t0)y
′′(t0), and x′′(t0)y(t0) = x(t0)y

′′(t0), so ( y
′′(t0)

x′′(t0)
) = ( y

′(t0)
x′(t0)

) = ( y(t0)x(t0)
). How-

ever, the converse is not necessarily true, that (∗) implies x′(t0)y(t0) = x(t0)y
′(t0).
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(γ′′2r
2 − (γ′2)

2γ′′2 − γ′1γ
′
2γ

′′
1 )|t0 = 0 (2)

Then, from (2), we have;

(γ′1γ
′
2)|t3 = (

γ′′2
γ′′1
(r2 − (γ′2)

2))|t0

Then, substituting into (1), we obtain;

(γ′′1 )
2(r2 − (γ′1)

2)|t0 = (γ′′2 )
2(r2 − (γ′2)

2)|t0

and using r2 = (γ′1)
2 + (γ′2)

2, we obtain that;

((γ′′1 )
2)|t0 = ((γ′′2 )

2 (γ
′
1)

2

(γ′2)
2 )|t0

(γ′′1γ
′
2)|t0 = (γ′′2γ

′
1)|t0 .

implying that p = (γ1(t0), γ2(t0)) is an inflexion, by Definition 0.3.

Conversely, if p = (γ1(t0), γ2(t0)) is an inflexion, then, again, by
Definition 0.3, we have that (γ′′1γ

′
2)|t0 = (γ′′2γ

′
1)|t0 . Reversing the steps

of the above argument, we obtain that ϕ′(t0) = 0.
�

Lemma 0.6. Let γ be a nodal path, then the number r of inflexions is
even.

Proof. Let 0 ≤ t1 < t2 < 1, with the property that there does not exist
t3, with t1 < t3 < t2 such that γ(t3) is an inflexion, and {γ(t1), γ(t2)}
are inflexions. Letting ϕ : [t1, t2] → S1 be defined, as above, we have
that, if ϕ(t) = (ϕ1(t), ϕ2(t)), then ϕ′(t).ϕ(t) = 0, so ϕ′

1ϕ1 + ϕ′
2ϕ2 = 0

(1). If θ(t) = tan−1(ϕ1(t)
ϕ2(t)

), then;

dθ
dt

=
ϕ′1ϕ2(t)−ϕ′2ϕ1(t))
((ϕ1)2(t)+(ϕ2)2(t))

(∗)

Suppose t1 < t3 < t2 and (dθ
dt
)|t3 = 0, then, we obtain, by (∗), that

(ϕ′
1ϕ2(t)−ϕ′

2ϕ1(t))|t3 = 0, (2). Combing (1), (2), we obtain (ϕ1)
2(
ϕ′2
ϕ2
)+

(ϕ2)
2(
ϕ′2
ϕ2
)|t3 = (

ϕ′2
ϕ2
)|t3 = 0. Therefore, ϕ′(t3) = (ϕ′

1(t3), ϕ
′
2(t3)) = 0. By

Lemma 0.5, we would have that γ(t3) is an inflexion, hence, (dθ
dt
)|(t1,t2) ̸=

0. Again, by Lemma 0.5, we have ϕ′(t2) = ϕ′(t3) = 0, (†), hence, by (∗),
dθ
dt
(t2) =

dθ
dt
(t3) = 0. We claim that d2θ

dt2
(t2) ̸= 0, (∗∗). If (∗∗) fails, then,

by (∗), we have that ϕ′′
1ϕ2(t2)−ϕ′′

2ϕ1(t2) = 0, (††). By the Fundamental
Theorem of Calculus, using the fact that ϕ′(t2) = (ϕ′

1(t2), ϕ
′
2(t2)) = 0,

13
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by (†), we have;

ϕ′(t2 + ϵ) =
∫ t2+ϵ
t2

ϕ′′(t)dt (††)

As γ is analytic, if ϕ′′(t2) ̸= 0, (†††), then if α(t) = cos−1(
ϕ′(t).lϕ(t)
|ϕ′(t)| )

measures the angle between the velocity vector ϕ′(t) and the tangent
line lϕ(t) to S1, we have, for sufficiently small ϵ, that α(t2 + ϵ) ̸= 0,

by (††) and the fact that, for β(t) = cos−1(
ϕ′′(t).lϕ(t)
|ϕ′(t)| ), we have β(t2) =

π
2

̸= 0. This clearly contradicts the fact that, for all t, α(t) = 0,
as ϕ′(t)||lϕ(t). Hence, (†††) fails and ϕ′′(t2) = 0. By (∗) of 0.5, and
ϕ′(t2) = ϕ′′(t2) = 0, we have that;

(r3ϕ′
1)

′|t2 = (γ′′1r
2 − (γ′1)

2γ′′1 − γ′1γ
′
2γ

′′
2 )

′|t2

= (γ′′′1 r
2+2γ′′1rr

′−2γ′1(γ
′′
1 )

2−(γ′1)
2γ′′′1 −γ′′1γ′2γ′′2−γ′1(γ′′2 )2−γ′1γ′2γ′′′2 )|t2 = 0

and, similarly;

(γ′′′2 r
2+2γ′′2rr

′−2γ′2(γ
′′
2 )

2−(γ′2)
2γ′′′2 −γ′′2γ′1γ′′1−γ′2(γ′′1 )2−γ′2γ′1γ′′′1 )|t2 = 0

Using the fact, by Lemma 0.5, that (γ′′1γ
′
2)|t2 = (γ′′2γ

′
1)|t2 , we obtain

that (γ′′′1 γ
′
2)|t2 = (γ′1γ

′′′
2 )|t2 , contradicting Definition 0.3. Hence, (∗∗)

holds, that is d2θ
dt2

(t2) ̸= 0, and, similarly d2θ
dt2

(t3) ̸= 0. Enumerating
the inflexions {i1, . . . , ir}, with corresponding {t1, . . . , tr}, we have, by
definition of a maximum/minimum for θ, that the angle θ is increas-
ing/decreasing in the intervals (ti, ti+1), and changes direction at each
ti, for 1 ≤ i ≤ r. If the number of inflexions were odd, then clearly
θ would be both increasing and decreasing on each interval (ti, ti+1),
implying that θ is constant. This clearly implies that γ is contained in
a line l, with no inflexions. Otherwise, we obtain that the number of
inflexions is even as required. �

Remarks 0.7. We define a real projective algebraic curve C ⊂ P n(R)
to be an irreducible algebraic scheme over R of dimension 1. Work-
ing in the context of Robinson’s theory of enlargements, we can de-
fine an infinitesimal neighborhood Vx of a point x ∈ Pm(R), to be
Pm(∗R) ∩ µ(x), where µ(x) =

∩
ϵ∈R>0

D(x, ϵ). We let Lx denote the
Grassmannian of lines through x. We define the intersection multiplic-
ity I(Cs1 , Cs2 , x) of two real plane curves {Cs1 , Cs2} at x, to be;

14
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max(s′1,s′2)∈(µ(s1,s2)∩l:l∈L(s1,s2)
)Card(Cs′1 ∩ Cs′2 ∩ µ(x)). (†)

In Theorem 18.7 of [2], it is shown this definition coincides with al-
gebraic multiplicity for complex algebraic curves. If I(Cs1 , Cs2 , x) =
m > 0, then, choose parameters (s′1, s

′
2) witnessing this, and a line l0,

containing (s1, s2) and (s′1, s
′
2). Now choose δ > 0 standard, then, given

any ϵ > 0, there exists standard parameters (t1, t2) ∈ (D((s1, s2), ϵ)∩l0),
such that Card(Ct1 ∩Ct2 ∩D(δ, x)) = m, (∗). This follows, by transfer,
as µ(s1, s2) ⊂ D((s1, s2), ϵ) and µ(x) ⊂ D(x, δ). Now, for such a δ > 0,
we can find a sequence of standard parameters {(sn1 , s2)n : n ∈ N}, con-
verging to (s1, s2) on the line l0, such that |Csn1 ∩ Csn2 ∩D(x, δ)| = m,
(∗∗). For suppose not, then there exists a disc D((s1, s2), ϵ) for which
there are no parameters (y1y2) ∈ D((s1, s2), ϵ) with Card(C(y1,y2) ∩
D(x, δ)) = m, contradicting (∗), hence, (∗∗) holds. Now let ψ(y, z, δ)
be the formula [(y, z) ̸= (s1, s2), (y, z) ∈ l0 : |(Cy ∩Cz ∩D(x, δ))| = m],
then, ψ(y, z, δ) is definable in the language of real ordered fields, hence,
by (∗∗), contains an interval Uδ ⊂ l, with (s1, s2) ∈ ∂Uδ. We can
assume that Uδ ⊂ l+0 , where l+0 ⊂ l0 is a half-line, emanating from
(s1, s2). As δ > 0 was arbitrary, the sentence σ = (∀z > 0)(∃t′, t′′ >
0)(∀(t1, t2))[(s1, s2) < (t1, t2) < (s1+t

′, s2)+t
′′]|(Ct1∩Ct2)∩D(x, z))| =

m holds in R, therefore, in ∗R. Hence, the original statement (†) can
be formulated as;

I(Cs1 , Cs2 , x) = Card(Cs′1∩Cs′2∩µ(x)) for any(s
′
1, s

′
2) ∈ (l+0 \ (s1, s2))

It follows, see also [2], that we can, purely geometrically, define the
notion of a branch and the nature of singularities (Cayley’s definition)
using birationality arguments, see [1]. For a plane curve C, we can
define a nonsingular point x to be an inflexion if I(C, lx) = 3, where lx
is the tangent line.

Lemma 0.8. Let C be a real projective algebraic curve in the sense of
Definition 0.7, defined by a polynomial F (x, y). Let p = (x0, y0) be a
nonsingular point of C, with the property that ∂F

∂x
|(x0,y0) ̸= 0. Without

loss of generality, assume that p is located at the origin (0, 0), then if
(t, y(t)) is a power series representation of C at p, such that y(0) =
0, then, if p satisfies the definition of an inflexion in Remarks 0.7,
property (i) for an inflexion in Definition 0.3 holds, that is y′′(0) = 0.

Proof. Let lp be the tangent line to C, at p. Then lp is defined by the
equation Fx|(0,0)x+Fy|(0,0)y = 0 or y′|(0)x− y = 0. Consider the family

15
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of lines defined by {l(x, y, s) : y = (y′(0)+s)x, s ∈ R}, so l(x, y, 0) = lp.
Then, we have l(t, y(t), s) = 0 iff y(t) = (y′(0) + s)t, (6)

Using the methods of [1] and Remarks 0.7, one can show that the
intersection multiplicity I(C, lp, (0, 0)) is given by the ”real geometric
multiplicity” of the cover R[x, y, s]/ < F (x, y), l(x, y, s) >, (∗∗). We
adapt the definition of ”real geometric multiplicity” in line with (†) of
Remarks 0.7, and, use methods from [3] and [1], to show that it is suf-
ficient to vary the line lp by rotating it about (0, 0). Using the method
of [4], one can compute this multiplicity in (∗∗) as the multiplicity of
R[[x]][s]/ < y(x)− (y′(0) + s)x >= R[[x]][s]/ < x(h(x)− s) >, (∗ ∗ ∗)
where h(x) = y(x)

x
−y′(0) = y′′(0)x+o(x2). (7). This is a reducible cover,

with multiplicity b = m+1, where m is the ”real geometric multiplicity”
ofR[[x]][s]/ < (h(x)−s) >, (∗∗∗∗). If y′′(0) ̸= 0, (††), then we compute
the multiplicitym ofR[[x]][s]/ < xu(x)−s >, where u(x) = y′′(0)+o(x)
is a unit in R[[x]]. Using the method of [4], we can factor this is as
R[s] →k R[x, s]/ < (x − s) >→g R[x, s]/ < (xu(x) − s) >, where g
is etale and k clearly has multiplicity m = 1 Hence, b = m + 1 = 2,
contradicting the assumption. Therefore, (††) fails, and y′′(0) = 0 as
required.

�

Lemma 0.9. Let C be a nonsingular real plane algebraic curve, defined
by G(x, y), with p = (0, 0) ∈ C, and ∂G

∂x
|(0,0) ̸= 0, ∂G

∂y
|(0,0) = 0. Let O

be the point (−a, 0), with a > 0, and assume that O /∈ C. Clearly,
the tangent line lp, (x = 0), of C at p passes through O. Let y(t) be
an analytic power series, with y(0) = 0, such that G(t, y(t)) = 0, and

let γ : R → R2 be defined by γ(t) = (t, y(t)). Let pϕ(t) = tan−1(y(t)
a+t

)
measure the angle ϕ of the position of γ at time t, and let vψ(t) =
tan−1(y′(t)) measure the angle of the velocity ψ of γ at time t. Then,

if
dvψ
dt
|(0) = 0 and

d2vψ
dt2

|(0) ̸= 0, we have that
dpϕ
dt
|(0) =

d2pϕ
dt2

|(0) = 0,

and
d3pϕ
dt3

|(0) ̸= 0. In particular, (0, 0) is an inflexion in the sense of
Remarks 0.7.

Proof. As O lies on lp, we have that pϕ(0) = vψ(0) = 0, (†). Moreover,
as y(t) = tan(pϕ)(a+ t), we have that;

6Considering lp(x, y) : C → R, and the analytic power series g(t) : R → R,

defined by lp(t, y(t)) = y′(0)t−y(t), we have that g(0) = 0, dg
dt |(0) = y′(0)−y′(0) = 0

and d2g
dt2 |(0) = y′′(0), (∗). The condition that ord(0)g ≥ 3 is given by (∗).

7Namely, show that R[[x]][y][s]/ < y−y(x), y− (y′(0)+ s)x >= is an etale cover
of R[[x]][s]/ < y(x)− (y′(0) + s)x >, and show that multiplicity is preserved

16
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tan(vψ(t)) = y′(t)

= [tan(pϕ)(a+ t)]′

= tan(pϕ(t)) + (a+ t)(1 + tan2(pϕ(t)))p
′
ϕ(t) (∗)

Let S(z) be the analytic power series expansion of tan(z), S(z) =
zd(z), with d(0) = f ̸= 0, (8). Let {a(t), b(t)} be the power series

expansion of {vψ(t), pϕ(t)}, By (†) and the assumptions
dvψ
dt
|(0) = 0 and

d2vψ
dt2

|(0) ̸= 0, we have that a(t) = t2(c + w(t)), where c =
d2vψ
dt2

|(0) ̸= 0,
and w(0) = 0. Let ordtb(t) = m, then;

ordt(tan(b(t)) + tan(a+ t)(1 + tan2(b(t)))b′(t)) = m− 1

tan(a(t)) = cft2 + o(t3), so ordt(tan(a(t)) = 2

Therefore, m = 3, and the lemma is shown. It follows that pϕ(t) is
an odd function, with pϕ(0) = (0, 0). Letting pϕ(t) = b(t) = t3u(t),
with u(0) ̸= 0, ..we can find an analytic function.. t : [−ϵ, ϵ] → R with
pϕ(t(pϕ)) = pϕ, and pϕ(0) = 0.. Let Γ : [−ϵ, ϵ] → R be defined by

Γ(pϕ) =
−y(t)
a+t

|t(pϕ). Then , assuming that pϕ|[0,ϵ) ≥ 0, and the fact that
as x(t)− a is odd, we have Γ is a positive even analytic function with
Γ(0) = 0. Then, choosing δ > 0, and ϵ1 < 0 < ϵ2, with Γ(ϵ1) = Γ(ϵ2) =
δ, we have, letting p1 = (t(ϵ1), y(t(ϵ1))), p2 = (t(ϵ2), y(t(ϵ2))), that the
line l(0,0),p1 = l(0,0),p2 passes through {(0, 0), p1, p2}, hence Iit(C, lp) = 3.

�

Lemma 0.10. Let C satisfy the conditions of Lemma 0.9. Then, if;

(i). y′′|t=0 = 0.

(ii). y′′′|t=0 ̸= 0.

(0, 0) is an inflexion in the sense of Remarks 0.7. Conversely, if
(0, 0) is an inflexion in the sense of Remarks 0.7, and y′′′(0) ̸= 0, then
conditions (i) and (ii) hold.

Proof. With notation as in 0.9, we have that;

8S(z) =
∑∞

k=1
B2k

(2k)! (−1)k4k(1 − 4k)x2k−1, where, for k ∈ N , B2k denotes the

2k’th Bernouilli number.
17
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dvψ
dt
|t=0 =

d
dt
|t=0(tan

−1(y′(t)) = y′′

1+(y′)2
|t=0 = y′′(0) = 0

d2vψ
dt2

|t=0 =
y′′′(1+(y′)2)−2y′(y′′)2

[1+(y′)2]2
|t=0 = y′′′|t=0 ̸= 0

Hence, by Lemma 0.9, (0, 0) is an inflexion in the sense of Remarks
0.7. Conversely, by Lemma 0.8, we have, if (0, 0) is an inflexion in
the sense of Remarks 0.7, then condition (i), y′′(0) = 0 holds. If, in
addition y′′′(0) ̸= 0, then, clearly, condition (ii) holds as well.

�

Lemma 0.11. Let C be a nonsingular real plane algebraic curve, de-
fined by G(x, y), with p = (x0, y0) ∈ C, and ∂G

∂x
|(x0,y0) ̸= 0. Let

{x(t), y(t)} be an analytic power series, with y(0) = x0, and x(t) =
x0 + t, such that G(x(t), y(t)) = 0, then, if;

(i). y′′|t=0 = 0.

(ii). y′′′|t=0 ̸= 0.

(x0, y0) is an inflexion in the sense of Remarks 0.7. Conversely, if
(x0, y0) is an inflexion in the sense of Remarks 0.7, and, y′′′|t=0 ̸= 0 ,
then conditions (i) and (ii) hold.

Proof. Let x1 = x − x0, y
1 = y − y0 be new coordinates, obtained by

translating the point (x0, y0) to (0, 0). Let x1(t) = (x0 + t) − x0 = t,
y1(t) = y(t) − y0 be new analytic power series with (x1(0), y1(0)) =
(0, 0), parametrising G(x1 + x0, y

1 + y0) = 0, in the new coordinates.
The tangent line l(0,0) to C in the new coordinates, is given by y =
(y1)′(0)x = y′(0)x. Let ϕ = tan−1(y′(0)), be the angle of l(0,0), and let
Γ−ϕ be the rotation of −Φ about (0, 0), given by;

Γ−ϕ =

(
cos(ϕ) sin(ϕ)
−sin(ϕ) cos(ϕ)

)
Let;

x2 = cos(ϕ)x1 + sin(ϕ)y1

= cos(tan−1(y′(0)))(x− x0) + sin(tan−1(y′(0)))(y − y0)

y2 = −sin(ϕ)x1 + cos(ϕ)y1

18



A NOTE ON INFLEXIONS OF CURVES 19

= −sin(tan−1(y′(0)))(x− x0) + cos(tan−1(y′(0)))(y − y0)

be the new coordinates, obtained after rotating by Γ−ϕ. Clearly the
tangent line l(0,0) to C in the coordinates (x2, y2) is then given by y2 = 0.

Using the identities cos(tan−1(ϕ)) = 1

(1+ϕ2)
1
2
, sin(tan−1(ϕ)) = ϕ

(1+ϕ2)
1
2
,

we let;

x2(t) = t+y′(0)(y(t)−y0)
(1+(y′(0))2)

1
2

y2(t) = − (y(t)−y0)−y′(0)t
(1+(y′(0))2)

1
2

be new analytic power series with (x2(0), y2(0)) = (0, 0), parametris-
ing G(Γϕ(x

2, y2)+(x0, y0)) = 0, in the new coordinates. Observe that C
in the new coordinates satisfies the conditions of Lemma 0.9. Moreover;

(y2)′′|t=0 = − y′′(0)

(1+(y′(0))2)
1
2

(y2)′′′|t=0 = − y′′′(0)

(1+(y′(0))2)
1
2

Hence, if conditions (i), (ii) are satisfied, then (y2)′′(0) = 0 and
(y2)′′′(0) ̸= 0. By Lemma 0.10, we obtain (0, 0) of C in the new co-
ordinates (x2, y2) is an inflexion in the sense of Remarks 0.7. It is
then elementary to see that (x0, y0) is also an inflexion in this sense, as
I(C, l, p) is preserved by translations and rotations, (∗). Conversely, if
(0, 0) is an inflexion in the sense of Remarks 0.7, and y′′′(0) ̸= 0, then
conditions (i) and (ii) hold. Conversely, if (x0, y0) is an inflexion in the
sense of Remarks 0.7, then, by (∗), we have that (0, 0) is an inflexion
of C in the new coordinates (x2, y2). By Lemma 0.10, we have that
(y2)′′|t=0, hence, y

′′(0) = 0. As, by assumption, y′′′(0) ̸= 0, conditions
(i) and (ii) hold. �

Lemma 0.12. Let C satisfy the conditions of Lemma 0.9, with the
additional property that there exists K > 0, such that y′|(0,K) and
y′′(0,K) > 0. Then, if x0 ∈ (0, K), we have that the tangent line ly(x0) to
C, intersects the line y = 0 at x3 > 0. In particular, if u > 0, and lu,v
denotes the line y = u + vx, we have that, if (x0, y(x0)) ∈ (lu,v ∩ C),
then y′(x0) > v.

Proof. Let x1 = µx(x > 0 ∧ (x, y(x)) ∈ lO,x0 , (∗), where lO,x0 =
l(0,0),(x0,y(x0)), then 0 < x1 ≤ x0. The line lO,x0 intersects C at {0, x1},
hence, if z(x) = lx0(x) − y(x), we have that z(0) = z(x1) = 0. By
Rolle’s Theorem, there exists 0 < x2 < x1 ≤ x0, such that z′(x2) = 0,

19



20 TRISTRAM DE PIRO

y′(x2) = l′x0(x2) =
y(x0)
x0

. Then, as y′|[x2,x0] is increasing, we have that

y′(x0) >
y(x0)
x0

. It follows immediately, as O ∈ lO,x0 , that the tangent
line lx0 to C, at x0, intersects the line y = 0 at x3 > 0. Moreover, if

lu,v passes through (x0, y(x0)), then, as u > 0, we have that δ < y(x0)
x0−x3 ,

hence, y′(x0) > v. �

Lemma 0.13. Let C satisfy the conditions of Lemma 0.11, and let
{x(t), y(t)} be analytic power series parametrising C at p = (x0, y0),
with x(t) = x0 + t. Then, I(C, lp, p) ≤ 3, where lp is the tangent line.

Proof. Suppose that I(C, lp, p) ≥ 4. Using the remarks at the end of
Lemma 0.11, we can assume that (0, 0) ∈ C, lp is the tangent line
y = 0, x(t) = t and y(0) = 0, y′(0) = 0. By definition, we can find
lϵ,λϵ, (denoting the line y = λϵ+ ϵx), with (ϵ, λϵ) ∈ µ(0, 0) and λ ∈ R,
and, {xi : 1 ≤ i ≤ 4} ⊂ µ(0) distinct, with {(xi, y(xi)) : 1 ≤ i ≤ 4} ⊂
(C ∩ lϵ,λϵ∩µ(O)). Without loss of generality, we can assume that there
exists K > 0, with y′′|(0,K) > 0, then, for 0 < x < K, we have that
y′(x) =

∫ x
0
y′′(s)ds > 0, y(x) =

∫ x
0
y′(s)ds > 0, hence, y|(0,K) > 0 and

y′|(0,K) > 0. Assuming ϵ > 0, λ > 0 and 0 < x2 < x3. Transferring the
statement about infinitesimals, we obtain, given {C,E} ⊂ R>0, that;

R |= ∃x∃w∃z[(0 < x < C) ∧ (0 < z < E) ∧ (0 < x < w < C) ∧
{(x, y(x)), (w, y(w))} ⊂ (C ∩ lz,λz)]

Choosing C < K, we obtain points 0 < a0 < a1 < K, and ϵ > 0,
with {(a0, y(a0)), (a1, y(a1))} ⊂ (C ∩ lϵ,λϵ). By Lemma 0.12, we obtain
that y′(a0) > λϵ, and, y′|[a0,a1] > λϵ, as y′|[a0,a1] is increasing, but, by
Rolle’s Theorem, there exists a2 ∈ (a0, a1), with z′(a2) = 0, where
z(x) = lϵ,λϵ(x) − y(x), that is y′(a2) = λϵ, a contradiction. If ϵ < 0,

λ < 0, we have that x2 > 0, and x2 = y(x2)+ϵ
λϵ

= 1
λ
+ y(x2)

λϵ
> 1

λ
,

contradicting the fact that x2 is infinitesimal. The other cases ϵ > 0,
λ < 0, and ϵ < 0, λ > 0 are easier, and left to the reader.

�

Lemma 0.14. Let C satisfy the conditions of Lemma 0.9, and let
{x(t), y(t)} be analytic power series parametrising C at p = (0, 0), with
x(t) = t. Then, p is an inflexion in the sense of Lemma 0.7 iff;

ordt(y(t)) = 2m+ 1.

where m ∈ N .
20



A NOTE ON INFLEXIONS OF CURVES 21

Proof. We divide the proof into cases. Observe that if ordt(y(t)) = 1,
then y(t) = tu(t), with u(0) ̸= 0. Then y′(0) = u(0) + 0u′(0) ̸= 0,
contradicting the assumption that the tangent line lO is the line y = 0.

Case 1. ordt(y(t)) = 2m+ 1, where m ∈ N .

Let y(t) = t2m+1u(t), with u(0) ̸= 0, and m ≥ 1. Choose ϵ > 0
infinitesimal. We have that y(ϵ) = ϵ2m+1u(ϵ), and l0,ϵ is given by the
equation y = ϵ2mu(ϵ)x. Without loss of generality, assume ϵ > 0, and

u(ϵ) > 0. Let u(ϵ) = c /∈ µ(0). Similarly, u(ϵ)
1

2m = c
1

2m /∈ µ(0) (pos-

itive root). Let g(t) = u(t)
1

2m be a positive analytic root of u(t). We

claim that there exists a solution to tg(t) = −ϵu(ϵ) 1
2m = −ϵc 1

2m , for
t0 ∈ µ(0), t0 < 0, (∗), in which case, (t0, y(t0)) is a solution to C ∩ l0,ϵ.
Using Lemma 0.13, we then obtain I(C, lp, p) = 3 as required. Ob-

serving that δ = −ϵc 1
2m ∈ µ(0), and h(0) = ty(t)|t=0 = 0, (∗) follows

elementarily, by transfer, from the fact that there exists K,L > 0, with
maxx∈[−K,0]h

′(x) ≤ L, h′|[−K,0) < 0 and h|[−K,0) < 0, so, for any ϵ > 0,
there exists −ϵ

L
< x < 0, with h(x) = −ϵ.

Case 2. ordty(t) = 2m, where m ∈ N .

Let y(t) = t2mu(t), with u(0) ̸= 0. Wlog, we can assume that
u(0) > 0. Suppose I(C, lp, p) = 3, then there exists (ϵ, λϵ) ∈ µ(0, 0),
we can assume that ϵ > 0, and {x1, x2, x3} ⊂ µ(0), with
{(x1, y(x1)), (x2, y(x2)), (x3, y(x3))} ⊂ C ∩ l(ϵ,λϵ) ∩ µ((0, 0)). If λ = 0,
then, we can assume either that 0 < x2 < x3, (∗), or x2 < 0 < x3, (∗∗).
If (∗) holds, then repeating the argument of Lemma 0.13, we obtain a
contradiction. Observe that we can find K > 0, such that y|(−K,K) > 0.
If (∗∗) holds, then, by transfer, we can find −K < a2 < 0 < a3 < K,
with {(a2, a2ϵ), (a3, a3ϵ)} ⊂ C, a contradiction. If λ ̸= 0, (we can
assume (λ > 0), and then (0, 0) /∈ (C ∩ lp)), we can then assume that
0 < x2 < x3, (∗), holds again, obtaining a contradiction. It is, then,
trivial to see that I(C, lp) = 2, by choosing a line l0,ϵ, passing through
O and (ϵ, y(ϵ))

�

Lemma 0.15. Let C satisfy the conditions of Lemma 0.11, and let
{x(t), y(t)} be analytic power series parametrising C at p = (x0, y0),
with x(t) = x0 + t and y(0) = y0. Then, p is an inflexion in the sense
of Lemma 0.7 iff;
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22 TRISTRAM DE PIRO

ordt(y(t)− y0 − y′(0)t) = 2m+ 1.

where m ∈ N .

Proof. Following the proof of Lemma 0.11, let x2(t) and y2(t) be the
new analytic power series, parametrising C at (0, 0) in the new coor-
dinates, after translating the axes by (x0, y0) and applying the rota-
tion Γ−Φ, where Φ = tan−1( y0

x0
). Then, as y′(0)2 ≥ 1, we have that

ordtx
2(t) = 1, hence, we can write x2(t) = tu(t) with u(0) ̸= 0. By the

inverse function theorem, we can find an analytic power series λ(t), with
ordtλ(t) = 1, such that tx2(λ(t)) = t. Clearly, (t, y2(λ(t))) parametrises
the curve C at (0, 0) in the new coordinates (x2, y2). By Lemma 0.14,
and the remarks at the end of Lemma 0.11, we have that p is an inflex-
ion in the sense of Lemma 0.7 iff (0, 0) is an inflexion in the sense of
Lemma 0.7 of C (in the new coordinates) iff ordt(y

2(λ(t))) = 2m + 1,
where m ∈ N , iff ordt(y

2(t)) = 1, iff ordt(y(t)− y0 − y′(0)t) = 2m+ 1,
by the definition of y2(t).

�
Lemma 0.16. Let C be a nonsingular real plane algebraic curve, de-
fined by G(x, y), with p = (0, 0) ∈ C, and ∂G

∂x
|(0,0) ̸= 0, ∂G

∂y
|(0,0) =

0. Clearly, the tangent line lp, (y = 0), of C at p passes through
O. Let y(t) be an analytic power series, with y(0) = 0, such that
G(t, y(t)) = 0, and let γ : R → R2 be defined by γ(t) = (t, y(t)). Let
vψ(t) = tan−1(y′(t)) measure the angle of the velocity ψ of γ at time t.
Then, if y′′(0)) = 0, (0, 0) is an inflexion of C in the sense of Remarks
0.7 iff (0, 0) is not an inflexion of the the curve C ′ defined by y = vψ(x),

and, y′′(0) ̸= 0 (not an inflexion) iff
dvψ
dt
|t=0 ̸= 0.

Proof. As (0, 0) lies on lp, we have that vψ(0) = 0, (†). Moreover, we
have that;

tan(vψ(t)) = y′(t) (∗)

Let S(z) be the analytic power series expansion of tan(z), S(z) =
zd(z), with d(0) = f ̸= 0, (9). If (0, 0) is an inflexion of C, in the sense of
Remarks 0.7, then, by Lemma 0.14, we have that ordt(y(t)) = 2m+ 1,
where m ∈ N . Then ordt(y

′(t)) = 2m, and, by (∗), ordt(vψ(t)) =
ordt(tan(vψ(t))) = ordt(y

′(t)) = 2m, so, again, by Lemma 0.14, as
v′ψ(t) = 0, (0, 0) is not an inflexion of the curve C ′ defined by y =

9S(z) =
∑∞

k=1
B2k

(2k)! (−1)k4k(1 − 4k)x2k−1, where, for k ∈ N , B2k denotes the

2k’th Bernouilli number.
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vψ(x). Conversely, if (0, 0) is not an inflexion of C, in the sense of
Remarks 0.7, then, by Lemma 0.14, we have that ordt(y(t)) = 2m,
where m ∈ N . Then ordt(y

′(t)) = 2m − 1, and, by (∗), ordt(vψ(t)) =
ordt(tan(vψ(t))) = ordt(y

′(t)) = 2m − 1, so, again, by Lemma 0.14,
(0, 0) is not an inflexion of the the curve C ′ defined by y = vψ(x),
unless m = 1, in which case we obtain the final claim of the Lemma.

�
Lemma 0.17. Let C satisfy the conditions of Lemma 0.11, and let
{x(t), y(t)} be analytic power series parametrising C at p = (x0, y0),
with x(t) = x0 + t and y(0) = y0. Let γ : R → R2 be defined by
γ(t) = (x(t), y(t)). Let vψ(t) = tan−1(y′(t))− tan−1(y′(0)) measure the
angle of the velocity ψ of γ at time t, relative to the tangent line lp.
Then, if y′′(0)) = 0, (0, 0) is an inflexion of C in the sense of Remarks
0.7 iff (0, 0) is not an inflexion of the the curve C ′ defined by y = vψ(x),

and, y′′(0) ̸= 0 (not an inflexion) iff
dvψ
dt
|t=0 ̸= 0.

Proof. As p = (x0, y0) lies on lp, we have that vψ(0) = 0, (†). Let
y(t) = ty′(0) + y2(t), then y

′(t) = y′(0) + y′2(t), and;

tan(vψ(t)) = y′2(t) (∗)

Let S(z) be the analytic power series expansion of tan(z), S(z) =
zd(z), with d(0) = f ̸= 0, (10). If (0, 0) is an inflexion of C, in the sense
of Remarks 0.7, then, by Lemma 0.15, we have that ordt(y2(t)) =
2m + 1, where m ∈ N . Then ordt(y

′
2(t)) = 2m, and, by (∗), (†),

ordt(vψ(t)) = ordt(tan(vψ(t))) = ordt(y
′
2(t)) = 2m, so, by Lemma

0.14, as v′ψ(t) = 0, (0, 0) is not an inflexion of the curve C ′ defined by
y = vψ(x). Conversely, if (0, 0) is not an inflexion of C, in the sense
of Remarks 0.7, then, by Lemma 0.15, we have that ordt(y2(t)) = 2m,
where m ∈ N . Then ordt(y

′
2(t)) = 2m − 1, and, by (∗), ordt(vψ(t)) =

ordt(tan(vψ(t))) = ordt(y
′(t)) = 2m − 1, so, again, by Lemma 0.14,

(0, 0) is not an inflexion of the the curve C ′ defined by y = vψ(x),
unless m = 1, in which case, again, we obtain the final claim.

�
Lemma 0.18. Let γ be a nodal path, then the number r of inflexions
is even.

Proof. Let 0 ≤ t1 < t2 < 1, with the property that there does not exist
t3, with t1 < t3 < t2 such that γ(t3) is an inflexion, and {γ(t1), γ(t2)}

10S(z) =
∑∞

k=1
B2k

(2k)! (−1)k4k(1 − 4k)x2k−1, where, for k ∈ N , B2k denotes the

2k’th Bernouilli number.
23



24 TRISTRAM DE PIRO

are inflexions. Letting ϕ : [t1, t2] → S1 be defined, as above, we have
that, if ϕ(t) = (ϕ1(t), ϕ2(t)), then ϕ′(t).ϕ(t) = 0, so ϕ′

1ϕ1 + ϕ′
2ϕ2 = 0

(1). If θ(t) = tan−1(ϕ1(t)
ϕ2(t)

), then;

dθ
dt

=
ϕ′1ϕ2(t)−ϕ′2ϕ1(t))
((ϕ1)2(t)+(ϕ2)2(t))

(∗)

Suppose t1 < t3 < t2 and (dθ
dt
)|t3 = 0, then, we obtain, by (∗), that

(ϕ′
1ϕ2(t)−ϕ′

2ϕ1(t))|t3 = 0, (2). Combing (1), (2), we obtain (ϕ1)
2(
ϕ′2
ϕ2
)+

(ϕ2)
2(
ϕ′2
ϕ2
)|t3 = (

ϕ′2
ϕ2
)|t3 = 0. Therefore, ϕ′(t3) = (ϕ′

1(t3), ϕ
′
2(t3)) = 0. By

Lemma 0.5, we would have that γ(t3) is an inflexion, hence, (dθ
dt
)|(t1,t2) ̸=

0. Again, by Lemma 0.5, we have ϕ′(t2) = ϕ′(t3) = 0, (†), hence, by (∗),
dθ
dt
(t2) =

dθ
dt
(t3) = 0. We claim that d2θ

dt2
(t2) ̸= 0, (∗∗). If (∗∗) fails, then,

by (∗), we have that ϕ′′
1ϕ2(t2)−ϕ′′

2ϕ1(t2) = 0, (††). By the Fundamental
Theorem of Calculus, using the fact that ϕ′(t2) = (ϕ′

1(t2), ϕ
′
2(t2)) = 0,

by (†), we have;

ϕ′(t2 + ϵ) =
∫ t2+ϵ
t2

ϕ′′(t)dt (††)

As γ is analytic, if ϕ′′(t2) ̸= 0, (†††), then if α(t) = cos−1(
ϕ′(t).lϕ(t)
|ϕ′(t)| )

measures the angle between the velocity vector ϕ′(t) and the tangent
line lϕ(t) to S1, we have, for sufficiently small ϵ, that α(t2 + ϵ) ̸= 0,

by (††) and the fact that, for β(t) = cos−1(
ϕ′′(t).lϕ(t)
|ϕ′(t)| ), we have β(t2) =

π
2

̸= 0. This clearly contradicts the fact that, for all t, α(t) = 0,
as ϕ′(t)||lϕ(t). Hence, (†††) fails and ϕ′′(t2) = 0. By (∗) of 0.5, and
ϕ′(t2) = ϕ′′(t2) = 0, we have that;

(r3ϕ′
1)

′|t2 = (γ′′1r
2 − (γ′1)

2γ′′1 − γ′1γ
′
2γ

′′
2 )

′|t2

= (γ′′′1 r
2+2γ′′1rr

′−2γ′1(γ
′′
1 )

2−(γ′1)
2γ′′′1 −γ′′1γ′2γ′′2−γ′1(γ′′2 )2−γ′1γ′2γ′′′2 )|t2 = 0

and, similarly;

(γ′′′2 r
2+2γ′′2rr

′−2γ′2(γ
′′
2 )

2−(γ′2)
2γ′′′2 −γ′′2γ′1γ′′1−γ′2(γ′′1 )2−γ′2γ′1γ′′′1 )|t2 = 0

Using the fact, by Lemma 0.5, that (γ′′1γ
′
2)|t2 = (γ′′2γ

′
1)|t2 , we obtain

that (γ′′′1 γ
′
2)|t2 = (γ′1γ

′′′
2 )|t2 , contradicting Definition 0.3. Hence, (∗∗)

holds, that is d2θ
dt2

(t2) ̸= 0, and, similarly d2θ
dt2

(t3) ̸= 0. Enumerating
the inflexions {i1, . . . , ir}, with corresponding {t1, . . . , tr}, we have, by
definition of a maximum/minimum for θ, that the angle θ is increas-
ing/decreasing in the intervals (ti, ti+1), and changes direction at each
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ti, for 1 ≤ i ≤ r. If the number of inflexions were odd, then clearly
θ would be both increasing and decreasing on each interval (ti, ti+1),
implying that θ is constant. This clearly implies that γ is contained in
a line l, with no inflexions. Otherwise, we obtain that the number of
inflexions is even as required. �
Definition 0.19. Let Vm = {ν1, . . . , νm}, m ≥ 1, indexed by the or-
dered set M , with |M | = m, be a set of nodes, Ir = {i1, . . . , ir}, r ≥ 0,
indexed by the ordered set I, with |I| = r, be a set of inflexions. We

let W Vm
Ir

= {Sv : 1 ≤ v ≤ (2m+r)!
2

} consist of the ordered sets of cardi-
nality 2m + r, that are made up of the inflexions and repeats of the
nodes {νij : 1 ≤ i ≤ 2, 1 ≤ j ≤ m}, with the single requirement

that ν1j < ν2j , for 1 ≤ j ≤ m. If r = 0, and Sv ∈ W Vm
I0

, we define

Loop(Sv) = {ν1j , ν2j : 1 ≤ j ≤ m, {ν1j , ν2j } occur in adjacent positions}
Given such a set Sv, we define a sequence of sets {Sv,z : 1 ≤ z ≤ m}
inductively, by setting Sv,1 = Sv, and, Sv,z+1 = (Sv,z \ Loop(Sv,z)). We
call Sv a source if Sv,m = ∅. If γ is a nodal path, with m nodes, (m ≥ 1),
and r inflexions, then γ determines a set Sγ,v ∈ W Vm

Ir
, by ordering the

times {tk : 1 ≤ k ≤ (2m + r)}, for which γ(tk) is an inflexion or a
node. We let XVm

Ir
= {Sγ,v : γ a nodal path}, XVm

Ir
⊂ W Vm

Ir
.

Lemma 0.20. Let γ be a nodal path with no inflexions. Then Sγ,v
is a source, and, conversely, every source Sv ∈ W Vm

I0
is realised by

a nodal path γ with no inflexions. In particular, |XVm
I0

| = 2m and

|W Vm
I0

| = (2m)!
2

, for m ≥ 2, |XV1
I0
| = |W Vm

I0
| = 1.

Proof. We prove this by induction on m. The case m = 1 is clear, the
path γ defined by;

x(t) = cos3(2πt
3
)cos(2πt)

y(t) = cos3(2πt
3
)sin(2πt)

for t ∈ [0, 1), (Cayley’s sextic), is a nodal path with no inflexions,
the single node being located at (−cos3(π

3
), 0).

Suppose the result is true for m. Let γ be a nodal path, with m+ 1
nodes. Suppose Sγ,t has an adjacent nodal pair {ν1j0 , ν

2
j0
}, (†) for some

1 ≤ j0 ≤ m + 1, and times {tij0 : 1 ≤ i ≤ 2} such that γ(tij0) = νj0 .

Choose ϵ > 0, with t
i′0
j′0
< t1j0 − ϵ < t1j0 < t2j0 < t2j0 + ϵ < t

i′′0
j′′0
< 1, where

{νj′0 , νj′′0 } are adjacent nodes to νj0 . Define a nodal path γ1, by setting
γ1|[0,t1j0−ϵ) = γ|[0,t1j0−ϵ), γ1|[t2j0+ϵ,1) = γ|[t2j0+ϵ,1), and γ1 : |[t1j0−ϵ,t2j0+ϵ) = γ2 :
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|[t1j0−ϵ,t2j0+ϵ), where γ2 : [t
1
j0
− ϵ, t2j0 + ϵ) → R2 is a path with the property

that (γ ∩ γ2) = ∅, γ2 has no nodes or inflexions, satisfies properties (i)
and (ii), and the concatenated path γ1|[0,t1j0−ϵ) �γ2 �γ1|[t2j0+ϵ,1) is analytic
at the points {t1j0 −ϵ, t

2
j0
+ϵ}. Then γ1 is a nodal path, based on the set

of nodes Vm = (Vm+1 \ {vj0}). By induction Sγ1,v is a source. Hence,
by definition, so is Sγ,v. Hence, we can assume that (†) fails, and Sγ,v
has no adjacent nodal pair. Let {ν2j0 , ν

2
j1
} be the final two elements

of Sγ,v, with corresponding {t2j0 , t
2
j1
} ⊂ [0, 1), j0 ̸= j1, (as (†) fails).

Let γ3 = γ|[t1j0 ,t2j0 ]. considering the path γ4 = γ|(t2j0 ,1], we have that

(γ3 ∩ γ4) = ∅, as otherwise
�
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